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Abstract
Chrysoperla externa and Coleomegilla quadrifasciata are important biological control agents in peach orchards. However,
orchard management with these predatory insects is viable only by using selective agrochemicals. The objective of this study
is to evaluate the toxicity of nine agrochemicals used in peach orchards in larval and adult stages of the C. externa and C.
quadrifasciata in laboratory conditions. The bioassays followed the methodologies proposed by the International
Organization for Biological and Integrated Control (IOBC). Larvae and adults of C. externa and C. quadrifasciata were
exposed to the dry residues of these products. Lethal and sublethal effects were evaluated in bioassays with the larval and
adult stages of both predators. The agrochemicals were classified according to the IOBC guidelines. The insecticide
chlorantraniliprole was harmless (class 1) to the larval stage of C. externa and C. quadrifasciata. Azadirachtin, copper
25%+ calcium 10%, and deltamethrin were harmless to the adult stage of both insect species. The organophosphates
fenitrothion and malathion were harmful (class 4) to both species in the larval and adult stages and should not be used in
peach orchards. Therefore, this study demonstrates the importance of toxicity and the lethal and sublethal effects of these
agrochemicals to better determine their compatibility with IPM in peach production.
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Introduction

Insect pests represent a constant challenge to peach produ-
cers because of sporadic and/or persistent occurrence of
several species in orchards, causing substantial economic
losses to fruit production (Nava et al. 2014). Among them,
the South American fruit fly Anastrepha fraterculus (Wie-
demann) (Diptera: Tephritidae) (Botton et al. 2002; Araujo
et al. 2019), the Mediterranean fly Ceratitis capitata

(Wiedemann) (Diptera: Tephritidae) (Hafsi et al. 2016;
Sciarretta et al. 2018), the oriental butterfly Grapholita
molesta (Busck) (Lepidoptera: Tortricidae) (Duarte et al.
2015; Yang et al. 2016), and the corn weevil Sitophilus
zeamais (Motschulsky) (Coleoptera: Curculionidae) (Nava
et al. 2014; Nörnberg et al. 2016) may occur in peach trees in
Brazil and some of them are key peach pests in other world
regions. Chemical control by spraying organophosphates and
pyrethroids using a predefined schedule is the most com-
monly strategy used to control insect populations, due to the
low cost and fast action when compared to neonicotinoids,
spinosyns, benzoylureas, diacylhydrazines, diamides, and
oxadiazines, especially for A. fraterculus and G. molesta
(Botton et al. 2005). However, despite their efficiency these
products, can cause adverse effects, including insecticide
resistance, resurgence of secondary pests, and reduction or
extinction of beneficial organisms populations (Desneux
et al. 2007; Guedes et al. 2016; Rashidi et al. 2018), as
predators (Passos et al. 2018; Rugno et al. 2018), parasitoids
(Jam and Saber 2018) and pollinators (Varikou et al. 2019).
In addition to lethal effects, agrochemicals may cause sub-
lethal effects on natural enemies, including changes in insect
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physiology and behavior, insect reproduction and develop-
ment, mobility and orientation, and food foraging behavior,
indirectly causing insect death (Desneux et al. 2007; Rugno
et al. 2018). Understanding the impact of agrochemicals is
essential for the sustainability and resilience of integrated
pest management (IPM).

The presence of natural enemies, such as predators and
parasitoids, is essential to the success of IPM programs.
Generalist predators have advantage over specialists, due to
polyphagia, they can exploit food resources widely, they can
survive in the agroecosystem without target pests, thus pre-
venting their resurgence (Symondson et al. 2002). Among
these species, the predatory insect Chrysoperla externa
(Hagen) (Neuroptera: Chrysopidae) is the most prominent
because it has a wide geographic distribution, high predatory
capacity at the larval stage, high host diversity, tolerance to
some insecticides, and high reproductive potential (Castilhos
et al. 2011; Pasini et al. 2018). Other predatory insects rele-
vant in this crop belong to the family Coccinellidae and
predate aphids and mites (Oliveira et al. 2004). The ladybug
Coleomegilla quadrifasciata (Schöenherr) (Coleoptera: Coc-
cinellidae), stands out as a generalist predator, feeding on
larval and adult prey, including scale insects, psyllids,
whiteflies, mites, in addition to eggs and immature stages of
coleopterans and lepidopterans (Lixa et al. 2010).

Non-synthetic agrochemicals based on copper, calcium, and
sulfur, such as Bordeaux mixture and lime sulfur, are alter-
natives to the indiscriminate use of insecticides and are used to
treat diseases and control pests such as scale insects and aphids
(Venzon et al. 2016). The Bordeaux mixture contains lime and
copper sulfate and is applied to several vegetable crops to
prevent diseases. This mixture has fungicidal and bactericidal
activity, repellent activity against insects, and is used in winter
treatment on Malus domestica, Prunus sp., and Vitis sp.
(Gessler et al. 2011; Venzon et al. 2016). Lime sulfur is
obtained by the thermal treatment of lime and sulfur and is
effective in controlling mites and scale insects (Venzon et al.
2016). Despite the proven effectiveness of these mixtures in
controlling insect pests, little information is currently available
on the lethal and sublethal effects of these products towards the
mortality of natural enemies. In Brazil, studies involving these
non-synthetic agrochemicals are limited to evaluating the
mortality of the parasitoids Telenomus remus Nixon (Hyme-
noptera: Platygastridae) (Silva et al. 2016) and Telenomus
podisi Ashmead (Hymenoptera: Platygastridae) (Silva and
Bueno 2014). However, to our best knowledge, there are few
studies to date evaluated the effects of these products on pre-
datory insects (Bengochea et al. 2014; Tuelher et al. 2014;
Vogelweith and Thiéry 2018). In addition to advantages such
as easy application and low cost, these products are not
restricted to peach production and are used worldwide in many
other crops, including citrus, apple, and grapevine (Gessler
et al. 2011; Venzon et al. 2016; Vogelweith and Thiéry 2018).

Several factors contribute to the toxicity of agrochemicals,
including insect-specific factors associated with cuticle struc-
ture and composition and environmental factors, which may
attenuate or minimize the toxic effects (Fernandes et al. 2010;
Bueno et al. 2017). In this respect, the International Organi-
zation for Biological and Integrated Control (IOBC) proposes
standardizing biological assays, which are initially performed
under laboratory conditions and later under semi-field and
field conditions to validate the results (Hassan 1988). These
assays allow measuring the toxicity of insecticides with the
view to integrate chemical and biological control, therefore
combining the advantages of each control strategy (Garzón
et al. 2015). Therefore, given the lack of data on the non-target
toxicity of these products, especially non-synthetic products,
additional studies are needed to determine their lethal and
sublethal effects on C. externa and C. quadrifasciata. The
objective of this study is to evaluate the toxicity of nine
agrochemicals, including commercial and manipulated for-
mulations used in peach orchards, to the larval and adult
stages of the predatory insects C. externa and C. quad-
rifasciata according to the methodology proposed by IOBC.

Materials and methods

Insects

The populations of C. externa and C. quadrifasciata used in
the assays were maintained under laboratory conditions
(temperature, 25 ± 1 °C; relative air humidity, 70 ± 10%;
photo-phase, 14 h). Larvae of C. externa were fed ad libi-
tum on eggs of the alternative host Ephestia kuehniella
(Zeller) (Lepidoptera: Pyralidae), reared according to the
methodology proposed by Parra (1997) and were main-
tained in test tubes (length, 12 cm; diameter, 5 cm). Adults
were kept in acrylic cages (height, 15.5 cm; diameter,
18.5 cm), covered by a white paper, that served as bottom
and cover and fed an artificial diet consisting of a mixture of
15 mL of condensed milk, two egg yolks, one egg white,
30 g of honey, 20 g of fructose, 30 g of brewer’s yeast, 50 g
of wheat germ, and 45 mL of distilled water (Vogt et al.
2000). Larvae of C. quadrifasciata were reared according to
the methodology adapted from Silva et al. (2009) and fed
ad libitum on E. kuehniella eggs. The adults were kept in
plastic pots (height, 9 cm; diameter, 12 cm), closed with
white paper, some cotton was also placed as a substrate for
oviposition and were fed E. kuehniella eggs and honey.

Agrochemicals

For the bioassays were used nine agrochemicals recom-
mended for Integrated Fruit Production (IFP) were used
(Table 1) (NORMAS 2003), and a control treatment with
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distilled water. These products were chosen because they
are usually recommended in the production of peaches and
other crops grown in temperate regions. The doses of aba-
mectin, chlorantraniliprole, deltamethrin, fenitrothion, and
malathion corresponded to the maximum dosage recom-
mended for peach trees (MAPA 2018).

The products azadirachtin, copper 25%+ calcium 10%,
copper+ calcium 1%, and sulfur+ calcium (3.5 Ba) are
included in the Norms for Organic Production of Vege-
tables and Animals (MAPA 1999) and were used as
recommended for peach orchards (Table 1).

The non-synthetic formulations copper 25%+ calcium
10%, copper+ calcium 1%, and sulfur+ calcium (3.5
Baume [Ba]) were manipulated and diluted immediately
before spraying. Copper 25%+ calcium 10% was prepared
by dissolving the ingredients in 500 mL of water, and a
portable pH meter (length: 18.8 cm; width: 3.8 cm; Instru-
sul, Esteio, RS, Brazil) was used to measure the pH in the
range 7–9. Copper 1%+ calcium 1% was prepared
according to the recommendations of Fortes (2002) for
temperate fruit trees, as follows: 30 g of copper sulfate, 30 g
of lime, and 5 L of water. The ingredients were homo-
genized, and pH was measured using a portable pH meter
until it reached the range of 8–9. Sulfur+ calcium (3.5 Ba)
was prepared using the methodology of Venzon et al.
(2016), as follows: 100 g of sulfur, 50 g of lime, and 5 L of
water. The components were homogenized and heated until
a reddish-gray color was obtained. The density of the
mixture was measured using a Baume hydrometer (Inco-
term, Porto Alegre, RS, Brazil), and the concentration was
adjusted to 3.5 Ba degrees.

Bioassays

The assays were conducted in the laboratory using the
methodology established by IOBC for Chrysoperla carnea
(Stephens) (Neuroptera: Chrysopidae) and Coccinella sep-
tempunctata (Linnaeus) (Coleoptera: Coccinellidae), with
modifications (Schmuck et al. 2000; Vogt et al. 2000).
Spraying was performed using a 500-mL manual sprayer
(Guarany Ultrajet, Itu, SP, Brazil), and spray deposition of
2.0 ± 0.2 mg cm−2 was measured using a precision scale
(Shimadzu do Brasil Comércio Ltda, São Paulo, SP, Brazil).

Toxicity assessment on larvae

The bioassays consisted of exposing larvae of C. externa
and C. quadrifasciata to dry residues of agrochemicals,
which were sprayed onto glass plates (50 cm × 41 cm). The
control treatment was composed by glass plates sprayed
with distilled water. First-instar larvae (1–2 days old) were
placed in arenas with a fine-tipped brush and remained in
contact with the product residues until the emergence ofTa
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adults, during this period they were daily fed ad libitum on
E. kuehniella eggs.

Treatments were arranged in a completely randomized
block design. Each treatment consisted of two plates with
20 arenas each, totaling 40 insects, and each insect was
considered a repetition, totaling 40 larvae per experimental
unit. Larval mortality and the duration of the larval stage in
days (L1, L2, L3, pre-pupa, pupa, and total period) were
evaluated daily. Sublethal tests were performed in the
treatments in which accumulated mortality was ≤ 50%.

Toxicity assessment on adults

Spraying was performed onto glass plates (length, 14 cm;
width, 14 cm). The plates were dried and served as the floor
of insect cages. Each cage was composed of a methacrylate
ring (diameter, 10 cm; height, 3 cm) with five holes (dia-
meter of 1.3 cm) closed with voile-type fabric to allow
ventilation. One hole was connected to a suction pump to
eliminate toxic vapors, and another hole (diameter of 0.8)
was used to supply water to the insects. The artificial diet
was provided on the side of the cage for C. externa, and E.
kuehniella eggs were left on the bottom of the cage for C.
quadrifasciata. After preparing the cages, 1-week old adults
of both species were separated by sex as females have larger
body size than males (Brooks 1994; Carvalho and Souza
2000; Milléo and Meira 2012), and inserted into the cages.

Treatments were arranged in a completely randomized
block design. Each treatment consisted of four cages, each
containing four insect pairs (one male and one female).
Each cage was considered a repetition, totaling 16 insect
pairs per experimental unit. The accumulated mortality of
male and female insects was evaluated after 120 h of
exposure to insecticide residues (Schmuck et al. 2000; Vogt
et al. 2000). Sublethal tests were performed in the treat-
ments in which accumulated mortality was ≤ 50%.

Sublethal effects on survived adults

In addition to the lethal effects, sublethal effects on fecundity
and fertility were evaluated in larvae and adults. Only treat-
ments with a mortality rate of ≤ 50% were evaluated. To
analyze reproductive parameters, five to seven couples of C.
externa that survived previous bioassays were sedated with
the of CO2 and transferred with a forceps to acrylic cages
(height, 15.5 cm; diameter, 18.5 cm) closed by two white
papers, that served as bottom and cover and were fed as
previously described, and five to seven couples of C. quad-
rifasciata were transferred with a fine-tipped brush to plastic
pots (height, 9 cm; diameter, 12 cm), closed with white paper,
fed E. kuehniella eggs ad libitum and were kept in the same
climatic conditions of the insect colony. Seven days after the
first egg-laying, the eggs deposited by both species were

collected daily for 10 consecutive days. Counting was per-
formed to determine the mean number of eggs per female
per day. The eggs the C. externa and C. quadrifasciata were
removed from the oviposition white paper and cotton,
respectively, with a pair of scissors and fine-tipped brush, and
incubated in cell culture plates with 96 wells (Kasvi Ltda.,
Pinhais, PR, Brazil) coated with transparent PVC film, to
prevent cannibalism and escape, and to calculate the mean
percentage of larval hatching in each treatment.

Classification of insecticide toxicity

For classifying insecticide toxicity to larvae and adults, the
mortality rate was calculated in each treatment and cor-
rected using the Schneider-Orelli formula (Püntener 1981),
and the cumulative effect was determined using the formula
proposed by Vogt et al. (1992).

E ¼ 100% � ð100% � M%Þ � R1� R2

where: E, cumulative effect (%); M%, mortality in the
treatment corrected according to the control; R1, the ratio of
the mean number of eggs laid daily by treated and untreated
females; and R2, the ratio of the mean viability of eggs laid
by treated and untreated females.

After calculating the cumulative effect for both larvae and
adults, the products were classified as (1) harmless (<30%);
(2) slightly harmful (30–79%); (3) moderately harmful
(80–99%); and (4) harmful (>99%) (Sterk et al. 1999).

Statistical analysis

The data regarding the duration of each larval instar of C.
externa and C. quadrifasciata were analyzed using the
Kruskal–Wallis test to assess significance (p ≤ 0.05) and the
Dunn test of means with Bonferroni correction at a level of
significance of 5%. Data on adult mortality were analyzed for
normality using the Shapiro–Wilk test, homoscedasticity was
assessed using the Barlett’s test, and residual independence
was checked graphically. Subsequently, these data were
subjected to analysis of variance (ANOVA) (p ≤ 0.05). Sta-
tistically significant means were compared using the Tukey’s
test (p ≤ 0.05) for both insect species. To analyze the differ-
ence in the mortality of male and female insects, the data on
C. quadrifasciata were transformed using the formula px to
meet the ANOVA assumptions (p ≤ 0.05), whereas the data
for C. externa did not require transformation because they met
the assumptions of the Shapiro–Wilk test, Barlett’s test, and
the graphical analysis of residual independence. The data with
significant differences between the species using ANOVA
were analyzed using Student’s t-test. The fecundity and fer-
tility of surviving adults in larval and adult assays were
evaluated using the Shapiro–Wilk and Barlett’s tests and
by graphically analyzing residual independence. Data not
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meeting these assumptions were transformed using the for-
mula px. Subsequently, the data were subjected to ANOVA
(p ≤ 0.05). The statistically significant means were compared
using the Tukey’s test (p ≤ 0.05).

Results

Larval development duration

Deltamethrin, fenitrothion, and malathion caused mortality
of 100% of larvae of C. externa. Therefore, it was not
possible to evaluate the larval development duration of this
species. The duration of the first larval instar using sulfur+
calcium was significantly longer than when the other
agrochemicals were used (df= 6, H= 14.78, p ≤ 0.001) for
C. externa. Nonetheless, larval mortality was 100% starting
from the third larval instar. Chlorantraniliprole significantly
increased the overall duration of the second and third instars
compared to the other products (df= 6, H= 126.15, p ≤
0.0001; and df= 5, H= 53.92, p ≤ 0.001, respectively),
corresponding to 4.55 and 3.50 days, respectively. The pre-
pupal period was significantly longer using azadirachtin,
chlorantraniliprole, copper 25%+ calcium 10%, and copper
1%+ calcium 1% than in the control treatment (df= 5,
H= 46.52, p ≤ 0.001). In general, the duration of the
immature stage ranged from 17.16 to 19.27 days, which
chlorantraniliprole and copper 25%+ calcium 10%,
showed the highest values than in the control treatment for
C. externa (df= 5, H= 43.52, p ≤ 0.001) (Table 2).

For C. quadrifasciata, the duration of the first larval instar
(df= 5, H= 46.52, p= 0.1914) was not significantly differ-
ent between the tested products, and abamectin, deltamethrin,
fenitrothion, and malathion caused 100% mortality in the first
few hours of exposure (Table 2). In contrast, the duration of
the second larval instar using all tested products was similar to
that of the control treatment (df= 4, H= 12.42, p= 0.0145).
Azadirachtin 1% caused high mortality in this instar, and this
result was not observed in the previous evaluation. The
duration of the third larval instar of C. quadrifasciata
(7.09 days) was higher using sulfur+ calcium (3.5 Ba) and
was significantly different from that using the control treat-
ment (df= 4, H= 11.93, p= 0.0179) (Table 2). The pre-
pupal stage was significantly longer (6.95 days) using sulfur
+ calcium (3.5 Ba) compared to the other treatments and the
control (df= 4, H= 67.72, p ≤ 0.001) (Table 2). The duration
of the pupal stage was significantly higher with copper 25%
+ calcium 10% and copper 1%+ calcium 1% when com-
pared to the control treatment (df= 4, H= 25.57, p ≤ 0.001)
(Table 2). The combined duration of the larval and adult
stages using sulfur+ calcium (3.5 Ba) (21.25 days) was sig-
nificantly longer than that using the other treatments and the
control treatment (df= 4, H= 31.20, p ≤ 0.001) (Table 2).

Adult mortality

Fenitrothion, malathion and sulfur+ calcium caused 100%
mortality of females (df= 9, F= 22.25, p= ≤0.001) and
males (df= 9, F= 17.86, p ≤ 0.001) of C. externa. The
mortality using abamectin, azadiracthin, chlorantraniliprole,
copper 1%+ calcium 1%, and deltamethrin was not sig-
nificantly different from that of the control treatment. No
sex-dependent mortality was recorded when testing aba-
mectin (t= 0.94, p= 0.540), chlorantraniliprole (t= 1.69,
p= 0.320), copper 1%+ calcium 1% (t= 1.22, p= 0.360),
and deltamethrin (t= 2.32, p= 0.800). Nonetheless, aza-
dirachtin 1% showed higher mortality of females (25%)
than males (6.25%) (t= 0.61, p= 0.030) (Fig. 1).

As in C. externa, fenitrothion and malathion caused 100%
mortality of C. quadrifasciata in both sexes (females: df= 9,
F= 25.63, p= 0.0024, males df= 9, F= 13.26, p ≤ 0.001).
The other agrochemicals showed female mortality rates
similar to the control treatment. In contrast, in males, aba-
mectin caused mortality above 60%, statistically different
from the control treatment, similarly to the organophosphate
insecticides. A significant difference in mortality rate was
recorded between C. quadrifasciata males and females after
exposed to azadirachtin (t= 0.96, p= 0.020), and copper+
calcium (25+ 10%) (t= 0.96, p= 0.020), with mortality rate
of 18.75 and 17.25% for females and 0% for males, respec-
tively. However, abamectin (t= 0.53, p= 0.494), deltame-
thrin (t= 0.14, p= 0.720), azadirachtin, chlorantraniliprole,
copper 1%+ calcium 1%, and sulfur+ calcium caused a
predator mortality similar to the control treatment (Fig. 2).

Larval exposure

Chlorantraniliprole had no effect in the parameters, larval
mortality, fecundity (df= 5, F= 8.35, p ≤ 0.001) and ferti-
lity (df= 5, F= 7.78, p= 0.027) of adults, being thus
classified as harmless (class 1) to C. externa (Table 3).
Azadirachtin caused cumulative mortality of 10%, resulting
in a cumulative effect of 26.16% and, hence, remained in
class 1 (Table 3). Abamectin, copper 25%+ calcium 10%,
and copper 1%+ calcium 1% were slightly harmful (class
2) to C. externa. These products significantly reduced
fecundity of the crisopid (df= 5, F= 8.35, p ≤ 0.001).
Deltamethrin, sulfur+ calcium, and organophosphates
caused high mortality in the first hours of exposure and
were classified as harmful (class 4) to larvae of C. externa
(Table 3).

The treatment with chlorantraniliprole was harmless
(class 1) to larvae of C. quadrifasciata and did not affect adult
fecundity (df= 3, F= 11.38, p ≤ 0.001) and fertility (df= 3,
F= 17.19, p= 0.0297) (Table 3). Sulfur+ calcium was
considered slightly harmful (class 2) to larvae of C. quad-
rifasciata compared to the control treatment because it
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Table 2 Duration in number of days (mean ± SEM) of larval instars, pre-pupal, and pupal stages and duration of larval-adult stages for Chrysoperla
externa and Coleomegilla quadrifasciata after exposure of larvae to residual concentrations of agrochemicals used in peach orchards

Treatment Duration (Days)

1st instar 2nd instar 3rd instar Pre-pupal Pupal Larval-adult

Chrysoperla externa

Control 2.57 ± 0.08 b 3.35 ± 0.08 cd 2.47 ± 0.09 c 2.57 ± 0.08 c 6.55 ± 0.15 a 17.55 ± 0.45 cd

Abamectin 2.02 ± 0.09 d 2.95 ± 0.13 de 3.03 ± 0.05 b 2.64 ± 0.09 bc 6.47 ± 0.09 ab 17.16 ± 0.23 d

Azadirachtin 2.57 ± 0.08 b 3.30 ± 0.10 cd 2.57 ± 0.11 c 3.50 ± 0.15 a 6.59 ± 0.10 a 18.42 ± 0.16 b

Chlorantraniliprole 2.20 ± 0.06 cd 4.55 ± 0.08 a 3.50 ± 0.11 a 3.10 ± 0.13 ab 5.92 ± 0.07 bc 19.27 ± 0.23 a

Copper+ Calcium 2.60 ± 0.08 b 4.12 ± 0.09 ab 2.87 ± 0.09 bc 3.12 ± 0.14 ab 5.70 ± 0.17 c 18.55 ± 0.11 ab

Copper+ Calciuma 2.52 ± 0.09 bc 2.52 ± 0.09 e 2.70 ± 0.12 bc 3.50 ± 0.10 a 6.60 ± 0.21 a 18.22 ± 0.22 bc

Deltamethrin – – – – – –

Sulfur+ Calcium 3.02 ± 0.10 a 3.70 ± 0.37 bc – – – –

Fenitrothion – – – – – –

Malathion – – – – – –

Coleomegilla quadrifasciata

Control 2.10 ± 0.06ns 2.51 ± 0.14 ab 5.33 ± 0.29 b 1.82 ± 0.09 b 3.60 ± 0.14 c 15.78 ± 0.367 b

Abamectin – – – – – –

Azadirachtin 1.70 ± 0.19 – – – – –

Chlorantraniliprole 2.05 ± 0.23 2.42 ± 0.22 ab 6.35 ± 0. 59 ab 1.49 ± 0.16 b 3.83 ± 0.13 bc 15.68 ± 0.46 b

Copper+ Calcium 1.83 ± 0.14 2.07 ± 0.05 b 6.48 ± 0.22 ab 1.36 ± 0.10 b 4.30 ± 0.10 ab 15.50 ± 0.41 b

Copper+ Calciuma 1.82 ± 0.08 3.04 ± 0.26 ab 6.62 ± 0.34 ab 1.65 ± 0.15 b 4.50 ± 0.13 a 17.09 ± 0.65 b

Deltamethrin – – – – – –

Sulfur+ Calcium 1.70 ± 0.12 3.12 ± 0.47 a 7.09 ± 0.59 a 6.95 ± 0.59 a 3.75 ± 0.14 c 21.25 ± 0.85 a

Fenitrothion – – – – – –

Malathion – – – – – –

Means followed by the same letter in columns did not differ significantly from each other. The means were analyzed by the Kruskal–Wallis test
followed by the Dunn test and Bonferroni correction at 5% probability
aBordeaux misture

Fig. 1 Female and male cumulative mortality rates (mean ± SE), after
120 h exposure of Chrysoperla externa adults to residual concentra-
tions of agrochemicals sprayed in peach orchards. For females (black
bars), means followed by the same lowercase letter did not differ
significantly from each other by the Tukey's test (p < 0.05). For males
(gray bars), means followed by the same capital letter did not differ
significantly from each other by the Tukey's test (p < 0.05). ** There
were statistical differences between female and male mortality rates by
the t-test (p < 0.05). # copper+ calcium (1%), Bordeaux mixture

Fig. 2 Female and male cumulative mortality rates (mean ± SE), after
120 h exposure of Coleomegilla quadrifasciata adults to residual
concentrations of agrochemicals sprayed in peach orchards. For
females (black bars), means followed by the same lowercase letter did
not differ significantly from each other by the Tukey's test (p < 0.05).
For males (gray bars), means followed by the same capital letter did
not differ significantly from each other by the Tukey's test (p < 0.05).
** There were statistical differences between female and male mor-
tality rates by the t-test (p < 0.05). # copper+ calcium (1%), Bordeaux
mixture
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reduced adult fertility (47.92 vs. 71.88%). Copper 25%+
calcium 10% and copper 1%+ calcium 1% were classified as
moderately harmful (class 3) and harmful (class 4), respec-
tively (Table 3). Copper 1%+ calcium 1% was more toxic
than copper 25%+ calcium 10% because the emerging adults
had morphological deformities and did not survive the 7-day
experimental period, which prevented the evaluation of
fecundity and fertility. The larvae exposed to copper 25%+
calcium 10% did not present deformities; however, fecundity
was lower in the group treated with this formulation com-
pared to the control treatment (9.31 vs. 42.32 eggs per female
per day) (Table 3) Abamectin, azadirachtin, deltamethrin,
fenitrothion, and malathion were classified as toxic (class 4)
because they caused high mortality of larvae of C. quad-
rifasciata (Table 3).

Adult exposure

The results of adult reproductive parameters in C. externa
and C. quadrifasciata and the classification of toxicity
according to the IOBC standards are shown in Table 4.

Abamectin, azadirachtin, chlorantraniliprole, copper 25%
+ calcium 10%, and deltamethrin were harmless (class 1)
to adults of C. externa. Copper 1%+ calcium 1% and
deltamethrin caused accumulated mortality of 19.05% in
adults of C. externa, copper+ calcium 1% was classified
as moderately harmful (class 3) and deltamethrin harmless
(class1) to adults of the crisopid. This result is because
copper+ calcium significantly altered reproductive para-
meters (df= 5, F= 6.94, p ≤ 0.001), compared to the
control treatment. The product deltamethrin despite hav-
ing fecundity values lower than the control treatment did
not affect the adults (df= 5, F= 6.00, p ≤ 0.001), result-
ing in total effect of 27.66%, near the limit of class 1.
Sulfur+ calcium, fenitrothion, and malathion caused
100% mortality of adults of C. externa and were classified
as harmful (class 4) (Table 4).

Azadirachtin, copper 25%+ calcium 10%, deltamethrin,
and sulfur+ calcium were classified as harmless (class 1) to
C. quadrifasciata (Table 4). Chlorantraniliprole and copper
1%+ calcium 1% were considered slightly harmful (class 2)
because they decreased egg fertility in C. quadrifasciata

Table 3 Total effect and IOBC
classification after exposure of
Chrysoperla externa and
Coleomegilla quadrifasciata
larvae to residual concentrations
of agrochemicals used in peach
orchards

Treatment M (%)a Fecundity (mean ± SEM) Fertility (mean ± SEM) E (%)b Cc

Chrysoperla externa

Control – 32.44 ± 3.31 a 83.33 ± 0.61 ab – –

Abamectin 22.50 16.64 ± 0.71 b 88.54 ± 1.08 ab 57.79 2

Azadirachtin 10.00 27.35 ± 1.38 ab 84.38 ± 1.08 ab 26.16 1

Chlorantraniliprole 0.00 34.67 ± 4.60 a 85.42 ± 0.56 ab 0.00 1

Copper+ Calcium 5.00 17.64 ± 1.16 bc 94.79 ± 0.22 ab 41.24 2

Copper+ Calciumd 0.00 16.33 ± 0.80 c 98.95 ± 0.22 a 40.23 2

Deltamethrin 100.00 – – 100.00 4

Sulfur+ Calcium 92.50 – – 100.00 4

Fenitrothion 100.00 – – 100.00 4

Malathion 100.00 – – 100.00 4

Coleomegilla quadrifasciata

Control – 42.32 ± 8.97 a 71.88 ± 1.14 a –

Abamectin 100.00 – – 100.00 4

Azadirachtin 88.89 – – 100.00 4

Chlorantraniliprole 0.00 35.69 ± 3.83 a 69.79 ± 1.56 ab 18.10 1

Copper+ Calcium 35.37 9.31 ± 4.04 b 70.83 ± 0.94 ab 85.99 3

Copper+ Calciumd 25.93 – – 100.00 4

Deltamethrin 100.00 – – 100.00 4

Sulfur+ Calcium 25.93 41.63 ± 4.67 a 47.92 ± 0.90 b 51.37 2

Fenitrothion 100.00 – – 100.00 4

Malathion 100.00 – – 100.00 4

aM=Mortality rate corrected by Schneider-Orelli’s formula
bE= Total effect
cC= IOBC classification: (1) harmless (<30%); (2) slightly harmful (30–79%); (3) moderately harmful
(80–99%); and (4) harmful (>99%). Means followed by the same letter in columns do not differ significantly
from each other by the Tukey’s test at 5% probability
dBordeaux misture
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(df= 6, F= 25.93, p <= 0.001). Fenitrothion and mala-
thion caused 100% mortality of adults in the first few hours
of exposure and were classified as harmful (class 4). Aba-
mectin was also considered harmful because it caused
accumulated mortality of 53.33%, which prevented ana-
lyzing reproductive parameters, and the cumulative effect
was 100% (Table 4).

Discussion

Abamectin, azadirachtin, copper 25%+ calcium 10%, cop-
per+ calcium 1%, deltamethrin, and sulfur+ calcium pre-
sented different degrees of toxicity to C. externa and C.
quadrifasciata under laboratory conditions, corroborating
studies with other predatory insect species, including C.
externa and Eriopis connexa (Gemar) (Coleoptera: Cocci-
nellidae), which had different toxicity thresholds (Rimoldi
et al. 2017; Pasini et al. 2018). Moreover, significant differ-
ences were verified in terms of toxicity according to the

development stage of insects (Pérez-Aguilar et al. 2018;
Prabhaker et al. 2017; Pasini et al. 2018).

Abamectin presented adverse effects on C. externa and C.
quadrifasciata. This finding corroborates other studies with
the predatory insects Menochilus sexmaculatus Fabricius
(Coleoptera: Coccinellidae) (Azod et al. 2016), Engytatus
varians (Distant) (Heteroptera: Miridae) (Pérez-Aguilar et al.
2018). Abamectin is used to control mites, insects, and
nematodes, and acts as an agonist of the neurotransmitter
gamma-aminobutyric acid. The active ingredient binds to
nerve cells, preventing the transport of chlorine ions, conse-
quently causing death (Azod et al. 2016). Therefore, as aba-
mectin can negatively affect C. externa and C. quadrifasciata,
its use should be considered with caution in peach IPM
programmes.

Azadirachtin was harmless (class 1) to adults of C. externa
and C. quadrifasciata. However, the toxicity of this agro-
chemical was different between the larvae of the two species,
being harmless (class 1) to C. externa, causing larval mor-
tality of 26.16%, but harmful (class 4) to C. quadrifasciata,

Table 4 Total effect and IOBC
classification after exposure of
Chrysoperla externa and
Coleomegilla quadrifasciata
adults to residual concentrations
of agrochemicals used in peach
orchards

Treatment M (%)a Fecundity (mean ± SEM) Fertility (mean ± SEM) Eb Cc

Chrysoperla externa

Control – 10.66 ± 1.33 abc 70.83 ± 0.94 a – –

Abamectin 0.00 11.54 ± 1.47 abc 88.54 ± 0.54 a 0.00 1

Azadirachtin 0.00 14.54 ± 1.86 ab 93.75 ± 0.75 a 0.00 1

Chlorantraniliprole 0.00 19.64 ± 3.42 a 70.83 ± 1.37 a 0.00 1

Copper+ Calcium 0.00 11.73 ± 1.68 ab 75.00 ± 2.62 a 0.00 1

Copper+ Calciumd 19.05 4.71 ± 0.66 c 32.29 ± 1.92 b 83.74 3

Deltamethrin 19.05 8.54 ± 1.34 bc 71.88 ± 1.67 a 27.66 1

Sulfur+ Calcium 100.00 – – 100.00 4

Fenitrothion 100.00 – – 100.00 4

Malathion 100.00 – – 100.00 4

Coleomegilla quadrifasciata

Control – 23.97 ± 0.90 ab 57.29 ± 0.65 b – -

Abamectin 53.33 – – 100.00 4

Azadirachtin 3.33 19.78 ± 0.54 b 52.08 ± 1.03 b 27.44 1

Chlorantraniliprole 0.00 29.68 ± 3.47 a 21.88 ± 1.14 c 52.71 2

Copper+ Calcium 3.33 24.22 ± 0.52 ab 56.25 ± 1.14 b 0.80 1

Copper+ Calcium 6.67 21.18 ± 1.36 b 26.04 ± 0.41 c 59.84 2

Deltamethrin 26.67 24.48 ± 0.99 ab 60.42 ± 1.24 b 25.26 1

Sulfur+ Calciumd 0.00 22.96 ± 1.20 ab 88.54 ± 0.54 a 0.00 1

Fenitrothion 100.00 – – 100.00 4

Malathion 100.00 – – 100.00 4

aM= rate corrected by Schneider-Orelli’s formula,
bE= Total effect;
cC= IOBC classification: (1) harmless (<30%); (2) slightly harmful (30–79%); (3) moderately harmful
(80–99%); and (4) harmful (>99%). Means followed by the same letter in columns do not differ significantly
from each other by the Tukey’s test at 5% probability
dBordeaux misture
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causing 100% larval mortality. This product acts as a growth
regulator, adjusting the peaks of ecdysteroid, a hormone that
regulates molting (Marco et al. 1990). Similar results were
found by Zanuncio et al. (2016), whereby the mortality rate of
the third-, fourth-, and fifth-instar nymphs of Podisus nigris-
pinus (Dallas) (Heteroptera: Pentatomidae) increased as the
concentration of azadirachtin increased, without significant
effect on adults at the same concentrations used for nymphs.
Other studies observed a sublethal effect of an azadirachtin-
based formulation, which reduced the longevity of the para-
sitoid Bracon nigricans (Szépligeti) (Hymenoptera: Braconi-
dae) (Biondi et al. 2013). Therefore, azadirachtin has variable
effectiveness against natural enemies, with either a selective
or non-selective activity.

Chlorantraniliprole was harmless to both development
stages of C. externa and the larval stage of C. quadrifasciata.
This product acts on ryanodine receptors of the muscle of
insects, causing rapid death via muscular dysfunction and
paralysis (Hannig et al. 2009). Chlorantraniliprole is recog-
nized as a selective insecticide for non-target organisms.
Studies reported the low toxicity of this compound to the
predatory insect species Harmonia axyridis (Pallas) and
Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae)
(Cabrera et al. 2018), Orius laevigatus (Fieber) (Hemiptera:
Anthocoridae) (Biondi et al. 2012), Podisus nigrispinus
(Dallas), Supputius cincticeps (Stal) (Heteroptera: Pentato-
midae) (Castro et al. 2013). Moreover, this chemical did not
show negative effects on the parasitoid B. nigricans survival
and fertility, causing negative interaction only at higher
temperatures such as 35 and 40 °C (Abbes et al. 2015), which
agree with the results of our study. Chlorantraniliprole was
classified as moderately harmful to the adult stage of C.
quadrifasciata because it reduced egg hatchability in cocci-
nellids. Oliveira et al. (2019) reported that chlorantraniliprole
had a sublethal effect on larvae of Harmonia axyridis (Pallas)
(Coleoptera: Coccinellidae), evidenced by a reduced devel-
opment cycle, lower body weight of males in the F1 gen-
eration, and lower survival and fertility of treated adults, as
observed in our study.

Agrochemicals based on copper and calcium had dif-
ferent toxicity to predatory insects. Copper 25%+ calcium
10% and Copper+ calcium 1% were slightly harmful (class
2) to C. externa larvae, already for adults only copper+
calcium 1% was moderately harmful (class 3). However, for
C. quadrifasciata copper+ calcium 1% was moderately
harmful to the larval stage and toxic to the adult stage.
Copper at high concentrations may damage the DNA
structure and is considered toxic to arthropods (Bernabò
et al. 2017). Other studies indicate that Copper has negative
effects on beneficial organisms, such as Apis mellifera
Linnaeus (Hymenoptera: Apidae) causing high larval mor-
tality after seven days of exposure and slowed larval
development, caused reduction in pre-pupal and pupal

weights, decreased the survival rate of both larvae and
foragers (Di et al. 2016), high mortality of predator Halmus
chalybeus (Boisduval) (Coleoptera: Coccinellidae) (Lo
2004), and parasitoid T. remus (Silva et al. 2016). Few
studies evaluated the lethal and principally sublethal effects
of these compounds, highlighting the importance of the
present study.

Deltamethrin was classified as harmful to larvae and
harmless to adults of both predators. According to Garzón
et al. (2015), this insecticide caused mortality of 52.38% in
larvae of C. carnea and a reduction of 13.89% in the
emergence of adults, when the application of insecticide
was realized in the pupal stage and therefore it was classi-
fied as slightly harmful (class 2), with a cumulative effect of
47.29%. In contrast, other insecticides, as chlorpyrifos
caused 100% mortality of females of C. externa in coffee
crops and was classified as harmful (class 4) (Torres et al.
2013). The lambda-cyhalothrin and beta-cypermethrin are
toxic to larvae of Chrysoperla genanigra Freitas (Neu-
roptera: Chrysopidae) (Silva et al. 2017). These results
indicate that the genus Chrysoperla is sensitive to pyre-
throids, and in our study, these products also were harmful
to the larval stage. The toxicity of deltamethrin to adult
stage can be explained by the repellent effect of pyrethroids
to arthropods and may also be due to the low exposure of
insects to the active ingredient (Benamú et al. 2013).
Resistance to insecticides may also be associated with
reduced toxicity. E. connexa populations were resistant to
lambda-cyhalothrin in cotton crops, presenting higher LD50

and DL90, because of hereditary resistance and metabolic
detoxification of insecticide molecules (Rodrigues et al.
2013).

Sulfur+ calcium (lime sulfur) was more toxic to C.
externa than to C. quadrifasciata. This product was
classified as harmful (class 4) to both stages of the chry-
sopid, slightly harmful (class 2) to coccinellid larvae, and
harmless (class 1) to coccinellid adults. The sulfur gas
(H2S) and sulfur dioxide (SO2) released by lime sulfur
inhibit the respiratory chain (Abbott 1945; IRAC 2018).
Tuelher et al. (2014) have shown that the toxicity of
sulfur+ calcium to Iphiseiodes zuluagai Denmark &
Muma (Acari: Phytoseiidae) is dose-dependent and, in
coffee crops, doses higher than the recommended
(20–40 mL/L) may cause a drastic reduction in this insect
population. These compounds when used at low doses can
cause sublethal effects, negatively affecting the repro-
ductive capacity of O. laevigatus (Biondi et al. 2012),
Nesidiocoris tenuis Reuter (Hemiptera: Miridae) (Zappalà
et al. 2012; Madbouni; et al. 2017), because they can act
as oviposition repellent or as an egg dryer (Zappalà et al.
2012; Biondi et al. 2012). This result corroborates with
the present study, where significant differences were
found in the toxicity between the predators.

Non-target toxicity of nine agrochemicals toward larvae and adults of two generalist predators active. . . 335



The organophosphates fenitrothion and malathion are
highly toxic to natural enemies (Rugno et al. 2018). These
products were harmful to larvae and adults of both C.
externa and C. quadrifasciata. Organophosphates act by
irreversibly inhibiting the enzyme acetylcholinesterase,
which leads to the accumulation of acetylcholine at the
synaptic endings in the nervous system, causing insect
death (Bacci et al. 2007). Our results were similar to those
obtained by Rugno et al. (2018), whereby malathion was
toxic to larvae and adults of Ceraeochrysa cubana (Hagen)
(Neuroptera: Chrysopidae).

The evaluation of mortality for each sex is necessary
because, in addition to primary sex differences, females are
directly responsible for oviposition and perpetuation of the
species (Carvalho and Souza 2000). Therefore, toxicity tests
that address sex differences are vital to the success of IPM
programs. Mortality was higher in females of C. externa
exposed to azadirachtin than in males. Similarly, mortality
was higher in females of C. quadrifasciata treated with
azadirachtin and copper 10%+ calcium 25%. Castilhos
et al. (2011) reported difference in mortality between males
and females using commercial insecticides recommended
for peach production. Nonetheless, mortality was relatively
higher in males. In this study, the higher mortality of
females may be related to the greater body surface area
exposed to the product because of their larger body size
(Carvalho and Souza 2000).

The toxicity of insecticides may vary between species of
natural enemies and between the stages of development.
Therefore, the sex and species differences in the mortality
rate in the control treatment may be due to these reasons and
to the insect strain used (Carvalho et al. 2001). The factors
related to this variability include the rate of insecticide
penetration through the tegument and the rate of metabolism
(Bueno et al. 2017). Once penetration rate is associated with
the lipophilicity of a product and with cuticle thickness and
chemical composition, factors related to the cuticle vary
with the development stage of insects and then promote
different selectivity results for a compound (Fernandes et al.
2010; Bueno et al. 2017). Structural factors of the cuticle
vary among species and influence insecticide penetration,
and genera with hydrophobic cuticles because of the higher
amount of lipids have a higher penetration rate and may be
more susceptible to insecticides (Carvalho et al. 2001;
Fernandes et al. 2010; Bueno et al. 2017). Furthermore,
variances in biochemical processes of molting can also
cause a difference in susceptibility between species of the
same family (Cabrera et al. 2018). In addition, the tolerance
of predatory insects to insecticides may be linked to the
higher rate of metabolism of chemical compounds and
changes in the site of action (Guedes et al. 2016). The
production of monooxygenases in cytochrome P450 is the
primary mechanism of insecticide degradation. These

enzymes degrade lipophilic compounds, transforming them
into primary metabolites for later elimination (Brattsten
et al. 1986; Bueno et al. 2017). Future studies may help
understand the factors associated with toxicity to C. externa
and C. quadrifasciata, which are essential control agents in
the IPM of peach orchards.

It is worth emphasizing that the present results were
obtained under laboratory conditions, with maximum expo-
sure of larvae and adults to the insecticides. For this reason,
the larvae were more susceptible to the analyzed products
than adults. Moreover, the mortality of larvae was higher than
that of adults when both developmental stages were exposed
to the same concentration of the active ingredient. In the 18
treatments used in larval bioassays (nine agrochemicals for C.
externa and nine for C. quadrifasciata), 10 treatments were
classified as harmful (class 4), and three were classified as
harmless (class 1). In contrast, 18 treatments used in adult
bioassays, six treatments were classified as class 4, and nine
were considered harmless.

Further testing is required in semi-field and field con-
ditions using products classified as moderately harmful
(class 3) or harmful (class 4) because toxic effects can be
attenuated by the mobility of predatory insects and
environmental conditions (Hassan 1988). It should be
noted that the results of this study are relevant to peach
cultivation since effective insecticides should be prior-
itized in IPM programs, thus contributing to the biological
control performed by C. externa and C. quadrifasciata in
peach orchards.

Our results suggest that chlorantraniliprole is more
indicated to peach production because the product is
harmless to the larval stage of both predatory insect species;
moreover, was longer during the larval-adult stage of C.
externa, and this characteristic is crucial because this insect
has predatory behavior only in the larval stage. Lime sulfur
should be used sparingly in peach orchards, especially in
the presence of larvae, because they are more sensitive to
this product than adults. The results on the impact of lime
sulfur in the two insect species were conflicting because this
product caused high mortality of both stages of C. externa.
In C. quadrifasciata, the product increased the larval-adult
stages but did not cause high mortality. The organopho-
sphates fenitrothion and malathion caused high mortality of
both insect species and, therefore, should not be used in
peach orchards.
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