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Abstract

Numerical approaches to high-density single nucleotide polymorphism (SNP) data are often

employed independently to address individual questions. We linked independent

approaches in a bioinformatics pipeline for further insight. The pipeline driven by heterozy-

gosity and Hardy-Weinberg equilibrium (HWE) analyses was applied to characterize Bos

taurus and Bos indicus ancestry. We infer a gene co-heterozygosity network that regulates

bovine fertility, from data on 18,363 cattle with genotypes for 729,068 SNP. Hierarchical

clustering separated populations according to Bos taurus and Bos indicus ancestry. The

weights of the first principal component were subjected to Normal mixture modelling allow-

ing the estimation of a gene’s contribution to the Bos taurus-Bos indicus axis. We used devi-

ation from HWE, contribution to Bos indicus content and association to fertility traits to

select 1,284 genes. With this set, we developed a co-heterozygosity network where the

group of genes annotated as fertility-related had significantly higher Bos indicus content

compared to other functional classes of genes, while the group of genes associated with

milk production had significantly higher Bos taurus content. The network analysis resulted in

capturing novel gene associations of relevance to bovine domestication events. We report

transcription factors that are likely to regulate genes associated with cattle domestication

and tropical adaptation. Our pipeline can be generalized to any scenarios where population

structure requires scrutiny at the molecular level, particularly in the presence of a priori set

of genes known to impact a phenotype of evolutionary interest such as fertility.

Introduction

Genotype data from high-density single nucleotide polymorphism (SNP) arrays serves as a

starting point for many genomic analyses as they can reflect a wide range of processes [1–3].

SNP data have been used to characterize linkage disequilibrium and estimate effective
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population size [4,5], to perform genome-wide association studies [6–8], to compress genomes

and highlight regions of evolutionary interest in humans and livestock species [9–11], to study

the genetic variants of common diseases [12–14], and to identify population structure and sig-

natures of selection [5,15–18]. These numerical approaches are employed independently to

address specific questions. Formally linking them in a computational routine can drive discov-

ery. Population assignment at the DNA level can inform genotype-phenotype associations,

because phenotypes of each population (or lineage) are distinct. Herein, we propose a compu-

tational routine to maximize the use of SNP data in a comparative genomics framework.

A typical use of SNP data for population genetics involves computation of percentage of

heterozygosity (HET), fixation index (FST), and principal component analysis (PCA) [3]. The

HET values serve as a summary of genotype data and provide first-hand information about the

genetic diversity within a population. Related measures such as extended haplotype homozy-

gosity (EHH) [19] and its variants have been used to identify selective sweeps and signatures

within cattle breeds [20–23]. A literature gap is the exploration of HET values across geneti-

cally diverse cattle breeds. Computation of HET from SNP data could facilitate the discrimina-

tion of breeds with divergent ancestry (that is, sub-species of cattle: Bos indicus and Bos
taurus). We proposed that gene ancestry can be calculated by computing the average HET of

its SNP.

First attempts to classify livestock breeds using genetic markers were originally based on

microsatellites [24–27] and most analysis included a few hundred animals and a handful of

breeds. The Bovine HapMap Consortium [28] interrogated 37,470 SNP in 497 animals and

used PCA to elucidate the genetic structure of diverse breeds. PCA was used to measure

genetic divergence in Bos indicus and Bos taurus cattle [29,30] and to inform machine learning

methods to predict cattle ancestry [29,31]. We distinguish our current work by developing

new methods and expanding the dataset to include hundreds of animals per breed. We used

PCA as a starting point to identify genes that have discriminatory power to identify cattle pop-

ulation as Bos indicus or Bos taurus. Then clustering methods were applied to average HET val-

ues to prove that our measure of gene ancestry is able to segregate cattle breeds according to

known lineages, similarly to PCA. As HET values differ across breeds, we noticed a striking

contrast between the set of genes that have high/low HET values in each breed. Gene ancestry

was linked to biological processes in Gene Ontology enrichment analyses followed by annota-

tion of gene attributes (whether a gene is a transcription factor, expressed in tissue-specific

manner, codes a secreted protein, or codes kinases). Finally, we investigated if genes relevant

to breed differences could interact with genes associated to fertility or lactation by building

gene network based on average HET correlations.

Results and discussion

Overview of the bioinformatics pipeline

Our approach to analysing the genotype data of the various cattle breeds is schematically illus-

trated in the flowchart of Fig 1 and summarized in six steps: 1. Data pre-processing to select

animal populations and genotypes for SNP in autosomal chromosomes within 1 kb of a

known protein coding gene; 2. Principal component analysis (PCA) of the genotype data to

characterize population structure; 3. Computation of the gene-level heterozygosity followed by

clustering analysis to dissect population structure and selection of statistically significant genes

based on deviation from Hardy-Weinberg equilibrium (HWE) values; 4. Perform Gene Ontol-

ogy (GO) enrichment analysis on two gene lists–one derived from Bos indicus vs. Bos taurus
content and another from HWE deviation; 5. Generation of a gene co-heterozygosity network

using partial correlation and information theory [32] for candidate genes from the two lists,
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Fig 1. Flowchart of the pipeline for exploratory analysis of the effects of heterozygosity in the bovine

genome.

https://doi.org/10.1371/journal.pone.0181930.g001
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alongside fertility-related genes and milk-related genes from previous studies; 6. Analysis of

the network structure and determination of the key genes. These six steps are detailed in S1

Text.

Principal component and heterozygosity analyses reveal population

structure in accordance to Bos indicus and Bos taurus ancestry of cattle

breeds

We performed a principal component analysis (PCA) of the genotype data (246,864 SNP) for

18,363 cattle of 19 breeds. A clear separation between the breeds based on their lineage is evi-

dent from PCA analyses (Fig 2A). The first two principal components explained 21.8% (PC1)

and 2.3% (PC2) of the variation. We observed the pure Bos indicus breeds (BI) on the extreme

left and the pure Bos taurus breeds (BT) on the extreme right of the PC1 spectrum. The middle

region of the plot depicts the cattle corresponding to the Bos taurus-Bos indicus crossbreeds.

These observations are consistent with documented knowledge of cattle history [28,33]. The

crossbreeds LLBB, CCBB, AABB, SSBB, HHBB have similar genetics and clustered together

(black cluster in Fig 2A). Similarly, the tropically-adapted breeds TC, BR, DM, and SG are

clustered together (orange cluster in Fig 2A).

Bos taurus breeds are genetically more conserved compared to the pure Bos indicus breeds–

the Bos taurus breeds showed higher LD (r2 = 0.45) than their indicine (r2 = 0.25) and com-

posite (r2 = 0.32) counterparts. This higher LD in taurine breeds was attributed to a smaller

effective population size and a stronger bottleneck during breed formation [5].

A relative smaller variation within the Bos taurus breeds was observed, largely scattered

along PC2 (see Fig 2A). In contrast, the Bos indicus breeds have larger variation along PC1

and we observe a gradual transition into the Bos taurus-Bos indicus breeds, consistent with

previous findings [33]. The link between PC1 and Bos indicus content has motivated us to

formally ascertain this relationship by computing the contribution of individual SNP to the

Bos indicus content of the cattle. Recall that each principal component is a weighted linear

combination of the features (SNP) in the data set. As part of PCA, we obtained the SNP

weights for each of the principal components and as such, the importance of the SNP to each

principal component.

We considered PC1 and analysed the SNP weights along this vector with an expectation,

based on Fig 2A, that the pure Bos indicus breeds would have a negative value, the pure Bos
taurus breeds would have positive values, and the Bos taurus-Bos indicus breeds would have a

combination of positive and negative values. The empirical distribution of the SNP weights fol-

lowed two distinct modes that required a mixture model with two normal distributions to

quantify the contribution of the SNP to the Bos indicus content in cattle (S2 Text). Membership

of 31% of SNP to Bos indicus and 69% to Bos taurus components was estimated (S1 Fig). We

provided our entire list of 8,631 genes and their contributions to the indicine and taurine com-

ponents of the bovine genome in S3 Text.

Hierarchical cluster analysis with respect to HET values was carried and also revealed the

separation of cattle into distinct groups based on their ancestry and breed type (Fig 2B). The

first partition in the hierarchy corresponds to purebreds and crossbreds towards the left and

right, respectively. Within each pure versus cross-bred partition, we observed a remarkable

separation based on the lineage of breeds. BB and NE (pure Bos indicus) have their own cluster

while the breeds MBr, CC, AA, HH, MG, and SS are clustered together (pure Bos taurus).
Among the cross-breeds with Bos taurus- Bos indicus lineage, we observed that the cross-

breeds LLBB, CCBB, AABB, SSBB, and HHBB are clustered together. Similarly, the composite

breeds TC, BR, DM, SG, BRBB, and SGBB are clustered together. These results align with
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Fig 2. (A) Principal Component Analysis of SNP genotypes corresponding to cattle breeds grouped based on

their lineage. Left illustrates Bos indicus (BI), Middle shows Bos taurus—Bos indicus (cross-breeds and

composite breeds), and Right corresponds to Bos taurus (BT); (B) Hierarchical clustering analysis of

heterozygosity of 8,631 genes across the 19 cattle breeds produces a dendrogram showing the clustering of

breeds consistent with their respective lineages.

https://doi.org/10.1371/journal.pone.0181930.g002
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those reported above for the PCA method [33]. The clustering method was able to detect this

hidden population structure based only on the heterozygosity values at the gene level.

Heterozygosity and Bos indicus content were correlated metrics at the animal level and at

the gene level within lineages (Fig 3). At the animal level, we found a strong non-linear rela-

tionship between the PC1 values and heterozygosity. This inverted V pattern has been recently

reported by Samuels et al. [34] with various human populations. Its recapitulation here (Fig

3A) with beef cattle suggests some universal law by which heterozygosity alone governs the

principal population structure in a genetically diverse sample. For the 8,631 genes under con-

sideration, we observed a strong linear relationship between a gene’s heterozygosity and its

contribution to Bos indicus content within the Bos taurus lineage (Fig 3D; Pearson correlation,

r = –0.74), while the correlation strengths with the Bos indicus (Fig 3B) and Bos taurus-Bos
indicus (Fig 3C) lineages are 0.35 and 0.28, respectively. The negative sign indicates that genes

with low heterozygosity contribute significantly to the Bos indicus content in Bos taurus breeds.

On the other hand, the positive correlations observed for the Bos indicus and Bos taurus- Bos
indicus lineages, indicate that an increase in the heterozygosity of genes relates to an increase

in the net Bos indicus content.

Heterozygosity clustering detection was possible even when only 86 fertility-related (FE)

genes were used in the analyses (S2 Fig). For FE genes that were common across at least three

publications [35–37],we present heterozygosity results and Bos indicus content in Table 1.

Analysis of indicine and taurine content in fertility and milk related genes

We collected 86 fertility genes as detailed in S1 Text. The milk related genes were sourced

from the Cattle component (http://www.animalgenome.org/cgi-bin/QTLdb/BT/genesrch?

gwords=milk) of the Animal QTL database [38] and from literature [39,40]. We collected 231

milk related genes and 125 of these were represented in our entire list of 8,631 genes.

For both the fertility and milk related genes, we computed their memberships to the indi-

cine and taurine components. For the milk related genes, we observed that 108 (out of 125)

genes have a posterior probability of at least 0.5 of having a taurine origin. To prove that this

has not occurred by chance alone, we conducted a permutation test with 10,000 experiment

trials. In each experiment, we randomly sampled 125 genes from the 8,631 genes and checked

how many of them have at least 0.5 posterior probability of belonging to the taurine compo-

nent. The corresponding histogram is shown in Fig 4A. From the distribution, we notice that

108 belongs to the 93.5th percentile, which suggests that there is only about 6% chance that the

108 genes belong to the taurine component by chance alone. This suggests that the milk related

genes are strongly associated with the taurine axis and this has been previously discussed in

the literature [41–44]. Thus, we provided a proof-of-concept where our designed methodology

of dissecting the bovine genome is able to identify genes that contribute to a phenotype of

interest (milk related).

For the list of fertility genes, 62 out of 86 genes had a posterior probability of at least 0.5 of

belonging to the taurine component. However, the permutation test indicated that 62 corre-

sponds to the 16th percentile as shown in Fig 4B. This suggests that the fertility genes are not

associated with the taurine axis but are strongly associated with the indicine component of the

bovine genome. This novel discovery could yield new insights into the evolution of fertility

traits in the bovine genome.

Analysis of Bos indicus content by chromosome

The contribution of each of the genes to the Bos indicus and Bos taurus components allowed us

to compute a chromosome’s contribution by averaging the posterior probabilities across the
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Fig 3. Relationship between heterozygosity and Bos indicus content at the animal and gene-level derived from

PC1. (A) Heterozygosity against PC1 in each animal results in an inverted-V pattern; (B) Heterozygosity at gene-level

based on lineage for Bos indicus; (C) Bos taurus–Bos indicus; and (D) Bos taurus.

https://doi.org/10.1371/journal.pone.0181930.g003

Table 1. Fertility-related genes common across the literature sources and their heterozygosity and Bos indicus/Bos taurus contributions.

Gene Number of SNP Functional AttributesA Heterozygosity (Lineage) Posterior Probability (gene’s

contribution)

Bos indicus Bos taurus Bos taurus–Bos indicus Bos indicus Bos taurus

ADH6 13 TS 23.81 40.56 45.42 27.02 72.98

E2F3 26 TF 13.81 30.44 30.66 8.62 91.38

ELF5 17 TF, TS 14.38 37.20 44.55 17.64 82.36

ETS1 24 TF 17.61 36.80 41.89 20.78 79.22

ETV6 50 TF 17.23 33.85 37.88 19.16 80.84

LHX4 12 TF 17.31 21.74 28.60 25.17 74.83

OVGP1 7 SE 32.28 40.23 43.98 0.55 99.45

PPARG 18 TF 19.70 34.74 42.04 16.97 83.03

PPP3CA 94 TS 25.43 29.59 36.96 26.34 73.66

SOX5 164 TF 20.23 25.81 37.03 30.79 69.21

TSHR 44 TS, SE 26.47 29.91 37.05 33.12 66.88

ATF = transcription factor; TS = tissue specific; SE = secreted.

https://doi.org/10.1371/journal.pone.0181930.t001

The Bos taurus–Bos indicus balance in fertility and milk related genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0181930 August 1, 2017 7 / 20

https://doi.org/10.1371/journal.pone.0181930.g003
https://doi.org/10.1371/journal.pone.0181930.t001
https://doi.org/10.1371/journal.pone.0181930


genes within a chromosome. The resulting genome-wide distribution plots are shown in Fig 5,

where each point corresponds to a gene from our list of 8,631 genes sorted on the x-axis by

genome map position. The y-axis indicates the–log(p), where p is the posterior probability,m1

for Bos indicus andm2 for Bos taurus in Equation 1 (S1 Text). We observed there are fewer

genes that stand out with respect to their contribution to the Bos indicus content (Fig 5A),

while there are a greater number of genes contributing to the Bos taurus content (Fig 5B). A

more detailed analysis, revealed 14 genes with a significant contribution (–log(p)> 4) to the

Bos indicus content (TIPARP, JMJD1B, ETF1, CTNNA1,DNAJC18, UBE2D2,VCP, CHP,

TBC1D20, SLC25A33, SFRS12IP1, LOC100140107,LOC537748,and VPS37C). One enriched

GO term from this list is GO:0071822 (Protein complex subunit organization) with a FDR p-

value = 0.00505. Worth mentioning is DNAJC18 (DnaJ heat shock protein family member

C18) due to its recently reported association with heat stress in contrasting Bos taurus and Bos
indicus cattle [45,46]. Also noteworthy is SLC25A33 estimated to have a contribution to Bos

indicus of 100% and encoded at 44.8 Mb of BTA16 in a hard-sweep region recently reported

to be shared among four Bos taurus breeds [23] and possibly related to the initial cattle domes-

tication events.

Similarly, we found 29 genes with statistically significant contribution to Bos taurus content

(–log(p)> 4): TMEM169,ARPC2, SRRM1, EPHA8, UTP11L, LOC615685, INHBA, XPNPEP3,

HNRNPD, ACOT2, EIF2B2, PPM1B, CIZ1, CHGB, ADNP,MCM4, IL24,GPR157,ALOX12E,

LOC535629,ACE, LOC506185,FASN, BNIP1, LOC782185,ZSCAN2,CLK3,NR1D2, and

SLC15A3. From this list, we highlight FASN (fatty acid synthase) and INHBA (Inhibin, beta

activin beta-A chain). Ample evidence from the Animal QTL database [38] (http://www.

animalgenome.org/cgi-bin/QTLdb/index) suggests the presence of QTL in the coding region

of FASN associated with body weight, marbling and milk fat yield in cattle. The same source

documents INHBA as harbouring QTL for semen volume, sperm counts and motility. Fortes

et al. [47] propose SNP associated with serum levels of Inhibin in Brahman bulls as an early

Fig 4. Distribution of the number of genes that have a Pr(Taurine) > = 0.5 after conducting 10,000 permutation

tests. (A) Milk related genes; and (B) Fertility related genes. The vertical blue line indicates the observation of 108 milk

related genes and 62 fertility related genes that showed a Pr(Taurine) > = 0.5 in our selected list of 8,631 genes.

https://doi.org/10.1371/journal.pone.0181930.g004
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biomarker of sexual development. This same QTL was absent when Tropical Composite bulls

were subject to GWAS for the same phenotypes [48]. These contrasting GWAS results rein-

force the idea that INHBA polymorphism segregation and association with reproduction dif-

fers according to Bos indicus content of each breed.

Fig 5. Genome-wide distribution plots depicting the highly contributing genes to the Bos indicus and Bos taurus contents in the

bovine genome. Each point corresponds to a gene from our list of 8,631 genes along the genome. The likelihood of a gene being of Bos

indicus or Bos taurus origin is plotted along the Y-axis. (A) Genes with high Bos indicus (low Bos taurus) content (B) Genes with low Bos

indicus (high Bos taurus) content.

https://doi.org/10.1371/journal.pone.0181930.g005

The Bos taurus–Bos indicus balance in fertility and milk related genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0181930 August 1, 2017 9 / 20

https://doi.org/10.1371/journal.pone.0181930.g005
https://doi.org/10.1371/journal.pone.0181930


Analysis of heterozygosity at the chromosome level

In addition to the analysis of heterozygosity at the gene level, the average heterozygosity across

the 29 autosomal chromosomes in the bovine genome reveals a striking contrast in the hetero-

zygosity across the four different lineages (Fig 6A). The Bos indicus lineage has the least hetero-

zygosity while the cross-breeds have the highest heterozygosity across the genome. Within

each lineage, there appeared to be some chromosomes with dramatic changes in heterozygos-

ity relative to the other chromosomes. For instance, BTA14 in Bos indicus has a greater hetero-

zygosity and has a relatively large value when compared to its immediate neighbours which

indicates that the BTA14 may be an important locus for introgression of Bos taurus genes. In

fact, the importance of BTA14 and its role in milk production and ovulation rate has been well

documented in the literature [49–51]. Furthermore, there is the age at first calving QTL on

BTA14 that was detected in Nelore cattle [52–54].

Similarly, BTA8, BTA13, and BTA14 in Bos taurus contain the lowest average heterozygos-

ity. Further, BTA5 within the composite breeds contains the lowest heterozygosity, while

BTA27 and BTA28 contain the highest heterozygosity. BTA13, BTA14 and BTA28 have been

reported to harbour QTL for carcass traits [55] while QTL on BTA5 are known to have a pro-

nounced effect on reproductive efficiency in cattle [56–58]. The heterozygosity analysis brings

to light some of the important regions in the cattle genome for breed discrimination.

Gene Ontology (GO) enrichment analysis

The exploration of possible biological functions inherent in candidate gene lists is often done

by a GO enrichment analysis [59]. The objective is to identify the set of genes which are signifi-

cantly overrepresented in a target set of genes relative to a background set of genes. For each

cattle breed, we have a target list of genes which deviate significantly from HWE. These gene

lists are important as they could potentially be the variants which give cattle sub-species their

distinctive Bos indicus or Bos taurus phenotypes. As a result, we have 19 target lists correspond-

ing to each cattle breed. We conducted 19 separate analyses and collected the enriched GO

Fig 6. (A) Average chromosome heterozygosity across the four cattle lineages. (B) Variation of heterozygosity across the

cattle lineages (blue, orange and green for Bos indicus, Bos taurus–Bos indicus and Bos taurus, respectively) for the list of

84 network genes (out of 1,284) that are TF and fertility related as well as at least one of the other functional attributes (TS,

SE, KI). The right panel shows the contribution to the indicine content for the same set of genes.

https://doi.org/10.1371/journal.pone.0181930.g006
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terms statistically overrepresented up to a p-value level of 0.1%. This resulted in 142 GO terms,

each occurring a maximum of three times with 7 of them (about 5%) occurring exactly thrice.

These 7 GO terms together correspond to 1,193 genes in our list of 8,631 genes (Table 2).

According to this analysis, genes involved with the regulation of developmental processes are

overrepresented in genome regions that deviate from HWE. It is possible to extrapolate that

the formation of cattle subspecies by phenotypic selection, has afforded particular importance

to genome regions involved with fine-tuning the development of tissues and organs during

development.

We also considered the list of top ranked genes based on their contribution to the Bos indi-
cus and Bos taurus content We selected those genes which have a membership of at least 95%

to the Bos indicus and Bos taurus clusters (see Methods section and S1 Text for details). This

resulted in 64 and 718 genes with high contribution to the Bos indicus and Bos taurus clusters,

respectively that were targeted in two separate GO enrichment analyses. A striking enrichment

of gene annotation terms associated with RNA splicing and mRNA processing was observed

(Table 3). It is tempting to consider the possibility that the post-transcriptional processing

machinery is overrepresented among the genes which potentially discriminate between the

Bos taurus and Bos indicus subspecies. Post-transcriptional processing is an important element

of gene regulation and could well contribute to sub-species differences.

Selection of genes for network analysis

Given that fertility phenotypes are an important consideration in the formation of domestic

breeds, we constructed a co-heterozygosity network in order to further scrutinise the potential

role of fertility-related genes in regions of high heterozygosity. The genes included in the co-

heterozygosity network were selected from three possibly overlapping lists: 1) Genes based on

their deviation from HWE; 2) Genes based on their significant contribution to the Bos indicus/
Bos taurus content; and 3) Fertility (FE) related genes.

We obtained 1,193 genes not in HWE and 52 genes which predominantly contributed to

the Bos indicus and Bos taurus content. These two lists were combined with the 86 FE genes

sourced from the literature. The three lists contained 1,284 unique genes that were further cat-

egorized based on their functional attributes: transcription factors (TF), tissue-specific (TS),

secreted (SE) and kinases (KI). We identified 84 out of the 1,284 genes that are TF and were

also classified as either TS, SE, KI or FE. The variation of heterozygosity in these set of 84 TF

and across the Bos taurus (BT), Bos indicus (BI) and Bos taurus—Bos indicus (BTI) lineages is

shown in Fig 6B. The number of network genes that overlap with TF include 73 genes that are

expressed in a tissue-specific manner, 10 genes that code for proteins that could potentially be

secreted outside the cytoplasm (ARNTL,GRHL3, IL31RA,KCNIP3, LAMA5,MEIS1, SATB1,

Table 2. Overrepresented GO terms in cattle genome regions which deviate from HWE corresponding to a total of 1,193 genes. Each GO term is

enriched thrice.

GO Term Description p-value Genes

GO:0007155 cell adhesion 1.40e-04 388

GO:0022610 biological adhesion 1.51e-04 389

GO:0031344 regulation of cell projection organization 1.94e-05 258

GO:0043547 positive regulation of GTPase activity 8.94e-05 222

GO:0050793 regulation of developmental process 3.62e-04 746

GO:0051960 regulation of nervous system development 3.27e-04 302

GO:2000026 regulation of multicellular organismal development 2.93e-04 576

https://doi.org/10.1371/journal.pone.0181930.t002
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SMARCA2, TCF12,TRIM24), 3 genes that code for kinases (HIPK1, PKN1, ROCK2), and 61

genes that are fertility related.

Gene co-heterozygosity network

We generated a gene co-heterozygosity network using the PCIT algorithm to identify signifi-

cant connections based on correlated heterozygosity values for the 1,284 genes. These correla-

tions were used to establish gene to gene edges in the network inference. This approach is able

to point to genes for which the Bos taurus or Bos indicus origin is particularly crucial for animal

performance. Imposing a correlation threshold of 0.95, we obtained a sub-network of 328

genes with 1,098 significant connections. Other thresholds were explored and further details

are provided in S2 Text. We observed that the degree distribution on a logarithm scale follows

a scale-free network, shown in S6 Fig (correlation of 0.85 and p-value of 2.2 x 10−16). The max-

imum degree is 47 and corresponds to the SPEN gene, which is a known transcriptional regu-

lator [60–62]. The contribution to Bos indicus for SPEN was estimated at 64.80% placing it in

the top 9% of all 8,631 genes.

We observed a significantly higher Bos indicus content for the 86 FE genes as compared to

the remaining 1,198 network genes. This was attributed to fertility genes being under strong

selection among the various cattle lineages [63]. Further exploitation of FE and their roles in

the predicted co-heterozygosity network are offered in the S2 Text.

Some of the interesting genes that are present in this network include BRCA1which is

involved in bovine mastitis [64,65],MCF2Lwhich is known to play a critical part in joint tissue

development in humans [66], FOXP2 which is a TF required for proper development of speech

and language regions of the brain during embryogenesis in humans [67], CREBBPwhich acts

as a binding protein that is important in embryonic development, growth control, and has

been implicated in the embryo-placenta signalling in bovine embryos [68,69].

Conclusion

Our pipeline can be generalized to any scenarios where population structure requires scrutiny

at the molecular level, particularly in the presence of a priori set of genes known to impact a

phenotype of evolutionary interest such as fertility.

Methods

Animal Care and Use Committee approval was not required for this study because the data

were obtained from existing phenotypic and genotype databases from the Cooperative

Research Centre for Beef Genetic Technologies (“Beef CRC”; http://www.beefcrc.com).

Table 3. Overrepresented GO terms among a list of cattle genes which significantly contribute to the Bos indicus/Bos taurus content of cattle

genomes, corresponding to a total of 52 genes. Each GO term occurs once.

GO Term Description p-value Genes

GO:0000398 mRNA splicing, via spliceosome 4.85e-05 18

GO:0002082 regulation of oxidative phosphorylation 5.95e-04 2

GO:0002467 germinal center formation 2.06e-04 4

GO:0002544 chronic inflammatory response 6.53e-05 5

GO:0006397 mRNA processing 8.55e-04 25

GO:0006890 retrograde vesicle-mediated transport, Golgi to ER 7.05e-04 10

GO:0008380 RNA splicing 4.43e-05 24

GO:0071826 ribonucleoprotein complex subunit organization 4.91e-04 15

https://doi.org/10.1371/journal.pone.0181930.t003
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Data collection and pre-processing

Genotypes from 17,867 cattle representing 18 breeds were extracted from data previously

reported [70]. Genotypes from 496 Nelore (NE), a pure Bos indicus breed were also included

[71]. In total, 18,363 cattle of 19 breeds were studied (S3 Fig), of which Brahman and Nelore

are Bos indicus (BI), six breeds are Bos taurus (BT), and eleven breeds are Bos taurus-Bos indi-
cus composites (BTI). Cattle were genotyped with high-density chip (over 700,000 SNP). SNP

mapped to sex chromosomes were removed from analyses as these behave differently with

respect to HWE and genotypes were from both female and male cattle. We targeted a 1kb

region surrounding known genes in order to capture SNP associated with protein-coding

regions. Only genes that have at least the median number of corresponding SNP (six) were

included in subsequent analyses. The final set comprised 246,864 SNP located in 8,631 genes.

Principal component analysis, mixture modelling and gene ancestry

Principal component analysis (PCA) was performed with PLINK [72]. We extracted the

weights of the first principal component (PC1) as it explains the maximum variability. Like

others, we found that PC1 captured the Bos indicus component of cattle breeds [29,31,73]. It is

conceivable that some SNP, mapped to certain genes, contribute more than others to the Bos
indicus components. Bolormaa et al. [74] assigned chromosome segments to be of Bos indicus
or Bos taurus ancestry using a weighted regression model of SNP allele frequencies. However,

their method required pre-defined segment length and was not informed by PCA analyses.

We used PCA output as a first step to project the data on to the maximum variable direction

and used statistical machine learning and two-component mixture modelling to quantify the

Bos indicus and Bos taurus content of a gene. Our method identifies gene ancestry and lists

genes that contribute significantly to Bos indicus or Bos taurus ancestry. These genes harbour

informative SNP for determination of cattle lineage. The two-component mixture used is

detailed in S1 Text. Mixture parameters were estimated via maximum likelihood using

EMMIX software [75]. After estimating mixture parameters, the contribution of each SNP to

each component is given by its posterior probability of belonging to Bos indicus or Bos taurus
components of the mixture model. SNP in coding region were collapsed to estimate gene con-

tribution to Bos indicus ancestry, which implies that a gene has higher/lower probability of

membership to Bos indicus or Bos taurus components.

Heterozygosity, Hardy-Weinberg equilibrium and clustering of breeds

Percentage heterozygosity (HET) was computed for each SNP as the proportion of animals

with a heterozygous genotype. HET was computed for each SNP and averaged over all the ani-

mals in a given breed. HET values of SNP were averaged to obtain gene level HET, in a cumu-

lative text statistic [76] (S1 Text). Gene HET was used to cluster cattle breeds using

PermutMatrix [77] software. Allelic frequencies were used determine deviation from HWE. A

nominal P-value of 1% served as threshold to select genes with significant deviation from

HWE.

Gene Ontology (GO) enrichment analyses

We performed GO enrichment analysis using GOrilla [78,79] to aid biological interpretation

of genes deems significant for each breed, based on SNP deviation from HWE. Genes with sig-

nificant deviation were contrasted to background (all 8,631 genes studied). Ranked gene lists

based on PC1 estimated contribution to Bos indicus and Bos taurus ancestry were also analysed

with GOrilla.
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Functional attributes and bovine fertility related genes

Genes were catalogued as transcription factors (TF), genes which are expressed in a tissue-

specific (TS) manner, genes encoding secreted proteins (SE), and kinases (KI) as shown in

S1A Fig. TF were defined according to the Animal Transcription Factor Database (http://

www.bioguo.org/AnimalTFDB/) [80]. TS were identified from the Tissue-specific Gene

Expression and Regulation [81] in humans. SE were identified with the Human Protein Atlas

[82], and KI with the Human Kinome database [83]. Human databases were used in the

absence of similar cattle resources.

Genes associated with heifer puberty and other cattle fertility traits were retrieved from pre-

vious studies [35–37,84], shown in S4B Fig. The fertility-related genes were catalogued as per

above criteria (TF, TS, SE, KI) and checked for overlapping with our list of 8,631 genes. In

total, 1,157 genes related to fertility were in our dataset, shown in S4C Fig.

Gene co-heterozygosity network

We inferred a co-heterozygosity gene network using the partial correlation and information

theory (PCIT) algorithm [32] to identify significant edges. Genes that deviated significantly

from HWE, genes that contributed strongly to Bos indicus or Bos taurus ancestry, and

fertility-related genes were included in the network prediction. Cytoscape [85] was used

to visualise and analyse the resulting network. A search algorithm was employed to locate

the minimal trio of fertility-related genes that span the majority of the network topology

[86].

Supporting information

S1 Text. Methods supporting information.

(DOCX)

S2 Text. Results supporting information.

(DOCX)

S3 Text. Contribution of 8,631 genes to the taurine or indicine component of the bovine

genome.

(TXT)

S1 Fig. Mixture modelling of SNP weights along the first PC. Left and Right modes describe

the Bos indicus and Bos taurus components, respectively. Red indicates the actual distribution

of SNP weights, grey curves are the individual Normal distributions, and black curve is the

mixture model obtained by combining the two Normal distributions.

(TIFF)

S2 Fig. Hierarchical clustering of heterozygosity of 86 fertility related cattle genes (clus-

tered as rows) that are used in our network analysis and the various cattle breeds (clustered

as columns). The gradient from green to black to red correspond to low, medium and high

heterozygosity.

(TIFF)

S3 Fig. Frequency distribution of the cattle population (Y-axis) across the 19 cattle breeds

(along X-axis).

(TIFF)

S4 Fig. Venn diagrams of subsets of the entire list of 8,631 genes and their functional attri-

butes. (A) The list of 2,891 genes from the entire list of 8,631 genes that belong to the four
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main functional categories of transcription factor (TF), secreted hormones (SE), kinases (KI)

and genes expressed in tissue-specific (TS) manner; (B) The subset of 1,157 fertility genes col-

lected from the literature where Canovas, MThomas, Fortes_Rev and Fortes correspond to

[35], [37], [84] and [36]respectively; (C) The same list of 1,157 fertility genes across the four

functional attributes (excluding 10 genes that are not TF, TS, SE, KI).

(TIFF)

S5 Fig. Distribution of correlation coefficients among the 1,284 network genes with red

profile corresponding to significant correlations as determined the PCIT algorithm and

stablishing edges in the network inference.

(TIFF)

S6 Fig. Distributions of the scale-free network post-PCIT analysis. (A) At a correlation cut-

off of 0.90 comprising of 858 genes and 12,958 significant connections (B) At a correlation

cut-off of 0.95 comprising of 328 genes and 1,098 connections.

(TIFF)

S7 Fig. Variation of the indicine percentage across the different categories of transcription

factor (TF), tissue specific (TS), secreted (SE), kinases (KI) and fertility (FE). All corre-

sponds to the 8,631 genes in our analysis and PCIT corresponds to the 1,284 network genes.

The only category for which significant differences exists (p-value < 0.01) in the indicine per-

centage is for fertility-related genes.

(TIFF)

S8 Fig. Visualization of the gene co-heterozygosity network. The size of the node corre-

sponds to the indicine content. The nodes in green are transcription factors and remaining

nodes in the network are purple-coloured. Nodes that are triangle-shaped are fertility-related

genes and others are denoted by circles: (A) PCIT network after applying a threshold of 0.90;

(B) The network spanned by the trio of fertility related genes GATA4, NR1H4, VAX2; (C) The

network spanned by the trio of fertility related genes ELF5, ROCK2, POU2F1.

(TIFF)
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