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Abstract Adaptability and stability analysis meth-

ods that use a priori information allow identifying and

selecting potentially productive genotypes with

greater accuracy. The aim of the current study is to

use the Eberhart and Russel’ Bayesian method as an

instrument to analyze the adaptability and stability of

hybrid maize cultivars and to assess the efficiency of

using the distribution of informative and non-infor-

mative priors to select cultivars. Twenty-five (25)

hybrid maize cultivars were assessed in 11 environ-

ments located in the Brazilian Northeastern region,

during 2012 and 2013, according to a complete

randomized block design, with two repetitions. The

Eberhart and Russel’s methodology was performed in

the GENES software, whereas the Bayesian procedure

was implemented in the free software R, by using the

MCMCregress function of the MCMCpack package.

The adaptability and stability parameters values and

the credibility intervals have shown that the Eberhart

and Russel’s method via Bayesian technique has

shown greater stability-estimation accuracy and

greater efficiency in recommending cultivars adapted

to favorable and unfavorable environments. The

Bayesian methods using priories informative (M1)

and few informative (M2) distributions have presented

the same genotype classifications in the comparison

between a priori distributions; however, according to

the Bayes Factor, the M1 was the most adequate

distribution to help finding more reliable estimates.

Keywords Bayes factor � Genotype 9 environment

interaction � Informative priori � Zea mays L.

Introduction

The main goal of a hybrid maize breeding program is

to identify hybrid combinations showing high pro-

ductive potential, as well as good adaptability and

stability.

However, the genotype 9 environment interaction

is one of the major challenges faced during selection,

since it makes it difficult to identify effectively

T. R. A. de Oliveira (&) � A. T. do Amaral Junior �
G. A. Gravina

Universidade Estadual do Norte Fluminense Darcy

Ribeiro, Avenida Alberto Lamego, 2000 - Parque

California, Campos Dos Goitacazes, RJ 28035-200, Brazil

e-mail: tamara_rebecca@hotmail.com

H. W. L. de Carvalho � E. F. N. Costa

Embrapa Tabuleiros Costeiros, Avenida Beira Mar, 3250 -

Jardins, Aracaju, SE 49025-040, Brazil

M. Nascimento

Universidade Federal de Viçosa, Avenida Peter Henry
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superior genotypes. The diversity of cultivation envi-

ronments is often responsible for the significant effect

of the interaction between genotypes and environ-

ments (G9E) (Engelsing et al. 2012).

Estimating this interaction is extremely important,

because it reduces the probability of errors in genotype

selection or recommendation (Backes et al. 2005;

Mendes et al. 2012). Several frequentist methods

estimate genotype adaptability and stability based on

different principles; among them, the mixed models

(REML/BLUP), as well as the models based on simple

linear regression (Eberhart and Russell 1966; Cruz

et al. 1989) and on segmented linear regression

(Verma et al. 1978), and the non-parametric methods

(Lin and Binns 1988) stand out.

Issues concerning the accuracy and precision of

predictions and estimates cannot be completely solved

through REML/BLUP, since the distribution and

variance of the estimators are not known, thus

generating approximate confidence intervals for the

genetic parameters (Resende et al. 2001). On the other

hand, the other frequentist methods predict the

performance of the genotypes based on parameter

estimates derived from a set of estimators.

Unlike these methods, the Bayesian inference has a

single estimator that leads to estimates able to

maximize the probability density function a posteriori.

It makes it possible generating exact credible intervals

for genetic parameter estimates and provides more

rigor to the analyses; consequently, the genotype

selection shows greater accuracy (Resende 2000).

Thus, on the Bayesian procedure, the parameters

are interprets as random variables, where the proba-

bility models may shows initial information about

these parameters, independent of what the data may

show (Molina et al. 2012). Studies have shown the

Bayesian methodology superiority to select genotypes

in different environments, in comparison to frequentist

methods (Silva and Benavides 2001; Cotes et al. 2006;

Couto et al. 2015; Teodoro et al. 2015).

The Bayesian analysis have been used in plant

breeding for present itself as a robust statistical

procedure that shows information richness and the

possibility of several applications (Bastiaansen et al.

2012; Almeida et al. 2016; Macedo et al. 2017).

In light of the foregoing, the aim of the current

study was to use the Eberhart and Russel’ Bayesian

method as an instrument to analyze the adaptability

and stability of maize hybrids and to assess the

efficiency of using informative and non-informative a

priori distributions to select cultivars.

Materials and methods

The experiments were carried out in Maranhão

(Balsas, Brejo, Colinas and São Raimundo das

Mangabeiras counties), Piauı́ (Nova Santa Rosa,

Teresina and Uruçuı́ counties) and Sergipe states

(Nossa Senhora das Dores, Frei Paulo and Umbaúba

counties), during the agricultural years 2012 and 2013.

The experimental area in Nossa Senhora das Dores

County was divided in two environments, which were

characterized according to fertilization differences.

The trials using high fertilization range comprised

180.00 kg ha-1 N, 149.80 kg ha-1 P2O5 and

85.60 kg ha-1 K2O, whereas the trials using low

fertilization range comprised 45.00 kg ha-1 N,

37.80 kg ha-1 P2O5 and 21.60 kg ha-1 K2O, in the

form of 535 and 135 kg ha-1 of 8 - 28 - 16 ? Zn

at sowing time; both treatments received nitrogen

cover in the form of urea 21 days after emergence.

Twenty-two (22) environments, in total, were taken

into consideration according to the edaphoclimatic

differences in the different years, in the same sites.

Twenty-five (25) maize hybrids coming from

public and private companies were assessed (Table 1).

The experimental design was based on randomized

blocks, with two repetitions, and the plots comprised

four rows (5.0 m long), 0.70 m interrow spacing and

0.20 m spacing between holes within the rows. The

fertilization was performed according to the results of

the soil analysis performed in each experimental area.

Irrigation was not carried out, whereas the weed and

pest control was done according to the crop’s need in

each region.

The productivity data were subjected to analysis of

variance. The joint analysis of variance was performed

in the GENES software (Cruz 2006), after the

homogeneity of the residual variances was found

through the F maximum test by Hartley (1950). The

joint analysis of variance has adopted the model

Yijk = l ? R/Ek(j) ? Gi ? Ej ? GEij ? eijk, wherein:

Yijk is the mean phenotypic value of the plot; l is the

general constant; R/Ek (j) is the effect of kth repetition

in the jth environment; Gi is the fixed effect of the ith

genotype; Ej is the effect of the jth environment NID

(0, rE
2), GEij is the effect of the ith genotype
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interaction in the jth environment NID (0, rGE
2 ) and,

eijk is the experimental error NID (0, r2).

The Bayesian analysis considered the values result-

ing from the frequentist analysis as a priori information,

wherein the hypotheses H0: b1i ¼ 1 and H1 : b1i 6¼ 1,

for adaptability; and H0: rdi
2 = 0 and H1: rdi

2 [, for

stability, were assessed through t and F statistics,

respectively (Teodoro et al. 2015). The use of values

resulting from the frequentist analysis as a priori

information was necessary since the genotypes eval-

uated in this work does not present any information

about the regression parameters in the literature. This

approach, called Empirical Bayes, was used by Kitada

et al. (2000) and Wang et al. (2016). However, if this

information have been available, as Nascimento et al.

(2011) and Couto et al. (2015), we should use

information from previous studies.

The method by Eberhart and Russell (1966) is

based on simple regression analysis, in which adapt-

ability, or the linear response to the environments, is

given by the b1i parameter estimate and by the mean

productivity b0i, whereas stability is found through the

regression deviation dij, according to the statistical

model used in experiments involving g genotypes, e

environments and r repetitions: Yij ¼ b0i þ b1iIjþ
dij þ eij, wherein Yij is the response of genotype i in

the environment j; b0i is the response of genotype i; b1i

is the regression coefficient measuring the ith geno-

type response to the environment variation; Ij is the

Table 1 List of hybrid maize cultivars and their respective origins, types, cycles, colors, grain textures and companies

Cultivar Transgenic/conventional Type Cycle Grain color Grain texture Company

30 A 95 HX Transgenic TH E OR SMHARD MORGAN

30 A 68 HX Transgenic SH EE OR SMHARD MORGAN

BM 820 Conventional SH E R HARD BIOMATRIX

DKB 330 YG Conventional SH EE R/OR SMDENT DEKALB

AS 1596 R2 Transgenic SH E R SMDENT AGROESTE

P 4285 H Transgenic SH E Y/OR HARD DU PONT

2 B 710 HX Transgenic SH E Y/OR SMHARD DOW

30 A 16 HX Transgenic SH E OR SMHARD MORGAN

DKB 370 Conventional SHm E Y/OR SMHARD DEKALB

AG 8041 YG Transgenic SH E Y/OR SMHARD SEMENTES

20 A 55 HX Transgenic TH E OR SMHARD MORGAN

30 F 53 HR Transgenic SH E OR SMHARD DU PONT

30 A 37 HX Transgenic SH EE Y/OR SMHARD MORGAN

30 A 91 HX Transgenic SHm E Y/OR SMHARD MORGAN

2 B 587 HX Transgenic SH E Y/OR SMDENT DOW

2 B 433 HX Transgenic TH EE Y/OR SMDENT DOW

AS 1555 YG Transgenic SH E OR SMHARD AGROESTE

BRS 2022 Conventional DH E OR SMDENT EMBRAPA

STATUSVIP Transgenic SH E OR HARD SYNGENTA

BRS 2020 Conventional DH E OR SMHARD EMBRAPA

2 B 707 HX Transgenic SH E OR SMHARD DOW

20 A 78 HX Transgenic SH E OR SMHARD DOW

2 B 604 HX Transgenic SHm E OR SMHARD DOW

30 K 73 H Transgenic SH E Y/OR SMHARD DU PONT

2 B 688 HX Transgenic TH E OR SMHARD DOW

Type: DH double hybrid, TH triple hybrid, SHm modified single hybrid; Cycle: EE extra early, E early; Grain color: OR orange,

R reddish, Y yellow; Grain texture: SMDENT semi-dent, SMHARD semi-hard
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coded environmental index; dij is the regression

deviation and eij is the mean experimental error.

If one considers the statistical model Yij ¼ b0i þ
b1iIj þ dij þ eij in the Bayesian approach, and assumes

that each Yij observation has a Yij * N(b0i ? b1iIj:

ri
2) distribution, the probability function for each

genotype i is given through (Nascimento et al. 2011):

Li b0i;b1i;r
2
i ;Yij

� �
¼
Ya

j¼1

1
ffiffiffiffiffiffiffiffiffiffi
2pr2

i

p

exp � 1

2r2
i

Yij� b0iþb1iIj
� �� �2

� �

¼ 1
ffiffiffiffiffiffiffiffiffiffi
2pr2

i

p	 
a exp � 1

2r2
i

Xa

j¼1

Yij� b0iþb1iIj
� �2

h i
( )

;8i

It is necessary assigning the a priori distributions to the

parameters in order to estimate their adaptability and

stability. The following distributions were taken into

consideration for b0i, b1i and ri
2: b0i * N(l0i, r0i

2 ),

b1i * N(l1i, r1i
2 ), ri

2 * GamaInv(ai, bi); the

ri
2 * GamaInv(ai, bi) distribution comprised an inverse

range with mean and variance equal to
bi
ai

and

b2
i

ai�1ð Þ2 ai�2ð Þ, respectively (Nascimento et al. 2011).

If one assumes independence between the param-

eters of these distributions, the a priori joint distribu-

tion for each genotype is given through (Nascimento

et al. 2011):

Pi b0; b1i; r
2
i

� �
¼ 1

ffiffiffiffiffiffiffiffiffiffiffi
2pr2

0i

p exp � 1

2r2
0i

b0i; l0ið Þ2

� �

� 1
ffiffiffiffiffiffiffiffiffiffiffi
2pr2

1i

p

exp � 1

2r2
1i

b1i; l1ið Þ2

� �

� 1

baii G aið Þð Þ
1

r2
i

� �aiþ1

exp � 1

bir
2
i

� �

/ exp � 1

2r2
i

b0i; l0ið Þ2

� �

� 1
ffiffiffiffiffiffiffiffiffiffiffi
2pr2

1i

p exp � 1

2r2
1i

b1i; l1ið Þ2

� �

� 1

r2
i

� �aiþ1

exp � 1

bir
2
i

� �

It is necessary finding the marginal a posteriori

distributions of the parameters of interest in order to

make inferences about them. If one denotes the param-

eter vector for each genotype i through hpi = (b1i, b2i,

ri
2)—wherein p = 1,2,3—then, the marginal a posteriori

distribution for the hpi parameter is found through the

following integral: P(hpi |x) = $P(hpi|x)dhpi, which

refers to the integral of all vector parameters, except

for the pth component.

The methodology adopted in the present study was

implemented in the R software (The R Foundation

2010), whereas the joint distribution sample was

obtained through the MCMCregress function of the

MCMCpack package. The Bayes Factor was calcu-

lated using the BayesFactor function of the MCMC-

pack package. This factor may vary from less than 1 to

more than or equal to 100, wherein BFij\ 1 shows

evidence in favor of model j; 1 B BFij\ 3 shows

moderate evidence in favor of model i; 3 B BFij\ 10

shows substantial evidence in favor of model i;

10 B BFij\ 30 shows strong evidence in favor of

model i; 30 B BFij\ 100 shows very strong evidence

in favor of model i; and BFij C 100 shows decisive

evidence in favor of model i (Jeffreys 1961).

Informative a priori distributions, whose informa-

tion derived from the frequentist analysis considering

all the assessed genotypes, were used in the first model

(M1) to perform the Bayesian analysis. The informa-

tion was inserted in the analysis through the values

assumed for the a priori distribution parameters,

named hyperparameters.

These values were found through the mean and

variance of the sample composed of the parameter

estimates found in the frequentist analysis, which

resulted in the following distributions: b0i �N

l0i ¼ b0i; r
2
0i ¼ Var b0i

� �� �
, b1i �N l1i ¼ b1i; r

2
1i ¼

�

Var b1i

� �
Þ and r2

i �GamaInv ai; bið Þ; wherein: b0i is

the b0i estimates; b1i is the b1i estimates; Var b0i

� �
is

the variance of b0i values; Var b1i

� �
is the variance of

b1i values; and ai and bi are values obtained from the

system equation:

E r2
i

� �
¼ bi

ai � 1

Var r2
i

� �
¼ b2

i

ai�1ð Þ2þ ai�2ð Þ, which were:

ai ¼ 2 �
E r2

i

� �2

V r2
ið Þ þ 2; bi ¼ 2 �

E r2
i

� �3

V r2
ið Þ þ 1
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The second model (M2) used slightly informative a

priori distributions, which represented probability

distributions showing great variance. The following

distributions were herein adopted: b0i * N (l0i = 0,

r0i
2 = 1,000,000), b1i * N (l1i ¼ 0, r1i

2 = 1,000,000)

and ri
2 * GamaInv(ai = 0.0001; bi = 5.000).

The comparison between M1 and M2, i.e., between

informative and non-informative a priori distributions,

was based on the Bayes Factor (BF) (Kass and Raftery

1995).

The Bayes Factor was calculated through the

BayesFactor function of the MCMCpack package.

According to Jeffreys (1961), the Bayes Factor may be

interpreted as follows: BFij\ 1 shows evidence in

favor of model j; 1 B BFij\ 3 shows moderate

evidence in favor of model i; 3 B BFij\ 10 shows

substantial evidence in favor of model i; 10 B BFij-

\ 30 shows strong evidence in favor of model i;

30 B BFij\ 100 shows very strong evidence in favor

of model i; and BFij C 100 shows decisive evidence in

favor of model i.

The marginal distribution samples of the stability

parameter (rdi
2 ) were indirectly obtained, since this

parameter represents a r2
i function. If one indirectly

finds r2
di values in each interaction, it is possible

finding r2
di values through the following expression:

br2
di ¼ br2

i � MSR=r

	 

, wherein: MSR is the mean

square residue provided by the analysis of variance,

and r is the number of repetitions in the experiment.

The hypotheses of interest were tested through the

construction of credible intervals for the parameters.

The intervals were directly obtained from the marginal

a posteriori distribution of parameters.

Since the Gibbs sampler is an iterative algorithm, it

is necessary checking its convergence. Such conver-

gence was confirmed in the current study by applying

the criteria by Heidelberger and Welch (1983) and

Raftery and Lewis (1992), which were implemented in

the Bayesian Output Analysis (BOA) package of the R

software (The R Foundation 2017).

The Bayesian adaptability and stability analysis

applied to each parameter of the herein adopted

regression model took into consideration 250.000

iterations in the Gibbs sampler algorithm based on a

burn-in period of 10.000 iterations. The spacing

between points sampled from five iterations (thinning)

was taken into consideration to find an uncorrelated

sample, and it resulted in samples of the marginal a

posteriori distributions of each parameter; the infer-

ence of each parameter was based on such

distributions.

Results and discussion

Overall, all chains achieves convergence, since the

Raftery and Lewis (1992) dependency factor provided

values lower than five, and the p value of the

Heidelberger and Welch test Heidelberger and Welch

(1983), which to test if the length of the sample is

enough to estimate the mean with sufficient accuracy,

was always higher than the 5% level of significance.

The significance of the variation sources has shown

substantial differences between genotypes and envi-

ronments (Table 2). The significant result between

genotypes and environments (GxE) has indicated

different cultivar behaviors in different environments.

Significant GxE interaction effects were also reported

in several studies about maize genotypes in different

Brazilian regions (Engelsing et al. 2012; Carvalho

et al. 2013; Storck et al. 2014). This significant

interaction is one of the greatest challenges for

genotype selection, since it makes it difficult identi-

fying effectively superior genotypes. The occurrence

of these variations has led to the need of conducting a

detailed study about genotypes’ behavior in different

environments, based on adaptability and stability

analyses.

The adaptability and stability parameters were

found by considering values derived from the fre-

quentist analysis as a priori information, along with

their respective credible intervals, as shown in

Table 3.

Table 2 Estimates of the mean yield squares of 25 hybrid

maize genotypes assessed in 22 environments

Sources of variation df Mean square

Genotypes (G) 24 16,241,031.01**

Environments (E) 21 114,448,699.64**

Genotypes 9 environments (GxE) 504 2,454,247.71**

Residue 528 708,660.56

MS[/MS\ – 5.92

**Significant at 0.01 probability levels by F test
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Only 2 (30A16HX and 2B587HX) out of the 25

genotypes assessed according to the Bayesian method-

ology in model M1 (informative priors) were classified

as of specific adaptability to favorable environments

(b1i[ 1) (Table 4). The hybrids P4285HX, BRS2022,

30A91HX and BRS2020 were classified as of specific

adaptability to unfavorable environments (b1i\ 1).

The other genotypes were considered of general

adaptability and showed adaptability parameters

within the 95% credible interval range. All genotypes

have presented stability parameter r2
di

� �
values higher

than 0 and were considered of low predictability

within the 95% credible interval range.

The M2 (non-informative priors) analysis has

applied the same criteria used to classify the genotypes

in M1, i.e., the 95% CI range.

The b1i and r2
di estimates for all hybrids in M2 were

equivalent to the M1 analysis results. These results do

not corroborate those reported by Nascimento et al.

(2011), Couto et al. (2015) and Teodoro et al. (2015),

whose priors’ information derived from the applica-

tion of the meta-analysis technique, i.e., the data used

in the analysis came from previous studies. However,

Nascimento et al. (2011) have stated that more

accurate results can be found in adaptability and

stability studies that have more information available

for meta-analysis.

The Bayes factor, which is a method that compares

model 1 to model 2, has presented the lowest estimate

value (18.36) in the analysis of the Statusvip genotype,

as well as the highest estimate value (20.59) in the

analysis of the 2B433HX genotype (Table 5).

These results have shown that, although the adapt-

ability and stability parameter estimates of the two

models presented similar results, M1 has shown the

highest fit quality because it met the 10 B BFij\ 30

intervals. Thus, the Bayes factor has shown that higher

accuracy can be achieved when informative priors are

used to build the Model. In addition, the insertion of a

priori information in Model 1 has generated smaller

credible interval ranges in comparison to Model 2, fact

that reinforced the greater accuracy in the estimation

of parameters and, consequently, in a more reliable

genotype selection.

The results of the frequentist analysis, which

enabled the a priori inferences, has shown great

divergence from the Bayesian approach results.

Among the genotypes classified as of specific adapt-

ability to favorable environments (b1i\ 1)—

30A68HX, 2B707HX, 2B587HX, 2B604HX,

2B710HX, 2B710HX, 2B710HX, 2B433HX,

20A55HX, 20A78HX, 2B688HX, 30K73H and

DKB330YG—only 2B587HX complied with the

adaptability results found through the Bayesian pro-

cedure. It has also disagreed with the stability

classification, which was high for this genotype,

according to the frequentist analysis.

The 30A16HX cultivar was considered of great

adaptability and high predictability, fact that disagree

with the Bayesian approach, which classified it as of

specific adaptability to favorable environments and of

Table 3 Stability and adaptability estimates found through the

methodology by Eberhart and Russell (1966)

Genotypes Mean Eberhard and Russell (1966) R2

b1i d2d

30 A 68 HX 9402a 1.03 850,431.38** 70

2 B 707 HX 9301a 1.20* 684,693.98** 78

30 A 16 HX 9287a 1.49** 597,704.35** 86

2 B 587 HX 9192a 1.29** 314,451.11** 87

2 B 710 HX 9150a 1.02 103,367.25** 85

2 B 604 HX 9146a 1.19* 495,764.81** 81

30 A 37 HX 9124a 1.13 255,791.43 85

30 A 95 HX 8992a 1.21* 786,791.73** 77

2 B 433 HX 8932b 1.06 - 27,025.11** 90

P 4285 H 8907b 0.70** 484,829.04** 61

20 A 55 HX 8853b 1.13 119,157.46 87

30 F 53 HR 8833b 0.80* 131,892.45** 50

AG 8041YG 8743b 0.82* 444,286.36* 69

30 A 91 HX 8737b 1.18* 131,312.58 88

2 B 688 HX 8736b 1.20* 649,181.43* 79

20 A 78 HX 8730b 1.11 681,658.41 76

DKB 370 8640b 0.88 521,731.59** 70

30 K 73 H 8591b 1.00 394,714.43** 78

DKB 330 YG 8579b 1.00 669,348.74** 72

AS 1596 R2 8401c 0.92 658,136.68** 69

Statusvip 8345c 0.77** 649,673.59** 61

BM 820 8275c 0.80* 611,926.64** 64

AS 1555 YG 8098c 0.95 467,038.09** 74

BRS 2022 7428d 0.65** 500,842.29** 57

BRS 2020 7354d 0.47** 737,313.21** 35

* and **significant at 0.05 and 0.01 probability levels,

respectively
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Table 4 Estimates of the a posteriori mean (b0i) and of the credible intervals (95%) of the adaptability (b1i) and stability (r2
di)

parameters, by taking into consideration informative and non-informative priors for maize hybrids

Genotypes LI b0i b0i LS b0i LI b1i b1i LS b1i LI r2
i r2

di LS r2
di

Informative priors

30A68HX 9416.08 9463.89 9511.36 0.73 1.04 1.34 311,899.62 887,359.99 1,935,057.20

30A16HX 9382.74 9430.41 9477.79 1.35 1.61 1.87 117,565.66 526,297.11 1,270,207.50

2B707HX 9238.99 9286.75 9334.20 0.93 1.21 1.49 225,864.34 727,687.02 1,640,833.00

2B587HX 9151.92 9199.34 9246.51 1.13 1.34 1.55 - 51,770.34 211,236.70 692,476.20

30A37HX 9146.36 9193.89 9241.16 0.97 1.20 1.43 10,629.24 327,298.87 904,565.90

2B604HX 9144.73 9192.48 9239.91 0.95 1.23 1.51 201,790.21 682,954.25 1,558,560.70

2B710HX 9133.03 9180.48 9227.66 0.85 1.06 1.27 - 43,194.16 227,209.23 721,929.40

30A95HX 9025.42 9073.28 9120.80 0.93 1.26 1.59 442,877.91 1,130,403.57 2,383,595.30

P4285H 9006.77 9054.46 9101.85 0.42 0.69 0.95 140,969.12 569,779.12 1,350,301.20

30F53HR 8959.88 9007.78 9055.33 0.43 0.78 1.14 609,719.54 1,439,328.15 2,950,703.90

2B433HX 8912.67 8959.75 9006.56 0.86 1.03 1.20 - 167,182.45 - 3612.86 295,831.70

20A55HX 8786.16 8833.55 8880.66 0.94 1.14 1.35 - 71,742.43 173,993.29 623,656.90

20A78HX 8768.06 8815.87 8863.34 0.84 1.14 1.44 310,156.49 884,139.39 1,929,113.10

DKB370 8708.17 8755.89 8803.31 0.61 0.88 1.15 169,379.90 622,651.69 1,447,705.50

2B688HX 8707.50 8755.21 8802.62 0.98 1.25 1.52 161,845.34 608682.56 1,421,914.60

AG8041YG 8696.20 8743.87 8791.23 0.59 0.85 1.11 119,565.53 529,657.49 1,277,164.00

30K73H 8682.75 8730.50 8777.94 0.81 1.09 1.37 201,007.43 681,462.55 1,555,662.60

DKB330YG 8426.20 8474.05 8521.56 0.72 1.05 1.38 427,583.11 1,102,070.29 2,331,325.70

AS1596R2 8314.25 8362.05 8409.51 0.59 0.89 1.19 291,091.25 848,739.54 1,863,742.80

BM820 8220.55 8268.32 8315.76 0.56 0.84 1.13 223,355.24 723,056.76 1,632,220.90

AS1555YG 7942.64 7990.41 8037.86 0.62 0.91 1.20 242,445.36 758,502.57 1,697,529.60

Statusvip 7729.26 7777.25 7824.89 0.49 0.96 1.44 1,564,416.33 3,204,913.43 6,183,297.30

BRS2022 7527.46 7575.03 7622.33 0.43 0.66 0.90 33,436.37 369,834.02 982,831.10

30A91HX 7437.66 7485.55 7533.10 0.12 0.47 0.83 605,087.04 1,430,747.35 2,934,813.60

BRS2020 7418.13 7465.68 7512.97 0.19 0.42 0.66 23,700.53 351,619.57 949,326.40

Non-informative priors

30A68HX 8913.71 9407.22 9887.84 0.71 1.04 1.37 338,403.17 968,784.33 2,128,015.90

30A16HX 8976.40 9390.35 9795.92 1.33 1.61 1.88 135,996.96 581,887.80 1,401,014.20

2B707HX 8778.78 9238.29 9687.48 0.90 1.21 1.52 248,651.39 797,372.50 1,805,782.60

2B587HX 8843.71 9174.22 9500.04 1.12 1.34 1.57 - 40,243.16 245,598.89 770,422.60

30A37HX 8913.71 9407.22 9887.84 0.71 1.04 1.37 338,403.17 968,784.33 2,128,015.90

2B604HX 8696.873 ? J8 9146.50 9586.56 0.93 1.23 1.53 223,436.49 749,391.27 1,716,256.30

2B710HX 8819.62 9154.71 9485.00 0.83 1.06 1.28 - 31,330.75 262,608.07 802,157.10

30A95HX 8468.50 9008.34 9533.29 0.90 1.26 1.62 475,026.41 1,229,569.04 2,615,132.80

P4285H 8590.30 9014.10 9429.46 0.41 0.69 0.97 160,247.10 628,201.21 1487562.40

30F53HR 8336.09 8929.92 9505.58 0.39 0.78 1.18 649,052.18 1,562,314.35 3,241,610.60

2B433HX 8684.77 8944.56 9201.53 0.85 1.03 1.20 - 160,363.61 17,063.95 342,653.70

20A55HX 8491.74 8811.01 9126.02 0.93 1.15 1.36 - 61,117.26 205,882.75 695680.50

20A78HX 8271.50 8763.24 9243.72 0.81 1.14 1.47 336,355.29 964,741.14 2120765.70

DKB370 8278.96 8714.64 9141.67 0.59 0.88 1.17 189,798.37 684,594.79 1593382.90

2B688HX 8281.95 8714.55 9138.65 0.97 1.25 1.54 181,918.21 669,653.25 1565143.20

AG8041YG 8329.97 8743.71 9149.69 0.57 0.85 1.13 136,819.85 583,467.75 1,403,600.10

30K73H 8238.08 8686.90 9126.67 0.79 1.09 1.39 222,851.07 747,507.70 1,711,321.20
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low predictability. Only two (P4285H and BRS2022)

out of the eight genotypes considered of specific

adaptability to unfavorable environments (b1[ 1)

have shown results agreeing with the Bayesian

inference ones. The 30A91HX and BRS2020 cultivars

were considered of great adaptability, according to the

frequentist analysis, and of specific adaptability to

unfavorable environments, according to the Bayesian

methodology.

The disagreement between results often derives

from the frequentist model tendency to classify the

genotypes as of specific adaptability to favorable or

unfavorable environments, thus compromising the

reliable recommendation of these genotypes.

Thus, the Bayesian approach provides more accu-

racy and allows producing more reliable results to

indicate genotypes. Consequently, it allows producers

to increase the yield and reduce economic losses.

Conclusions

Using the Bayesian approach in adaptability and

stability studies provides greater accuracy to the

selection of hybrid maize genotypes.

The 30A16HX and 2B587HX genotypes were

classified as of specific adaptability to favorable

environments, based on informative priors.

The P4285HX, BRS2022, 30A91HX and BRS2020

genotypes have shown specific adaptability to unfa-

vorable environments.

The results derived from the use of informative a

priori distributions have shown greater adjust accuracy

than those derived from non-informative a priori

distributions, according to the Bayes factor models.

Acknowledgements To CAPES for the grant provided and to

EMBRAPA for infrastructures and resources necessary for the

realization of this study.

Table 4 continued

Genotypes LI b0i b0i LS b0i LI b1i b1i LS b1i LI r2
i r2

di LS r2
di

DKB330YG 7880.92 8414.58 8935.10 0.70 1.05 1.41 458,960.20 1,198,374.09 2,558,804.10

AS1596R2 7829.70 8313.57 8787.54 0.57 0.89 1.21 316,346.87 926,411.22 2,046,826.90

BM820 7767.90 8225.38 8673.86 0.54 0.85 1.15 246,014.87 791,742.77 1,793,407.30

AS1555YG 7483.03 7947.56 8403.25 0.60 0.91 1.22 265,974.04 829,505.07 1,864,084.20

Statusvip 6804.04 7644.35 8451.20 0.41 0.96 1.52 164,9167.25 3,474,136.65 6,841,080.20

BRS2022 7175.07 7548.57 7917.12 0.41 0.66 0.91 48,362.98 414,210.74 1,085,415.40

30A91HX 6831.42 7421.24 7997.40 0.08 0.48 0.87 643,672.46 1,550,486.30 3,218,416.80

BRS2020 7071.74 7440.27 7804.20 0.18 0.43 0.67 38,193.37 394,773.24 1,048,826.20

Table 5 Bayes factor

estimates obtained through

the comparison between

models using informative

(i) and non-informative

priors (j) for maize hybrids

Genotypes FBij

2B433HX 20.59

2B587HX 20.56

30A16HX 20.55

2B710HX 20.53

30A37HX 20.46

30A68HX 20.40

2B707HX 20.31

20A55HX 20.27

2B604HX 20.24

P4285H 20.18

30A95HX 19.94

AG8041YG 19.94

2B688HX 19.89

DKB370 19.88

30K73H 19.83

20A78HX 19.81

30F53HR 19.78

AS1596R2 19.44

DKB330YG 19.43

BM820 19.42

AS1555YG 19.17

BRS2022 19.07

BRS2020 19.01

30A91HX 18.53

Statusvip 18.36
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Nascimento M, Silva FF, Sáfadi T, Nascimento ACC, Ferreira
PF, Cruz CD (2011) Abordagem bayesiana para avaliação

da adaptabilidade e estabilidade de genótipos de alfafa.
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