Agri Gene 15 (2020) 100100

Contents lists available at ScienceDirect

Agri Gene

journal homepage: www.elsevier.com/locate/aggene

FABP1 and SLC2A5 expression levels affect feed efficiency-related traits R

Check for
updates

Wellison J.S. Diniz™', Kamila O. da Rosa™’, Polyana C. Tizioto®, Gerson B. Mour&o®,
Priscila S.N. de Oliveira®, Marcela M. de Souza’, Luciana C.A. Regitano®*

2 Center for Biological and Health Sciences (CCBS), Federal University of Sdo Carlos, Sdo Carlos, 13560-970 Sdo Paulo, Brazil
® Department of Animal Science, Sdo Paulo State University Julio de Mesquita Filho, Jaboticabal, 14884-900 Sdo Paulo, Brazil
¢ NGS Solugées Gendmicas, Piracicaba, 13418-900 Sédo Paulo, Brazil

d Department of Animal Science, University of Sdo Paulo/ESALQ, Piracicaba, 13418-900 Séo Paulo, Brazil

€ Embrapa Pecudria Sudeste, Sdo Carlos, 13560-970 Séo Paulo, Brazil

f Department of Animal Science, Towa State University, Ames, IA, United States

ARTICLE INFO ABSTRACT

Improving the efficiency of production to reduce the environmental footprints is pivotal to the sustainability of
livestock systems. Despite the advances in cattle feed efficiency (FE) measurement and identification of potential
mechanisms involved, much is still unclear regarding the genetic and biological basis of this trait. Nevertheless,
lipid and carbohydrate metabolism have been outlined as important in determining efficient and inefficient
animals. To address the role of genes partaking in these processes and previously involved with residual feed
intake (RFI), we carried out a liver expression profile in Nelore steers (n = 83). Six target genes (FABP1, FADS2,
PPP1R26, RGS2, SLC2A5, and UCP2) were measured by qPCR analysis. A general linear mixed model approach
was applied to associate them with dry matter intake (DMI), body weight (BW), metabolic BW (MBW, kg), DMI
as a percentage of BW (DMI%BW), and average daily gain (ADG, kg/d). Residual feed intake (RFI), feed con-
version ratio (FCR), feed efficiency (FE), Kleiber index (KI), and relative growth rate (RGR) were also evaluated.
Our results support that increased expression of FABP1 gene was associated with enhanced values for RFI and
DMI. Likewise, higher expression level of SLC2A5 was related to higher KI and RGR. There was no phenotypic
correlation between RFI and ADG, BW, and MBW. The positive correlations between FABP1 and SLC2A5, and
between FABP1 and FADS2 gene expression suggest a putative co-regulation affecting feed efficiency pheno-

types.
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(Nkrumabh et al., 2006). However, many factors affect feed efficiency

(FE), including genetic and environment (Arthur et al., 2001).
Accordingly, several approaches have been applied to measure the

FE in beef cattle, since there is a genetic and phenotypic variation in-

1. Introduction

There is a growing concern over the livestock systems impact on
climate change and the use of natural resources. Concomitantly, stra-

tegies to improve the efficiency in the resource usage and animal yield
have been developed and applied (Rojas-Downing et al., 2017). Re-
garding cattle production, one of the strategies is to identify animals
with increased efficiency of feed conversion for the same production
level (Herd and Bishop, 2000; Karisa et al., 2014). This approach would
lead to cost reduction, as well as the environmental footprints

volved (Herd and Arthur, 2009). Despite the different methods to es-
timate FE, residual feed intake (RFI) has become a desirable measure as
it is independent of other production and growth traits (Herd and
Arthur, 2009; Moore et al., 2009). Extensive progress has been made to
clarify the biological process behind the biological variation on FE.
Gene expression profiling, as well as genome-wide association analysis
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(GWAS), have pointed out genes and metabolic processes acting on FE-
related traits (Mukiibi et al., 2018; de Oliveira et al., 2014; Tizioto
et al., 2015, 2016; Zhang et al., 2017).

These studies showed different quantitative trait loci (QTLs) and
differentially expressed (DE) genes among breeds, and between effi-
cient and inefficient animals. Although genomic regions and genes may
not hold across studies, biological processes as lipid, protein, insulin,
and carbohydrate metabolism involved with FE are in agreement
among them (Diniz et al., 2018; Mukiibi et al., 2018; de Oliveira et al.,
2018). Additionally, most of the genome-wide expression profiling
studies employed case-control approaches, which does not consider the
continuous variation of gene expression across the whole population
once divergent groups are selected. By applying a differential expres-
sion framework, Tizioto et al. (2015) selected 20 Nelore steers, which
are part of the animals evaluated here, genetically divergent for RFIL
These authors reported several DE genes in liver partaking in the
aforementioned process, including fatty acid binding protein 1
(FABP1), fatty acid desaturase 2 (FADS2), protein phosphatase 1 reg-
ulatory subunit 26 (PPPIR26), regulator of G-protein signaling 2
(RGS2), solute carrier family 2 member 5 (SLC2A5), and uncoupling
protein 2 (UCP2). Although these genes have also been reported as DE
for FE in other studies (Chen et al., 2011, 2012), it still missing to assess
their expressions as a continuous variable.

Regardless of these results, there is still a gap in knowledge related
to the genetic basis of FE and the linear gene expression-phenotype
relationship. Furthermore, Mukiibi et al. (2018) suggested that the
genetic architecture underlying FE is probably not the same across
breeds. To better understand the quantitative gene expression-trait re-
lationship regarding candidate genes that were identified by DE ana-
lysis in contrasting phenotypes, herein, we tested the hypothesis that
the gene expression continuous variation across the population has an
“additive effect” on the phenotype. We tested this hypothesis not only
for the phenotype used on the previous DE analysis (RFI) (Tizioto et al.,
2015) but also for all the FE-related traits measured in the experimental
Nelore population. To this end, we carried out an association study
based on qPCR liver expression profile in Nelore cattle samples re-
presenting the normal distribution of the phenotypes. Our results sup-
port that increased expression of FABP1 and SLC2A5 genes were related
to higher values of some FE-related traits in Nelore.

2. Material and methods
2.1. Animals, phenotypic traits, and target gene selection

Nelore steers (n = 83) were produced and raised as previously
described by Tizioto et al. (2015). The animals, allocated to feedlots
with 21 months old, were evaluated for growth and FE-related traits.
The animal management, diet, and the experimental trial were detailed
elsewhere (de Oliveira et al., 2014). In brief, the feeding was offered ad
libitum twice daily with a diet formulated to contain 40% dry matter of
corn silage and 60% of the concentrate. During the 70-days trial, the
dry matter intake was measured daily and non-fasted body weight (BW)
every 14 days (de Oliveira et al., 2014).

The following parameters were estimated: individual dry matter
intake (DMI, kg/d), body weight (BW, kg), metabolic BW (MBW, kg),
DMI as a percentage of BW (DMI%BW), average daily gain (ADG, kg/d),
residual feed intake (RFI, kg/d), feed conversion ratio (FCR, kg/kg),
feed efficiency (FE, kg/kg), Kleiber index (KI, ADG/MBW), and relative
growth rate (RGR%/d) (Bergh et al., 1992; Diniz et al., 2018; de
Oliveira et al., 2014).

To select the target genes, we based our study on the previous work
carried out by Tizioto et al. (2015). In this work, the authors selected 20
animals out of 83 based on the Best Linear Unbiased Prediction (BLUP)
of genetic merit for RFI calculated in the context of 585 Nelore steers,
and for which liver samples were available. For that study, the animals
were grouped in contrasting classes high (n = 10) or low (n = 10) RFI,
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according to its genetic merit for RFI, and the hepatic genome-wide
expression profile from RNA-sequencing was employed. The RFI was
estimated as the residuals from the phenotypic regression of DMI on
mid-test BW®”® and ADG. The regression model included the con-
temporary group, defined as feedlot place, year, animal origin, and pen
type (individual or collective), as a fixed effect. Considering this ap-
proach, Tizioto et al. (2015) reported 112 annotated genes as DE, from
which we selected six targets (FABP1, FADS2, PPP1R26, RGS2, SLC2A5,
and UCP2) based on their biological role and involvement with FE
traits. Herein, all the 83 animals, from which liver samples were
available, from which Tizioto et al. (2015) selected the divergent ani-
mals, were used to assess the association of the target genes not only
with RFI but also with other FE-related traits. Additionally, we adopted
a continuous gene expression distribution to evaluate the gene ex-
pression-trait relationship rather than a case-control design.

2.2. RNA isolation and Real-time quantitative PCR

Liver samples (n = 83) collected at the slaughterhouse were frozen
immediately in liquid nitrogen and kept at —80 °C until subsequent
analyses. TRIzol® (Life Technologies) was used to extract the total RNA,
following the manufacturer's instructions. The concentration and RNA
quality (260/280 ratio) were measured by spectrophotometry
(NanoDrop® ND-1000, Thermo Fisher Scientific). The RNA integrity
was evaluated by electrophoresis on 1% agarose gel, and 24 randomly
selected samples were further evaluated on Agilent 2100® Bioanalyzer
(Agilent Technologies). After DNase I (Deoxyribonuclease I -
Invitrogen®) treatment, the reverse transcription was performed in-
dividually with 1 pg of total RNA in a 20 pL reaction volume using
SuperScript III (Invitrogen®), as suggested in the manufacturer's pro-
tocol.

Primers for the target genes (FABP1, FADS2, PPP1R26, RGS2,
SLC2A5, and UCP2) were designed using Primer3 software (http://
www.bioinformatics.nl/cgi-bin/primer3plus/primer3 plus.cgi/) based
on the transcript sequences deposited on Ensembl database (Table 1).
The primers were designed across exon-exon junctions or in different
exons, and up to 2 °C difference in the melting temperature between
primer-pairs. Primer quality control and specificity analyses were car-
ried out by NetPrimer software (http://www.premierbiosoft.com/
netprimer/netprimer.html), and NCBI Basic Local Alignment and
Search Tool (BLAST) (http://www.ncbi.nlm.nih.gov/BLAST/), respec-
tively. The genes RPL19 and YWHAZ were used as reference genes after
evaluation by RefFinder software (http://www.leonxie.com/
referencegene.php?type =reference) (Table S1).

Table 1
Gene symbols, accession number, primer sequences, and amplicon size for
qPCR gene expression analysis in liver of Nelore steers.

Genes Accession Sequence (5’ - 3") Amplicon
size (bp)
SLC2A5 NM_001101042.2  F: CGATCTACTACTACGCAGACCA 103
R: GTTATCAGCACATTGACAGCAC
PPPIR26 XM_002691719.3  F: CTCCATAGACAGCGATGACAG 96
R: CCTCCTGGAATTTCTGATCC
RGS2 NM_001075596.1  F: AAGATTGGAAGAGCCGTTTGAG 105
R: GAGAAGGCTTGATGAAGGTTTG
FADS2 NM_001083444.1 F: GCTTCATACCACCCTCTTTTCT 140
R: CACAGAAGGGCAGAGGATTG
UcCP2 NM_001033611.2  F: AGACGAGATACATGAACTCTGC 119
R: GAGAAAGGAGGGCATGAACC
FABP1 NM_175817 F: GGTTCAGCAGGAAGGTGATAAT 101
R: CCTTCGTCATGGTACTGGTAA

F = forward; R = reverse; bp = base pairs; FABPI- fatty acid binding protein 1;
FADS2 - fatty acid desaturase 2; PPP1R26 - protein phosphatase 1 regulatory
subunit 26; RGS2 - regulator of G protein signaling 2; SLC2A5 - solute carrier
family 2 member 5; UCP2 - uncoupling protein 2.
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The relative expression levels of target genes were carried out in
duplicate for every gene and sample. The experimental set-up was
based on a sample maximization method proposed by Hellemans et al.
(2007). RPL19 gene was adopted as inter-run calibration. All reactions
were carried on Applied Biosystems® 7500 Real-Time PCR system. The
PCR reaction was performed in a 10 pL volume containing 1 pL of cDNA
diluted 0.2x, 5 pL of SYBR® Green I Master Mix (Thermo Fisher Sci-
entific) 2, and 5 uM of each primer (Sigma-Aldrich®). Amplification
conditions were as follows: 2 min at 50 °C, 10 min at 95 °C, and
40 cycles of 15 s at 95 °C, and 1 min at 60 °C. A dissociation curve to
test PCR specificity was carried out by one cycle for 15 s at 95 °C, 1 min
at 60 °C, 30 s at 95 °C, and 15 s at 60 °C.

2.3. Data association and functional analyses

Based on the LinRegPCR software, the PCR efficiency was calculated
by fitting the slope of the regression line taking into account the
fluorescence intensities measured after each cycle for each sample
(Ruijter et al., 2009). For this, we used at least three points in the log-
linear phase from the amplification curve for each sample. Further-
more, the individual efficiencies (Cq - cycle of quantification) for all
samples were adjusted for the theoretical maximum (100%) (Bustin
et al., 2009), as previously described in Tizioto et al. (2013). A general
linear mixed model approach was applied to consider the individual
sample variation on gene expression, allowing adjusting for the cycle of
quantification. Thus, the model included the reference gene and con-
temporary group as a fixed effect, and the animal sample as a random
effect, according to the equation:

y,-jkz,u+C,-+G,~+Ak+sijk €))

Where:

Yijk: is the Cq for the i" contemporary group, for the j* reference
gene, of the k™ sample;

u: is the average of Cq;

C;. is the fixed effect for the it contemporary group (i = 1, 2);

G;: is the fixed effect for the j™ reference gene (j = gene 1, gene 2);

Ay is the random effect associated with the k% sample, taking ac-
count Ax ~ NID (0, oa?);

gk: is the random residual effect, with g5 ~ NID (0, oe?).

The Satterthwaite degrees-of-freedom correction (Satterthwaite,
1946) was applied, as well as the variance for each reference gene was
considered.

A complete model, including simultaneously the adjusted expres-
sion for all the target genes, obtained from eq. 1, was applied to esti-
mate their effect on the studied traits. The genes did not show colli-
nearity in this model. The same degrees-of-freedom correction
described was applied. Based on the REG procedure on SAS® software,
the analyses were carried out applying the model as follow:

—_ 6 J—
le =[l+ Cl+b1(AU —A )+ Zk:l gk(Gijk_ GK)+Eijk

Where:

¥y is the i™ trait for the j™ animal;

w: is the overall mean;

Cy: is the fixed effect for the i contemporary group (i = 1, 2);

b (Ag — A ): is the regression coefficient associated with animal's
age at slaughter;

Ay is the animal's age at slaughter; A is the mean age at slaughter;

Gjj: is the k™ gene expression adjusted by eq. 1, for the i trait, for
the j animal;

Gx: is the mean for the k™ gene expression adjusted by the eq. 1
k=1,2,..,6);

gk: is the random residual effect, with g5 ~ NID (0, oe?).

Co-association analysis was performed between traits and genes by
applying Pearson's correlation in the corrplot R-package (Wei and
Simko, 2017). We calculated both the co-expression values based on
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Table 2
Descriptive statistics for feed efficiency-related traits measured in a sample of
Nelore steers.

Traits N Mean SD
ADG (kg/d) 83 1.623 0.25
BW (kg) 83 345.1 32.15
DMI (kg/d) 83 8.806 1.02
DMI%BW (%BW°7%) 83 2.561 0.27
FCR 83 5.524 0.81
FE 83 0.185 0.02
KI (kg gain/kg BW®7%) 83 0.020 0.002
MBW 83 79.99 5.59
RFI 78 0.0154 0.66
RGR (%/d) 83 0.202 0.028

N - sample size; SD - standard deviation; ADG -average daily gain; BW - body
weight; DMI- individual dry matter intake; DMI%BW - DMI as a percentage of
BW; FCR - feed conversion ratio; FE - feed efficiency; KI - Kleiber index; MBW -
metabolic body weight; RFI - residual feed intake; RGR - relative growth rate.

our target genes expression (Cq) levels and the predicted co-expressed
genes by using GeneMania (Warde-Farley et al., 2010). GeneMania al-
lows us to predict the most closely connected genes based on our target
gene list by finding functionally similar genes (Warde-Farley et al.,
2010). To gain insights into the pathways in which these genes are
partaking, we carried an over-representation analysis using STRING
v.11.0 (Szklarczyk et al., 2017).

3. Results

We carried out a qPCR gene expression profiling in Nelore cattle to
evaluate their relationship with FE-related traits. Descriptive statistics
for the studied traits are presented in Table 2.

Based on the linear regression, we identified significant association
among the target gene's expression level, measured as Cq, and the FE-
related traits (Table 3). FABPI gene's Cq values were negatively asso-
ciated with RFI and DMI, which decreased 0.2471 kg/d and 0.4001 kg/
d, respectively, for each additional Cq unit. As Cq is inversely propor-
tional to gene expression, it means that both traits exhibited a positive
association with the gene expression. Thus, increased expression of
FABP1 leads to higher values of RFI and DMI. A similar pattern was
observed for SLC2A5 in relation to KI and RGR traits, where the in-
crement in Cq values were associated with decreasing in the phenotypic
measure. Likewise, the gene expression resulted in increased KI and
RGR with estimated effects of 0.00006 and 0.00057, respectively. There
was no significant association among FADS2, RGS2, PPP1R26, and
UCP2 with the evaluated traits (Table 3).

To identify the gene relationship and its co-association with the FE-
related traits, we performed a correlation analysis. Based on that, the
genes FABP1, SLC2A5, and FADS2 showed a negative correlation with
DML, being the former also negatively correlated with RFI (Fig. 1). Gene
co-expression also pointed significant correlations (p < .05) between
FADS2 and FABP1, FADS2 and PPP1R26, and between RGS2 and UCP2
(Fig. 1). Furthermore, the co-expression prediction, based on Gene-
Mania, pointed out 20 genes co-expressed with our targets (Fig. 2). The
pathway analysis using all co-expressed genes retrieved protein diges-
tion and absorption, fat digestion and absorption, and PPPAR signaling
as over-represented KEGG pathways (FDR < .05).

We also applied correlation analysis to identify the relationship
among the FE-related traits (Fig. 1). RFI was strongly and significantly
correlated with DMI%BW. Moderate phenotypic correlations were
identified between RFI and DMI, FCR, and FE. Strong and significant
correlations were also identified for FCR with FE and with KI, KI with
RGR, FE with KI, ADG with FCR, KI, and RGR.
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Estimated effect of target genes' expression, measured as adjusted real-time PCR cycle of quantification (Cq), on feed efficiency-related traits in Nelore.

FABP1

FADS2

PPPIR26

Table 3

Traits® RGS2 SLC2A5 ucp2

RFI 0.09699 ( = 0.09514) 0.001473 ( = 0.006028) —0.01232 ( = 0.06309)

BW —16.438 (= 47.441) 0.08352 ( = 0.3048) 23.049 (= 32.159)

MBW —0.2704 ( = 0.8265) 0.01462 ( = 0.05310) 0.3981 ( = 0.5602)

ADG —0.02203 ( = 0.03856) —0.00446 ( = 0.002478) 0.04469 ( = 0.02614)

DMI 0.1132 (= 0.1406) —0.00132 ( + 0.009031)  0.07979 ( = 0.09528)

DMI%BW 0.03700 ( = 0.03581) —0.00095 ( = 0.03581) 0.005550 ( = 0.02427)

FCR 0.1133 ( = 0.1226) 0.01346 ( = 0.007874) —0.1034 ( = 0.08308)

FE —0.00432 —0.00040 ( = 0.000271) 0.003182( = 0.002860)
(+ 0.004219)

KI —0.00016 —0.00006* 0.000459 ( = 0.000271)
(= 0.000400) (= 0.000026)

RGR —0.00115 —0.00057* 0.003041 ( = 0.002785)

(= 0.004109)

(= 0.000264)

—0.2471* (£ 0.1146)
—35.760 (= 57.730)
—0.6275 ( = 10.057)
0.004610 ( = 0.04693)
—0.4001* (= 0.1710)
—0.08531 ( = 0.04357)
—0.1855 (= 0.1491)
0.007766 ( = 0.005134)

0.000114 ( = 0.000487)

0.001992 ( = 0.005000)

0.02909 ( = 0.04856)
—0.9858 ( + 24.655)
—0.1799 ( £ 0.4295)
0.005056 ( + 0.02004)
0.01109 ( = 0.07305)
0.01275 ( = 0.01861)
—0.01195 (= 0.06370)
0.000502 ( = 0.002193)

0.000130 ( = 0.000208)

0.001141 ( = 0.002135)

0.02051 ( £ 0.05328)
45.295 (£ 26.733)
0.7902 ( £ 0.4657)
0.002327 ( + 0.02173)
0.09995 ( + 0.07921)
—0.00578 ( = 0.02018)
0.05686 ( = 0.06907)
—0.00172 ( = 0.002377)

—0.00018 ( = 0.000226)

—0.00153 ( = 0.002315)

@ Estimated effect ( + standard error, SE); *p < .05; ADG -average daily gain; BW - body weight; DMI- individual dry matter intake; DMI%BW - DMI as a
percentage of BW; FCR - feed conversion ratio; FE - feed efficiency; KI - Kleiber index; MBW - metabolic body weight; RFI - residual feed intake; RGR - relative growth
rate; FABP1- fatty acid binding protein 1; FADS2 - fatty acid desaturase 2; PPP1R26 - protein phosphatase 1 regulatory subunit 26; RGS2 - regulator of G protein

signaling 2; SLC2A5 - solute carrier family 2 member 5; UCP2 - uncoupling protein 2.

4. Discussion

Feed efficiency in cattle is an economically important trait con-
trolled by many factors, including the genetic background. Therefore,
identifying the factors affecting FE and selecting animals with high
breeding values for FE can be advantageous under different perspec-
tives, such as land occupation, greenhouse gas emission, and profit-
ability. Many genes have been pointed out acting in several biological
processes related to FE. However, previous works have mainly adopted
a case-control approach (Alexandre et al., 2015; Tizioto et al., 2015),
thus overlooking the continuous variation of the expression profile in
complex traits. Using that approach, Tizioto et al. (2015) reported 112
genes as DE, identified by liver RNA-seq, between groups of Nelore
steers divergent for RFI. To overcome the limitations of this study, we
applied a quantitative approach to associate the continuous gene ex-
pression with several FE-related traits. For this, we selected six target
genes (FABP1, FADS2, PPP1R26, RGS2, SLC2A5, and UCP2) previously
reported as DE by Tizioto et al. (2015). Then, we quantified their he-
patic expression level in 83 Nelore steers, from where the animals used
by Tizioto et al. (2015) were selected, representing the continuous
variation of the traits, and associated them with ten FE-related traits.

According to Herd and Arthur (2009), metabolism, feed intake and
digestion, and thermoregulation are among the main physiological
processes affecting FE. Regarding energy metabolism, the efficiency of
nutrient utilization and energy partition towards growth and muscle
deposition are improved in animals with negative RFI values (Herd and
Arthur, 2009). Thus, the lipid and carbohydrate metabolism have been
reinforced as pivotal in more efficient animals (Karisa et al., 2014;
Mukiibi et al., 2018; Tizioto et al., 2015). The genes FADS2 and FABPI1,
are involved, respectively, with unsaturated fatty acid (FA) synthesis
(Graugnard et al., 2009), FA uptake and transport (Ballester et al.,
2017). Also, the SLC2A5 gene codes a transporter acting in fructose
absorption (Barone et al., 2009). Biological functions related to mi-
tochondrial energy production (Schrauwen and Hesselink, 2002), pro-
tein synthesis modulation (Nguyen et al., 2009), and cell proliferation
regulation by phosphatase activity (Hendrickx et al., 2009) have been
described for the genes UCP2, RGS2, and PPP1R26, respectively.

Among the over-represented pathways, PPAR signaling has a pivotal
role by modulating lipogenic gene expression and lipid synthesis
(Graugnard et al., 2009). Acting in this pathway, we identified the li-
pogenic genes FABP1 and FADS2, which were already reported as
candidates for FE determination in Nelore steers. The positive re-
lationship identified between FABP1 and FADS2, considering both the
correlation based on qPCR expression data and on prediction analysis,
reinforces the joint action of these genes towards the energy

metabolism by the interaction with the UCP2 gene. Besides a role in
resting energy expenditure, the UCP2 gene has also been associated
with insulin secretion (Schrauwen and Hesselink, 2002), which has an
effective role in protein synthesis, lipolysis, and fatty acid biosynthesis
(Graugnard et al., 2009; Karisa et al., 2014).

Our association model pointed not only a direct and linear re-
lationship between FABP1 and RFI but also its increased expression
drives to enhanced RFI and DMI trait values. FABP1 gene act as a
metabolic sensor modulating the lipid homeostasis (Newberry et al.,
2006). Furthermore, its co-expression with FADS2, which partakes in
the FA beta-oxidation pathway, may promote increased fatty oxidation,
leading to increased circulating free FA levels. Fatty acid oxidation acts
as a modulator of feed intake (Scharrer, 1999) and thus, may affect
growth performance through the consequent reduction of available
nutrients (Azevédo et al., 2010). Hepatic FABP1 expression has been
reported as up-regulated in inefficient Nelore animals (Tizioto et al.,
2015). On the other hand, efficient animals were reported to have a
down-regulation in lipid synthesis, being the energy input likely de-
rived towards muscle deposition (Mukiibi et al., 2018), which is con-
sistent with the observed down regulation on FABPI expression in this
group of animals herein.

The involvement of the SLC2A5 gene in the metabolism of carbo-
hydrates (Barone et al., 2009) supports its association with FE-related
traits, as identified here. Our approach showed that increased SLC2A5
expression was associated with enhanced RGR and KI indices. However,
although animals with higher weight gains exhibit the best efficiency
for these indices (Sobrinho et al., 2011), it may also increase energy
maintenance requirements (Manuel et al., 2019). The expression of
nutrient transporter is essential for proper nutrient uptake and animal
metabolism. The increased expression of the SLC2A5 has been asso-
ciated with increased adipocyte differentiation and fat deposition (Du
and Heaney, 2012). The negative relationship identified between
SLC2A5 and FE is likely due to the fact that lipogenesis is energetically
more expensive than muscle accretion (Herd and Arthur, 2009; Mukiibi
et al., 2018).

Different biological mechanisms tightly regulate lipid and carbo-
hydrate metabolism, as well as the efficiency of energy utilization
(Ballester et al., 2017; Herd et al., 2004; Newberry et al., 2006). Si-
milarly, several environmental and genetic factors underlie feed intake
behavior, which has a major role in feed efficiency. Unlike the approach
adopted by Tizioto et al., (2015), we showed that only the genes FABP1
and SLC2A5 were associated with FE-related traits in a continuous
variation context. Considering that, FABP1 and SLC2A5 genes have a
potential role in the previously discussed biological functions, and are
putative candidates for FE traits.
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Fig. 1. Pairwise Pearson's correlation coefficients between feed efficiency-related traits and between the qPCR cycle of quantification in Nelore steers liver.

The matrix is color-coded (p < .05) based on their Pearson's correlation values according to the color legend. Blue and red colors represent, respectively, a positive or
negative correlation. White cells are not significant. ADG -average daily gain; BW - body weight; DMI- individual dry matter intake; DMI%BW - DMI as a percentage
of BW; FCR - feed conversion ratio; FE - feed efficiency; KI - Kleiber index; MBW - metabolic body weight; RFI - residual feed intake; RGR - relative growth rate;
FABPI1- fatty acid binding protein 1; FADS2 - fatty acid desaturase 2; PPP1R26 - protein phosphatase 1 regulatory subunit 26; RGS2 - regulator of G protein signaling

2; SLC2A5 - solute carrier family 2 member 5; UCP2 - uncoupling protein 2.

5. Conclusion

Our results reinforce the role of FABP1 and SLC2A5 expression in
the quantitative variation of feed efficiency-related traits. We suggested
that the increased FABP1 expression is unfavorable for RFI and DMI
traits. Although SLC2A5 gene expression may be favorable to KI and
RGR indices, it may increase the energy requirements and compromise
animal efficiency. The positive co-expression between some of the
target genes suggests a putative co-regulation on the feed efficiency
traits studied here.
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