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Abstract
Bacillus thuringiensis (Bt)-based bioinsecticides and transgenic plants expressing proteins with insecticidal activity (Cry and
Vip) have been successfully used in several integrated pest management programs worldwide. Lepidoptera comprise some of the
most economically important insect pests of the major agricultural crops. In this study, the toxicity of 150 Bt strains was evaluated
against Helicoverpa armigera (Hübner) larvae. Eight strains (426, 520B, 1636, 1641, 1644, 1648, 1657 and 1658) showed high
insecticide activity against H. armigera and were therefore tested against Anticarsia gemmatalis (Hübner), Spodoptera
cosmioides (Walker), Chrysodeixis includens (Walker), and Diatraea saccharalis (Fabricius) larvae. Our results showed that
most of the Bt strains were also toxic to these lepidopteran species. The biochemical and molecular analyses of these strains
revealed that they had a similar protein profile; however, their cry and vip gene contents were variable. In addition, the median
lethal concentration (LC50) of the selected strains indicated that the strains 1636, 1641, and 1658 were the most effective against
H. armigera, showing LC50 values of 185.02, 159.44, and 192.98 ng/cm2, respectively. Our results suggest that the selected Bt
strains have great potential to control the lepidopteran pests H. armigera, A. gemmatalis, D. saccharalis, S. cosmioides, and
C. includes.
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Introduction

Helicoverpa armigera (Lepidoptera: Noctuidae) (Hübner) is a
polyphagous pest of many economically important crops and
is widely distributed around the world. After the first reports
ofH. armigera in Brazil in 2013 (Czepak et al. 2013; Tay et al.
2013), this insect pest has successfully spread to several coun-
tries of South and Central America (Murúa et al. 2014;
Kriticos et al. 2015; Arneodo et al. 2015; Arnemann et al.
2016), increasing its geographical distribution that comprised
Europe, Africa, Asia, and Australasia (Tay et al. 2013).

The application of synthetic insecticides has been one of
the most common methods used to controlH. armigera; how-
ever, multiple cases of resistance to insecticides have been

reported in H. armigera populations due to heavy selection
pressure (www.pesticideresistance.org) (Mota-Sanchez and
Wise 2021). In addition, the use of synthetic insecticides
may result in negative environmental impacts, including off-
target effects on beneficial insects (Brühl and Zaller 2019;
Siviter and Muth 2020).

Besides H. armigera, other lepidopteran insects such as
Anticarsia gemmatalis (Hübner) (Lepidoptera: Erebidae),
Chrysodeixis includens (Walker) (Lepidoptera: Noctuidaea),
Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidaea),
and Diatraea saccharalis (Fabricius) (Lepidoptera:
Crambidae) are relevant pests of soybean, cotton and maize.
These insects compromise the productivity of the main
Brazilian agricultural crops owing to feeding damage as well
as increase the production costs associated with pest manage-
ment (Lemes et al. 2014; Girón-Pérez et al. 2014; Bacalhau
et al. 2020). Therefore, alternative strategies that can be de-
ployed not only in the management of H. armigera but also
other lepidopteran species are highly desirable to reduce crop
losses.

Bacillus thuringiensis (Berliner) (Bacillales: Bacillaceae)
(Bt) is an aerobic Gram-positive bacterium able to produce
insecticidal crystal proteins (ICPs) during the sporulation
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phase (Schnepf et al. 1998). The pesticidal proteins synthe-
sized as crystalline parasporal inclusions comprise two clas-
ses, Crystal (Cry) and Cytolytic (Cyt) proteins, which are
classified in different subclasses based on their amino acid
sequence homology and structural similarity (Crickmore
et al. 2020). In addition, Bt can synthesize another type of
pesticidal protein that has been designated as vegetative insec-
ticidal protein (Vip). It is produced during the vegetative
growth phase and subsequently secreted into the culture me-
dium (Estruch et al. 1996). The vegetative insecticidal pro-
teins include the classes Vip (Vip3), Vpa (Vip2), and Vpb
(Vip1 and Vip4) that do not display sequence or structural
homology with the Cry or Cyt proteins (Crickmore et al.
2020). These pesticidal proteins have demonstrated activity
toward different insect species, especially lepidopterans
(Estruch et al. 1996; Warren 1997; Palma et al. 2013;
Chakroun et al. 2016).

The high effectiveness of the Bt pesticidal proteins against
the target insect species associated with the fact that these
pesticidal proteins usually do not show adverse effects on
non-target organisms make them an attractive strategy to sup-
press insect pest populations (Koch et al. 2015). Bt
bioinsecticides and Bt transgenic plants have been extensively
used as alternative insect control approaches, thereby promot-
ing more sustainable agriculture (Bravo et al. 2011; Bacalhau
et al. 2020). This is reflected by the increasing area cultivated
with Bt transgenic plants worldwide and the substantial adop-
tion of Bt bioinsecticides to improve the control of insect pest
populations that represent a threat to agriculture (Lacey et al.
2015; ISAAA GM Approval Database. http://www.isaaa.org/
gmapprovaldatabase 2018).

The present study aimed to identify Bt strains that can
be used in the development of effective and sustainable
strategies to control the lepidopterans H. armigera,
A. gemmatalis, D. saccharalis, S. cosmioides, and
C. includes. We identified eight Bt strains highly toxic
to H. armigera. These strains were further tested against
A. gemmatalis, D. saccharalis, S. cosmioides, and
C. includes and molecularly characterized.

Material and methods

Insects

The H. armigera , A. gemmatal is , C. includens ,
D. saccharalis, and S. cosmioides larvae used in this study
were obtained from established colonies maintained in the
Laboratory of Biological Control, Embrapa Maize and
Sorghum Research Center. The insect colonies had been
reared for several generations at standard laboratory condi-
tions of 25±2°C, 70±10% relative humidity, and a photoperi-
od of 12 h:12 h (light:dark).

Bt strains

A total of 150 Bt strains from EmbrapaMaize and Sorghum Bt
Collection were analyzed in this study. The strains were pre-
viously isolated from soil samples collected in different re-
gions of Brazil and stored as pellets in a freezer at − 20°C
(Valicente and Barreto 2003). The strain subsp. kurstakiHD-1
was provided by the United States Department of Agriculture
(Columbus, Ohio, USA). The strain HD-1 was selected to be
used as a reference strain in the bioassays because it has been
employed in several commercial biopesticides directed
against lepidopteran insects.

Selective bioassays

To select Bt strains with high insecticidal activity against
H. armigera larvae, we performed surface contamination bio-
assays with the bacterial culture containing spore/crystal mix-
ture. Each Bt strain was cultured in 40 mL of Luria–Bertani
(LB) medium enriched with salts and glucose (Valicente and
da Silva 2014) at 200 rpm, 28±2°C for 72 h. A sample of each
bacterial culture was observed by a phase-contrast microscope
to confirm the Bt sporulation and the presence of crystals.
Bioassays were carried out by spreading 150 μL of the bacte-
rial culture on the top and lateral surface of the artificial diet
with 1 cm3 placed into a plastic container. The treated diet was
allowed to air dry at room temperature, and first-instar larvae
were individually placed into each container. The Bt strain
HD-1 and autoclaved deionized water were used as positive
and negative controls, respectively. The plastic containers
were kept in a climate-controlled room at 25±2°C, 70±10%
relative humidity, photoperiod of 12 h:12 h (light:dark), and
larval mortality was recorded after 7 days. Each bioassay was
performed in triplicate with 24 larvae per replicate. The Bt
strains that caused mortality above 75% against H. armigera
larvae were evaluated against A. gemmatalis, C. includens,
D. saccharalis, and S. cosmioides larvae as described above.
The artificial diets used in the bioassays were prepared as
reported in Table S1.

Dose-mortality bioassays

The insecticidal efficacy of the Bt strains against H. armigera
larvae was evaluated using dose-mortality bioassays. The Bt
strains were streaked on sporulation medium (Valicente and
da Silva 2014) and incubated at 28±2°C for 96 h. Posteriorly,
the bacterial cells were harvested, frozen overnight, lyophi-
lized for 18 h, and used to prepare ten dilutions containing
spore/crystal mixture (from 20 to 2000 ng/cm2). A total vol-
ume of 35 μL of each dilution was applied uniformly over the
diet previously poured into the wells of the plastic bioassay
trays (Bio-BA 128©; BioServ) and air-dried at room temper-
ature. One first instar larva was placed into each well, and the
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trays were sealed with self-adhesive plastic sheets
(BIO-CV-16; CD International Inc., Pitman, NJ, USA). The
bioassay trays were placed in a climate-controlled room at 25
±2°C, 70±10% relative humidity, and a photoperiod of 12
h:12 h (light:dark). The Bt strain HD-1 was used as a positive
control and autoclaved deionized water as a negative control.
Larval mortality was recorded after 7 days. Three replicates
with 24 larvae were used for each of the ten dilutions. The
lethal concentration values (LC50 and LC90) were calculated
by probit analysis (Finney 1971) using PoloPlus software.
LC50 and LC90 values were considered significantly different
when fiducial limits did not overlap.

Characterization of crystal protein (SDS–PAGE)

The Bt strains were grown in 5 mL of modified LBmedium at
200 rpm, 28±2°C for 96 h, and then the proteins were extract-
ed from 1.5 mL of grown culture as described previously
(Lecadet et al. 1992). A volume of 15 μL of the protein sam-
ples was mixed with 5 μL of Bolt™ LDS Sample Buffer 4×
(Life Technologies), boiled for 5 min, and separated in a Bolt®

4–12% Bis-Tris Plus gel using Bolt™ MES SDS Running
Buffer (Life Technologies), following manufacturer’s instruc-
tions. The molecular mass of the proteins was determined
using the protein ladder SeeBlue® Plus2 Pre-Stained
Standard (Life Technologies).

Screening of cry and vip genes

The DNA extraction was performed as described by Shuhaimi
et al. (2001) with some adaptations. PCR reactions consisted
of 3 μL of genomic DNA (90 ng), 0.25 μL of each primer (10
μM), 0.5 μL of dNTPs (10 mM), 0.4 μL ofMgCl2 (25 mM), 1
μL of 10× reaction buffer, 0.2 μL of Taq DNA polymerase
(Kapa Biosystems) and autoclaved deionized water to a final
volume of 10 μL. PCR amplifications were carried out in an
Eppendorf Mastercycler thermal cycler as follows: an initial
denaturation at 95°C for 2 min, followed by 30 cycles of
amplification with 1 min of denaturation at 95°C, 1 min of
annealing at 45–57°C, 1 min of extension at 72°C, and a final
extension at 72°C for 10 min. PCR amplifications using the
vip and cry2 primers were carried out following conditions
d e s c r i b e d p r e v i o u s l y (B e n - d o v e t a l . 1 9 9 7 ;
Hernández-Rodríguez et al. 2009). The PCR products were
visualized on 1–2% agarose gel using the L-PIX Molecular
Image transilluminator (Loccus Biotecnologia). The primers
used in this study are listed in Table 1.

Statistical analysis

After arcsine square root transformation, the mortality data
were subjected to one-way ANOVA followed by Tukey’s test
to identify differences among the treatments, and values ofP <

0.05 were considered statistically significant. Statistical anal-
yses were conducted using custom scripts in R version 3.6.3
(R Core Team 2019). Data were expressed as mean percent-
age mortality ± standard error of the mean (SE).

Results

Insect bioassays

Eight out of 150 Bt strains examined against H. armigera
through the selective bioassays showed larval mortality great-
er than 75% (426, 520B, 1636, 1641, 1644, 1648, 1657, and
1658), corresponding to 5.33% of the strains (Table 2).
Dose-response bioassays were performed to evaluate the
LC50 value of the selected Bt strains. Comparatively, the strain
1641 was approximately 10-fold more toxic to H. armigera
larvae than the strain 426, with LC50 values of 159.44 ng/cm

2

and 1697.81 ng/cm2, respectively (Table 3). The strains 1641,
1636, and 1658 were the most effective against H. armigera,
with LC50 values of 159.44, 185.02 and 192.98 ng/cm2, re-
spectively. The LC50 values of these strains were statistically
similar to the strain HD-1 that showed LC50 of 192.3 ng/cm

2.
The LC50 of the strain 1644 was not determined since the
highest concentration tested (2000 ng/cm2) was not enough
to kill 50% of the insects.

The insecticidal activity of the Bt strains that caused mor-
tality above 75% in H. armigera was assayed against
A. gemmatalis, D. saccharalis, S. cosmioides, and
C. includens. Our results showed that most of the strains were
also active against the other lepidopteran species tested, with
mortality superior to 75% and statistically similar to the strain
HD-1. However, the strain 1648 did not show insecticidal
activity against A. gemmatalis, S. cosmioides and
C. includes, and the strain 520B was not toxic to
S. cosmioides and D. saccharalis. In addition, the strains
1648 and 426 displayed relatively low toxicity against
D. saccharalis, while the strain 426 showed low activity
against S. cosmioides (Table 2).

Molecular characterization and SDS-PAGE protein
profile

The PCR amplification using specific primers revealed that
the cry and vip gene contents of the Bt strains were variable
(Table 4). The vip2, cry1Fa/1Fb, and cry2Ac genes were the
less frequent occurring in three strains, while cry1B, cry2Ab2,
and vip3 genes showed the highest frequency as they were
found in eight strains, followed by cry2Aa1 and vip1 that were
present in seven strains. The strains 520B and 1657 harbored
vip1, vip2 and vip3 genes, whereas the other strains harbored
at least one vip gene.
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Table 1 Characteristics of
the primers used to detect the cry
and vip genes in the Bt strains.

Genes
recognized

Sequence (5′-3′) Tm
(°C)

Size
(bp)

Reference

cry1Ac F-GTTAGATTAAATAGTAGTGG 53 180 Cerón et al. 1994

R-TGTAGCTGGTACTGTATTG

cry1B F-CTTCATCACGATGGAGTAA 55 367 Cerón et al. 1994

R-CATAATTTGGTCGTTCTGTT

cry1C F-AAAGATCTGGAACACCTTT 55 130 Cerón et al. 1994

R-CAAACTCTAAATCCTTTCAC

cry1D F-CTGCAGCAAGCTATCCAA 55 290 Cerón et al. 1994

R-ATTTGAATTGTCAAGGCCTG

cry1Ea/cry1Eb F-GGAACCAAGACGAACTATTGC 57 147 Cerón et al. 1995

R-GGTTGAATGAACCCTACTCCC

cry1Fa/cry1Fb F-TGAGGATTCTCCAGTTTCTGC 57 177 Cerón et al. 1995

R-CGGTTACCAGCCGTATTTCG

cry1G F-ATATGGAGTGAATAGGGCG 50 235 Cerón et al. 1995

R-TGAACGGCGATTACATGC

cry2Aa1 F-GTTATTCTTAATGCAGATGAATGGG 45 498 Ben-Dov et al. 1997

R-GAGATTAGTCGCCCCTATGAG

cry2Ab2 F-GTTATTCTTAATGCAGATGAATGGG 45 546 Ben-Dov et al. 1997

R-TGGCGTTAACAATGGGGGGAGAAAT

cry2Ac F-GTTATTCTTAATGCAGATGAATGGG 45 725 Ben-Dov et al. 1997

R-GCGTTGCTAATAGTCCCAACAACA

vip1 F-TTATTAGATAAACAACAACAAGAATA
TCAATCTATTMGNTGGATHGG

50 585 Hernández-Rodríguez
et al. 2009

R-GATCTATATCTCTAGCTGCTTTTTCAT
AATCTSARTANGGRTC

vip2 F-GATAAAGAAAAAGCAAAAGA
ATGGGRNAARRA

50 845 Hernández-Rodríguez
et al. 2009

R-CCACACCATCTATATACAGTAATATTT
TCTGGDATNGG

vip3 F-TGCCACTGGTATCAARGA 47 1621 Hernández-Rodríguez
et al. 2009

R-TCCTCCTGTATGATCTACATATGCAT
TYTTRTTRTT

(F) Forward; (R) Reverse

Table 2 Toxicity of the Bt strains
against different lepidopteran
species.

Strain Helicoverpa
armigera

Anticarsia
gemmatalis

Spodoptera
cosmioides

Chrysodeixis
includens

Diatraea
saccharalis

HD-1 100±0.00 c 100±0.00 b 100±0.00 d 100±0.00 c 96.79±1.62 c

426 100±0.00 c 100±0.00 b 27.29±8.22 b 100±0.00 c 43.91±14.50 b

520B 98.33±1.67 c 100±0.00 b 13.13±5.37 ab 85.55±1.12 b 12.50±6.49 ab

1636 98.55±1.45 c 98.55±1.45 b 100±0.00 d 100±0.00 c 100±0.00 c

1641 98.55±1.45 c 98.24±1.75 b 76.99±8.18 c 86.75±4.55 bc 95.65±4.35 c

1644 100±0.00 c 100±0.00 b 95.65±4.35 cd 96.96±3.03 bc 100±0.00 c

1648 98.06±1.94 c 23.33±13.02 a 8.33±4.81 ab 7.19±3.73 a 40.68±6.34 b

1657 78.46±3.92 b 100±0.00 b 91.30±2.51 cd 97.10±2.90 bc 100±0.00 c

1658 98.55±1.45 c 97.91±2.08 b 100±0.00 d 100±0.00 c 97.09±1.46 c

Control 5.55±3.67 a 7.19±3.73 a 2.77±2.77 a 4.34±4.34 a 0.00±0.00 a

Percentage of mortality values (means ± SE) followed by the same letter in the column do not differ statistically
(one-way ANOVA followed by Tukey’s test at P < 0.05)
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Protein analyses by SDS-PAGE revealed that the strains
426, 520B, 1636, 1641, 1644, 1648, 1657, and 1658 have a
protein profile similar to the strain HD-1 with the presence of
two principal proteins of about 140 and 55 kDa ( Fig. 1).
These molecular masses are related to the Cry1, Cry9 (130–
140 kDa), and Cry2 (50–75 kDa) protein classes and could
reflect the insecticidal activity of the strains since these classes
of Cry proteins usually show toxicity toward lepidopteran
species.

Discussion

Currently, several control methods, including synthetic insec-
ticides, Bt crops, biological control and cultural practices have
been adopted in the integrated pest management directed
against the insect pests H. armigera, A. gemmatalis,
S. cosmioides, C. includes, and D. saccharalis to achieve
more effective crop protection (Bortolotto et al. 2015;
Blanco et al. 2016; Mascarin et al. 2018; Vieira et al. 2019).
The economic, environmental and social benefits offered by

the insect-resistant Bt crops and Bt bioinsecticides have driven
increasing adoption of these strategies for controlling a wide
variety of insect pests (Lacey et al. 2015; Dively et al. 2018;
Romeis et al. 2019). However, insect populations can evolve
resistance to Bt pesticidal proteins under field conditions,
compromising the effectiveness of the transgenic plants and
bioinsecticides (Jurat-Fuentes et al. 2021). This scenario
boosts the identification of novel Bt strains as well as genes
that can be applied in such insect management strategies.

In this study, the insecticidal activity of Bt strains was in-
vestigated to find promising strains for the development of
biopesticides against lepidopteran insects. We demonstrated
through the selective bioassays that only 5.3% of the strains
evaluated were highly toxic toH. armigera larvae. In addition,
among the selected strains, 1641, 1636, and 1658 displayed
the highest toxicity againstH. armigera as they had the lowest
LC50 values. Some studies have shown that the proportion of
strains toxic to different lepidopterans is usually low as report-
ed in our study (Valicente and Barreto 2003; Apaydin et al.
2008; Santos et al. 2009; Silva et al. 2012; Azzouz et al. 2015;
Lone et al. 2017).

Table 3 LC50 and LC90 of the Bt strains against first instar larvae of Helicoverpa armigera after 7 days of bioassay.

Strain LC50 (95% FL) (ng/cm2) LC90 (95% FL) (ng/cm2) Slope
±SE

x2 df P-
value

HD1 192.30 (143.91–259.12) a 1500.16 (956.19–2837.46) a 1.43±0.09 11.42 7 0.12

426 1697.81 (957.75–4122.17) b 113070.33 (28991.06–1114099.39) b 0.70±0.09 2.69 6 0.84

520B 1038.46 (703.54–1763.35) b 32318.73 (12864.33–134318.93) b 0.85±0.09 2.16 7 0.95

1636 185.02 (139.19–250.20) a 1198.40 (774.97–2211.50) a 1.57±0.10 9.10 6 0.16

1641 159.44 (127.09–206.36) a 1727.80 (1050.88–3533.70) a 1.23±0.12 3.95 5 0.56

1644 N.D.

1648 898.22 (568.48–1862.44) b 14616.01 (5283.82–95079.79) b 1.05±0.11 9.92 7 0.19

1657 1500.08 (808.41–4339.18) b 54054.12 (13059.16–1024236.37) b 0.82±0.09 10.21 6 0.11

1658 192.98 (150.34–245.35) a 1314.54 (917.58–2146.60) a 1.53±0.11 6.72 6 0.34

LC50 and LC90 values designated by different letters are significantly different due to non-overlap of 95% CIs

N.D. Not determined. Less than 50% mortality was obtained even at concentrations as high as 2000 ng/cm2

Table 4 cry and vip genes present
in the Bt strains. Strains Gene profile

HD-1 cry1Ac, cry2Aa1, cry2Ab2, cry2Ac, vip1, vip3

426 cry1Ac, cry1B, cry1C, cry1D, cry1EA/1Eb, cry1Fa/1Fb, cry2Aa1, vip1

520B cry1B, cry1C, cry1D, cry1Ea/1Eb, cry2Aa1, cry2Ab2, vip1, vip2, vip3

1636 cry1Ac, cry1B, cry1G, cry2Aa1, cry2Ab2, vip2, vip3

1641 cry1Ac, cry1B, cry1D, cry1Ea/1Eb, cry1G, cry2Aa1, cry2Ab2, vip1, vip3

1644 cry1B, cry1C, cry1D, cry2Ab2, cry2Ac, vip1, vip3

1648 cry1B, cry1C, cry1D, cry2Aa1, cry2Ab2, vip3

1657 cry1B, cry1D, cry1Ea/1Eb, cry1Fa/1Fb, cry1G, cry2Ab2, cry2Ac, vip1, vip2, vip3

1658 cry1Ac, cry1B, cry1Fa/1Fb, cry1G, cry2Aa1, cry2Ab2, vip1, vip3
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We found that the strains with toxicity against
H. armigera varied considerably their biological activity
against A. gemmatalis, D. saccharalis, S. cosmioides, and
C. includens. The strain 1648 had low or no toxicity to
these other lepidopteran species, whereas the strains 1636,
1641, 1644, 1657, and 1658 caused high levels of mor-
tality in all these species. Furthermore, the strains 426 and
520B were not effective against D. saccharalis and
S. cosmioides. Our results demonstrated that while some
Bt strains had a broad spectrum of activity against the
lepidopteran pests, other strains were more specific.
These results indicate that evaluation of the insecticidal
activity of the Bt strains against the target insects through
laboratory assays is a critical step to select the strains that
cause high levels of mortality and to determine the feasi-
bility of their use as biological control agents.

The differential susceptibility of the lepidopteran spe-
cies to the Bt strains tested in our study may be due to
the differences among the receptors present in their midgut
since the existence of specific receptors for the Cry and
Vip pesticidal proteins is essential for their activity
(Pardo-López et al. 2013; Chakroun et al. 2016). The pH,
protease composition and activity of the larval midgut af-
fect the solubilization and proteolytic processing of the Cry
and Vip proteins. Accordingly, differences in these
features may also lead to variations in the susceptibility
(Fortier et al. 2007; Talaei-Hassanloui et al. 2014;
Jurat-Fuentes and Crickmore 2017; Kunthic et al. 2017).
In addition, the synergistic or antagonistic interactions

between the Cry and Vip proteins, as well as the expression
level of these proteins are factors that can influence the
toxicity of Bt strains (Chen et al. 2014; Lemes et al. 2014).

Bt strains active against more than one insect pest are
especially attractive for the development of biopesticides
because a broader range of insect species could be con-
trolled with their use. Thus, this is an important aspect
that should be considered when selecting the Bt strains.
The Cry and Vip proteins can be order-specific and even
species-specific (Chakroun et al. 2016); however, strains
that present diversity of genes might have increased ac-
tivity and target a wider spectrum of insect pests.
Moreover, the presence of several cry and vip genes that
express pesticidal proteins with different modes of action
can prevent or at least delay the development of resistance in
the target insect populations. In agreement with our results
indicating that the strains harbor genes coding for Cry1,
Cry2 and Vip3 proteins, some studies with H. armigera,
A. gemmatalis, D. saccharalis, S. cosmioides, and
C. includens have evaluated the activity of different proteins
belonging to these classes, and demonstrated high levels of
toxicity (Ruiz de Escudero et al. 2014; Sebastião et al. 2015;
Mushtaq et al. 2017; Falcon et al. 2019; Bel et al. 2019).

We found that the Bt strains 426, 520B, 1636, 1641,
1644, 1648, 1657, and 1658 showed a high diversity of
cry and vip genes; however, we cannot rule out the pos-
sibility that other genes that are present in the strains but
were not screened in our study may contribute to the
overall toxicity of these strains. Further studies at the ge-
nomic, transcriptomic, and proteomic levels will be re-
quired to accurately identify all cry and vip genes that
may be associated with the toxicity of these strains.
Nonetheless, our results suggest that the selected strains
might be a potential source of genes for the development
of insect-resistant transgenic crops.

In this study we report the identification and characteriza-
tion of Bt strains that have great potential to be employed in
the formulation of bioinsecticides for the management of
H. armigera, A. gemmatalis, D. saccharalis, S. cosmioides,
and C. includes. Further studies in greenhouse and field con-
ditions should be performed to evaluate the effectiveness of
these strains in suppressing the target insect pest populations
under agricultural environments.
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