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Abstract. The study of plant growth-promoting bacteria (PGPB) can identify outstanding bacteria for crops. For forage
grasses adapted to drylands, the selection of PGPB can increase the field performance of pastures. The aim of this studywas
to isolate, and characterise atmolecular, biochemical and symbiotic levels, diazotrophic bacteria obtained frombuffel grass
(Cenchrus ciliaris), sorghum(Sorghumbicolor) andTifton 85 (Cynodon spp.) fromBrazilian semi-arid regionfields. Field-
grown plants were collected, and the roots were surface-disinfected, crushed and inoculated in a semi-solid medium.
After the formation and confirmation of microaerophilic pellicles, the bacteria were isolated and purified. All bacterial
isolates were subjected to nifH gene amplification and identified by their partial 16S rRNA gene sequences. The bacteria
were evaluated for the production of auxins and siderophores, calcium phosphate solubilisation, and diazotrophic
ability as ‘in vitro’ plant growth-promotion traits. A plant inoculation assay was conducted to assess the plant growth-
promotion abilities of the bacterial isolates. Twenty-one bacterial isolates harboured the nifH gene (nifH+), among
which nine were obtained from sorghum, eight from buffel grass, and four from Tifton 85. The bacterial isolates were
classified as Bacillus (8), Stenotrophomonas (7), Agrobacterium (4), Cellulomonas (1) and Paenibacillus (1). All were
shown to be auxin producers, with 14 isolates showing diazotrophic capacity ‘in vitro’. Fourteen isolates increased plant
N content, but the bacterial strains ESA 392 and ESA 398 (Bacillus), ESA 397 and ESA 407 (Stenotrophomonas), and
ESA 401 (Agrobacterium) were shown to promote both plant growth and N nutrition. These strains are candidates for
further assays to evaluate their agronomic performance under field conditions, aiming inoculant production for forage
grasses in drylands.
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Introduction

The north-eastern region of Brazil is home to 65.6% of the
country’s sheep and 92.8% of its goats, constituting more than
22millionanimals (IBGE2017).Mostof these animals are raised
in the semi-arid belt on family-based farms lacking expensive
technologies for animal nutrition (Voltolini 2011). In drylands,
most sheep and goats are not supplied food and they often graze
natural shrub vegetation known as ‘Caatinga’, a Brazilian stepic
savannah that does not have the foodquality necessary to achieve
high bodyweight (Moreira et al. 2006; Moreira and Guimarães
Filho 2011). In this context, the development of highly
productive pasture lands is important to increase animal
production in the region.

Generally, forages require high amounts of fertilisers for
suitable growth and development. The grasses in pastures
require large amounts of nitrogen (N), resulting in hundreds

of kilograms of N fertilisers being applied per hectare, leading
to high N losses, and the greenhouse-gas emissions (Signor and
Cerri 2013; Mazzetto and Barneze 2016). The development and
implementation of new, sustainable technologies for pastures in
the Brazilian semi-arid region is needed, and to this end, the
selection of new, locally adapted plant growth-promoting
bacteria (PGPB) is a promising tool (Hungria et al. 2016; da
Silva et al. 2018).

The PGPB comprise several bacterial taxa that are able to
influence plant growth positively through several different
mechanisms such as biological nitrogen fixation (BNF),
phosphorus and potassium mobilisation, biological pest and
disease control, and plant hormone regulation (Boddey et al.
1997;Glick 2005; de Souza et al. 2015). Among these processes,
BNF is one of the best understood, and N2-fixing bacteria can
easily be obtained using semi-solid media (Baldani et al. 2014).
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Efforts to select for diazotrophic PGPB in Brazil culminated
in the official recommendation and use of Azospirillum
brasilense strains for maize (Zea mays L.), wheat (Triticum
aestivum L.), rice (Oryza sativa L.) and Brachiaria
spp. (Hungria et al. 2010, 2016). Recently, these bacteria
were also demonstrated to be efficient plant growth promoters
for other pasture grasses, such as sorghum (Sorghum bicolor (L.)
Moench) (da Silva et al. 2018), Marandu grass (Urochloa
brizantha (Hochst. ex A.Rich.) R.Webster) (Leite et al.
2019a) and Mombasa grass (Megathyrsus maximus (Jacq.)
B.K.Simon & S.W.L.Jacobs.) (Leite et al. 2019b).

Studies involving the selection of diazotrophic PGPB for
forages have been conducted in vastly different regions ofBrazil,
including themid-west (Reis Junior et al. 2004;Brasilet al. 2005;
Souza et al. 2017), south-east (dos Santos et al. 2017) and north-
east (dos Santos et al. 2013; Moreira et al. 2013; Antunes et al.
2017; da Silva et al. 2018), indicating the effectiveness of
prospective studies for locally adapted N2-fixing isolates.

Few reports are available regarding the diversity and
efficiency of PGPB from forage grasses in the semi-arid
region of Brazil. Diazotrophic isolates from buffel grass
(Cenchrus ciliaris L.), andropogon (Andropogon gayanus
Kunth) and Tanzania grass (Panicum maximum Jacq. cv.
Tanzânia) were previously obtained and phenotypically
characterised from Patos, Paraíba State (dos Santos et al.
2013). At the same location, Moreira et al. (2013) isolated
and characterised Azospirillum-like bacteria from the same
plant species. Both studies characterised and evaluated the
cultural diversity and seasonal fluctuation of diazotrophs but
did not evaluate their molecular and plant growth-promotion
abilities. More recently, a comprehensive study evaluated the
molecular diversity and plant growth-promotion potential of
field-grown sorghum in Petrolina, Pernambuco State, the
results of which pointed towards an Enterobacter sp. isolate
(ESA 57) as themost promising plant growth promoter (da Silva
et al. 2018). However, a comprehensive study evaluating the
molecular characteristics, plant growth-promotion abilities and
symbiotic efficiency of those bacteria were not conducted for
multiple field-grown grasses in the Brazilian semi-arid region.

Among the crop pastures grown in the Brazilian drylands,
buffel grass, Tifton 85 (Cynodon spp.) and sorghum are the most
widely distributed. Buffel grass and sorghum are cropped in
rainfed systems, whereas Tifton 85 is recommended for use in
irrigated pastures (Voltolini 2011). This partition covers the
majority of the livestock systems in the Brazilian semi-arid
region, and the isolation of bacteria from these different plants
could be applied in different crop systems in the region. In this
context, we hypothesised that field-grown buffel grass, sorghum
and Tifton 85 harbor a diversity of efficient PGPB. Thus, the
aim of this study was to isolate and evaluate the molecular
diversity, plant growth-promotion abilities and characteristics
of PGPB from field-grown buffel grass, Tifton 85 and
sorghum in Petrolina municipality, Brazilian semi-arid region.
This is more suitable because the isolation of the bacteria were
conducted from plants in the same experimental field.

Methods and materials
Isolation of bacteria

Samples of roots of buffel grass (cv. Biloela), Tifton 85 and
forage sorghum (cv. BRS Ponta Negra) were collected in the

Caatinga Experimental Field, an experimental area of
Embrapa Semiárido, Petrolina, Pernambuco State (980304500S,
4081903700W), in May 2015. For the sampling, three
replicate samples of each species, two plants per replicate,
were collected.

The rootswerewashedwith tapwater and surface-disinfested
by immersion in 1% (v/v) sodium hypochlorite for 10 min,
followed by 10 washes in deionised autoclaved water. The
disinfected roots were weighed (10 g) and crushed with
90 mL 0.85% (w/v) NaCl solution in a common blender. A
serial dilution from 10–1 to 10–6 was performed, and for each
dilution, 100 mL was inoculated into flasks containing 7 mL
BMGMsemi-solidmedium(perL:1gglucose, 2gmalic acid, 1g
mannitol, 400 mg K2HPO4, 400 mg KH2PO4, 200 mg MgSO4,
20mgCaCl2, 2mgNaMoO4, and 10mgFeSO4; 2 g agar, pH6.0)
(Estrada-de Los Santos et al. 2001) and incubated at 288C for
10 days. Each serial dilution was inoculated in triplicate.
Afterwards, the less-concentrated dilutions that developed a
typical microaerophilic pellicle (MP) were separated, re-
inoculated in the same medium, and incubated at the same
conditions. The flasks with positive MP were streaked onto
plates containing Dyg’s medium (per L: 2 g glucose, 2 g
malic acid, 1.5 g peptone, 2 g yeast extract, 500 mg K2HPO4,
500 mg MgSO4, 1.5 g glutamic acid, and 15 g agar; pH 6.5)
(Rodrigues Neto et al. 1986).

Both BMGM and Dyg’s are nonselective culture media, and
the isolation of diazotrophic isolates in BMGM semi-solid,
coupled with the use of Dyg’s solid media, can retrieve a
large diversity of diazotrophic bacteria (Fernandes Júnior
et al. 2013, 2015). For these reasons, this isolation strategy
was applied in the present study. The purified colonies
were stored in glycerol at –808C in the Culture Collection of
Microorganisms with Agricultural Interests of Embrapa
Semiárido (CMISA).

Molecular analyses

All bacteria grew in liquid Dyg’s medium, and DNA was
extracted by using the alkaline lysis method as described by
Wang et al. (1993). All bacteria were subjected to nifH
amplification, using the primers PolF (TGCGAYCCSAA
RGCBGACTC) and PolR (ATSGCCATCATYTCRCCGGA)
(Poly et al. 2001). Afterwards, nested PCR, where the first PCR
product is used as a template for the second reaction, was
performed to evaluate the presence of the negative isolates in
the first reaction. For nested PCR, the primers NifHfor
(ACCCGCCTGATCCTGCACGCAAGG) and NifHrev (ACG
ATGTAGATTTCCTGGGCCTTGTT) (Soares et al. 2006)
were used.

The 16S rRNA gene was amplified by using the universal
primers 27F (GAGTTTGATCCTGGCTCAG) and 1492R
(GGTTACCTTGTTACGACTT) (Weisburg et al. 1991), and
the PCR products were purified using aWizard SVGel and PCR
Clean-upSystemkit (Promega,Madison,WI,USA).Sequencing
was conducted at Macrogen (Seoul, South Korea), using an
Applied Biosystems 3730xl Genetic Analyzer (Thermo Fisher,
Waltham, MA, USA) with the primer 27F. The quality of the
sequences was verified using Applied Biosystems Sequence
Scanner version 2.0 (Thermo Fisher), and the high-quality
sequences (QV >20 in 800-bp continuous reads) were
compared by using the EzBioCloud database (Yoon et al.
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2017). The sequences were deposited in the GenBank database
of the National Center for Biotechnology Information (https://
www.ncbi.nlm.nih.gov/genbank/) under the accession numbers
MK424592–MK424613.

In vitro plant growth-promoting traits

For evaluation of auxin production, the colourimetric procedure
described by Sarwar and Kremer (1995) was used, with some
modifications. Briefly, the bacteria were grown in liquid Dyg’s
medium with or without 100 mg L–1 of L-tryptophan
(L-Trp) for 7 days under constant stirring of 120 rpm at room
temperature. The optical density of each culture was adjusted
spectrophotometrically at 600 nm (OD600) to 0.3 to standardise
the cell concentration.

Subsequently, 1.0-mL aliquots of the OD600-adjusted
cultures were centrifuged for 3 min at 6000g, after which
150 mL supernatant was added to 96-well ELISA microplates
along with 100 mL Salkowski’s reagent (1.0 mL 0.5 M
FeCl3.6H2O and 50 mL 35% (v/v) HClO4). The plates were
stored in the dark at room temperature for 30 min, after which
the intensity of the reddish coloration was determined
spectrophotometrically at 530 nm. The auxin concentration was
estimated by using a standard curve with a known concentration
of indole acetic acid (Sigma Aldrich, St. Louis, MO, USA).

For siderophore production, the qualitative approach
described by Ribeiro and Cardoso (2012) was adapted.
Briefly, the isolates were grown in Dyg’s medium for 4 days
asdescribedabove.Afterwards, a 1-mLsampleof the culturewas
centrifuged, and 150 mL supernatant was added to 96-well
ELISA microplates along with 150 mL CAS reagent (6.0 mL
hexadecyltrimethylammonium bromide (HDTMA), 1.5 mL
FeCl3.6H2O solution, 4.307 g piperazine, and 6.25 mL 33%
(v/v) HCl) (Schwyn and Neilands 1987). The plates were
incubated in the dark at room temperature for 30 min, and wells
that changed fromblue to yellow–orangewere considered positive.

The isolates were evaluated for tricalcium phosphate
solubilisation in solid medium (Sylvester-Bradley et al. 1982).
The bacteria were cultured in liquid Dyg’s medium for 4 days,
centrifuged and resuspended as described above. Subsequently,
10-mL aliquots of the cultures were placed into plates containing
GL (glucose–yeast extract) medium (per L: 10 g glucose, 2 g
yeast extract with 50 mL K2HPO4 and 100 mL CaCl2 (both
10% w/v)), 20 g agar and incubated at room temperature for
6 days. After the incubation period, the diameters of the colonies
and the translucent halo surrounding thecoloniesweremeasured.
The data were used to calculate the solubilisation index via the
ratio diameter of halo : diameter of colony (Berraquero et al.
1976).

Putative diazotrophic ability was assessed by quantifying the
N content in semi-solid medium after MP formation (Kuss et al.
2007; Silva et al. 2013; Fernandes-Júnior et al. 2015). Flasks
with 10 mL BMGM semi-solid medium were inoculated with
100-mL samples of the bacterial cultures and incubated at room
temperature for 10 days.After the incubation period, themedium
was manually homogenised, frozen at –208C and heated in
boiling water for 10 min. Subsequently, the media samples
were homogenised again, and 5-mL aliquots were withdrawn
to quantify the N content by using the modified Devarda’s alloy
semi-micro Kjeldahl method (Liao 1981). To calculate the

N concentration inputted into the medium by the bacteria, an
aliquot of uninoculated BMGM medium was also digested and
distilled as a blank.

All ‘in vitro’ plant growth-promotion traits were assessed
with three replications applied in a completely randomised
design. For all experiments, the commercial inoculant
bacterium Azospirillum brasilense (Ab-V5) for Brachiaria
spp. was also evaluated.

Plant growth-promotion assay

All bacterial isolates were assessed in pot experiments to
evaluate their plant growth-promotion abilities. The
experiment was performed in 5-L pots filled with a layer
sample of red–yellow Ultisol. A soil sample was used for soil
chemical analysis (results are shown in the Supplementary
Material table S1, available at the journal’s website). The
model plant sorghum (cv. BRS Ponta Negra) was used.

The seedswere surface-disinfectedwith96%(v/v) ethanol for
30 s and 2.5% (v/v) sodium hypochlorite for 5 min; they were
then washed 10 times with deionised autoclaved water. For
inoculation, the bacterial isolates were grown in liquid Dyg’s
medium for 4 days as described above. Four seedswere sown per
pot, and 1-mL aliquots of the cultures were inoculated over each
seed. The experimental treatments included single inoculations
of 21 new bacteria and the reference strain Ab-V5. In addition,
three uninoculated treatments, one without mineral N and two
with the addition of 50 and 100 mg N (NH4NO3) per plant
per week, starting in the second week, were also tested. For
application to each pot, NH4NO3 was weighted, dissolved in
100 mL deionised autoclaved water and applied after the daily
irrigation.

At 10 days after emergence, the plants were thinned such that
a single plant remained per pot. The plants received 500 mL tap
water daily and were harvested at 62 days after emergence. The
roots were separated from the shoots and carefully washed with
running tapwater, after which theywere separately dried at 658C
in an oven and weighed. The shoots were milled, and the total N
concentration was assessed by Devarda’s alloy semi-micro
Kjeldahl method (Liao 1981). A completely randomised block
design was applied with four replications per treatment.

Statistical analyses

All quantitative data were analysed by one-way analysis of
variance (ANOVA). Prior to analysis of variance the data
were transformed by calculating the square roots of data
added to 1 (i.e. (x + 1)0.5) to meet the assumptions of a
normal distribution of errors and homoscedascity. The
Scott–Knott mean range test (P > 0.05) was applied to all
variables after the ANOVA. Statistical analyses were
performed in Sisvar version 5.0 (Ferreira 2011).

Results

Isolation and taxonomic classification of bacterial isolates by
partial 16S rRNA gene sequence analysis

Twenty-one bacterial isolates were retrieved after the
purification process and confirmation of MP formation, with
the sorghumyielding nine, buffel grass eight andTifton 85 plants
yielding four bacterial isolates.Among these bacteria, all isolates

PGPB from forage grasses in Brazilian drylands Crop & Pasture Science 901

https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/


were nifH-positive,with 13 yielding amplification products from
the first PCR with the PolF/PolR primer pair, whereas eight
bacteria showed positive amplification after the nested-PCR
reaction using the primer pair NifHfor/NifHrev in the second
PCR.

The partial 16S rRNA sequence analysis showed that the
bacterial isolates were clustered in the genera Bacillus (8),
Stenotrophomonas (7), Agrobacterium (4), Cellulomonas
(1) and Paenibacillus (1), with similarity to the sequences of
type strains in the EzBioCloud database ranging from 95% to
100% (Table 1). Buffel grass harboured Bacillus (4),
Stenotrophomonas (3) and Agrobacterium (2); sorghum
hosted Stenotrophomonas (2), Bacillus (2), Agrobacterium
(2) and Pseudomonas (1); and Tifton 85 plants were infected
by Bacillus (2), Paenibacillus (1) and Stenotrophomonas (1).

In vitro plant growth promotion traits

All bacterial isolates were able to synthetise an amount of auxins
in the media with or without L-Trp (Fig. 1). In the medium
with L-Trp, the average auxin concentration ranged from
30.4 mg mL–1 for isolate ESA 407 to 243.0 mg mL–1 for
ESA 391. In the medium without L-Trp, the bacterial isolates
produced from 24.5 mg auxins mL–1 (ESA 405) to 115.1 mg
mL–1 (ESA 410) on average. By contrast, the reference strain
Ab-V5 produced, on average, 40.9 and 30.9 mg auxins mL–1 in
media with and without L-Trp, respectively. Theses averages
were lower than observed in 17 new bacterial isolates in
medium with or without L-Trp.

Regarding the diazotrophic capacity of all isolates, 14 of 21
bacteria showed the same level of N incorporation in media as
the known efficient diazotrophic strain Azospirillum brasilense
Ab-V5 (Fig. 2), indicating the high diazotrophic potential of
the grass-associated bacteria. Positive results for siderophore
production were observed only in the Ab-V5 reference strain

and for the isolate ESA 408 obtained from Tifton 85.
Tricalcium phosphate solubilisation was positive for
ESA 402 and Ab-V5 only (both with a solubilisation index
of 1.1).

Plant growth promotion assay

Inoculation of newly isolated bacteria, and of the reference strain
Ab-V5, improved the growth of roots and shoots as well as N
accumulation in sorghum plants (Table 2). Higher averages for
root biomass were observed in the plants with full N fertilisation
and those inoculated with the ESA 411 (Stenotrophomonas)
bacterium. However, the plants inoculated with Bacillus ESA
392, ESA 398, ESA 402, ESA 401, ESA 400 and ESA 410, with
Stenotrophomonas ESA 397, ESA 407, ESA 405 and ESA 399,
with Agrobacterium ESA 396 and ESA 401, with Paenibacillus
ESA 408, and with Azospirillum brasilenseAb-V5 had the same
root biomass as observed in the treatments with the 50% N
fertilisation rate. These results indicate the potential of these
strains to increase sorghum biomass.

The shoots of sorghum plants with 100% or 50% N
fertilisation treatments and plants inoculated with
Stenotrophomonas ESA 397, ESA 407, ESA 399, ESA 405
and ESA 411, with Bacillus ESA 392, ESA 398, ESA 402
and ESA 410, with Agrobacterium ESA 401, and with
Azospirillum brasilense Ab-V5 were larger than those in the
negative control and in the other inoculation treatments. The
N accumulation in the shoots of plants inoculated with
Azospirillum brasilense Ab-V5, with Stenotrophomonas
ESA 397, ESA 407, ESA 403 and ESA 399, with Bacillus
ESA 392, ESA 394 and ESA 398, with Agrobacterium ESA
395, ESA 401 and ESA 406, with Paenibacillus ESA 408, and
with Cellulomonas ESA 393 was higher than observed in the
negative control treatment and the other seven inoculation
treatments.

Table 1. Identification of 21 bacterial isolates obtained from buffel grass (Cenchrus ciliaris), sorghum (Sorghum bicolor) and
Tifton 85 (Cynodon spp.) plants in the Brazilian semi-arid region

Bacterial isolate GenBank
accession code

Host Fragment
length (bp)

Closest type strains Similarity (%)

ESA 391 MK424592 Cenchrus ciliaris 1068 Stenotrophomonas pavanii (LMG 25348T) 99.3
ESA 392 MK424593 Cenchrus ciliaris 1031 Bacillus safensis (FO-36bT) 98.9
ESA 393 MK424594 Cenchrus ciliaris 1009 Cellulomonas massiliensis (JC225T) 97.1
ESA 394 MK424595 Cenchrus ciliaris 1028 Bacillus siamensis (KCTC 13613T) 99.5
ESA 395 MK424596 Cenchrus ciliaris 884 Agrobacterium fabrum (C58T) 100.0
ESA 396 MK424597 Cenchrus ciliaris 950 Agrobacterium pusense (NRCPB10T) 96.4
ESA 397 MK424598 Cenchrus ciliaris 1024 Stenotrophomonas maltophilia (NCTC10257T) 99.3
ESA 398 MK424599 Cenchrus ciliaris 1135 Bacillus siamensis (KCTC 13613T) 99.3
ESA 399 MK424600 Sorghum bicolor 1094 Stenotrophomonas pavanii (LMG 25348T) 98.5
ESA 400 MK424601 Sorghum bicolor 1109 Bacillus velezensis (NRRL B-41580T) 99.1
ESA 401 MK424602 Sorghum bicolor 1022 Agrobacterium salinitolerans (YIC 5082T) 98.7
ESA 402 MK424603 Sorghum bicolor 1082 Bacillus safensis (FO-36bT) 100.0
ESA 403 MK424604 Sorghum bicolor 999 Stenotrophomonas pavanii (LMG 25348T) 99.2
ESA 404 MK424605 Sorghum bicolor 1091 Bacillus velezensis (NRRL B-41580T) 98.8
ESA 405 MK424606 Sorghum bicolor 1134 Stenotrophomonas pavanii (LMG 25348T) 99.3
ESA 406 MK424607 Sorghum bicolor 1102 Agrobacterium salinitolerans (YIC 5082T) 98.5
ESA 407 MK424608 Sorghum bicolor 993 Stenotrophomonas bentonitica (BII-R7T) 99.1
ESA 408 MK424609 Cynodon spp. 1008 Paenibacillus dongdonensis (KUDC0114T) 98.7
ESA 409 MK424610 Cynodon spp. 988 Bacillus aryabhattai (B8 W22T) 100.0
ESA 410 MK424611 Cynodon spp. 990 Bacillus velezensis (NRRL B-41580T) 99.3
ESA 411 MK424612 Cynodon spp. 1000 Stenotrophomonas pavanii (LMG 25348T) 95.0
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Discussion

Classification of the isolates at the genus level indicated the
presence of five genera, among which Bacillus predominated.
Members of this genus have the ability to form endospores,
which are resistant structures that can withstand severe
dehydration for long periods and can germinate when water
becomes available (Ambrosini et al. 2016). In drylands, previous
reports have described the association of Bacillus with rainfed
native plants such as the Poaceae Tripogonella spicata (Nees)
P.M.Peterson & Romasch (formerly Tripogon spicatus
(Nees) Ekman) (Fernandes-Júnior et al. 2015) and some cacti
(Cactaceae) (Kavamura et al. 2013). By contrast, in other crop
systems or pristine environments in the Brazilian semi-arid
region, isolation efforts did not result in the identification of
Firmicutes, whereas the prevalence of other taxonomic clusters
such as Enterobacteriaceae (da Silva et al. 2018) and
Burkholderiaceae (Lima et al. 2015) was observed.

In addition to Firmicutes, members of the g-Proteobacteria
genus Stenotrophomonaswere isolated from the different plants
studied. This genus was also obtained from T. spicata in the
Brazilian Caatinga biome (Fernandes-Júnior et al. 2015) and
from grasses in dry regions of India (Singh and Jha 2017) and
Namibia (Haiyambo et al. 2015a), as well as from areas with
other environmental conditions (Gontijo et al. 2018). Four
Agrobacterium spp. were obtained from buffel grass and
sorghum. This genus is endophytically associated with several
non-legumes worldwide and exhibits numerous plant-
stimulation mechanisms (Bertrand et al. 2001; Vendan et al.

2010; da Silva et al. 2018). However, to the best of our
knowledge, this is the first report of the identification of
Agrobacterium spp. as growth-promoting bacteria isolated
from buffel grass. In addition, for the first time, a single
isolate belonging to the genus Cellulomonas (Actinobacteria,
Micrococcales, Cellulomonadaceae) was obtained from buffel
grass. Cellulomonas was previously isolated from crops grown
under different environmental conditions (Egamberdiyeva and
Höflich 2002; Zinniel et al. 2002), including semi-arid
environments (Egamberdieva 2008).

The results of assays to assess plant growth-promoting
mechanisms indicated great metabolic variability within the
strain culture collection. All isolates produced more auxin
than the reference strain in the medium without L-Trp, the
primary auxin precursor. These results indicate that all
isolates have different metabolic pathways to synthetise
auxins, including the primary L-Trp-dependent route, as
observed in Azospirillum. The production of auxins in culture
medium is indicative of the plant growth-promoting abilities of
the bacterial isolates (Barazani and Friedman 1999; Brígido and
Oliveira 2013; Duca et al. 2014).

Only the Bacillus sp. isolate ESA 402 was able to solubilise
tricalcium phosphate, whereas the Paenibacillus isolate ESA
408 was shown to be a siderophore producer. These findings are
not in agreementwith the results of previous studies conducted in
the Brazilian semi-arid region, where the isolation of plant
endophytic bacteria resulted in a culture collection with
several isolates that were able to act as phosphate solubilisers
and/or siderophore producers (Fernandes-Júnior et al. 2015; da
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Silva et al. 2018; de Oliveira et al. 2018). Thus, ESA 402 and
ESA 408 may be used to generate an inoculant mixture to
improve the growth-promotion capacity of a consortium of
bacteria.

An equivalent incorporation of N in medium was observed
for 14 new bacterial isolates and the known diazotrophic species
Azospirillum brasilense. In addition, among these 14 isolates,
ESA 395, ESA 402 and ESA 409 were ranked in the highest
clustering for auxin production (according to the Scott–Knott
mean range test), reinforcing their multiple-plant growth-
promotion abilities.

In the plant growth-promotion assays, the inoculation of 17
new strains, as well as the reference strain Ab-V5, led to some
improvement in sorghum growth and/or N nutrition parameters,
reinforcing that these strains are effective PGPB. The plant
growth promoted by the bacterial isolates was associated with
their putative diazotrophic capacities, because Ab-V5 and seven
other N2-fixing isolates were able to promote N accumulation in
plant shoots. Regarding the other plant growth-promotion
mechanisms, in auxin production and N2-fixation assays,
ESA 392 (Bacillus), ESA 397 (Stenotrophomonas), ESA 398
(Bacillus), ESA 401 (Agrobacterium) and ESA 407

(Stenotrophomonas) exhibited the capacity to promote root
and shoot growth as well as increase N accumulation in plant
shoots, reinforcing the potential of these bacteria to promote
sorghum growth.

The bacterial isolates obtained in the present study are
similar to PGPB isolates previously obtained from semi-arid
environments and they increase the number of plant-associated
genera isolated fromcrops, primarily for buffel grass. The results
of the present study, together with those of similar studies,
indicate a large diversity and local variability of bacteria
associated with soils from the Brazilian semi-arid region,
reinforcing the importance of our results regarding grass-
associated bacteria in the Brazilian drylands.

The promotion of sorghum growth by bacterial isolates that
were selected by assays assessing different plant growth-
promotion mechanisms was already described in previous
bacterial-isolation studies that used the semi-solid medium
strategy (Haiyambo et al. 2015b; da Silva et al. 2018). These
data reinforce the effectiveness of our bacterial strains, primarily
for the isolates ESA 392, ESA 397, ESA 398, ESA 401 and ESA
407. In Brazil, sorghum, buffel grass and Tifton 85 do not have
officially recommended bacterial strains for inoculant

ESA 391

0 20 40 60 80 100

ESA 392

ESA 393

ESA 394

ESA 395

ESA 396

ESA 397

ESA 398

ESA 399

ESA 400

ESA 401

ESA 402

B
ac

te
ria

l i
so

la
te ESA 403

ESA 404

ESA 405

ESA 406

ESA 407

ESA 408

ESA 409

ESA 410

ESA 411

Ab-V5

N concentration (mg N g–1 medium)

Fig. 2. Nitrogen concentration in BMGM semi-solid medium after microaerophilic growth of 21 new
diazotrophic bacteria from buffel grass, sorghum and Tifton 85 grass and of Azospirillum brasilense Ab-V5.
Data are averages of four replications. Capped lines are mean deviation errors. Bars with the same colour do not
differ according to the Scott–Knott mean range test.
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production. The results of the present study indicate that our
culture collection harbors bacterial isolates (primarily those
abovementioned) that should be assessed in further field
studies aiming to develop new bacteria isolates for inoculant
production according to the Brazilian standards for inoculant
recommendations.

Conclusions

Buffel grass, sorghum and Tifton 85 are colonised by different
taxa of PGPB. These diazotrophic bacteria, primarily members
of the genera Bacillus, Stenotrophomonas and Agrobacterium,
are effective at promoting plant growth and N nutrition,
indicating that the bacterial isolates ESA 392, ESA 397, ESA
398, ESA401 andESA407 are candidates as bacterial strains for
inoculants for grasses in Brazilian drylands.
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