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Based on airborne LIDARdata on canopymorphology and height of Amazon forest trees, we developed allometric
models to estimate dry biomass stored in the boles of dominant and co-dominant individuals and compared
these results with those from equations based on traditional variables such as diameter at breast height (DBH).
The database consisted of 142 trees of interest for logging in a forest under management for timber in Brazil's
state of Acre. The trees chosen for study were selected through proportional sampling by diameter class (ranging
from 45 to 165 cmDBH) in order to properly represent the dominant and co-dominant tree populationswith di-
ameters appropriate for harvest. Subsequent to LIDAR profiling of these trees, theywere felled, subjected to a bat-
tery of dimensionalmeasurements and sampled forwood-density determination. A set ofmodelswas generated,
followed bymodel selection and identity testing in order to compare groups of basicwood density (low,medium
and high). The morphometric variables of the crown had high explanatory power for bole biomass independent
of whether the allometric equations included DBH. When calculating bole biomass with equations that include
basic wood density, the best estimate is obtained using variables for both DBH and crownmorphology. To obtain
an allometric equation that encompasses species in all three classes of basic density, one should either use only
independent variables representing crown dimensions or complement these with variables for basic density
(BD) and total height (Ht). The study demonstrates the feasibility of using ground-based measurements to cali-
brate biomass models that include only LIDAR-based variables, allowing much larger areas to be surveyed with
reasonable accuracy. The present study is designed to produce data needed for forest management, but the
methods developed here can be adapted to studies aimed at reducing the uncertainty in biomass estimates of
whole forests (not just harvestable trees) for use in quantifying carbon emissions from forest loss and
degradation.
© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

In recent years great advances have been made in the planning and
implementation of forest-management operations in Brazil's Amazon
region using precision management techniques (Figueiredo et al.,
2007). Precision management integrates the use of geographical posi-
tioning system (GPS) and geographical information system (GIS)
. Figueiredo),
raz@embrapa.br (E.M. Braz),
inpa.gov.br (P.M. Fearnside).
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technology. Airborne LIDAR (Light Detection And Ranging) technology
has recently been shown to havewide application in precisionmanage-
ment of tropical forests, allowing information on relief and hydrograph-
ic structure to be obtained with sub-meter accuracy over large tracts of
forest (d'Oliveira et al., 2012). Dubayah et al. (2010), Stark et al. (2012),
Sullivan et al. (2014) and Palace et al. (2015) have described LIDAR's po-
tential in modeling forest carbon stocks, while Hunter et al. (2013) pro-
posed corrective measures to improve estimates of forest biometric
parameters using LIDAR. Use of laser profiling improves the quality of
planning for infrastructure (such as the network of roads, storage
yards and skid trails in the monitoring of forest operations) and in esti-
mating the volume and biomass of managed forests.
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Despite technological advances in optical physics, remote sensing,
GIS and computing (Hudak et al., 2012; Lim and Treitz, 2004; Næsset
and Gobakken, 2008; Simbaña et al., 2016), it is still necessary to further
develop basic knowledge of forest components, such as the understand-
ing of plant biomass. Biomass estimates are considered to be empirical
since the models used to describe a response variable do not identify
the causes or explain the phenomena that affect the behavior of this var-
iable (Clark and Clark, 2000; Scolforo et al., 2004, 2008; Vanclay, 1994;
Whittaker andWoodwell, 1971). Allometric equations used to estimate
volume, biomass and carbon stocks in forests have usually been pre-
pared based on destructive plots, correlating measurements of whole
trees with two variables that are possible tomeasure in the field: height
and diameter at breast height measured 1.3 m above the ground or
above any buttresses (DBH) (da Silva, 2007; Higuchi et al., 1998).

Morphometric variables of the crown have high correlations with
dendrometric parameters of the bole such as DBH and height (Durlo
and Denardi, 1998; Orellana and Koehler, 2008; Wink et al., 2012).
However, estimating the values of these variables bymeasuring individ-
ual trees in tropical forests is a major challenge. Even for measuring di-
ameter and height, the dense understory, crooked trunks and the
presence of roots in strut or tabular form are obstacles tomaking precise
measurements. Especially for variables that cannot bemeasured direct-
ly in the field (i.e., height) the gain produced by inclusion of the variable
in the model should not be smaller than the error associated with its
measurement in the field (d'Oliveira et al., 2012). In this environment,
it is difficult, from a practical standpoint, to obtain morphometric vari-
ables for the canopy in conventional forest inventories (Ferraz et al.,
2015; Wulder et al., 2012). However, LIDAR data allow measurements
Fig. 1. Location map of Antimar
of total height andmorphological variables for the canopies of co-dom-
inant and dominant trees to be obtained with great precision.

The aim of the present study is to develop allometric equations for
estimating stem biomass of dominant and co-dominant trees under
precision forest management. A combination of field-based measure-
ments and LIDAR-derived estimates of canopy geometrywas used to es-
timate bole biomass. The equations are based on morphometric
variables for the canopy obtained from LIDAR, togetherwith traditional-
ly employed variables such as DBH, total height (Ht), and the apparent
density (AD) and basic density (BD) of the wood. Identity was also
assessed for groups of models of wood density.

2. Materials and methods

2.1. Study site

The studies were conducted in a 315-ha area of forest management
in the Antimary State Forest (68° 01′ to 68° 23′W; 9° 13′ to 9° 31′S)
under SmartWood Certification No. SW-FM/COC-1670 and Environ-
ment Institute of Acre (IMAC) Operating License No. 530/2008 (renew-
al). This protected area is located in themunicipalities of Bujari and Sena
Madureira, Acre state, Brazil (Fig. 1).

The area encompassing the Antimary State Forest has an average an-
nual rainfall of 2000mmand average temperature of 25 °C (Acre, 2000).
A dry season from June to September is the period when the logging is
performed. The forest consists of three main types: dense, open, and
open with bamboo. These three forest types occur intermittently in
the study area. The predominant soils are dystrophic and yellow latosols
y State Forest, Acre, Brazil.
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(Oxisols) with gently rolling topography and a maximum elevation of
around 300 m (Acre, 2000).

2.2. Forest inventory

In 2009 an inventory census was conducted in order to plan the log-
ging in the 4000-ha 2010 annual-production unit (APU). The survey
was conducted considering all commercial timber species with DBH
above 30 cm. The location of trees and the planning techniques were
performed according to the procedures recommended for precision
management (Figueiredo et al., 2007). Thus, for each tree the geograph-
ical coordinates and a barometric point were determined using a high-
sensitivity GPS. The botanical specimens of the species in the sample
were deposited for identification in the herbarium of the Federal Uni-
versity of Acre Zoobotanical Park (UFAC/PZ), Rio Branco, Acre, Brazil.

2.3. LIDAR data

High density (25 pulses m−2) discrete-return LIDAR data were col-
lected before logging between 29 May and 3 June 2010, covering a
total of 1000 ha inside the 2010 APU. The Optech ALTM 3100 (Aerial
Laser Terrain Mapper) system was used, carried on a twin-engine
Piper Seneca II aircraft, model Neiva/Embraer 810C. The flight was con-
ducted at an average speed of 210 km h−1 at a height of 300 m; the
LIDAR system had a beam diameter of 20 cm, beam divergence of 0.3
mrad, scanning angle of 15°, and scanning frequency of 58.7 Hz.
(D'Oliveira et al., 2012).

As a fixed benchmark on the ground the RBMC INBO 93911 refer-
ence was adopted from the Brazilian Network for Continuous Monitor-
ing of Systems (GNSS). The data were processed in the Universal
Transverse Mercator (UTM) coordinate system (Zone 19 South) and
the SIRGAS 2000 reference system. Two pairs of Trimble 5700 GPSs
with L1/L2 carriers were used. The average intensity of profiling was
43.03 dots m−2.

The LIDAR reflection data were initially placed in a single structured
file forming a 315-ha mosaic with approximately 130 million pulses.
Files were processed on a three-dimensional basis using Quick Terrain
Modeler software, which is specific for this purpose.

2.4. Quantification of bole volume

The sample structure of the dominant and co-dominant trees of in-
terest for logging under forestry-management conditions was mea-
sured considering a proportional sampling by diameter class (Table 1).
The sampled trees were cut and cubic scaling was performed using
the Smalianmethod. After cutting the trees, the stumps were geo-refer-
enced using a high-sensitivity L1 GPS receiver. The reference point for
post-processing was the same as the ground benchmark used for the
collection and processing the LIDAR point cloud.

Because the study focuses on trees of commercial interest for timber
management, individuals with hollow or crooked stems were not cut
andwere not included in our sample. Criteria for loggingwere observed
that are standardized by law for rare species, seed trees, maintenance of
Table 1
Proportional-sampling data base stratified by diameter class of the dominant and co-dom-
inant trees with volumes measured for use in fitting allometric models.

Diameter
Class

Diameter
interval
(cm)

Number individuals
in the inventoried
population

% Number individuals
for fitting the
volume models

%

I 45–74.9 1294 61.9 86 60.6%
II 75–104.9 570 27.3 39 27.5%
III 105–134.9 174 8.3 12 8.5%
IV 135–164.9 53 2.5 5 3.5%
Total 2091 100.0 142 100.0%
permanent preservation areas and the geographical location stipulated
in the license for the management plan.

2.5. Quantification of biomass

After cutting each tree in the sample, wedgeswere removedwith an
average length of 30 cm and thickness of 10 cm. Thewood samples (in-
cluding bark and sapwood)were taken from thefirst and last log of each
tree, using a chainsaw.

To obtain the apparent density (green weight/green volume in g
cm−3), the samples were immersed in water to achieve constant
weight, as recommended for the hydrostatic balance method (ABNT,
2003). An electronic balance was used with 25 kg capacity and a sensi-
tivity of 2 g. Subsequently, the dry weight of the sample for calculating
basic density (dry weight/green volume) was obtained after the sam-
ples reached constant weight at 105 °C (±2 °C). Using the data on the
density of the samples from each tree of interest, we calculated the
dry biomasses from the volume obtained by rigorous cubic scaling.

2.6. Processing the LIDAR point cloud to obtain canopy morphometric
variables

Each sampled tree was georeferenced in the field and the canopy of
each tree was subsequently identified in the LIDAR point cloud. The ad-
vantage of working with dominant and co-dominant trees is that indi-
vidual tree crowns can be pulled out of the LIDAR data even in a
structurally complex forest because these tree crowns are at the same
level or above the main canopy height (Detto et al., 2015; Hunter et
al., 2015; Tochon et al., 2015). Physiognomic characteristics of the envi-
ronment we studied (open forest and open forest with bamboo) were
also of fundamental importance for isolating dominant and co-domi-
nant trees in the point cloud.

We interpreted the LIDAR data manually to calculate morphometric
variables with Quick Terrain Modeler ×64 software using the following
procedure:

a) Point clouds are processedwith a hue filter, which allows processing
with all of the data on height andon the texture of the target surface;

b) The reflection of the point cloud is controlled using the Voxel Autosize
method, in which the points projected on the surface are processed to
assign different sizes to each point based on its position in relation to
the plane of visualization; the points that are close to the plane appear
larger, while the points that are away from the plane appear smaller
(Applied Imagery, 2010). Thus, points on the boundary of the profiled
structure are highlighted, providing a contrast with the second and
third points presentwithin the structure. This process facilitates draw-
ing the outline of the dominant and co-dominant trees and, hence, the
process of isolating the trees (Fig. 2), and

c) Sample trees are separated from the LIDAR point cloud by making a
three-dimensional polygon surrounding the canopy. Initially, a region
that includes the area of the canopy projection of the tree of interest
and the understory beneath this canopy was cut out of the point
cloud. Next, the tree crown and the projection of the stemwere isolat-
ed by editing the polygons and by successive cuttings.

2.7. Independent variables

A total of 18 independent variables were used, considering stem
data, apparent density (AD), basic density (BD) of thewood, the altitude
of the site (As) (elevation above mean sea level of the ground at the lo-
cation of the tree) and morphometric variables of the crown. The vari-
ables for the bole were diameter at breast height measured at 1.3 m
above the groundor above any buttresses (DBH, in cm) and height of in-
sertion of the crown (Hic inm), also known as the “commercial height.”



Fig. 2.Trees isolated from the understory vegetation using LIDARdata: a)Dipteryx odorataWild (“cumaru-ferro”), b) Ceiba pentandra (L.) Gaertn. (“samaúma”), c)Apuleia leiocarpa (Vogel)
J.F. Macbr. (“cumaru-cetim”), Antimary State Forest (FEA), Acre, Brazil.
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The following variables adapted from Burger (1939) were obtained
from the LIDAR point cloud to describe themorphometry of the canopy
(Fig. 3): length of the crown (Lc, inm), length of the branches (Lb inm),
mean crown diameter (CD in m), total height of the tree (Ht in m), per-
centage of canopy (PC = LC/Ht, in %), degree of slenderness (Ds = Ht/
DBH), index of protuberance (IP = CD/DBH), index of enclosure (IE),
form of the crown (Fc = CD/Lc), volume of the crown (Vc in m3) from
the solid of rotation that best models the crown, index of living space
(ILS = (CD/DBH)2), crown projection area (CPA in m2) representing
the area under the canopy, and mantle of the crown (MC in m2)
representing the area of the surface enclosing the crown. The DBH of
each tree was measured in the field during the forest inventory. The
one-year time difference between the forest inventory and the LIDAR
flight do not significantly affect the use of LIDAR-derived variables and
DBH to develop the biomass estimation models.

Of all the variables evaluated, only the data for Vc, CPA andMCwere
obtained during the processing of the LIDAR point cloud, verification in
the field not being possible. This was due to the difficulty of measuring
this information in the forest, as already reported by Chambers et al.
(2007) and Ferraz et al. (2016).

2.8. Allometric equations for bole biomass

Initially we evaluated the intensity of the linear relationship between
thedependent variables–dry biomass (Bd) and greenbiomass (Bg)– and
the independent variables. This step assists in the initial indication of the
most significant variables for model building (Statgraphics, 2006).

Only independent variables with correlation coefficient values less
than−0.65 or N0.65were selected for the routine that checks all possi-
blemodels (Ryan, 2011). The inclusion of independent variables in allo-
metricmodelswas limited to amaximumof three, which allowsmodels
with up to four parameters (βs), including the intercept (β0).

In order to reduce the number ofmodels initially indicated by the se-
lection routine, additional criteria were incorporated into the screening
process: the equations could have no multicolinearity and were re-
quired to have normally distributed residuals that are independent
and homoscedastic. The following statistics were calculated for this
additional screening: multicolinearity array, standardized error distri-
bution, Durbin-Watson (DW) test and Hartley F-maximum (SAS
Institute, 1990; Statgraphics, 2006).

Equations for estimating biomass were obtained for themodels pro-
posed by the selection routine. The statistical significance of each
independent variable was examined using the Fisher test (F test). Vari-
ables with significance levels b0.15 were removed to simplify the
polynomial.

For each allometric equation we performed an analysis of the influ-
ence of the independent observations. An observation was only consid-
ered to be influential when it produced substantial changes in the
calculated statistical values with and without the observation in accord
with the followingmeasures of atypical status: elements in the principal
diagonal of the H matrix, DFFITS and Cook's distance (Chatterjee and
Hadi, 1986; Figueiredo, 2005; Souza, 1998; Statgraphics, 2006). Selec-
tion of the best equation was based on a graphical analysis of the resid-
uals expressed as percentages, standard error expressed in absolute and
in percentage terms (Syx and Syx%), the Pressp criterion and the adjusted
coefficient of determination (R2aj%) (SAS Institute, 1990; Souza, 1998).

2.9. Identity of models by density group

After selecting the best allometric equation for dry biomass, we per-
formedan identity test of themodels. Because only linearmodelswere in-
volved, we used the procedure described by Graybill (1976) to assess the
need for fits made either individually or by basic-density group for three
classes of basic density (BD): Low (BDlo: BD b 0.5), medium (BDmd:
BD ≥ 0.5 b 0.7) and high (BDhi: DB ≥ 0.7) (do Vale et al., 2005; Nogueira
et al., 2005). The procedure consists of minimizing the sum of squares.
For linear models, the identity test allows the F test to be used to assess
the significance of the difference between the total sum of squares of
the regressions fitted for each basic-density group considered by itself
(full model: Ω) and the sum of squares of the regressions fitted for all
three basic-density groups (reduced model: w) (Figueiredo, 2005; SAS
Institute, 1990; Statgraphics, 2006). Table 2 presents the analysis of vari-
ance for testing the identity of the linear regression models.

Three hypotheseswere tested for thewood-density groups. The first
group (a) is for the fit of the original database composed of species in all
three basic-density classes (low, medium and high); the second group
(b) is composed of species with low and medium basic density, and
the third and last group (c) is composed of species with medium and
high basic density.

3. Results

The sample structure studied was classified as having 17.6% species
with low basic density (BD b 0.5), 40.8% moderately hard (0.5 ≥



Fig. 3. Treemorphometric variables using LIDAR data andDBH. Adapted from Burger (1939). Vc= volume of the crown from the solid of rotation that best models the crown (m3); MC=
mantle of the crown (surface area of the solid of rotation inm2); CPA= crown projection area (m2); DC=diameter of the crown (mean inm); DBH=diameter at breast heightmeasured
in thefield 1.3mabove the groundor above any buttresses (m); Lc= length of the crown (m); Ht= total height of the tree (m); Lb= length of the branches (m);Hic=height of insertion
of the crown [height above the ground of the first living branch].
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BD b 0.7), and 41.6% hard (BD ≥ 0.7).When basic densities ofwood sam-
ples collected from the base of the trunk (first log)were comparedwith
those from the upper end (last log) using the t-test, a statistical
Table 2
Analysis of variance for identity testing of linear models.

Source of variation df Sum of squares

Full model (A × p) SS Reg.(Ω)
Reduced model p SS Reg. (w)
Difference for hypothesis testing (A − 1)p SS Reg.(Ω)-SS R
Residual N–(A × p) SS Total(Ω)-SS
Total N. SS Total (Ω)

df= degrees of freedom; SS= sumof squares;MS=mean square; F= F test statistic; A=num
of observations in the full model (Ω).
difference was observed (t = 2.15, α= 0.05, p = 0.03). The basic den-
sity of thefirst log (mean± standard deviation=0.69±0.03, n=142)
was 7.3% higher than the density of the last log (0.65 ± 0.03, n = 142).
. Mean square F

eg. (w) SS(difference)/(A − 1)p MS(difference)/MS(residual)
Reg.(Ω) SS(residual)/N–(A × p)

ber of density classes; p=number of parameters in the reducedmodel (w); N=number
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The overall mean basic density based on the samples from the first and
last logswas 0.67 (n=142)with a coefficient of variation (CV) of 24.4%.

The apparent density (AD) resulting from the wood sample compo-
sition of thefirst and last log was 0.96 and the CVwas 11.1%. Comparing
the apparent densities of the first and last logs, there was no statistical
difference between the two groups (t = 1.54, α = 0.05, p = 0.12).
The mean AD of the base of the tree was 0.97 ± 0.02 (n = 142) and
themean AD of the last log was 0.95± 0.02 (n= 142). Themeanmois-
ture content of the first log was 0.34 ± 0.09 (n= 142), and for the last
log it was 0.34 ± 0.10 (n = 142).

In the tested equations where the independent variables were re-
stricted to those for canopy morphometry, 14.1% of sampled trees
were identified as atypical points. When DBH was included as an inde-
pendent variable in the model this percentage dropped to 6.3%, and
when both DBH and Ht were included it dropped to 4.9%.

The descriptive results for the main independent variables are
shown in Table 3.

Evaluation of the linear correlation between the independent and
dependent variables provides an important tool for the initial selection
of independent variables, especially when considering a large number
of possible variables of interest. Table 4 describes the results of linear
correlation of eighteen variables of interest, including crown morpho-
metric variables, environmental variables and bole variables, with the
dependent variable being either green or dry bole biomass.

Correlation analysis between crown morphometric variables and
the main dendrometric characters of the bole (Table 5) helps in under-
standing the importance that the crown data have for representing bole
variables and, consequently, the volume and biomass present in the
trunks of the trees.

The results of the selection procedure for all possible models were
divided into two categories. The first group (Equations 1 to 5 in Table
6) is for estimation of dry biomass of the bole, while the second group
(Equations of 6 to 11 in Table 6) is for green biomass.

Figs. 4 and 5 present the standard error percentage graphs for the
best equations considering the inclusion or the exclusion DBH, and
Figs. S1 and S2 (Supplementary material) present, real and estimated
values. The plots of residuals in Fig. 4 are for estimates of dry biomass
(Bd) and in Fig. 5 for green biomass (Bg).

All of the selected equations and the equations originating from the
combination of subsets for identity testing of the models had Durbin-
Watson values between 1.897 and 2.262 (p = 0.409 and 0.926); since
the p-value is N0.05, there is no indication of serial autocorrelation in
the residuals for the selectedmodels. The assumptionof homoscedastic-
ity (Hartley F-max)was also confirmed in the different diameter classes
of the sample. Kolmogorov-Smirnov tests of the frequency of the resid-
uals for all selected equations do not allow rejection of the hypothesis of
a normal distribution with 95% confidence.

Themain purpose of the identity test ofmodel is to evaluatewhether
the allometric equations fit using the datasets for the three wood-
Table 3
Descriptive results for the main independent variables and the bole volumes of dominant and

Description Units n Mean Standard dev

CPA (m2) 142 354.1 235.2
Lc (m) 142 10.3 3.9
Lb (m) 142 15.4 4.2
DBH (cm) 142 77.9 23.1
DC (m) 142 21.8 6.5
Hic (m) 142 23.7 4.5
Ht (m) 142 39.1 4.9
MC (m2) 142 420.7 290.7
Vc (m3) 142 2,495.9 2,449.1
Vol (m3) 142 8.3 6.9

Vc=volumeof the crown from the solid of rotation that bestmodels the crown (m3);MC=ma
(m2); DC= diameter of the crown (mean in m); DBH= diameter at breast height measured i
(m); Ht = total height of the tree (m); Lb= length of the branches (m); Hic = height of insert
bole from rigorous cubic scaling (m3).
density classes (low, medium and high) have similar characteristics,
or whether fits should be made individually for each density class or
for groupings of two density classes. Table 7 presents the results for
the identity test of models for estimating the dry biomass of the bole
and Table 8 the results for models that estimate green biomass.

4. Discussion

Allometric equations should seek to reduce possible sources of varia-
tion, avoiding generalizations based onmodels derived from specific data
from case studies (Baker et al., 2004; Bohlman and O'Brien, 2006; Crow
and Schlaegel, 1988; Ferraz et al., 2016; Scolforo et al., 2008.). Because
of this, allometric equations generated from a given forest structure are
not sufficient for general use in the field of forest management. Models
must be fitted to reflect the characteristics of each region and interest.

Because the present study is focused on the bole biomass of trees
intended for the timber industry that are cut as part of forest manage-
ment, sampling is for trees with DBH ≥ 45 cm. The sample composition
therefore differs from that in studies intended to estimate total tree bio-
mass and the composition of the whole forest, such as Higuchi et al.
(1998), da Silva (2007) and Nogueira et al. (2007). In most studies for
estimating the biomass of native forests, a sample is taken that begins
with the smaller diameter classes (e.g., DBH ≥ 5 cm), and generally
has b10% of the sampled individuals with DBH ≥ 50 cm. This change
in sample composition directly impacts biomass estimates, mainly due
to changes in diameter structure, species and density. These results
are therefore not necessarily applicable in other situations.

The statistically significant difference in the density of samples from
the first and last logs corroborates the results obtained by Scolforo et al.
(2004), Nogueira et al. (2005, 2007) and Silveira et al. (2013). Thus, if
basic density is included in estimating the biomass of a species group,
a compound sample should be collected along the bole because using
samples taken from a single position on the bole was found to misrep-
resent basic density by an average of 7.28%. The same behavior was
not observedwhen using apparent density, which does not differ signif-
icantly between the base and the top of the bole. This variable was not
chosen by the routine checking all possible models (Ryan, 2011).

The mean moisture content of the wood of the bole was about 8%
lower than the moisture contents of around 41% reported by
Fearnside (1997), Higuchi et al. (1998) and Nogueira et al. (2007).
This difference is due to the difference in the sample composition ex-
plained earlier, i.e., the present study contains a greater proportion of
species with medium and high basic density; these species have lower
moisture content than trees with low density.

Analysis of influence is a procedure that helps in understanding the
composition of linear models and in decisions on whether or not to ex-
clude an atypical observation. When bole-biomass models were fitted
that only use variables for the crown as independent variables, over
14% of the observations were simultaneously influential in three
codominant trees, Antimary State Forest, Acre, Brazil.

iation Coefficient of variation Minimum Maximum

66.4% 106.8 1,713.8
37.9% 4.1 24.9
27.5% 6.1 25.0
29.7% 44.5 164.5
29.8% 12.0 49.1
19.2% 12.2 36.1
12.6% 26.4 53.7
69.1% 112.6 2,001.7
98.1% 235.2 14,998.1
82.7% 1.5 55.9

ntle of the crown (surface area of the solid of rotation inm2); CPA=crown projection area
n the field 1.3 m above the ground or above any buttresses (m); Lc = length of the crown
ion of the crown [height above the ground of the first living branch]; Vol = volume of the



Table 4
Results of the correlation between the independent variables and the green and dry biomasses of trees cut under forest management, Antimary State Forest, Acre, Brazil.

Correlation with green biomass of the bole (Bg) Correlation with dry biomass of the bole (Bd)

Order Independent variable Sample size Correlation (r) Order Independent variable Sample size Correlation (r)
1 DBH 142 0.92 1 DBH 142 0.83
2 MC 142 0.79 2 Vc 142 0.72
3 CPA 142 0.77 3 MC 142 0.70
4 Vc 142 0.77 4 CPA 142 0.70
5 DC 142 0.72 5 DC 142 0.66
6 IE 142 0.56 6 Ht 142 0.60
7 Ht 142 0.54 7 Lc 142 0.51
8 Lc 142 0.51 8 IE 142 0.47
9 PC 142 0.38 9 Lb 142 0.42
10 Lb 142 0.36 10 PC 142 0.36
11 Hic 142 0.26 11 Hic 142 0.28
12 Fc 142 0.12 12 BD 142 0.14
13 As 142 0.01 13 Fc 142 0.11
14 AD 142 -0.08 14 AD 142 0.08
15 BD 142 -0.12 15 As 142 0.03
16 IP 142 -0.13 16 IP 142 -0.12
17 ILS 142 -0.15 17 ILS 142 -0.13
18 Ds 142 -0.65 18 DA 142 -0.57

Vc=volumeof the crown from the solid of rotation that bestmodels the crown (m3);MC=mantle of the crown (surface area of the solid of rotation inm2); CPA=crown projection area
(m2); DC= diameter of the crown (mean inm); DBH= diameter at breast height measured in the field 1.3 m above the ground or above any buttresses (m); IE= index of enclosure =
DC/Ht; Lc = length of the crown (m); Ht = total height of the tree (m); PC= percentage of crown= (Lc/Ht) × 100 (%); Lb= length of the branches (m); IP= index of protuberance=
DC/DBH; ILS = Index of living space = (DC/DBH)2; Hic = height of insertion of the crown [height above the ground of the first living branch]; Fc = form of the crown = DC/Lc; Ds =
degree of slenderness = Ht/DBH; As = altitude of the site = elevation of the ground above mean sea level as measured with LIDAR; DB = basic density of the wood; AD = apparent
density of the wood.
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statistics in the analysis; this atypical feature is explained by the exis-
tence of trees with broken crowns. The data were best modeled when
canopy morphometric variables and traditionally used bole variables
(DBH, Ht and BD) were incorporated into a single model. Even so,
only approximately 5% of the observations were influential.

Although trees with broken crowns are easily identified when the
LIDAR point cloud is interpreted, the models cannot represent them.
These trees were therefore excluded as atypical observations. In a forest
management strategy the trees with broken crowns should be priori-
tized for harvest due to their lower reproductive capacities, their
lower yields and because felling them causes the least impact due to
Table 5
Results of the correlation between the independent variables for crownmorphometry and
the independent variables traditionally employed indendrometricmodels, Antimary State
Forest, Acre, Brazil.

Independent variables traditionally
used in dendrometric models

Independent variables
used for crown
morphometry

DBH Dmax Dmin Hic Ht

Ds −0.8301* −0.8294* −0.8011* 0.0798 −0.0167
ILS −0.2621 −0.2604 −0.2150 −0.2665 0.0902
IP −0.2476 −0.2457 −0.1988 −0.2429 0.1268
Fc 0.1331 0.1346 0.1956 0.1158 −0.1695
Lb 0.3299 0.3358 0.2699 −0.3465 0.5634
PC 0.3797 0.3741 0.3490 −0.2317 0.3797
Lc 0.4800 0.4717 0.4257 0.0086 0.6457
IE 0.5826 0.5843 0.6046 −0.2262 0.1622
DC 0.7053* 0.7027* 0.6899 0.0410 0.5266
Vc 0.7238* 0.7143* 0.6874 0.0540 0.5258
CPA 0.7307* 0.7265* 0.7170* 0.0323 0.4681
MC 0.7557* 0.7531* 0.7343* 0.0461 0.4588

Vc = volume of the crown from the solid of rotation that best models the crown (m3);
MC=mantle of the crown (surface area of the solid of rotation in m2); CPA= crown pro-
jection area (m2); DC = diameter of the crown (mean in m); DBH = diameter at breast
height measured in the field 1.3 m above the ground or above any buttresses (m); IE =
index of enclosure = DC/Ht; Lc = length of the crown (m); Ht = total height of the tree
(m); PC = percentage of crown = (Lc/Ht) × 100 (%); Lb = length of the branches (m);
Ds = degree of slenderness = Ht/DBH; ILS = index of living space = (DC/DBH)2; Hic =
height of insertion of the crown [height above the ground of the first living branch];
Fc= formof the crown=DC/Lc;Ds=degree of slenderness=Ht/DBH;Dmax=diameter
at the thick end of the bole (m), Dmin= diameter at the thin end of the bole (m; * = cor-
relation that explains information with values equal to or N50%.
their reduced canopies. However, they should be measured in the
field, since the models are unable to generate reliable estimates. The
CPA, MC and Vc variables were the independent variables that were
most influenced by the existence of broken crowns. The largest varia-
tion was seen in the volume of the crown (Vc) because the conse-
quences of a partial loss of the crown are strongly reflected in the
three-dimensional volume results.

The results of a linear correlation between all independent variables
and the modeled independent variable indicate that DBH, MC, CPA, Vc
and CD have strong linear correlations with dry biomass (Bd) (Table
4). This information is important for fitting linear models or for
assessing the explanatory power of a given type of information. This is
especially evident for the four morphometric variables for the crown
(MC, Vc, CPA and CD), which have strong explanatory power with cor-
relation-coefficient values above 0.7. The MC and Vc variables obtained
exclusively by the processing the LIDAR point cloud explain N50% of the
variation in data for estimating biomass stored in the stems of dominant
and co-dominant trees. This corroborates the findings of Schneider and
Schneider (2008), who emphasize the importance of understanding the
horizontal space of the forest, i.e., the individuals with the largest
crowns have the greatest capacity for storing biomass and represent
the potential of the forest site. A number of authors have developed
and studied methods for estimating tree biomass from canopy mor-
phometry, eliminating field measurements (Balzotti et al., 2016;
Bouvier et al., 2015; Ferraz et al., 2016; Shugart et al., 2015; Zolkos et
al., 2013).

Analyzing the correlation between the data on the bole (DBH, Dmax,
Dmin, Hic and Ht) and morphometric information on the crown can
help better understand the importance of each independent variable
derived from the crown (Table 5). The mantle of the crown (MC) and
the crown projection area (CPA), in addition to providing good predic-
tions of DBH and Dmax, also exhibit strong correlations with the
Dmin. The diameter of the thin end of the bole, or Dmin, provides infor-
mation relevant to the yield obtained by the forest industry and is also
important for the estimating biomass stored in the trunk. Therefore,
trees with large crown structures have greater DBH and Dmin values,
and, consequently, greater stocks of biomass, corroborating the results
obtained by Duncanson et al. (2015) and Balzotti et al. (2016).

The tallest trees were not necessarily those with the largest diame-
ters (DBH, Dmax and Dmin). This shows the low hypsometric relation



Table 6
Allometric equationsfitted to estimate the dry biomass and green biomass of the bole (tons) and accuracy statistics for dominant and codominant trees, Antimary State Forest, Acre, Brazil.

No. Fitted equation R2
% R2

aj.% Syx(ton) Syx(%) PRESSp Data source

1 Bd = −10.7967 + 0.125589 × DBH + 0.00000188112 × CPA2 + 8.98374 × BD 87.01 86.71 ±1.251 23.74 225.71 LIDAR and field
2 Bd = −11.8835 + 0.143744 × DBH + 9.00693 × BD − 16.3341 × (Vc)−1 85.55 85.22 ±1.320 25.17 255.38 LIDAR and field
3 Bd = −14.1089 + 0.131683 × DBH + 7.91695 × BD + 0.09971 × Ht 87.06 86.76 ±1.249 23.82 228.36 LIDAR and field
4 Bd = −11.669 + 0.142277 × DBH + 9.01489 × BD − 31.8948 × (MC)−1 85.62 85.29 ±1.317 25.10 251.6 LIDAR and field
5 Bd = −3.35215 + 0.00000611781 × CPA2 + 2.92418 × BD + 0.00360727 × Ht2 81.05 80.57 ±1.400 27.41 253.33 LIDAR and field
6 Bd = −2.70687 + 0.00000555826 × CPA2 + 0.304461 × FC + 0.00405378 × Ht2 79.35 78.82 ±1.456 28.29 270.98 LIDAR
7 Bd = −8.508 + 0.00000570871 × CPA2 + 0.034357 × As + 0.00407486 × Ht2 80.19 79.68 ±1.426 27.71 262.79 LIDAR
8 Bd = −1.83062 + 0.00000567638 × CPA2 + 0.0039187 × Ht2 78.86 78.51 ±1.467 28.50 268.96 LIDAR
9 Bg = −6.93355 + 0.00000317129 × CPA2 + 0.000889017 × DBH2 + 0.218007 × Ht 93.24 93.08 ±1.496 19.00 372.69 LIDAR and field
10 Bg = −7.21209 + 0.00000312968 × CPA2 + 0.00104766 × DBH2 + 7.99746 × AD 92.05 91.86 ±1.622 20.60 382.25 LIDAR and field
11 Bg = −11.1972 + 0.00112925 × DBH2 + 5.39896 × AD + 0.167327 × Ht 92.80 92.64 ±1.545 19.76 379.67 LIDAR and field
12 Bg = −7.29007 + 0.00106939 × DBH2 + 0.210261 × Ht 92.00 91.87 ±1.619 20.75 412.08 LIDAR and field
13 Bg = −8.0981 + 0.00122105 × DBH2 + 8.31836 × AD 91.12 90.98 ±1.707 21.68 429.90 LIDAR and field
14 Bg = 0.282158 + 0.00116885 × DBH2 89.69 89.61 ±1.837 23.13 475.75 LIDAR and field
15 Bg = −5.75185 + 0.0000116474 × CPA2 + 0.00593658 × Ht2 + 1.15658 × FC 84.38 83.95 ±2.321 27.73 655.25 LIDAR
16 Bg = −12.6105 + 0.0000122488 × CPA2 + 0.0528847 × As + 0.00554453 × Ht2 82.76 82.31 ±2.428 29.75 752.07 LIDAR
17 Bg = −2.53575 + 0.0000130776 × CPA2 − 0.207888 × Lb + 0.00664606 × Ht2 82.60 82.16 ±2.416 30.10 782.18 LIDAR
18 Bg = −1.50343 + 0.0000130013 × CPA2 + 0.00594433 × Ht2 − 7.98952 × PC 82.51 82.07 ±2.423 30.18 779.52 LIDAR

Vc=volumeof the crown from the solid of rotation that bestmodels the crown (m3);MC=mantle of the crown (surface area of the solid of rotation inm2); CPA=crown projection area
(m2); Lb= length of the branches (m); Lc= length of the crown (m); Ht= total height of the tree (m); PC=percentage of crown= (Lc/Ht) × 100 (%); Fc= form of the crown=DC/LC;
DB=basic density of thewood, AD= apparent density of thewood; As=Altitude of the site= elevation of the ground abovemean sea level asmeasuredwith LIDAR; Bd=dry biomass
of the bole (tons); Bg= green biomass of the bole (tons), R2

%= coefficient of determination, R2
aj.%= adjusted coefficient of determination, Syx= residual standard error (±tons), Syx%=

residual standard error as a percentage; ēi = mean of the error estimate; PRESSp = error of prediction statistic (ton2).

288 E.O. Figueiredo et al. / Remote Sensing of Environment 187 (2016) 281–293
of the population we studied. Allometric equations based on simple
input variables such as DBH may not adequately represent the varia-
tions in Amazonian forest. This is reinforced by the findings of Crow
and Schlaegel (1988), Santos (1996), Fearnside (1997, 2007), Clark
and Clark (2000) andDuncanson et al. (2015). This increases the impor-
tance of including the independent variable Ht (total height); this vari-
able was present in 66% of the equations selected for estimating green
and dry biomass. The total height of the tree (Ht) is discarded as a var-
iable in most regression models due to the difficulty of measurement in
the field. According to Overman et al. (1994), Brown et al. (1995),
Higuchi et al. (1998) and da Silva (2007), inclusion of tree height in al-
lometric models contributes little to improving results and is subject to
inaccuracy due to the difficulty of obtainingmeasurements. However, in
large pan-tropical data sets, height data can significantly improve allo-
metric estimates (Asner and Mascaro, 2014; Banin et al., 2012; Chave
et al., 2014; Duncanson et al., 2015; Feldpausch et al., 2011, 2012).

When airborne LIDAR is employed, the total height (Ht) variable
gains importance and is more practical to collect because the problems
of data collection and of imprecision for total height (Ht) are technolog-
ically overcome. The height variable should be incorporated into allo-
metric models whenever possible because it is both logically related to
biomass and is the variable that is most easily obtained by processing
the LIDAR point cloud. However, before obtaining the heights of the
trees from the LIDAR point cloud, one should normalize the heights
and delete the set of floating points above the forest canopy. These
points represent flocks of birds that are detected during profiling with
airborne LIDAR. Neglecting this step in the processing can result in over-
estimation of the total height (Ht).

Another important aspect that shows the importance of including
the height variable was described by Brown (2002). This is that equa-
tions that only consider diameter and that represent large areas of forest
with variations in forest type tend not to adequately reflect the true bio-
mass of trees at any given location. Moreover, the height of the domi-
nant trees has always been seen as reflecting the quality of a forest
ecosystem. The height variable is linked to the ecosystem's capacity to
stock biomass (Balzotti et al., 2016; Cassol, 1982; Duncanson et al.,
2015; Ferraz et al., 2016; Figueiredo, 2005; Scolforo, 1998; Stansfield
et al., 1992).

Eight equations were selected to estimate the dry biomass of the
bole (Bd) (Table 6); the best results were achieved by Equations 1, 3,
4, and 2. In the four best models the variables DBH and basic density
were always included. Equation 1 resulted in the best statistical
precision and the lowest validation value (Pressp). In Equations 2 and
4, crown morphometric variables were incorporated: crown projection
area (CPA), volume of the crown (Vc) and mantle of the crown (MC),
i.e., the three independent variables of the crown with the highest cor-
relations with bole biomass. Equation 3 represents the models tradi-
tionally used to estimate dry biomass. These models include the
variables DBH, BD and Ht, and the statistical results are similar to
those of equations that include canopy variables. Equations fit with bet-
ter statistical results are possible; however, these apply to simpler forest
structures, as in temperate forests (Cao et al., 2016; Gregoire et al.,
2016).

Equations with simple inputs for Bd were not selected by the statis-
tical routine. This was because they failed to adequately represent the
largest variations in the dendrometric characters of the sampled trees.

Equations 5, 6, 7 and 8 can be used when one chooses only variables
obtained with LIDAR, whether or not they are associated with wood-
density variables. However, the precision of the results is lower than
that of equations that include DBH. In the equations using only LIDAR
variables (Equations 5, 6, 7 and 8; Fig. 4), there was a tendency to over-
estimate the bole biomass for trees with diameters between 45 and
60 cm. The models' difficulty in representing this diameter range is due
to the fact that it contains the greatest number of species of commercial
interest in forest management. For diameter intervals representing larg-
er trees, the number of species decreases and the sources of variation
therefore also decrease.

The distributions of the residuals (expressed as percentages) for the
first four equations are all similar (Fig. 4). All of these equations include
DBHandBDas variables.When these four equations are graphedwe ob-
serve substantial heterogeneity in the residuals in the smaller diameter
classes, but this did not represent an impediment to meeting the as-
sumptions for regression because the distribution of errors showed no
trends and converged to zero.

Equations 9 and 13 (for green biomass) had thehighest accuracy and
the lowest validation values (Pressp). The distributions of percentage re-
siduals for the two equations (Fig. 4) show similarities, with little scat-
tering of percentage errors and a lack of tendencies to over- or under-
estimate biomass. For estimates of green biomass, the traditionally
used linear models with directly measured explanatory variables
(DBH, Ht and AD) have good predictive capacity, and incorporation of
morphometric variables of the crown contributes little to improving ac-
curacy. It was even possible to fit models with a single input (DBH –
Equation 14), corroborating the results of Higuchi et al. (1998).



Fig. 4. Distribution of residuals (expressed as percentages) for the best equations for estimating dry biomass, with DBH and without DBH.
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However, when opting to use only DBH as an explanatory variable, it is
clear that the dispersion of residuals is greater in all diameter ranges.
The green biomass Equations 15, 16, 17 and 18,which only use variables
obtained from processing the LIDAR point cloud, had lower statistical
accuracy than models that include DBH. This was also the case for the
equations for dry biomass, where the inclusion of DBH as an explanato-
ry variable decreased the dispersion of residuals for the smaller diame-
ter classes.

Identity testing of models seeks to assess whether it is better to fit
models that consider a single data group with species in all three cate-
gories of basic wood density (low, medium and high), or whether the
data should be divided into subgroups (Graybill, 1976). Equations 1, 2
and 4, which estimate dry biomass using DBH as the independent vari-
able, show significant differences as indicated by the F test (Table 7).
Better results are obtained when models are fitted separately for each
density group. The only equation that considers DBH as an independent
variable and that allows the formation of a single database with all den-
sities is Equation 3. This equation is traditionally used, and considers as
independent variables DBH, AD and Ht.

Equations 6, 7 and 8 only use variables that are obtained with air-
borne LIDAR, especially CPA, Ht, FC and As. These variables can be fitted
to the data for datasets for the different wood basic density groups. This



Fig. 5. Distribution of residuals (expressed as percentages) for the best equations for estimating green biomass, with DBH and without DBH.
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Table 7
Dry biomass equations: results of the model identity tests (using the F test) using three
different combinations of species sets classified by wood density, Antimary State Forest,
Acre, Brazil.

Combinations MS(difference) MS
(residual)

F
(calculated)

F 5%
(table)

Significance

Equation 1 - Bd = β0 + β1DBH + β2CPA
2 + β3BD

BDlo/BDmd/BDhi 6.42 1.18 5.46 2.02 S
BDlo/BDmd 2.68 1.07 2.52 2.51 S
BDmd/BDhi 5.46 1.21 4.52 2.46 S

Equation 2 - Bd = β0 + β1DBH + β2BD − β3Vc
−1

BDlo/BDmd/BDhi 5.02 1.33 3.77 2.02 S
BDlo/BDmd 1.09 1.36 0.80 2.51 NS
BDmd/BDhi 5.72 1.19 4.82 2.46 S

Equation 3 - Bd = β0 + β1DBH + β2BD + β3Ht
BDlo/BDmd/BDhi 1.87 1.50 1.25 2.02 NS
BDlo/BDmd 0.70 1.75 0.40 2.51 NS
BDmd/BDhi 1.76 1.25 1.41 2.46 NS

Equation 4 - Bd = β0 + β1DBH + β2BD − β3MC−1

BDlo/BDmd/BDhi 4.84 1.38 3.51 2.02 S
BDlo/BDmd 1.24 1.45 0.86 2.51 NS
BDmd/BDhi 4.39 1.27 3.47 2.46 S

Equation 5 - Bd = β0 + β1APC
2 + β2BD + β3Ht

2

BDlo/BDmd/BDhi 0.69 2.07 0.34 2.03 NS
BDlo/BDmd 1.16 1.84 0.63 2.51 NS
BDmd/BDhi 1.11 2.16 0.51 2.47 NS

Equation 6 - Bd = β0 + β1APC
2 + β2FC + β3Ht

2

BDlo/BDmd/BDhi 1.57 2.09 0.75 2.03 NS
BDlo/BDmd 3.24 1.92 1.68 2.52 NS
BDmd/BDhi 0.25 2.17 0.12 2.47 NS

Equation 7 - Bd = β0 + β1APC
2 + β2HSolo + β3Ht

2

BDlo/BDmd/BDhi 0.90 2.04 0.44 2.03 NS
BDlo/BDmd 2.50 1.77 1.41 2.52 NS
BDmd/BDhi 0.43 2.13 0.20 2.47 NS

Equation 8 - Bd = β0 + β1APC
2 + β2Ht

2

BDlo/BDmd/BDhi 1.54 2.12 0.73 2.18 NS
BDlo/BDmd 4.37 1.87 2.34 2.74 NS
BDmd/BDhi 0,96 2,22 0,43 2,70 NS

Vc = volume of the crown from the solid of rotation that best models the crown (m3);
MC=mantle of the crown (surface area of the solid of rotation inm2); CPA= crown pro-
jection area (m2); DBH=diameter at breast heightmeasured in the field 1.3m above the
ground or above any buttresses (m); Ht = total height of the tree (m); Fc = form of the
crown = DC/Lc; DB = basic density of the wood; Bd = dry biomass of the bole (tons);
As = altitude of the site = elevation of the ground above mean sea level as measured
with LIDAR; BDlo= set of species with low basic density (BD b 0.5); BDmd= set of spe-
cieswithmediumbasic density (0.5 ≥ BDb 0.7); BDhi= set of specieswith highbasic den-
sity (BD ≥ 0.7); MS = mean square; F(calculated) = value of the Fisher F test calculated for
the data set of interest; F5% (table) = table value of the F test statistic; S = significant;
NS = not significant; βi = parameters to be estimated.

Table 8
Green biomass equations: results of themodel identity tests (using the F test) using three
different combinations of species sets classified by wood density, Antimary State Forest,
Acre, Brazil.

Combinations MS
(difference)

MS
(residual)

F
(calculated)

F 5%
(table)

Significance

Equation 9 - Bg = β0 + β1CPA
2 + β2DBH

2 + β3Ht
DBlo/DBmd/DBal 17.82 1.94 9.18 2.02 S
DBlo/DBmd 42.28 2.17 19.53 2.51 S
DBmd/DBal 8.82 1.82 4.85 2.46 S

Equation 10 - Bg = β0+ β1CPA
2 + β2DBH

2 + β3AD
DBlo/DBmd/DBal 18.24 2.40 7.60 2.02 S
DBlo/DBmd 41.35 2.86 14.48 2.51 S
DBmd/DBal 9.78 2.05 4.78 2.46 S

Equation 11 - Bg = β0 + β1DBH
2 + β2AD + β3Ht

BDlo/BDmd/BDhi 23.74 2.33 10.18 2.02 S
BDlo/BDmd 37.36 3.08 12.15 2.51 S
BDmd/BDhi 2.23 1.74 1.28 2.46 NS

Equation 12 - Bg = β0 + β1DBH
2 + β2Ht

BDlo/BDmd/BDhi 30.28 2.55 11.86 2.17 S
BDlo/BDmd 53.72 3.23 16.65 2.74 S
BDmd/BDhi 6.78 1.97 3.44 2.69 S

Equation 13 - Bg = β0 + β1DBH
2 + β2AD

BDlo/BDmd/BDhi 39.47 2.97 13.31 2.18 S
BDlo/BDmd 31.29 4.02 7.78 2.74 S
BDmd/BDhi 3.15 2.30 1.37 2.69 NS

Equation 14 - Bg = β0 + β1DBH
2

BDlo/BDmd/BDhi 76.24 3.12 24.47 2.45 S
BDlo/BDmd 131.43 4.13 31.82 3.14 S
BDmd/BDhi 14.37 2.51 5.72 3.08 S

Equation 15 - Bg = β0 + β1CPA
2 + β2Ht

2 + β3Fc
BDlo/BDmd/BDhi 18.00 4.44 4.06 2.03 S
BDlo/BDmd 57.32 4.19 13.70 2.54 S
BDmd/BDhi 10.44 4.13 2.53 2.48 S

Equation 16 - Bg = β0+ β1CPA
2 + β2As + β3Ht

2

BDlo/BDmd/BDhi 4.44 5.33 0.83 2.03 NS
BDlo/BDmd 22.26 4.08 5.46 2.53 S
BDmd/BDhi 2.54 5.21 0.49 2.48 NS

Equation 17 - Bg = β0 + β1CPA
2 − β2Cc + β3Ht

2

BDlo/BDmd/BDhi 4.11 5.13 0.80 2.03 NS
BDlo/BDmd 28.49 4.31 6.61 2.52 S
BDmd/BDhi 12.09 5.00 2.42 2.47 NS

Equation 18 - Bg = β0 + β1CPA
2 + β2Ht

2 + β3PC
BDlo/BDmd/BDhi 4.10 5.16 0.79 2.03 NS
BDlo/BDmd 28.50 4.30 6.63 2.52 S
BDmd/BDhi 12.01 5.04 2.38 2.47 NS

Bg= green biomass of the bole (tons); Lc= length of the crown (m); PC= percentage of
crown=(Lc/Ht) × 100 (%); CPA= crown projection area (m2); DBH=diameter at breast
height measured in the field 1.3 m above the ground or above any buttresses (m); Ht =
total height of the tree (m); Fc = form of the crown = DC/Lc; DB = basic density of the
wood; AD = apparent density of the wood; As = altitude of the site = elevation of the
ground above mean sea level as measured with LIDAR; BDlo = set of species with low
basic density (BD b 0.5); BDmd = set of species with medium basic density (0.5 ≥
BD b 0.7); BDhi = set of species with high basic density (BD ≥ 0.7); MS = mean square;
F(calculated) = value of the Fisher F test calculated for the data set of interest; F5%
(table) = table value of the F test statistic; S = significant; NS = not significant; βi = pa-
rameters to be estimated.
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allows for greater ease in fitting and in using the equations for estimat-
ing the biomass of dominant and co-dominant trees in forest-manage-
ment areas.

The equations for dry biomass that have been developed with vari-
ables representing the canopy (CPA and FC), togetherwithHt or altitude
of the site (As), were better able to represent the set of information on
the sampled forest population, regardless of the density of the wood.
If one chooses not to use models that consider the canopy variables,
models should either be fitted separately for each group of basic wood
density or they should include the basic density (BD) as an independent
variable so that species of all densities can be fitted in a single model.

The great advantage of using amodelwithout independent variables
that aremeasured in the field (DBH and density), such as Equations 5, 6,
7 and 8, is that the equation can make estimates for dominant and co-
dominant trees as soon as one has a model that has been fitted and val-
idated for a given location. This optimizes thework in annual operation-
al planning in forest management.
5. Conclusion

The study shows the viability of measuring crown morphological
variables and total height in Amazonian forest based on airborne
LIDAR data alone. These variables are sufficient to obtain useful esti-
mates of forest biomass, and especially the biomasses of large commer-
cially valuable trees that are of interest for forest management. On-the-
ground measurements of traditional variables such as diameter at
breast height and wood density are needed to calibrate the remotely
sensed variables to biomass in each general location, but once this is
done, remotely sensed data can be gathered and the estimates extended
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to much wider areas than would be practical to assess with traditional
forest inventories.

The variables with the highest linear correlations with the dry bio-
mass of the bole are: diameter at breast height (DBH), basic wood den-
sity (BD), mantle of the crown (MC), crown projection area (CPA),
volume of the crown (Vc) and crown diameter (CD). In estimating dry
biomass, the best results for accuracy and distribution of residuals are
always achieved when both crown morphometric variables and tradi-
tional variables for the bole (DBH, total height and basic density) are
used. When opting to include wood density as an explanatory variable,
one must determine basic density from samples collected along the
length of the bole. Trees with broken crowns (about 14%) can be identi-
fied as outliers by analysis of influence and should not be modeled by
equations that use crown morphology variables. The mantle of the
crown (MC) and the crown projection area (CPA) are strongly correlat-
ed with the diameter of the thin end of the bole (Dmin) and are impor-
tant independent variables for forest yield and for the biomass stored in
the trunk.

The equations for estimating dry biomass (Bd) that only include
crown morphometry variables and/or the altitude of the site (As) pro-
vide lower accuracy as compared to models with DBH. However, they
have good performance in estimating the biomass of dominant and
co-dominant trees, regardless of the basic wood density group, and
may be used based only on data obtained by processing the point
cloud from airborne LIDAR.

The application of LIDARon awide scale in Amazonian forest can po-
tentiallymake significant contributions to improving estimates of forest
biomass (thus reducing uncertainty in estimates of greenhouse-gas
emissions from deforestation). These estimates can also contribute to
detecting and monitoring forest degradation, and to assuring the sus-
tainability of forest management.
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Figure S1 - Distribution of real and estimated values for the best 
equations for estimating dry biomass, with DBH and without DBH. 
 

Figure S2 - Distribution of real and estimated values for the best 
equations for estimating green biomass, with DBH and without 
DBH. 
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Figure S1 - Distribution of real and estimated values for the best equations for estimating 
dry biomass, with DBH and without DBH. 
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Figure S2 - Distribution of real and estimated values for the best equations for estimating 
green biomass, with DBH and without DBH. 
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