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Abstract Genomic selection (GS) has been studied in sev-
eral crops to increase the rates of genetic gain and reduce
the length of breeding cycles. Despite its relevance, there
are only a modest number of reports applied to the genus
Coffea. Effective implementation depends on the ability to
consider genomic models, which correctly represent breed-
ing scenario in which the species are inserted. Coffee
experimentation, in general, is represented by evaluations
in multiple locations and harvests to understand the inter-
action and predict the performance of untested genotypes.
Therefore, the main objective of this study was to inves-
tigate GS models suitable for use in Coffea canephora.
An expansion of traditional GBLUP was considered and
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genomic analysis was performed using a genotyping-by-
sequencing (GBS) approach, showed good potential to be
used in coffee breeding programs. Interactions were mod-
eled using the multiplicative mixed model theory, which is
commonly used in multi-environment trials (MET) analysis
in perennial crops. The effectiveness of the method used was
compared with other genetic models in terms of goodness-
of-fit statistics and prediction accuracy. Different scenarios
that mimic coffee breeding were used in the cross-validation
process. The method used had the lowest AIC and BIC
values and, consequently, the best fit. In terms of predic-
tive ability, the incorporation of the MET modeling showed
higher accuracy (on average 10–17% higher) and lower pre-
diction errors than traditional GBLUP. The results may be
used as basis for additional studies into the genus Coffea and
can be expanded for similar perennial crops.

Keywords Genomic selection ·
Genotyping-by-sequencing(GBS) · GBLUP ·
Multi-environment trials (MET) · Perennial crops

Introduction

Coffee is one of the most important global crops in terms of
economic and social implications. Brazil is responsible for
about a third of the world’s production making it the world’s
largest producer. Brazil has held this position for the last
150 years (IOC 2016). The Coffea genus comprises hun-
dreds of tropical species and the beverage popularly known
as coffee is produced from grains of two species: Coffea
arabica, which contributes to the aroma and sweet flavor;
and Coffea canephora, with higher amounts of caffeine
and soluble solids (Tran et al. 2016). Global efforts have
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been made to increase production and quality of the final
product. Thus, breeding programs have a key role in improv-
ing agronomic traits associated with grain production
(Ferrão et al. 2015)

C. canephora is a good starting point for studies on the
Coffea genus for economic and genetic reasons including
the ploidy (2n = 2x) and wide genetic variability (Tran et al.
2016). Both features make the process of genotyping and
statistical modeling more feasible than in C. arabica, which
is allotetraploid and has a narrow genetic base. The eco-
nomic motivation is based on grain production and crop
cultivation. C. canephora is responsible for 40% of the
world coffee production, and its grain is the main source
of raw materials for soluble coffee. Further, the species has
better adaptability to various environmental stresses, which
makes cultivation easier and cheaper (Ferrão et al. 2007).

Traditionally, evaluation of genetic progress has been
performed via phenotype data collected in field trials cou-
pled with a long testing phase, which results in low gains
per unit of time. The advent of molecular markers opened
a new perspective for their use in marker-assisted selection
(MAS). Meuwissen et al. (2001) suggested the use of all
available molecular markers as covariates in linear regres-
sion models to predict genetic value in quantitative traits.
Called genomic selection (GS), this methodology has the
potential to redirect resources and activities in breeding pro-
grams and to reduce breeding cycles and increase genetic
gains per time unit, especially in animal and plant breeding
(de los Campos et al. 2009).

Although GS is promising for breeders, studies in coffee
are still emerging in contrast to other crops. Implementing
GS poses several statistical challenges such as the ability to
consider genomic models that represent the breeding sce-
nario to which the species is submitted. Typically, coffee
trials are tested in multiple locations and harvests to eval-
uate interactions and predict the performance of untested
genotypes. Such experiments are collectively referred to as
multi-environment trials (MET) and are not restricted to cof-
fee but are also used in many perennial crops (Smith et al.
2001; Kelly et al. 2009; Malosetti et al. 2014).

Numerous statistical models have been developed to
evaluate interactions in MET studies. In a modern frame-
work, the genotypic performance across environments has
been modeled as correlated traits. Thus, structured and
unstructured covariance functions have been utilized in a
mixed model context (Smith et al. 2005; Kelly et al. 2009;
Pastina et al. 2012; Malosetti et al. 2014). A main advantage
is the flexible way in which these functions can be tested to
describe the interactions and the residual term (Smith et al.
2001). Furthermore, when genetic effects are assumed to be
random, the pedigree information can be incorporated and
more accurate breeding values may be computed using best
linear unbiased prediction (BLUP) (Kelly et al. 2009).

BLUP methodology relies on pedigree information to
estimate the covariance between known relatives. However,
this covariance can also be estimated using genomic infor-
mation rather than an expected value based on the pedigree
record. A matrix built with genomic information is named
the genomic relationship matrix, and its combination with
the BLUP theory resulted in the so-called Genomic Best
Linear Unbiased Prediction (GBLUP) (VanRaden 2008).
This is the current gold standard GS method used in ani-
mal and plant breeding (de los Campos et al. 2013). One
of the first ideas to accommodate the interaction in GS
models was described by Burgueño et al. (2012). For this
purpose, the traditional GBLUP was extended to accom-
modate covariance functions in a multiple environment
context. Among the theoretical and practical advantages,
this approach used a consolidated theory about mixed mod-
els as well as straightforward implementation using existing
software. More recent studies have been advanced to incor-
porate modern information about environmental covariates
(Jarquı́n et al. 2014a; Heslot et al. 2014). Other studies
have reported the explicit modeling between markers and
environment (Schulz-Streeck et al. 2013; Lopez-Cruz et al.
2015). Recently, an in-depth description of issues related to
interactions on GS studies was presented by Malosetti et al.
(2016). All of these authors showed that models includ-
ing the interaction resulted in substantial gains in prediction
accuracy.

Although promising, all these methods do not address
an important aspect of perennial crops: having data from
multiple harvests and a short sequence of repeated measure-
ments. Longitudinal data of this nature are common not only
in coffee but also in other crops such as sugarcane (Pastina
et al. 2012; Margarido et al. 2015), forage grass (Smith and
Casler 2004), and cereal (Kelly et al. 2009). In this con-
text, effective implementation of GS methods depends on
the ability of the model to predict real conditions in breed-
ing programs. Statistical challenges create more complex
scenarios. Hence, in MET analysis, the main challenge is to
properly consider the genetic and the environment effects,
because it involves a multidimensional space with a vari-
ation that is defined by the effects of locations, years and
their interactions with genotypes (Malosetti et al. 2016).

In addition to statistical challenges, the modest number of
reports considering high-throughput genotyping also ham-
pers genomic studies in coffee. Genotyping-by-sequencing
(GBS) is representative of this new class of molecular
markers, which combines the reduction in genomic com-
plexity with next-generation sequencing (NGS) (Elshire
et al. 2011). A single sequencing run on an NGS platform
can generate data on the gigabase-pair levels. This usu-
ally contains hundreds of thousands of SNPs. Therefore,
in a one-step approach, GBS can make it possible to dis-
cover new markers and genotype entire populations. It is
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rapid, flexible, and perfectly suited for GS compared to
traditional molecular markers. Research using GBS is com-
mon in many crops (Poland et al. 2012; Crossa et al. 2013;
Jarquı́n et al. 2014b), but there is a still an important gap in
the coffee literature.

The main objective of this research was to consider a
genomic selection model suitable for use in C. canephora
and other crops with similar experimental design. This
model addresses issues related to the breeding strategy
used for that species, including sources of interaction. We
present aspects related to the applicability of genotyping-
by-sequencing (GBS) as well as future perspectives.

Material and methods

Phenotypic data

The experimental population was developed and evaluated
by the Instituto Capixaba de Pesquisa, Assistência Técnica e
Extensão Rural (Incaper); ES State, Brazil. It consisted of a
recurrent selection population formed from the recombination
of 16 superior clones of C. canephora. Of the thousands of
genotypes maintained in Incaper, these superior clones were
selected as progenitor due to the high production and the similar
grain maturity date. The latter is an important trait for new cof-
fee varieties because it allows for harvest standardization.

After one cycle of recombination (open-pollination), 103
progenies and the 16 progenitors were cloned and evalu-
ated in randomized complete blocks with three repetitions
and five plants per plot. The population was installed in
two representative environments (locations) for the Brazil-
ian production of C. canephora: Marilândia Experimental
Farm (FEM) - latitude 19◦24′ south, longitude 40◦31′ west,
70 m altitude; and Sooretama Experimental Farm (FES)
- latitude 15◦47′ south, longitude 43◦18′ west, 40 m alti-
tude. The complete experiment was made of 3570 coffee
trees and total grain production (kilograms of mature coffee
fruit in the cherries stages) of each progeny was evaluated
over four consecutive harvest-production years (2008, 2009,
2010, and 2011).

Genotypic data

The GBS protocol followed that from the Genomic Diversity
Facility, Cornell University (http://www.biotech.cornell.
edu/brc/genomics-facility). Leaves of each of the 103 pro-
genies and 16 progenitors were collected and lyophilized.
DNA extraction was made using Qiagen DNeasy Plant and
the genomic libraries were prepared following (Elshire et al.
2011). DNA samples were digested using the ApeKI restric-
tion enzyme, and 96 samples were multiplexed per Illumina
flow cell for sequencing.

The GBS analysis pipeline implemented in TASSEL-
GBS (v.4.3.7) (Glaubitz et al. 2014) was used to analyze
sequence data. Sequenced tags were aligned against the
C. canephora reference genome sequence (Denoeud et al.
2014). The raw Variant Call Format (VCF file) was fil-
tered manually considering the following cutoff: (i) triallelic
SNPs were removed; (ii) minimum minor allele frequency
(0.01 MAF); (iii) SNPs that are present in less than < 50%
of the samples were eliminated; (iv) minimal depth cover-
age of 10× (the mean number of sequence reads per locus
averaged across all individuals) was considered.

All filtering and SNP manipulation was carried out using
VCFtools package (Danecek et al. 2011) and customized
scripts in R (R Core Team 2013) and bash (GNU 2007).
GBS markers which had up to 50% missing data were
imputed using the mean value for each marker. The graph-
ical analyzes were performed using the OmicCircos (Hu
et al. 2014).

Phenotypic models

Phenotypic data were analyzed with the following model,
which uses a notation presented by Pastina et al. (2012). The
statistical model in which the underlined terms indicate a
random variable is:

y
ijkr

= μ + Lj + B|Lrj + Hk + LHjk + Gijk + eijkr (1)

Here, y
ijkr

is the phenotype of the rth block (r=1,2,3) of the

ith individual (i = 1,2...,n), of the j th location (j=1,2) and
kth harvest (k = 1,2,3,4). Term μ is the overall mean; Lj is
the effect of location; B|Lrj is the block effect nested within
location; Hk is the harvest effect; LHjk is the location by
harvest interaction; Gijk is a random genetic effect of indi-
vidual i, at harvests k and location j; and εijkr is the random
non-genetic residual error term.

For the genetic effects, we assumed a multivariate nor-
mal distribution with a zero mean vector and a variance-
covariance (VCOV) matrix indexed by three factors (har-
vest, location and genotype) written as the Kronecker prod-
uct (⊗) of matrices as follows: G = Gk×k

H ⊗ G
j×j
L ⊗ �n×n

g

in which GH and GL are VCOV and relate to harvest and
location. The diagonal element of these matrices represents
the genetic variance within the kth harvest and the genetic
variance within the j th location, respectively. The VCOV
structures for these matrices are represented in Table 1. For
GL, the reduced number of locations (two) restricted the
search in three VCOV structures (ID, DIAG and UNS),
while for GH all the VCOV structures cited were tested.
Two important points deserve comments: (i) each structure
has different assumptions about the heterogeneity of vari-
ance and may be used to quantify the interactions and (ii)
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the number of estimated parameters represents the variation
in the degree of complexity.

The term �g is used here as a generic form to high-
light the different assumptions that can be assumed for
the genetic term. The off-diagonal elements are the genetic
covariance (�g). An Identity matrix (Ig) is used when
it is reasonable to assume that the genotypes are not
related to each other (same variance and lack of covari-
ance between individuals). The Identity assumption ensures
that the breeding values of each genotype will be predicted
only by the value of the empirical responses of the genotype
itself. This is an assumption often used in family studies
in the absence of pedigree information. However, informa-
tion about the genetic relationship may be incorporated in
the presence of pedigree record or molecular information.
Variations in these genetic assumptions and the interaction
accommodation were the central point of this study. This
will be presented in the next section.

The residual term was factored in similarly to genetic
effects. It is assumed to be a multivariate normal distribution
implying a zero mean and VCOV matrix indexed by four
factor (harvest, location, block and genotype) written using
the Kronecker product as follows: R = Rk×k

H ⊗ R
j×j
L ⊗

Rr×r
B ⊗ In×n

g , in which RH , RL and RB are VCOV tested
for harvest, location and block, respectively. The Ig is an
Identity residual (co)variance matrix. In principle, all the
structures mentioned in Table 1 were tested for the residual
term. In addition, spatial adjustments were tested, in order
to adjust for possible trends in the field trial data. An autore-
gressive (AR1) structure that allows correlations between
the residual values in neighboring plots (both within rows
and within columns) was considered.

GBLUP version for multiple harvest-location trials
(MET-GBLUP)

The aforementioned Model 1 was used to test for the
presence of interactions (Genotype × Location- G×L and
Genotype × Harvest- G×H) and the inclusion of molecular

information in prediction models. Thus, different assump-
tions about the random effects distribution were tested.
Two classes of models were defined in accordance with the
inclusion of interaction terms (MET modeling) (Table 2).

The first class of methods ignored the MET model-
ing and simple structures for genetic and residual random
effects were assumed. Initially, the absence of genetic rela-
tionship across individuals was assumed (Id method). The
BLUP method considered the additive relationship matrix
(Ap) as genetic covariance between individuals, while the
GBLUP method considered the realized kinship (Am). The
Ap matrix was based on the numerator relationship matrix,
which was computed from the coefficient of co-ancestry
(termed as θxy) between genotypes x and y as Ap =
{2θxy}. This assumed that relatives are not inbred (Falconer
and Mackay 1996). The Am matrix, often called realized
genomic relationship matrix or G-matrix, was computed
using molecular marker information. To illustrate, let X ∈
{0, 1, 2}n×m be the genotype matrix for n individuals and
m biallelic SNP markers with alleles designed A and B
and marker scores coded: AA=0, AB=1 and BB=2. Let the
frequency of the B allele at locus k be pk . The Z matrix
denotes the centered genotype matrix constructed by sub-
tracting the marker mean from each data point: Zik = Xik −
2pk . Realized relationship matrix (Am) can be obtained
by VanRaden (2008): Am = Z′Z

2
∑

pk(1−pk)
. Division by

2
∑

pi(1 − pi) scales the Am matrix to be analogous to Ap

matrix.
The second class of methods considered the MET mod-

eling. Here, the genetic and residual matrices were modeled
considering the structures cited in Table 1 as well as vari-
ations of the genetic covariances (�g matrix). The MET
method regarded the interactions, but had no correlation
imposed by the pedigree. The MET.BLUP refers to an
expansion of the BLUP model but accommodates MET
modeling. MET.GBLUP is simultaneous MET modeling
with the use of molecular markers to estimate the relation-
ship matrix (Am). The last approach was termed as “GBLUP
version to multiple harvest-location trials” and refers to

Table 1 Variance and
covariance structures examined
for the random effects in model
1

Model Num.Para Description

ID 1 Identical variation

DIAG M Heterogeneous variations

CS 2 Compound symmetry with homogeneous variance

CS Het M+1 Compound symmetry with heterogeneous variance

FA1 2M First order factor analytic model

AR1 M+1 First order autoregressive model

UNS M(M+1)/2 Unstructured model

aThe number of parameters for the models follows from the sum of the parameters for the component matri-
ces minus the number of identification constraints. M = J or K, where J is the number of locations and K is
the number of harvests
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Table 2 Summary of the tested
models and the assumption on
the variance and covariance
structure related to the random
effects specified in the Model 1
description. MET prefix on the
name of each method indicates
models where the interaction is
explicitly modeled, testing
covariance structures for
location and harvest

Method Ga Ra

Id1 In×n
G In×n

G

BLUP1 An×n
p In×n

G

GBLUP1 An×n
m In×n

G

MET2 G
j×j
L ⊗ Gk×k

H ⊗ In×n
G R

j×j
L ⊗ Rk×k

H ⊗ Rr×r
B ⊗ In×n

G

MET.BLUP2 G
j×j
L ⊗ Gk×k

H ⊗ An×n
p R

j×j
L ⊗ Rk×k

H ⊗ Rr×r
B ⊗ In×n

G

MET.GBLUP2 G
j×j
L ⊗ Gk×k

H ⊗ An×n
m R

j×j
L ⊗ Rk×k

H ⊗ Rr×r
B ⊗ In×n

G

aVariance and covariance structures tested for the random effects specified in the Model 1. The IG, Ap and
Am represent a Identify matrix, additive relationship matrix and genomic relationship matrix, respectively.
1 First class of methods, that ignored the Multi-Environment Trials (MET) modeling; 2 Second class of
methods, that considered the MET modeling

the idea of accommodating the G×L and G×H interac-
tions using MET theory and a genomic selection model
(GBLUP).

All the fitted models were performed in Genstat 14th edi-
tion (Payne et al. 2011) using Restricted Maximum Likeli-
hood (REML). Additive relationship matrix (Ap) was com-
puted using the pedigreem R package (Bates and Vazquez
2014). Realized genomic relationship (Am) was computed
using customized scripts in R (R Core Team 2013).

Comparison of models

Two criteria were used to compare the models (Table 2): (i)
goodness-of-fit statistics, via AIC (Akaike 1974) and BIC
(Schwarz 1978) and (ii) predictive ability measured by
cross-validation. Three cross-validation schemes were con-
sidered. Scenario 1 (CV1) aims to evaluate the predictive
ability for genotypes that have not undergone field evaluation
(i.e., mimic situations with genotype that were not evaluated
in any block, location and harvest). Scenario 2 (CV2) aims
to make predictions for one specific location and scenario
3 (CV3) for one specific harvest. The simulated scenarios
ranged in complexity, the largest number of predictions was
being made in CV1 followed by CV2 and CV3.

The predictive ability were assessed using a Replicated
Training-Testing evaluation. In each replication, 90% of the
individuals (107 genotypes) were assigned randomly for
training data set (TRN), while the remaining 10% were
assigned for testing data set (TST). This division was repli-
cated 10 times with independent random assignments into
TRN and TST. A similar scheme was used by Crossa et al.
(2013). The predictive capacity was measured using the
average predictive ability and the mean squared predic-
tion error (MSPE) across the 10 repetitions. The predictive
ability was computed via the Pearson correlation between
predicted (ŷi) and observed values (yi). The MSPE was

computed by the formula: MSPE =
∑n

i=1(yi−ŷi )
2

n
, where n

is the number of individuals that predicted in the TST.

Results

Phenotypic data

The lowest AIC and BIC values were observed for the
combination of UNS form for location (GL) and harvest
(GH ) (Table 3). The values of ID combinations highlight
the poor quality of the goodness-of-fit value when tra-
ditional ANOVA assumptions are considered—even when
homogeneous variances across locations and harvests are
applied.

All the structures mentioned in Table 1 were also tested
for the residuals. Convergence problems and negative vari-
ance components were however observed when more com-
plex models were tested (results not shown). Therefore,
the DIAG form was assumed for each factor in the resid-
ual matrix. The option of a simple structure was based on
reducing the complexity and number of estimated param-
eters. This is because our main focus was the genetic
part. Although this structure may not be the most suit-
able for representing residuals, this model is more realistic
than the assumptions assumed in the traditional ANOVA
that consider an ID structure for each factor, and con-
sequently, homogeneity between locations, harvests, and
blocks (Smith et al. 2001). In addition, spatial adjustment
was tested to correct for possible trends in the field trial
data. No improvements on the AIC and BIC criterion were
observed when data were adjusted for neighboring plots
(results not shown).

Figure 1 presents the phenotypic dispersion across the
harvests and the variance component magnitude. The dis-
persion of the phenotypic observations shows that the FES
location was more productive (on average) than FEM. There
was more variation in the FES. Evidence of G×L was first
observed via this production difference and confirmed via
heterogeneity of variance across locations. There was an
important pattern observed across the harvests: a lack of
annual production stability. The boxplot highlights cyclical
production including highly productive years (2008 and
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Table 3 Goodness-of-fit statistics considering the AIC and BIC cri-
teria evaluated for grain production in a Coffea canephora population.

The genetic matrix was factored by location (GL) and harvest (GH ).
A Identify matrix was considered for the residual random effect

GL

ID DIAG UNS

GH AIC BIC AIC BIC AIC BIC

ID 20027.5 20039.37 20014.6 20032.42 19962.09 19985.84

DIAG 20010.39 20040.08 19997.04 20032.66 19948.37 19989.93

AR1 19974.45 19992.26 19966.07 19989.83 19922.81 19952.5

FA1 19885.61 19939.05 19878.38 19937.75 19844.49 19909.81

CS 19939.21 19957.02 19932.66 19956.41 19892.13 19921.82

CS het 19920.23 19955.85 19913.37 19954.93 19876.05 19923.55

UNS 19854.45 19919.77 19848.4 19919.66 19811.65 19888.84

ID:Identical variation; DIAG: Heterogeneous variations; CS: compound symmetry with homogeneous variance; CS het: compound symmetry
with heterogeneous variance; FA1: first order factor analytic; AR1: first order autoregressive; UNS: unstructured model.
Bold numbers represent the smallest AIC and BIC values, indicating the best fitted phenotypic model

2010) and low production years (2009 and 2011). Lack of
stability and, consequently, evidence of G×H interactions
were quantified via the UNS form fitted for GH . This is
represented by low genetic correlations between subsequent
years. These results are clear indications of the importance
of MET modeling for subsequent GS models.

Genotypic data

A total of 5,198,498 unique 64-bp sequence tags were iden-
tified in the C. canephora libraries; 32.1% were uniquely
aligned to the reference genome, 7% were aligned to multi-
ple positions, and 60.9% could not be aligned. Of this total,
449,467 raw SNPs were identified in the unfiltered VCF
file.

We noted a predominance of SNPs with low percentages
of missing data (0-10%). SNPs in chromosomes with more
than 80% missing data were unusual. The number of SNPs
per chromosome ranged from 24497 to 77635 (Table 4). An

abrupt decrease was observed for the MAF cutoff and when
the depth coverage increases. The SNP density before and
after filtration was 449,467 and 13,117 SNPs, respectively.
This represented 2.91% of the unfiltered SNP, but 15× is
an extremely conservative value for cutoff in depth cover-
age. Therefore, for subsequent genomic studies, a security
coverage of 10x was assumed (18,586 SNPs selected).

A summary of GBS results is presented in layers (Fig. 2).
The first (from outer to inner layers) represents each chro-
mosome with a specific color. The scale is proportional
to the reference genome size. For better representation, all
parameters in the subsequent layers were computed consid-
ering the average in a window of 400,000 base pairs (bp).
The second layer is the number of raw SNPs per window.
Unique tag counts were higher in the chromosome ends ver-
sus to pericentromic regions. The third layer is the depth
coverage per window and ranged from 1 to 38 reads. The
fourth and fifth layer are the percentage of SNPs per win-
dow with Minor Allele Frequency (MAF) lower than or
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Fig. 1 Boxplot of grain production (kilograms of mature coffee fruit in the cherries stages) across the locations (FEM and FES) and harvests
(2008, 2009, 2010 and 2011), and a heatmap representing the unstructured form estimated for locations (GL) and harvests (GH )
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Table 4 Number of SNP markers per chromosome (Chr) before and
after filter in Coffea canephora GBS libraries. A sequential filtering
was considered: i) Triall: removing all triallelic SNPs; ii) MAF: remov-
ing SNPs with MAF < 0.01, plus Triall filter; iii) MD: removing SNPs

that are present in less than < 50% of the samples, plus Triall and
MAF filters; iv) Depth Coverage: removing SNPs with mean number
of sequence reads per locus averaged across all individuals less than
1x, 5x, 10x and 15x, plus Triall, MAF and MD filters

Chr Rawa Triall MAF MD 1x 5x 10x 15x

Chr 1 46897 43692 16810 8679 8296 3359 1987 1400

Chr 2 77635 72150 26621 13805 13133 5470 3094 2164

Chr 3 31799 29728 12127 67901 6460 2771 1572 1131

Chr 4 34713 32368 11153 5870 5576 2252 1329 953

Chr 5 34140 31842 13263 6700 6361 2674 1509 1047

Chr 6 48775 45417 15822 8157 7686 2984 1722 1263

Chr 7 44370 41160 15197 8011 7594 2981 1728 1235

Chr 8 34554 32229 11678 5864 5612 2411 1373 965

Chr 9 24497 22859 8174 4332 4153 1752 1017 726

Chr 10 34158 31847 11786 6305 6014 2567 1563 1075

Chr 11 37929 35397 14990 7917 7553 2944 1692 1158

Total 449467 418689 158621 82431 78438 32165 18586 13117

(%)b 100 93.15 35.3 18.34 17.45 7.15 4.13 2.91

aRaw SNPs: original number of SNP markers per chromosome
bPercentage of SNPs remaining after the sequential filtering

equal to 5 and 1%, respectively. The sixth layer indicates the
percentage of missing data. This ranged from 3 to 63% of
missing data across the chromosome. The last layer is the
SNP density after filtering and is composed of two colors,
the gray background is the number of unfiltered SNPs, and
the blue bars are the density after filtering.

MET and GS models

Models that ignored the MET modeling (Id, BLUP and
GBLUP) showed higher AIC and BIC values and hence poor
fit for grain production trait (Table 5). The inclusion of molec-
ular information consistently improved the results based on
the criteria of minimum AIC and BIC. The MET.GBLUP
had the lowest AIC and BIC values and was the best model.

Models that included the MET modeling had better pre-
dictive ability (Table 6). In the most complex scenario
(CV1), the difference in predictive ability between the
MET.GBLUP method and traditional GBLUP was on the
order of 10%. In CV2, this difference was higher (17%)
and showed how problematic it can be to ignore the inter-
action to realize predictions. For CV3, a lower number of
predictions was required, and the lowest differences were
observed across the models (1%). In all scenarios, methods
that ignored the MET modeling had very similar predic-
tive ability implying that inclusion of molecular information
could not improve the predictive ability over that obtained
with pedigrees.

Another comparative criterion used during the cross-
validation was the MSPE, which was held in the percep-
tion of the distance among observed and predicted values.
Phenotypic metrics evaluated in field were considered the
observed values, while predicted values were the adjusted
means. The MET.GBLUP showed good results across the
scenarios. For grain production, models that ignore the MET
modeling generally, showed the highest MSPE values; the
exception was the GBLUP in the CV1. The lower values of
MSPE for the CV3 suggest that this scenario is less complex
in terms of prediction.

Discussion

The potential of GS to accelerate crop improvement due to
shorter generation times and the avoidance of phenotypic
evaluation has been established and widely appreciated in
plant and animal breeding (Jannink et al. 2010; de los Cam-
pos et al. 2013). In coffee, the reduction of repeated cycles
of selection, breeding, and testing are our main motiva-
tion. Developing new cultivars can take decades, but this
can be accelerated with the incorporation of GS concepts
in breeding schemes. Good prospects have been reported
in maize (Crossa et al. 2013), wheat (Poland et al. 2012),
rice (Spindel et al. 2016) and forest tree species (Gratta-
paglia and Resende 2010). In this research, we considered
an expansion of traditional GBLUP to address the conjugate
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Fig. 2 Circular visualization of GBS information across the Coffea
canephora chromosomes. From outer to inner layers, the graphic is
separated in seven layers: i) Chromosomes; ii) number of raw SNPs;
iii) depth coverage; iv) percentage of SNPs eliminated considering
the Minor Allele Frequency (MAF) lower than 5%; v) percentage of
SNPs eliminated considering the MAF lower than 1%; vi) percentage

of missing data; vii) number of filtered SNPs (blues bars) in contrast
with the number of raw SNPs (gray background). All these metrics
were computed considering the average in a window size of 400,000
base pairs (bp). The scale, in the bottom left, aids in the perception on
the magnitude of the values

Table 5 AIC and BIC values for models with different variance and
covariance structures for the genetic and residual random effects, eval-
uated for grain production in a Coffea canephora population. MET

prefix on the name of each method indicates models where the inter-
action is explicitly modeled, testing covariance structures for location
and harvest

Method Genetic matrixa Residual matrix AIC BIC

Id IG IG 20753.25 20765.12
BLUP Ap IG 20758.13 20770.01
GBLUP Am IG 20741.60 20753.50
MET GL ⊗ GH ⊗ IG RL ⊗ RH ⊗ RB ⊗ IG 19723.10 19835.92
MET.BLUP GL ⊗ GH ⊗ Ap RL ⊗ RH ⊗ RB ⊗ IG 19705.38 19818.20
MET.GBLUP GL ⊗ GH ⊗ Am RL ⊗ RH ⊗ RB ⊗ IG 19689.75 19802.56

Italicized numbers represent the smallest AIC and BIC values, indicating the best fitted method
aVariance and covariance structures tested for the random effects specified in the Model 1. The IG, Ap and Am represent a Identify, additive
relationship and realized kinship matrix, respectively
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Table 6 Correlation between the predicted breeding values and the
observed phenotypic values measured by the predictive ability (r)
and mean squared prediction error (MSPE) considering six modeling
methods for grain production in a Coffea canephora population. Three
breeding scenarios were considered: Scenario 1 (CV1) aims to evalu-
ate the predictive ability for genotypes that have not undergone field

evaluation (i.e., mimic situations which genotype that were not eval-
uated in any block, location and harvest). Scenario 2 (CV2) aims to
make predictions for one specific location and scenario 3 (CV3) for
one specific harvest

CV1 CV2 CV3

Method r MSPE r MSPE r MSPE

Id 0.676 288.878 0.498 182.741 0.854 135.787

BLUP 0.676 266.75 0.498 180.098 0.854 140.949

GBLUP 0.676 241.277 0.498 171.566 0.854 140.919

MET 0.760 290.686 0.677 107.771 0.865 103.843

MET.BLUP 0.767 264.801 0.677 97.814 0.866 108.722

MET.GBLUP 0.774 244.864 0.670 93.537 0.864 111.227

Italicized numbers represent the greatest r values and the smallest MSPE

use of genomic information and MET modeling. A simi-
lar approach was described by Burgueño et al. (2012) and
Oakey et al. (2016), although certain differences have been
considered here, including the explicit G×H interaction
modeling and a higher number of VCOV structures tested. It
is noteworthy that our model could be considered for other
perennial or annual species with a similar experimental
design.

Multiplicative mixed models have been commonly used
for MET analysis (Smith et al. 2001; 2005; Malosetti et al.
2014). The G matrix in MET models is a genotypic covari-
ance matrix that is defined for the genetic random effect that
was decomposed into harvest,locations and genotypes, i.e,
G = Gk×k

H ⊗ G
j×j
L ⊗ �n×n

g . The term �n×n
g can be used

to include different assumptions for the genetic term. These
assumptions reflected independence among genotypes (Ig)
or similarities in terms of pedigree records (Ap) or DNA
information (Am). The Gk×k

H assumed correlation between

harvests and G
j×j
L among locations. All these components

jointly determined similarities among genetic effects across
locations and harvests. Strictly speaking, the genotype and
environmental interactions were modeled by considering
that different genotypes do not necessarily react similarly
to equal conditions. Information could be borrowed via a
multidimensional genotypic space that is defined as the
genotype-location-harvest combination. This offers predic-
tions for the untested genotypes (Malosetti et al. 2016).

It is important to test for an appropriate VCOV struc-
ture in terms of harvest and location. These structures will
reflect the nature of the interactions. Kelly et al. (2009) and
Meyer (2009) reported that the most general form is the
fully unstructured (UNS) matrix, although it often leads to
estimation issues. A common solution is the factor analytic

(FA) form—an intermediate structure in terms of parsimony
and flexibility (Crossa et al. 2013). In this study, the reduced
number of locations and harvests motivated a test of differ-
ent VCOV structures to find the best biological description.
Pastina et al. (2012), Margarido et al. (2015), and Oakey
et al. (2016) reported a similar approach. This search was
not fixed solely on the FA form. For the residual effect,
we assumed a block diagonal structure (heteroscedasticity)
where each location, harvest and block has its own com-
ponent of residual variance. Although spatial analysis is an
important alternative in data analysis of field experiments
in plant, no improvement in the goodness-of-fit statistics
was observed when spatial correlation was fitted (results not
shown). This might be because of the experimental design,
which was not a typical square or rectangular block.

Analyses based on mixed models showed important
aspects about the phenotypic variation. Evidences of G×L
interaction were observed both on the boxplot dispersion
(given the differential behavior across the locations) and
the heterogeneous variances (the fully unstructured matrix
showed the best fit). Previous results about G×L interac-
tion were reported using ordinary least squares analysis of
variance (Ferrão et al. 2007). In accordance with these stud-
ies a change in the genotypic ranking was observed (results
not shown). The G×H interaction in our results shows a
lack of annual yield stability. Although this phenomenon
has been commonly reported in C. arabica, some studies
have shown a similar behavior in C. canephora (Cilas et al.
2011). Our results support this. Planned pruning can reduce
the annual instability and is commonly used in Brazilian
breeding programs. It is part of a series of agronomic recom-
mendations that minimize the variations across the harvests
and stabilizes the production.
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The phenotypic analysis clearly showed the importance
of including interaction terms in the model and their
importance to a breeding program. In naive models, all
environmental-specific effects (i.e., location and harvest)
are assumed to come from the same distribution with
the same genetic variance component. However, if genetic
effects are conditional on the environment, then the genetic
components should be allowed to vary across environments
(Malosetti et al. 2016). From a quantitative genetics per-
spective, it is reasonable to expect that genotypic effects
may differ across years and locations because the final
state of a trait will be the cumulative result of the number
of causal interactions between the genetic make-up of the
genotype and the condition in which the plant developed
(Malosetti et al. 2014). This agrees with MET modeling.
Our study showed that it is important to consider interac-
tions for further GS modeling.

In terms of statistical modeling, the models were com-
pared using different criteria. Cross-validation is the stan-
dard method to compare GS models, although it might
not be always a sensitive instrument for model compari-
son (Wang and Gelman 2014; Gelman et al. 2014). Here,
we reinforce the relevance of using more than one criterion
to draw conclusions. The goodness-of-fit value, commonly
used in genetic studies (Kelly et al. 2009; Pastina et al. 2012;
Oakey et al. 2016), was considered for this proposal. Hence,
when the inclusion of the MET modeling or the pedigree
record has been studied, we are essentially quantifying the
plausibility of a model that considers this source over oth-
ers. Although rarely discussed in GS studies, the AIC and
BIC criterion were used here. More plausibility (lower AIC
and BIC) was observed for methods that considered the
MET modeling. This highlights its importance on model
formulation.

An improvement in the goodness-of-fit value was
observed when the genetic relationship was considered.
This result is expected in a general context. It is more plau-
sible to consider the existence of correlation between geno-
types rather than homogeneous variances and null genetic
correlations (two assumptions when a Identify matrix is
assumed). While empirical results reinforce the pedigree
importance (Kelly et al. 2009), a significant number of
MET studies still assume independence between genotypes
(Smith et al. 2001). This number is inflated in coffee
because few pedigree mixed models have been reported. As
pointed by Piepho et al. (2008), the assumption of indepen-
dence between the genetic effects results in limited gain if
additional information is not considered in the estimation
process of breeding values.

The difference in performance between models that con-
siders molecular information (Am) and pedigree (Ap) is
linked with some practical and theoretical aspects. The
practical aspect refers to the way in which the pedigree

was recorded. Genealogy control is typically hampered in
open-pollinated crops. In this study, only seeds that were
harvested on the same plant, i.e., half-sib individuals, were
considered. In a theoretical context, the Am and Ap matrices
keep different levels of information. While the Ap regards
information from alleles to be identical by descent (IBD),
the Am regards information from alleles to be identical by
state (IBS). The empirical results in full-sibs, for exam-
ple, could show a variation from 0.4 to 0.6 in the genomic
relationship matrix, which is possible to be captured by
the Mendelian sampling term (Mrode 2014). A fixed value
of 0.5 is calculated using only the pedigree record con-
sidering the expected average genetic covariance between
full-sibs. The exploitation of this level of variation usually
results in better goodness-of-fit statistics for GBLUP ver-
sus traditional BLUP. Both aspects support the observed
superiority of the genomic models and concur with our
results.

In the GS context, we reinforce the importance to draw
conclusions supported in more that one criterion. Both
goodness-of-fit value and predictive ability are important
comparison parameters. Cross-validation was performed
in this sense and the results generally agree with the fit
analyses. Models that considered the MET modeling con-
sistently had the highest accuracy values (on the order of
10–17% versus models that ignored the MET modeling).
MET.GBLUP was generally the best or second best per-
forming method. The main argument in favor of this method
is the possibility to recover information via the covariance
matrix (Malosetti et al. 2016). It also offers the possibility
to use molecular data to describe the genetic similarity and
to test different VCOV structures to describe the correla-
tion across locations and harvest. This is reflected in more
plausibility and better predictive capacity. Therefore, a more
realistic description of this phenomenon could be obtained
and combined with good predictions.

Methods that do not consider MET modeling all had
poor results. The interactions have been showing to be an
important source of variation in many phenotypic studies
(Crossa et al. 2006; Smith et al. 2007; Burgueño et al.
2011) as well as in GS studies (Burgueño et al. 2012;
Malosetti et al. 2016; Oakey et al. 2016). To evaluate its
consequence in the breeding program, these results were
examined for selection decisions. The top 10% of genotypes
were selected considering the MET.GBLUP model and the
genetic gain was compared with the Trad model. Changes
on the ranking and differential response to selection were
observed between both methods. An increase of 4% in grain
production is expected when genotypes were selected con-
sidering the MET.GBLUP model comparing to the top 10%
genotypes selected using the Trad model as criteria. These
results are in accordance to the evidences described by Kelly
et al. (2009). In a breeding program, the identification of
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most performant genotypes for commercial release is an
important condition of success. In essence, changes in the
genotypic ranking indicate instability on the selection pro-
cess, and hence a potential loss of selection gain in future
generations.

The low number of studies using high throughput geno-
typing in coffee motivates a brief discussion. The good
performance of the GS method highlights the importance
of this tool in the Coffea genus. To the best of our knowl-
edge, molecular studies have been reported in coffee; how-
ever, most of them are still based on traditional molecular
approaches (Ferrão et al. 2013; Cubry et al. 2013; Mérot-
L’Anthoëne et al. 2014). Large-scale genotyping expands
their utility. The GBS approach identified 449,467 SNPs in
the unfiltered file. After filtering, the SNP density decreased
to 18,586. While this only represents 4% of the raw SNPs,
this number is still larger than in recent coffee reports.
In addition to the GS application, molecular information
may assist in the selection of potential individuals. Self-
incompatibility is a genetic mechanisms which prevent self-
fertilization and thus encourage outcrossing and allogamy.
In C. canephora species, this phenomenon hinders parental
selection since progenitors should not to be highly related.
In this sense, the use of molecular tools to understand the
genetic relationship between individuals is an additional
benefit that can support the selection decision.

Finally, in our research context, the MET.GBLUP model
will be considered in the selection of progenies for a new
cycle of recurrent selection. For practical implementation
in future, we believe that some factors discussed in this
research are essentials, including (i) good phenotypic eval-
uations, considering a proper experimental design and reli-
able phenotypic measures; (ii) a selection of a suitable MET
model to describe the phenotypic variation; (iii) reliable
molecular informations; and (iv) a GS model considering
all important sources of variation, including the interac-
tions. In addition, increasing the sample size of the training
population is another relevant point for future applications.
Its importance is clear for two reasons, as pointed out by
de los Campos et al. (2013). First, the accuracy of esti-
mated marker effects increases with sample size, because
bias and variance of estimates of marker effects decrease
with increasing sample size. Second, an increase in sample
size may also increase the extent of the genetic relationship
between training and testing data sets, which is an important
factor to compute the predictive ability. Imputation meth-
ods and improved on the bioinformatic steps, especially in
the SNP and genotype calling, are important future trends.
In terms of statistical modeling, studies focusing on the
importance of non-additives effects and the use of alterna-
tive approaches, such as hierarchical Bayesian regressions,
are important perspectives in coffee research (Ferrão et al.
2016).

Conclusion

In this research, an expansion of the traditional GBLUP
approach to address the conjugate use of genomic infor-
mation and MET modeling was discussed for genomic
prediction in the context of coffee breeding. This model
was called “GBLUP version to multiple harvest-location
trial” (MET.GBLUP) and showed the best goodness-of-
fit statistics and high predictive ability, compared to other
competitor models. Furthermore, promising results in terms
of number and SNP density across the genome suggesting
that GBS can be used as an efficient genotyping method in
coffee research. As a final message, GS approach is rec-
ommended as a promising and innovative approach to be
applied in coffee. In practice, compared to traditional phe-
notypic evaluation, it is expected to accelerate the breeding
cycle, maintain genetic diversity and increase the genetic
gain per unit of time. For this end, this research evi-
denced that consider a suitable genomic prediction model
and understand the breeding scenario that is attempting to
address are two important features to be contemplated for
future implementation.
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