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LASER-INDUCED BREAKDOWN SPECTROSCOPY ASSOCIATED 
WITH MULTIVARIATE ANALYSIS APPLIED TO DISCRIMINATE 
FERTILIZERS OF DIFFERENT NATURE

G. S. Senesi,a* R. A. Romano,b B. S. Marangoni,c G. Nicolodelli,d  UDC 543.423:631.8
P. R. Villas-Boas,d V. M. Benites,e and D. M. B. P. Milorid

A number of phosphate rocks and organomineral P fertilizers was analyzed comparatively by laser-induced 
breakdown spectroscopy (LIBS) in both single- and double-pulse modes associated with two chemometric methods, 
i.e., principal components analysis (PCA) and partial least squares regression (PLSR). PCA was demonstrated to be a 
valuable method for the identifi cation of spectral differences between similar samples with only minor compositional 
differences. The raw and normalized LIBS spectra were able to provide effective identifi cation and discrimination 
at a 95% confi dence level and in good agreement with the reference concentrations. Results obtained confi rm the 
promising potential of LIBS for the rapid classifi cation of P fertilizers in situ.

Keywords: laser-induced breakdown spectroscopy, phosphate rocks, organomineral fertilizers, principal components 
analysis, partial least squares regression.

Introduction. Optimal fertilizer management is instrumental in obtaining optimized plant productivity and quality 
by avoiding excessive use that may lead to severe environmental damage such as contamination of surface water and ground-
water, especially in areas of intensive crop production, whereas nonoptimal use may cause reduced crop yields. In general, a 
mineral/inorganic fertilizer is required to guarantee an optimal input of the major nutrients N, P, and K into soil. In contrast, 
an organomineral fertilizer consists of an appropriate mixture of a mineral rock or an inorganic fertilizer and an organic mate-
rial generally derived from natural sources such as plant and animal by-products, sewage sludges, municipal biosolid wastes, 
seaweeds, etc., which can provide a certain amount of major nutrients and organic matter to the soil.

In particular, to save the limited primary P reserves available worldwide [1], the use of new P fertilizers consisting 
of mixtures of organic and secondary mineral P sources available on the market represents a promising alternative. Howev-
er, correct and effi cient use of organomineral P fertilizers of new generation, i.e., mixtures of phosphate rocks and treated 
organic wastes, feature a variable composition that requires the development of analytical techniques able to measure and 
discriminate accurately, rapidly, and cheaply the P content. This will improve their management and effi ciency in agriculture.

Laser-induced breakdown spectroscopy (LIBS) is an emerging, rapidly developing and promising analytical tech-
nique that can provide real-time, cheap, fast, and easy-to-use multielemental analysis of a variety of materials [2]. LIBS is 
a minimally destructive method requiring little or no sample pretreatment and no chemicals and produces no disposables. 
Further, relatively simple, low-cost, compact, and portable instrument confi gurations and packages are available for use out-
side the laboratory, i.e., on site. Another advantage of LIBS is its suitability for a broad range of multivariate chemometric 
approaches for data analysis. In the last decades, this technique has been applied in several fi elds [2], including agriculture, e.g., 
soil, plant, and compost analyses [3–10], but only in the last years has attention been focused on fertilizer analysis [11–16].

The objectives of this work were to evaluate the performance of two LIBS systems associated with two chemometric 
methods, i.e., principal components analysis (PCA) and partial least squares regression (PLSR), in analyzing comparatively 
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a suite of fi ve phosphate rocks and ten organomineral fertilizers of different composition and sources. In particular, the 
performance of PCA and PLSR was evaluated in resolving and extracting information from the whole LIBS spectra acquired 
from the samples examined, thus allowing their identifi cation, discrimination, and classifi cation. The Student's t-test was 
also applied to the whole LIBS spectra to evaluate the most relevant spectral emission lines that infl uence the classifi cation 
of samples examined and to quantify the level of signifi cance of differences between the classes. Further, a cross-validation 
procedure was applied to PLSR results to ensure that the classifi cation algorithm was robust also for unseen data.

Materials and Methods. Samples. Three groups of samples were used in this work (Table 1), which include: 
(a) fi ve phosphate rocks (PR) of different sources and composition (group A); (b) fi ve organomineral fertilizers consisting of 
mechanically homogenized mixtures of a PR and either a noncomposted poultry litter (NCPL) or a poultry litter composted 
(CPL) together with sugarcane bagasse for about 120 days in static piles at 1:1 ratio (wt.%) (group B); and (c) fi ve organomin-
eral fertilizers consisting of mechanically homogenized mixtures of either NCPL or CPL and monoammonium phosphate 
(MAP) at a 2:1 ratio (wt.%) with 2% of bentonite (B) as additive. All organomineral fertilizers were prepared in the Embrapa 
laboratories. To ensure homogeneity, before mixing and granulating, each component was ground using a micronex kinetic 
disintegration system (KDS), and the particles obtained were sieved through a 0.5-mm sieve. Samples were then dried to less 
than 10% moisture and stored in sealed bottles in ambient temperature. For LIBS analyses, two pellets of each sample were 
prepared by applying a pressure of 6 × 108 N/m2 for 30 s.

TABLE 1. Major Elemental Composition of Phosphate Rocks and Organomineral Fertilizer Samples Examined in This Work

Sample Source and Mixture 
Composition

P
(wt.%)

Ca
(wt.%)

Fe
(wt.%)

Al
(wt.%)

Mg
(wt.%)

K
(wt.%)

Na
(wt.%)

C
(wt.%)

N 
(wt.%)

H 
(wt.%)

Group A
PRa — Arad, Israel 26.3 32.1 0.6 0.53 1.1 2.0 5.9 1.4 0.1 0.4
PRa — Arraias, Brasil 18.0 23.3 13.3 17.2 2.6 5.6 – 0.2 – 0.2
PRa — Bayovár, Peru 23.4 24.7 5.1 4.5 3.0 2.5 14.4 1.8 0.3 0.6
PRa — Djabel, Algeria 21.5 29.0 2.2 2.5 11.2 1.4 9.7 2.1 0.1 0.4
PRa — Gafsa, Tunisia 23.3 29.6 1.8 2.7 3.2 0.9 11.6 1.9 0.1 0.4

Group B
NCPLb# + PR Arraias 11.7 15.2 5.5 14.5 3.7 10.6 8.0 15.1 1.7 1.8
CPLc# + PR Arraias 11.5 20.2 12.9 8.6 5.2 17.1 8.6 13.9 1.1 1.8
NCPLb# + PR Bayovár(2010)* 12.4 17.2 11.0 7.7 5.1 17.6 8.0 17.8 1.4 2.1
NCPLb# + PR Bayovár(2013)* 6.7 15.0 10.2 8.3 3.9 11.8 2.5 18.7 1.9 1.8
CPLc# + PR Bayovár(2013)* 7.8 11.8 16.2 4.9 5.8 16.6 3.3 13.6 1.0 2.0

Group C
NCPLb∆ + MAPd (2010)* 12.1 4.1 5.0 3.8 3.8 69.6 3.3 16.8 3.0 2.1
CPLc∆ + MAP (2010)* 20.1 5.0 8.0 4.3 3.8 22.2 3.1 10.6 4.6 2.0
NCPLb∆ + MAP (2011)* 17.0 1.8 5.9 4.6 3.2 15.3 3.3 15.8 5.1 2.1
NCPLb∆ + MAP (2013)* 18.3 3.2 10.4 7.2 3.3 14.2 2.9 9.7 4.5 2.1
CPLc∆ + MAP (2013)* 20.1 4.0 10.3 2.8 4.6 18.0 3.6 12.3 4.4 2.1

a Phosphate rock.
b Noncomposted poultry litter.
c Composted poultry litter.
d Monoammonium phosphate.
* Year of production.
# Mixture at a ratio of 1:1 (in wt.%).
∆ Mixture at a ratio of 2:1 (in wt.%) + bentonite 2%.
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LIBS experiment. Two LIBS instruments were used in this work. In particular, a commercial LIBS 2500 spectrometer 
(Ocean Optics) consisting of a Nd:YAG Q-Switch laser system (Quantel, Big Sky Laser Ultra50) operating at the wavelength 
of 1064 nm (IR) with a maximum energy of 60 mJ, a repetition rate of 10 Hz, and a pulse width of 8 ns, was used for the 
acquisition of raw single-pulse (SP) spectra. The integration time was fi xed at 2.1 ms with a delay time of 2.5 μs for all meas-
urements. The sample holder was manually moved to avoid pulse accumulation in the same spot. The diameter of the laser 
spot on the sample was about 100 μm. A set of a fi ber optic bundle was used to collect the light from the plasma and deliver it 
to seven spectrometers, each of which consisted of a 2048-pixel charge-couple device (CCD) array. The distance between the 
sample and the optical fi ber bundle was approximately 7 mm. The spectra acquisition ranged from 189 to 966 nm with 0.1 nm
optical resolution. Raw LIBS spectra were then normalized by dividing the whole broadband spectra by the area under the 
entire spectral range acquired. Spectrum normalization allowed us to eliminate any background emission interference and 
avoid any possible disturbance effect in samples classifi cation. Finally, two sets of SP LIBS spectra, i.e., raw and normalized 
ones, were obtained at the wavelength of 1064 nm (IR) by the commercial instrument.

The benchtop LIBS instrument was used in two different modes, i.e., single-pulse (SP) and double-pulse (DP) 
modes. Spectra were acquired at the wavelength of 532 nm (VIS), whereas the acquisition of DP spectra was performed us-
ing two laser beams in collinear geometry, the fi rst at the wavelength of 532 nm (VIS) and the second at 1064 nm (IR). The 
VIS laser pulse was generated by a Nd:YAG Q-Switch laser (Brilliant, Quantel) with a maximum energy of 180 mJ and 4 ns 
width, whereas the IR laser pulse was generated by a Nd:YAG Q-switch laser (Ultra, Quantel) with a maximum energy of 
75 mJ and 6 ns width. The detection was performed by a 400-Butterfl y Arielle system operating in the range of 275–750 nm 
with a spectral resolution of 29–80 pm. An intensifi ed (I) CCD camera of 1024 × 1024 pixels was used to record the spectra 
with a 400 ms integration window. The interpulse and measurement delays were set at 500 ns, and the width gate at 10 μs. 
The laser beams were guided using appropriately coated lenses, and a fi ber optical system was used to collect the light from 
the plasma. A delay generator (Quantum Composers) was used to synchronize the laser beams and the acquisition system. A 
personal computer was used for the control of the delay generator and data storage. Two sets of spectra were fi nally obtained 
and studied by the benchtop instrument, i.e., SP spectra at 532 nm (VIS) and DP spectra at 532 and 1064 nm in succession.

All the measurements were carried out in atmospheric air at ambient pressure. Fifty spectra were obtained in different 
positions of each pellet. Each spectrum was the result of fi ve accumulated laser shots, preceded by one cleaning shot.

Phosphorus, metal elements, and CHN reference analyses. The total P contents (Table 1) were measured by an 
inductively coupled plasma optical emission spectrometer (ICP-OES) (OPTIMA 3000) in radial view confi guration in digests 
obtained by boiling 1 g sample in 20 mL HNO3 and 5 mL HCl. The total contents of metal elements, including Ca and Fe 
(Table 1), were measured by an ICP-OES (VISTA PROCD, Varian) in radial view confi guration in digests obtained by 
heating at 110–120oC 1 g sample in 20 mL of nitric acid.

The total C, H, and N contents (Table 1) were measured by a Perkin-Elmer 2400 CHNS/O analyzer series II on 
samples ground into particles smaller than 0.15 mm. The samples were weighed directly in consumable tin capsules using a 
microbalance (Perkin-ElmerAD-6 Auto Balance Controller) that was connected to the 2400 CHNS/O. All results of elemental 
analysis were calculated with reference to the known C value of the standard acetanilide by using the K value factor calculation.

Chemometric methods. Two chemometric methods commonly used in LIBS analysis, i.e., PCA and PLSR [17–19], 
were applied in this study. First, all data, i.e., all emission lines (individual pixels from a MALDI image), contained in each of 
the four sets of LIBS spectra obtained by the four different approaches used were processed by PCA. Then, a successive PCA 
analysis was performed considering only the data in LIBS spectra of clusters that could be separated further. In particular, the 
PCA procedure can convert a spectrum with n peaks in an n-dimensional space plot, i.e., transform the original coordinate 
system in new coordinates called principal components (PCs) of various variance. In particular, the fi rst PC points in the di-
rection of the highest variance, the second PC points in the direction of the second highest variance, and so on. PCA analysis 
is thus able to extract the LIBS spectrum in the form of linear combinations of variables and evaluate how much variance in 
the dataset is explained by each PC. By this procedure the most relevant PCs that retain most of the original total variance 
can be identifi ed, and the PCs that contribute little to the variance can be removed. Thus PCA is a tool able to reduce multi-
dimensional data to a lower dimension while retaining most of the information, thus making data analysis more manageable 
and straightforward. The values that the spectra have in the PC-coordinate system are called scores; thus the coordinates cal-
culated along the PCs (scores) can be used to evaluate similarities and/or differences between the spectra. Finally, the samples 
can be grouped into appropriate classes by analyzing the scores and PCs together.

The multivariate linear method PLSR is used when the number of prediction variables is much greater than the 
number of observations. The method consists in determining a new set of variables whose variation is maximized to explain 
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the response variables [20]. The model accuracy is determined by performing a cross-validation leave-one-out test that 
consists in leaving one sample out of the calibration model and testing the remaining samples in the model, then repeating the 
test procedure for each of the other samples.

The Student's t-test, which is based on statistical concepts like probability, variance, and distribution, is also used as 
a suitable approach to differentiate between the two groups of samples when the distribution of a variable, i.e., the correlation 
coeffi cient and problem coordinate, is close to normal. This test can thus indicate whether two normally distributed populations 
are statistically signifi cantly different [21]. If the p value of the test results is less than the signifi cance level chosen, i.e., 0.05, 
the sample result is different at a 95% confi dence level.

Results and Discussion. The atomic emission lines of interest measured by SP LIBS–CCD in all samples examined 
were those of P (at 213.62 and 214.91 nm), Ca (at 422.67 nm), and Fe (at 370.56 and 373.83 nm). To discover and quantify 
which spectral emission lines infl uence sample classifi cation signifi cantly, two Student's t-tests were performed in each point 
of the spectra, the one considering PR and PL + MAP fertilizers and the other PR and PL + PR fertilizers. A confi dence 
level of 95% (p > 0.05) was assumed to indicate that the emission lines considered were signifi cant to differentiate the two 
classes of fertilizers, whereas a p < 0.05 meant that the emission lines considered were not signifi cant for this purpose. Good 
correlations were found between the relative spectral line intensity obtained both by SP and DP LIBS–ICCD for P, Ca, and 
Fe and the corresponding average concentration of these elements measured by ICP-OES for the three classes of samples. In 
particular, Fig. 1 shows the correlations found for the P peak at 213.62 nm.

The PCA analysis of SP LIBS broadband spectra acquired over the range 186–966 nm by the commercial 
LIBS–CCD system was performed using two approaches, the one based on raw spectra and the other on normalized spectra. 
The PCA procedure applied to raw spectra (Fig. 2) allowed us to discern similarities and differences in the given set of data and 
classify the samples examined into two well differentiated clusters, i.e., phosphate rocks and organomineral fertilizers, on the 
basis of only two PCs, PC-1, and PC-2, which retain >95% of the original total variance of their corresponding LIBS spectra. 
The same PCA procedure applied to normalized spectra yielded a similar sample classifi cation. This result indicated that even 
the raw broadband SP LIBS spectra without any normalization of spectral data can provide valuable data for distinguishing 
the samples. A more detailed PCA analysis of LIBS data of only organomineral fertilizers, which include PL + PR and 
PL + MAP samples, allowed us to further distinguish two different clusters of different composition on the basis of the same 
two PCs, PC-1, and PC-2, which retain >95% of the original total variance of their corresponding LIBS spectra.

The results obtained by the commercial SP LIBS–CCD system were confi rmed by PCA analysis of the SP and DP 
LIBS broadband spectra acquired by the benchtop LIBS–ICCD system over the range from 275–750 nm. Also in this case 
two PCs were able to capture >95% of total variance, and all samples could be grouped into two clusters based on the variance 
of their corresponding LIBS spectra. Similar to SP LIBS–CCD spectra, a further PCA analysis of SP and DP LIBS broadband 
spectra of only organomineral fertilizers allowed us to distinguish two different clusters, PL + PR and PL + MAP, using only 
the two PCs able to retain >95% of the total variance.

Fig. 1. Relative emission line intensities obtained by SP and DP LIBS-ICCD for the 
P peak at 213.62 nm vs. P concentrations obtained by ICP-OES.
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In order to validate the PCA sample classifi cation into three groups, the PLSR approach for classifi cation via 
regression was applied. This method allowed us to evaluate the variation of response variables, i.e., the sample groups, 
by fi nding the best combination of prediction variables, i.e., of spectra points. The accuracy of the method was evaluated 
using the raw and normalized SP LIBS spectra of all samples examined to obtain the so-called PLSR confusion matrices. 
Apparently, the samples could be correctly classifi ed along the principal diagonal of the matrix with error values of 0, which 
confi rmed that no samples were classifi ed incorrectly, i.e., an accuracy of 100% was obtained.

Fig. 2. 2D score plots of all samples, i.e., phosphate rocks (PR), poultry litter (PL)
+ phosphate rocks (PR), and poultry litter (PL) + monoammonium phosphate (MAP) 
grouped into classes on the basis of PCA analysis of raw broadband spectra acquired by 
the commercial SP LIBS–CCD instrument.

TABLE 2. Probability Distribution of Raw SP LIBS Spectra by the PLSR Method

Real Class Predicted Class
Probability Distribution

PR PL + PR PL + MAP
PR PR *0.761 0.239 0
PR PR *0.958 0.042 0
PR PR *0.934 0 0.066
PR PR *0.574 0.426 0
PR PR *0.837 0 0.163

PL + PR PL + PR 0.021 *0.979 0
PL + PR PL + PR 0.007 *0.993 0
PL + PR PL + PR 0.003 *0.947 0.05
PL + PR PL + PR 0 *0.961 0.039
PL + PR PL + PR 0.008 *0.967 0.024

PL + MAP PL + MAP 0 0 *1
PL + MAP PL + MAP 0 0.017 *0.983
PL + MAP PL + MAP 0.004 0.009 *0.987
PL + MAP PL + MAP 0 0 *1
PL + MAP PL + MAP 0.011 0.097 *0.893

* Classifi cation value for each sample.
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The probability distributions obtained by the PLSR classifi er for the raw spectra are shown in Table 2. The "real 
class" of the samples is listed in fi rst column, whereas the second column, i.e., the "predicted class", lists the samples as they 
are classifi ed by the model. A fully consistent correspondence was found between the two columns, which confi rmed the 
100% accuracy of the prediction model. The other three columns list the numerical probability distribution of each individual 
sample in each group. As an example, in the fi rst row of Table 2, the probability of the sample PR to be predicted by the PLSR 
classifi er model as a real PR is 76.1%, to belong to the PL + PR class is 23.9%, and to the PL + MAP class is 0%, i.e., the 
sample results classifi ed correctly. The method was thus validated in terms of accuracy and precision.

Conclusions. Results of this study showed that both LIBS systems used, i.e., SP LIBS–CCD and SP and DP LIBS 
ICCD, associated with multivariate PCA and PLSR analyses were able to distinguish and classify with good accuracy the 
phosphate rocks and organomineral fertilizers examined. Further, the comparative examination of results obtained using 
the two LIBS systems and either PCA or PLSR approaches showed that it was possible to classify quickly and correctly 
phosphate rocks and organomineral fertilizers of different source and composition on the basis of raw LIBS spectra acquired 
using a spectral and temporal resolution compatible with a commercial portable LIBS-CCD system that potentially allows 
in situ measurements. Although LIBS still faces a number of challenges related to the secondary correlations on which it is 
based when combined with chemometric processing of data in real time, this technique has proved to represent a promising, 
novel, valuable, rapid, and relatively low-cost analytical tool for P fertilizer analysis featuring several advantages over current 
methodologies.
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