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ABSTRACT

Successful mitigation efforts entail accurate estimation of on-farm emission and prediction models can be an
alternative to current laborious and costly in vivo CH4 measurement techniques. This study aimed to: (1) collate
a database of individual dairy cattle CH, emission data from studies conducted in the Latin America and
Caribbean (LAC) region; (2) identify key variables for predicting CH, production (g d~") and yield [g kg ™" of
dry matter intake (DMI)]; (3) develop and cross-validate these newly-developed models; and (4) compare
models' predictive ability with equations currently used to support national greenhouse gas (GHG) inventories.
A total of 42 studies including 1327 individual dairy cattle records were collated. After removing outliers, the
final database retained 34 studies and 610 animal records. Production and yield of CH, were predicted by fitting
mixed-effects models with a random effect of study. Evaluation of developed models and fourteen extant
equations was assessed on all-data, confined, and grazing cows subsets. Feed intake was the most important
predictor of CH4 production. Our best-developed CH,4 production models outperformed Tier 2 equations from
the Intergovernmental Panel on Climate Change (IPCC) in the all-data and grazing subsets, whereas they had
similar performance for confined animals. Developed CH, production models that include milk yield can be
accurate and useful when feed intake is missing. Some extant equations had similar predictive performance to
our best-developed models and can be an option for predicting CH, production from LAC dairy cows. Extant
equations were not accurate in predicting CHy yield. The use of the newly-developed models rather than extant
equations based on energy conversion factors, as applied by the IPCC, can substantially improve the accuracy of
GHG inventories in LAC countries.

1. Introduction

Methane (CH,) is a powerful short-lived climate forcer (IPCC, 2018) and
decreasing its emission is crucially important for limiting global warming to
2.0 °C above pre-industrial levels as defined in the Paris Agreement (UN
General Assembly, 2015; Arndt et al., 2021). Successful mitigation efforts en-
tail accurate estimation of on-farm emission (Niu et al., 2018). Accurate esti-
mation of CH, emissions is also necessary to enable governments to improve
their greenhouse gas (GHG) inventories, which is the foundation for policy
makers to develop mitigation plans (Moraes et al., 2014).

Several empirical prediction models have been developed (Niu et al.,
2018; van Lingen et al., 2019) as an alternative to current in vivo CH, mea-
surement techniques (Hammond et al., 2016). These models can be useful
to estimate enteric CH,4 emissions without undertaking extensive and costly
experiments (Patra and Lalhriatpuii, 2016; Hristov et al., 2018). Recent
meta-analyses, however, were based primarily on data from the U.S. and
the E.U. with no or minimal data from the Latin America and Caribbean
(LAC) region (Moraes et al., 2014; Niu et al., 2018; van Lingen et al.,
2019). These analyses concluded that region-specific models are more ac-
curate in predicting enteric CH4 production than global models, mainly
due to specifics regarding animal diets and feed management systems
(Niu et al., 2018; van Lingen et al., 2019).

Dairy cattle in the LAC region emitted 54 MT of CO, equivalents from
enteric CH, fermentation, comprising 14.3% of global dairy cattle emis-
sions in 2018 (FAOSTAT, 2020). Two CH, modeling studies were recently
conducted using databases from LAC countries (Benaouda et al., 2020;
Ribeiro et al., 2020). These studies, however, used limited databases
which resulted in models with moderate accuracy and restricted use
given the wide diversity of dairy production systems found in the region.
In this context, the objectives of the current study were to: (1) collate a da-
tabase of individual dairy cattle enteric CH, emission data from studies con-
ducted in the LAC region; (2) identify key dietary and animal variables for
predicting enteric CH, production (g d 1) and yield [g kg ! of feed dry
matter intake (DMID)]; (3) develop and cross-validate these newly-
developed models; and (4) compare their predictive ability with extant
equations, including both from IPCC (1997, 2006), which are currently
used to support national GHG inventories in the LAC region.

2. Material and methods
2.1. Database

The LAC methane project is an international collaborative initiative spe-
cifically designed to involve animal scientists from the LAC region (Congio

etal., 2021). The resultant dairy cattle CH, database collated in the frame
of the LAC methane project included 1327 individual dairy cattle records
from 42 published (n = 15) and unpublished (n = 27) studies conducted
from 2012 to 2021 by researchers from eight countries in the LAC region
(Brazil, n = 788 records from 20 studies; Costa Rica, n = 182 from 2 stud-
ies; Colombia, n = 135 from 9 studies; Chile, n = 81 from 2 studies; Peru,
n = 57 from 3 studies; Argentina, n = 36 from 1 study; Mexico, n = 32
from 4 studies; and Uruguay, n = 16 from 1 study). The database com-
prised records of enteric CH, production along with corresponding DMI,
body weight (BW), dietary contents of neutral-detergent fiber (NDF),
ether extract (EE), crude protein (CP), ash, gross energy (GE) and forage.
It also included milk yield (MY), and contents of milk fat (MF) and milk
(crude) protein (MP). Studies containing missing dietary parameters were
completed according to the literature as follows. Dietary GE was calculated
(n = 327) based on an equation derived from Weiss and Tebbe (2019): GE
(MJ kg~ ' DM) = {[(CP (%) x 0.056) + (EE (%) x 0.094)] + [(100—-CP—
EE - ash (%)) x 0.042] x 4.184}. For estimating dietary EE (n = 121),
local literature was used according to each study. When MY and its compo-
sition were known, the energy and protein-corrected milk (EPCM) was
calculated according to NRC (2001): EPCM (kg d = [(0.327 x kg of
milk yield) + (12.95 x kg of fat yield) + (7.20 x kg of protein yield)].
Feeding level [FL. = DMI (kg) + BW (kg) x 100], CH, yield [CH, yield
(gkg 1) = CH, production (gd ') + DMI (kg d )], GE intake [GEI =
DMI (kg) x dietary GE (MJ kg~ 1] and CH,4 conversion factor [Y,,; CH,4
production (g d™1) x 0.05565 + GEI (MJd ') x 100)] were calculated
for all records.

Records with missing CH, yield were removed from the database
(n = 135). Data from each study were graphically evaluated and
eight studies (n = 292) were removed due to negative relationships
between CH, production and DMI (Hristov et al., 2018). In addition,
treatments containing inclusion levels of feed supplements and
additives with known anti-methanogenic effects (e.g., lipid supple-
mentation, monensin, tannin-extracts) were also removed (n = 152).
Other outliers were screened using the interquartile range method
(Zwillinger and Kokoska, 2000) based on CH4 production and yield,
Y., DMI, GEI, BW, MY, EPCM, MF, and MP. A factor of 1.5 for ex-
tremes was used in constructing markers to identify outliers (Niu
et al., 2018). After removing all outliers, the final database retained
34 studies and 610 individual animal records, 46% of the original
database. Niu et al. (2018) and van Lingen et al. (2019), using a sim-
ilar approach for dairy and beef cattle, retained 49 and 50%, respec-
tively, of the observations in their original databases. The complete
data bibliography of the final database is provided in Supplementary
Material.
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2.2. Model development

Model development was performed using a sequential approach by in-
crementally adding different levels of variables to develop models with in-
creasing complexity (Niu et al., 2018). For CH, production, the first step
included simple regression models based on DMI, GEI, MY, or EPCM. In
the second step, multiple regression models tested combinations of DMI
or GEI with FL, CP, EE, or NDF separately. Both MF and MP were tested
with MY or EPCM. Lastly, individual models were tested by combining: a
selection of dietary parameters, a selection of DMI or GEI with all dietary
parameters, a selection of all available variables, and a selection of all avail-
able variables except DMI or GEI. Methane yield regression models were
developed without DMI as predictor because this variable already has
been used for the calculation of reported CH, yield (Niu et al., 2018). Sim-
ple CH, yield regression models were based on BW, FL, dietary contents of
NDF, EE, and CP, MY, and EPCM. In the second step, multiple regression
models tested combinations of MY or EPCM with milk composition param-
eters. Then, additional multiple CH, yield regression models tested a selec-
tion of dietary parameters and a selection of all the available variables
except DMI or GEIL

Production and yield of CH,4 were predicted by fitting mixed-effects
models using Ime4 (Bates et al., 2015) package of R statistical software (R
Core Team, 2020; version 4.0.2) according to the following equation:

Yii = ﬁ() +/}",X,'” +ﬁ2X1JZ +... +/ijiik + SJ' + 8;‘,‘

where Y is the response variable of CH, production (g d ™ 1 or CH, yield (g
kg ! DMI); By is the fixed effect of intercept; Xy; to X are the fixed effects
of predictor variables and f3; to 8 are the corresponding slopes; S; and e;; are
the random effect of study and residual error, respectively. Covariates that
play a key role in predicting CH, variables were selected for multiple re-
gression models using the backward multistep selection approach (van
Lingen et al., 2019). The Bayesian information criterion (BIC) was com-
puted, and models with the smallest BIC were selected because smaller
BIC indicates a better tradeoff between the goodness of fit and model com-
plexity. Additionally, the presence of multicollinearity of fitted models was
checked using the variance inflation factor (VIF), and models were selected
only if all predictor variables had a VIF lower than 3 (Zuur et al., 2010).

2.3. Cross-validation and model evaluation

The predictive accuracy of fitted CH,4 prediction models was evaluated
using a leave-one-out cross-validation (James et al., 2014). Studies were
considered as folds and, in each simulation, one study was removed as a
testing set and the remaining were used as a training set (Ribeiro et al.,
2020). The predictions of all folds were used to conduct the model evalua-
tion. Equations based on energy conversion factors from IPCC (1997,
2006), currently used to support national GHG inventories in the LAC re-
gion, were evaluated. Furthermore, extant equations from Yan et al.
(2000), Ellis et al. (2007), Hristov et al. (2013), Nielsen et al. (2013),
Ramin and Huhtanen (2013), Moraes et al. (2014), Storlein et al. (2014),
Charmley et al. (2016), Patra (2017), Niu et al. (2018), Benaouda et al.
(2020), and Ribeiro et al. (2020) were also evaluated. The best-
performing equation from each study was selected based on the availability
of predictors in the current database. Data from studies in the current data-
base used to develop the above extant equations were excluded from eval-
uations of those extant equations to ensure independent evaluation (van
Lingen et al., 2019). Evaluation of developed models and extant equations
was assessed on complete (all-data), confined, and grazing cows subsets.

A combination of metrics was used to assess model performance. The
mean square prediction error (MSPE) was calculated according to Bibby
and Toutenburg (1977) as:

,n (0, - P)
MSPE==L
n
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where 0 is the observed value of the response variable for the i observa-
tion, P; is the predicted value of the response variable for the i" observation,
and n is the number of observations. The root MSPE (RMSPE) was calcu-
lated and used to assess overall model prediction accuracy. It was expressed
as a proportion of observed CH,4 production or yield means, and smaller
RMSPE indicates better model performance. The RMSPE to standard devi-
ation of observed values ratio (RSR), used to assess the specific variability
of the data used for evaluation (Moriasi et al., 2007), was calculated as:

RMSPE
So

RSR =

where S, is the standard deviation (SD) of observed values. Smaller RSR in-
dicates less variation in the prediction error relative to the standard devia-
tion of the observed values. In the current analysis, we considered
unsuitable models that presented RMSPE greater than the SD of observed
values (RSR = 1.00) (van Lingen et al., 2019). Additionally, the MSPE
was decomposed into sources of errors including mean bias (MB) and
slope bias (SB), measures of precision and accuracy, respectively (Bibby
and Toutenburg, 1977), of which were calculated as:

MB = (P - 0)’
SB= (S, —rxS,)

where P and O are the predicted and observed CH, parameter means, S, is
the SD of the predicted values, and r is the Pearson correlation coefficient.
Finally, the concordance correlation coefficient (CCC; Lin, 1989) was calcu-
lated as follows:

CCC=rxC,

where Cj, is the bias correction factor. It is a metric that accounts for
precision and accuracy, and values closer to 1 indicate better model
performance.

3. Results
3.1. Database

Summary statistics for all-data, confined, and grazing subsets that in-
cluded DMI, BW, FL, dietary nutrient composition, milk parameters, and
CH, emission variables are shown in Table 1. Overall, the all-data subset
was mostly comprised of confined rather than grazing animals (330 vs.
280 records). The confined subset was composed of 80% lactating and
20% dry cows, whereas the grazing subset included 99% of lactating
dairy cows. Confined animals were heavier and comprised mostly
Holstein x Gyr (49%), Holstein (27%), and Gyr (16%). Grazing dairy
cows were predominantly Holstein x Jersey (40%), Holstein (33%), and
Brown Swiss (8%). The main forage types for confinement systems were
corn silage (58%), corn silage plus tropical hays (16%), fresh-cut forage
(Pennisetum clandestinum or Saccharum officinarum, 10%), and corn silage
plus temperate hays (8%). Under grazing, typical pastures were composed
by Pennisetum spp. (31%), Lolium spp. (21%), Megathyrsus maximus (17%),
Urochloa spp. (16%), Medicago sativa (8%), or Festuca spp. (6%). Forage
and NDF contents were markedly higher for grazing than confined dairy
cows. Additional particularities were observed between subsets. Methane
emissions were estimated primarily using respiration chambers (60%)
and secondly through sulfur hexafluoride (SFs; 39%) under confinement,
whereas SFg (86%) was the most used technique under grazing. Still, DMI
was estimated gravimetrically (100%) and using markers (89%) in confine-
ment and grazing systems, respectively.
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Table 1
Summary statistics for variables used in the analysis of all-data, confined, and grazing subsets of the Latin America and Caribbean dairy cattle database.
Item® All-data Confined Grazing
n® Mean Min” Max” sp® n Mean Min Max SD n Mean Min Max SD
DMI (kg dfl) 610 14.7 4.50 25.2 4.52 330 14.8 4.50 25.2 4.78 280 14.5 5.64 241 4.21
GEI (MJ dfl) 610 262 85.0 445 825 330 268 85.0 445 87.3 280 255 95.0 427 759
BW (kg) 610 520 291 1021 91.4 330 542 352 1021 91.2 280 494 291 694 84.7
FL (DMI as % BW) 610 2.82 0.97 5.19 0.770 330 273 0.97 4.59 0.765 280 293 1.07 5.19 0.762
Diet composition (% DM)
NDF 610 41.4 16.1 67.7 9.75 330 37.3 22,6 60.0 8.01 280 46.3 16.1 67.7 9.40
EE 610 3.00 1.40 6.69 0.791 330 3.09 1.40 6.69 0.937 280 2.89 1.61 4.25 0.556
Ccp 610 16.0 7.20 249 2.76 330 15.8 10.5 20.2 2.40 280 16.3 7.20 249 3.10
Ash 610 8.07 3.90 16.6 2.01 330 7.43 4.50 12.7 1.82 280 8.83 3.90 16.6 1.96
GE (MJ kg~ B DM) 610 17.7 15.2 19.3 0.596 330 17.9 15.2 18.9 0.670 280 17.5 16.6 19.3 0.423
Forage 610 67.9 8.1 100 16.7 330 63.0 43.8 94.0 11.0 280 73.6 8.13 100 20.1
Yield (kgd )
MY 539 18.3 1.50 40.1 7.55 263 18.6 4.51 37.8 6.97 276 18.0 1.50 40.1 8.06
EPCM 487 19.8 2.36 41.1 6.75 247 20.0 5.15 33.8 6.49 240 19.6 2.36 41.1 7.01
Milk composition (%)
MF 487 3.88 1.60 7.21 0.817 247 4.18 1.83 6.57 0.728 240 3.58 1.60 7.21 0.793
MP 487 3.27 2.30 4.96 0.373 247 3.33 2.47 4.44 0.364 240 3.22 2.30 4.96 0.375
Methane emissions
CHs (g dfl) 610 309 86.9 612 98.8 330 308 869 594 108 280 309 152 612 86.9
CH, per DMI(g kg l] 610 215 11.9 41.5 4.45 330 20.8 131 30.2 299 280 22.4 11.9 41.5 5.60
Y., (% GEI) 610 6.71 3.71 12.9 1.43 330 6.40 411 9.25 0.902 280 7.08 3.71 12.9 1.81

? DMI = dry matter intake; GEI = gross energy intake; BW = body weight; FL = feeding level; NDF = dietary neutral-detergent fiber; EE = dietary ether extract; CP =
dietary crude protein; GE = dietary gross energy; MY = milk yield; EPCM = energy and protein-corrected milk; MF = milk fat; MP = milk protein; Y, = methane con-

version factor.

b n = number of observations; Min = minimum; Max = maximum; SD = standard deviation.

3.2. Methane production models

Methane production prediction equations and model performance indi-
cators are presented in Table 2. Dry matter intake (Egs. 1, 6, and 11), GEI
(Egs. 2,7, and 12), MY (Egs. 3, 8, and 13), and EPCM (Egs. 4, 9, and 14) in-
dicated a positive relationship with CH, production. Overall, multiple re-
gression models that included dietary parameters and DMI or GEI
(equations not shown) did not increase the predictive ability compared

Table 2

with DMI and GEI simple regressions models in all subsets. Still, the inclu-
sion of MF and MP did not improve MY or EPCM simple regression models
(equations not shown). Multiple regression models including only dietary
parameters had the worst predictive performance among developed equa-
tions in all subsets (equations not shown).

Simple regression models developed on all-data subset including either
DMI (Eq. 1) or GEI (Eq. 2) were of comparable accuracy with negligible sys-
tematic biases (Fig. 1). Still, one-variable models including either MY

Enteric CH, production (g d ') prediction equations and model performance for the all-data, confined, and grazing subsets of the Latin America and Caribbean dairy cattle

database.

Subset Prediction equation™

Model performanceb

Equation

n® RSR RMSPE, MB, SB,% CCC
% %

All-data

(1) 40.7 (11.8) + 18.0(0.592) x DMI

(2) 42.1(11.7) + 1.00 (0.033) % GEI

3 178 (136) + 7.21 (0.547) x MY

4) 153 (14.5) + 8.26 (0.547) x EPCM

5) 30.6 (14.1) + 16.3 (0.838) x DMI + 2.04 (0.522) x EPCM

Confined

(6) 4.28 (12.8) + 19.8 (0.686) x DMI
(7) 7.91 (12.1) + 1.09 (0.037) X GEI
(8) 157 (20.3) + 8.49 (0.745) x MY
@ 130 (19.5) + 9.67 (0.682) x EPCM

610 0.64 20.5 056 0.64 0.76
610 0.63 20.2 0.29 0.86 0.77
539 0.79 23.1 0.83 0.49 0.3
487 0.76 222 049 156 0.57
487 0.67 19.7 017 198 0.74

330 0.45 15.9 445 0.38 0.88
330 0.43 15.1 201 041 0.90
263 0.79 23.6 1.31 060 0.53
247 0.71 21.6 046 275 0.62

(10) — 642 (235) + 20.4 (0.741) x DMI + 34.9 (13.4) x GE + 5.92(4.64) x EE — 4.06 (4.18) x MF + 3.53(8.90) x MP 247 0.45 13.7 1.83 0.30 0.89

Grazing

11 89.3 (20.4) + 15.7 (1.00) x DMI
(12) 87.9(20.9) + 0.892(0.058) x GEI
(13) 203(17.4) + 5.70(0.789) x MY
(14) 185 (20.4) + 6.39 (0.855) x EPCM

280 0.91 25.6 0.83 916 0.48
280 0.91 25.4 0.55 9.38 0.49
276 0.87 247 1.00 0.26 0.37
240 0.89 25.3 1.15 0.17 0.32

(15) -66.7 (446) + 14.2(1.18) x DMI + 1.65 (25.5) x GE-1.59(17.6) x EE + 4.18 (4.26) x ash + 3.06 (0.808) x EPCM +16.0 240 0.95 26.8 0.10 11.31 0.44

(10.6) x MP

2 DMI = dry matter intake (kg d ~"); GEI = gross energy intake (MJ d~"); MY = milk yield (kg d ~'); EPCM = energy and protein-corrected milk (kg d~'); GE = dietary
gross energy (MJ kg~ L DM); EE = dietary ether extract (% DM); MF = milk fat (%); MP = milk protein (%); ash = dietary ash (% DM).

b

n = number of observations used to fit equations and for model evaluation; RSR = RMSPE-observations standard deviation ratio; RMSPE = root mean square prediction

error (% observed CH, production means); MB = mean bias (% MSPE); SB = slope bias (% MSPE); CCC = concordance correlation coefficient.
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Fig. 1. Observed vs. predicted plots for all-data methane production (g d ) prediction equations. Developed models and extant equations are in accordance with Tables 2 and
3, respectively. The blue and black solid lines represent the fitted regression line for the relationship between observed and predicted values, and the identity line (y = x),

respectively.

(Eq. 3) or EPCM (Eq. 4) also had negligible systematic biases but were asso-
ciated with larger RMSPE and RSR as well as smaller CCC compared to
models 1 and 2. Model 5, which included DMI and EPCM, had the smallest
RMSPE among all-data models.

For the confined subset, the simple regression model containing GEI
(Eq. 7) performed slightly better than the DMI model (Eq. 6), with smaller
RMSPE and RSR and larger CCC. Model 9, based on EPCM, had better per-
formance with smaller RMSPE and RSR and larger CCC than the MY simple
model (Eq. 8). The multiple regression model 10 presented the smallest
RMSPE with negligible systematic biases (Fig. 2).

In accordance with the all-data subset, simple regression models includ-
ing either DMI (Eq. 11) or GEI (Eq. 12) had similar overall performance in
the grazing subset. Both models, however, had large SB (Fig. 3). The MY
simple regression (Eq. 13) had the smallest RMSPE and RSR and negligible
systematic biases, followed by model 14, which included EPCM. The multi-
ple regression model 15 performed slightly worse than those previous sim-
ple models from the grazing subset.

Performance of extant equations for predicting enteric CH, production
using all-data, confined, and grazing subsets are respectively shown in
Tables 3, 4, and 5. Equations were ranked by RSR, which is the most appro-
priate statistic for evaluating equations based on different numbers of ob-
servations. Overall, simple equations based on feed intake (i.e., DMI or
GEI) had smaller RSR for predicting enteric CH4 production. Equations

from both Ramin and Huhtanen (2013) and Yan et al. (2000) had the
smallest RSR and RMSPE with negligible systematic biases among all-data
equations (Table 3). The equations by Charmley et al. (2016) and IPCC
(2006) were the third and fourth-ranked RSR with low RMSPE. The IPCC
(2006) equation over-predicted CH, at the high end and under-predicted
it at the low end of production (Fig. 1). From the fifth to the fourteenth
ranked RSR, equations were associated with a large and increasing MB
(Fig. S1). Multiple regression equations from Ribeiro et al. (2020),
Benaouda et al. (2020), and Niu et al. (2018), which included dietary pa-
rameters, had a low predictive ability and were outperformed by simpler
equations in the all-data subset (Table 3).

For the confined subset, the IPCC (2006) Tier 2 equation outperformed
all equations presenting the smallest RMSPE and RSR and the largest CCC,
with negligible systematic biases (Table 4). Equations from Ramin and
Huhtanen (2013), Yan et al. (2000), IPCC (1997), and Charmley et al.
(2016) had similar predictive performance but were associated with either
large MB or SB (Fig. 2). As observed in the all-data subset, multiple regres-
sion equations also had worse overall performance than simpler models in
the confined subset (Fig. S2).

Both equations from Yan et al. (2000) and Ramin and Huhtanen (2013)
had the best predictive performance among all extant equations in the graz-
ing subset (Table 5). The multiple regression equation from Ribeiro et al.
(2020), including GEI, BW, and dietary EE, was the third-ranked equation
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identity line (y = x), respectively.

but had a large MB. The equation from Charmley et al. (2016) was the
fourth-ranked RSR but was associated with large SB (Fig. 3). Lastly, equa-
tions from Moraes et al. (2014), Benaouda et al. (2020), Patra (2017),
and Niu et al. (2018) had RSR > 1.00 (Fig. S3).

3.3. Methane yield models

Methane yield prediction equations and model performance indicators
are shown in Table 6. Negative slope regression coefficients were obtained
for BW (Egs. 16, 17, and 19), FL (Egs. 16, 18, and 19), whereas positive
slope was observed for EPCM (Eq. 16) and dietary GE (Eq. 17). Considering
all subsets, only the FL simple regression model (Eq. 18) developed on the
grazing subset had RSR < 1.00. Multiple regression models including only
dietary parameters as well as combining milk parameters had RSR > 1.00
in all subsets (equations not shown). Model 19, which included both BW
and FL, had the smallest RSR and the largest CCC associated with negligible
systematic biases. The CH, yield extant equation from Niu et al. (2018) pre-
sented RSR > 1.00 in all subsets (Table S1 and Fig. S4).

4. Discussion
Models predicting enteric CH, production in dairy cattle have been pre-

viously published (Nielsen et al., 2013; Moraes et al., 2014; Niu et al.,
2018). These models, however, were mostly developed based on relatively

small databases and/or focused on specific geographic regions that did not
include LAC (e.g., Ellis et al., 2007 comprised only studies from North
America; Nielsen et al., 2013 included only studies from Nordic countries;
Moraes et al., 2014 used only studies from one research station in the
United States). Other studies have focused on tropical regions, but they
were based on relatively small datasets (Benaouda et al., 2020; Ribeiro
et al., 2020), and others using an intercontinental database that included
minimal data from the LAC region (Niu et al., 2018). Previous research pub-
lished by the ‘Global Network’ team reported that enteric CH, production is
more accurately predicted by region- (Niu et al., 2018; van Lingen et al.,
2019) and diet-specific (Benaouda et al., 2019) models; these authors indi-
cated that additional efforts for important animal-producing regions are re-
quired. Our database includes the most available in vivo dairy cattle data
regarding enteric CH4 emission generated by researchers in the LAC region.
Thus, this analysis is the most comprehensive effort to date to develop en-
teric CH, prediction models for dairy cattle managed under LAC conditions.
An additional strength of the present study is the development of CH, yield
models, whereas previous research focused primarily on CH, production.
Overall, CH, yield and Y,, averaged 21.5 g kg~ ' DMI and 6.7% in the
current database, which are slightly greater than those reported by Niu
etal. (2018) (20.1 gkg~ 1 DMI and 6.0%) using an intercontinental dairy
cattle database. Ribeiro et al. (2020) and Benaouda et al. (2020) reported
20.9 g kg ' DMI and 6.2%, and 22.9 g kg * DMI and 7.0% using smaller
databases from Brazil and LAC region, respectively. In a concomitant effort
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related to the current study, Congio et al. (2022a) reported CH, yield and
Y., of LAC beef cattle averaging 22.1 g kg ' DMI and 7.0%, respectively.
The CH, intensity averaged 21.9 g kg ' MY in the current study, which
is greater than 13.7, 17.9, and 19.9 g kg ' MY reported by Niu et al.

(2018), Ribeiro et al. (2020), and Benaouda et al. (2020), respectively.
The average CH, production was 309 g d ™ ! whereas Niu et al. (2018),
Benaouda et al. (2020), and Ribeiro et al. (2020) reported 369, 337, and
292 g d ', respectively.

Table 3

Performance of extant equations to predict enteric CH, production (g d ~!) using the all-data subset from the Latin America and Caribbean dairy cattle database (ranked by

RSR).

Rank Reference Equation® n® RSR"” RMSPE, %" MB, %" SB, %" ccc

1 Yan et al. (2000) (3.234 + 0.0547 x GEI) = 0.05565 610 0.62 19.7 1.33 0.23 0.77
2 Ramin and Huhtanen (2013) (62 + 25 x DMI) x 0.714 610 0.62 19.9 0.20 0.28 0.77
3 Charmley et al. (2016) 38 + 19.22 x DMI 610 0.64 20.4 3.02 2.25 0.77
4 IPCC (2006) (0.065 x GEI) + 0.05565 610 0.64 20.5 0.17 8.26 0.79
5 IPCC (1997) (0.060 x GEI) + 0.05565 610 0.68 21.6 15.33 2.60 0.76
6 Hristov et al. (2013) 2.54 + 19.14 x DMI 610 0.68 21.7 14.70 1.83 0.75
7 Nielsen et al. (2013) (1.26 x DMI) + 0.05565 610 0.71 22.7 10.84 12.66 0.76
8 Storlein et al. (2014) (— 1.47 + 1.28 x DMI) = 0.05565 610 0.73 23.3 13.93 13.61 0.76
9 Ellis et al. (2007) (3.23 + 0.809 x DMI) + 0.05565 610 0.74 23.6 26.69 2.60 0.66
10 Ribeiro et al. (2020) (0.734 + 0.041 x GEI + 0.009 x BW - 0.04 x EE) + 0.05565 362 0.75 22.4 20.22 0.02 0.66
11 Moraes et al. (2014) (3.247 + 0.043 x GEI) + 0.05565 610 0.79 25.4 37.19 3.39 0.62
12 Benaouda et al. (2020) 17.0 x DMI + 0.03 x NDF 476 0.82 27.6 44.52 0.00 0.65
13 Patra (2017) (1.29 + 0.878 x DMI) + 0.05565 610 0.83 26.6 43.79 0.56 0.62
14 Niu et al. (2018) 33.2 + 16.6 X DMI + 2.43 x NDF 574 0.97 31.8 49.19 0.08 0.52

2 GEI = gross energy intake (MJ d~'); DMI = dry matter intake (kg d ~"); BW = body weight (kg); EE = dietary ether extract (% DM); NDF = dietary neutral-detergent

fiber (% DM).
b

n = number of observations used for model evaluation; RSR = RMSPE-observations standard deviation ratio, RMSPE = root mean square prediction error (% observed

CH, production means); MB = mean bias (% MSPE); SB = slope bias (% MSPE); CCC = concordance correlation coefficient.
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Table 4
Performance of extant equations to predict enteric CH,, production (g d 1) using the confined subset from the Latin America and Caribbean dairy cattle database (ranked by
RSR).

Rank Reference Equation® n® RSR” RMSPE, %" MB, %" SB, %" cec®
1 IPCC (2006) (0.065 x GEI) + 0.05565 330 0.42 14.7 1.31 0.66 0.91
2 Ramin and Huhtanen (2013) (62 + 25 x DMI) x 0.714 330 0.45 15.6 0.04 6.43 0.88
3 Yan et al. (2000) (3.234 + 0.0547 x GEI) + 0.05565 330 0.45 15.7 7.95 6.64 0.88
4 IPCC (1997) (0.060 x GEI) + 0.05565 330 0.45 15.8 15.03 0.73 0.89
5 Charmley et al. (2016) 38 + 19.22 X DMI 330 0.46 16.0 9.10 1.34 0.88
6 Hristov et al. (2013) 2.54 + 19.14 x DMI 330 0.48 16.8 17.73 1.38 0.87
7 Nielsen et al. (2013) (1.26 x DMI) + 0.05565 330 0.51 17.9 24.95 3.72 0.87
8 Storlein et al. (2014) (- 1.47 + 1.28 x DMI) + 0.05565 330 0.53 18.7 29.81 4.62 0.87
9 Ellis et al. (2007) (3.23 + 0.809 X DMI) + 0.05565 330 0.60 20.9 28.73 19.00 0.77
10 Ribeiro et al. (2020) (0.734 + 0.041 x GEI + 0.009 x BW - 0.04 x EE) + 0.05565 99 0.60 185 10.17 24.81 0.73
11 Moraes et al. (2014) (3.247 + 0.043 x GEI) + 0.05565 330 0.64 22.4 37.91 19.99 0.74
12 Benaouda et al. (2020) 17.0 % DMI + 0.03 X NDF 256 0.66 23.9 57.27 6.04 0.76
13 Patra (2017) (1.29 + 0.878 X DMI) + 0.05565 330 0.67 235 49.46 9.32 0.74
14 Niu et al. (2018) 33.2 + 16.6 X DMI + 2.43 x NDF 330 0.78 27.3 54.02 8.33 0.65

2 GEI = gross energy intake (MJ d ~1); DMI = dry matter intake (kg d ~'); BW = body weight (kg); EE = dietary ether extract (% DM); NDF = dietary neutral-detergent
fiber (% DM).

® n = number of observations used for model evaluation; RSR = RMSPE-observations standard deviation ratio; RMSPE = root mean square prediction error (% observed
CH, production means); MB = mean bias (% MSPE); SB = slope bias (% MSPE); CCC = concordance correlation coefficient.

Table 5
Performance of extant equations to predict enteric CH, production (g d ') using the grazing subset from the Latin America and Caribbean dairy cattle database (ranked by
RSR).

Rank Reference Equation® n® RSR® RMSPE, %" MB, %" SB, %" cec?
1 Yan et al. (2000) (3.234 + 0.0547 x GEI) + 0.05565 280 0.84 236 0.01 9.48 059
2 Ramin and Huhtanen (2013) (62 + 25 x DMI) x 0.714 280 0.85 23.9 0.92 10.18 058
3 Ribeiro et al. (2020) (0.734 + 0.041 x GEI + 0.009 x BW - 0.04 x EE) + 0.05565 263 0.86 24.0 24.49 0.75 0.57
4 Charmley et al. (2016) 38 + 19.22 x DMI 280 0.87 24.6 0.69 14.92 0.59
5 IPCC (2006) (0.065 X GEI) + 0.05565 280 091 256 2.19 21.20 059
6 Hristov et al. (2013) 2.54 + 19.14 x DMI 280 0.94 26.3 13.84 12.70 0.56
7 Ellis et al. (2007) (3.23 + 0.809 x DMI) + 0.05565 280 0.94 26.4 25.57 1.39 0.49
8 IPCC (1997) (0.060 x GEI) + 0.05565 280 0.96 26.8 17.38 12.78 055
9 Nielsen et al. (2013) (1.26 x DMI) + 0.05565 280 0.97 27.2 4.45 26.97 058
10 Storlein et al. (2014) (— 1.47 + 1.28 x DMI) = 0.05565 280 0.99 27.8 6.26 27.78 057
1 Moraes et al. (2014) (3.247 + 0.043 x GEI) + 0.05565 280 1.02 285 37.62 0.54 0.44
12 Benaouda et al. (2020) 17.0 X DMI + 0.03 x NDF 220 1.05 316 35.60 6.05 0.48
13 Patra (2017) (1.29 + 0.878 x DMI) + 0.05565 280 1.06 29.8 39.98 2.60 0.45
14 Niu et al. (2018) 33.2 + 16.6 x DMI + 2.43 x NDF 244 1.24 36.9 46.68 4.76 0.33

2 GEI = gross energy intake (MJ d~'); DMI = dry matter intake (kg d ~"); BW = body weight (kg); EE = dietary ether extract (% DM); NDF = dietary neutral-detergent
fiber (% DM).

® n = number of observations used for model evaluation; RSR = RMSPE-observations standard deviation ratio; RMSPE = root mean square prediction error (% observed
CH, production means); MB = mean bias (% MSPE); SB = slope bias (% MSPE); CCC = concordance correlation coefficient.

Our study corroborated that feed intake is the key variable predicting goats (Patra and Lalhriatpuii, 2016), and sheep (Patra et al., 2016; Congio

CH,4 emission, which agrees with previous reports for dairy (Niu et al., et al., 2022b). This relationship clearly indicates that methanogenesis in-
2018) and beef (van Lingen et al., 2019; Congio et al., 2022a) cattle, creases when more substrate is available for microbial fermentation in the
Table 6

Enteric CHy yield (g kg~ ! DMI) prediction equations and model performance for the all-data, confined, and grazing subsets of the Latin America and Caribbean dairy cattle
database.

Subset Prediction equation® Model perfarmzmceb
Equation n® RSR RMSPE, MB, SB, CcCc
% % %

All-data

(16) 29.5(1.71) — 0.012(0.002) x BW — 1.33(0.296) x FL + 0.102 (0.034) x EPCM 487 0.94 19.8 0.11 271 0.15
Confined

17 —19.8 (14.2) — 0.006 (0.003) X BW + 2.42 (0.780) X GE 247 0.99 13.0 3.04 0.57 0.13
Grazing

(18) 26.6 (1.55) — 1.25 (0.347) x FL 280 0.98 24.6 1.56 0.23 0.07
(19) 35.8 (2.57) — 0.015 (0.004) x BW — 1.81 (0.359) x FL 280 0.92 23.1 1.24 0.59 0.24

2 BW = body weight (kg); FL = feeding level (DMI as % BW); MY = milk yield (kg d~"); EPCM = energy and protein-corrected milk (kg d~1); GE = dietary gross energy
(MJ kg~ ' DM).

b n = number of observations used to fit equations and for model evaluation; RSR = RMSPE-observations standard deviation ratio; RMSPE = root mean square prediction
error (% observed CH, production means); MB = mean bias (% MSPE); SB = slope bias (% MSPE); CCC = concordance correlation coefficient.
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rumen. Voluntary DMI is a suitable predictor of enteric CH4 emissions be-
cause it is a product of both plant and animal characteristics affecting diges-
tion (Charmley et al., 2016). In the current study, both DMI and GEI were
significantly and positively related to CH,4 production with slopes averaging
18.0 g CH, kg ' DMIand 1.00 g CH, MJ ! GEI, respectively. Still, multiple
regression models based only on dietary parameters had the worst predic-
tive performance in all subsets, which aligns with beef (van Lingen et al.,
2019; Congio et al., 2022a) and dairy (Niu et al., 2018) cattle previous anal-
yses, and reaffirms the importance of feed intake relative to other predictor
variables.

The positive relationship between MY and EPCM with CH, emission
agrees with Niu et al. (2018), and their egs. 7 and 8 had prediction ability
similar to our MY and EPCM all-data and confined models. It is due to the
overall positive relationship between MY and DMI (Niu et al., 2018). Die-
tary forage content is positively related to CH, production (equation not
shown), aligning with previous results (Ellis et al., 2007; van Lingen
et al,, 2019; Benaouda et al., 2020). Increased forage proportion is usually
linked with greater NDF concentration in the diet, commonly leading to
more acetate and butyrate production, resulting in increased ruminal hy-
drogen and consequently more CH,4 production (Bannink et al., 2008).
The positive relationship between CH,4 production and BW (equation not
shown) also agrees with previous research (Moraes et al., 2014; Niu et al.,
2018; Benaouda et al., 2020). Rumen volume and BW are proportional
and, consequently, heavier animals with higher maintenance energy re-
quirements, tend to ingest more feed and produce more enteric CHy
(Demment and Van Soest, 1985; Hristov et al., 2013).

Overall, the predictive ability of CH, production models increased with
model complexity, which aligns with previous studies (Niu et al., 2018; van
Lingen et al., 2019). Nevertheless, adding dietary parameters to either DMI
or GEI did not increase predictive ability compared with single-based
models in all subsets. There was expected at least one dietary parameter
being selected with DMI, resulting in a more accurate model similarly re-
ported by previous meta-analyses (Niu et al., 2018; van Lingen et al.,
2019). Ribeiro et al. (2020) also found lack of equations including dietary
parameters among the best-developed using a lactating dairy cattle subset
from Brazil, which overlapped 41% of the current database. This is likely
associated with a low variation in diets in both databases, composed of a
significant number of feed efficiency trials with a narrow range of dietary
nutrient concentrations (Ribeiro et al., 2020). Thus, exploring more con-
trasting diets to develop more accurate models for the LAC region is recom-
mended in the near future (Congio et al., 2022a). On the other hand,
multiple regressions which allowed a selection of all potential predictors
had the smallest RMSPE in the all-data and confined subsets. More complex
models may have greater applicability in medium- to high-technology dairy
systems, where data collection and resources for analysis are available. For
low-technology or livelihood farming systems, however, which are typical
in the LAC region, simpler models can be more practicable. Under LAC con-
ditions, even DMI may be a restricted variable; thus, models including eas-
ily available on-farm covariates (e.g., MY and EPCM) will be more useful
(Congio et al., 2022a).

The best CH, production developed models had similar predictive per-
formance to the highest-ranked extant equations in all subsets. Overall, sim-
ple equations based either on DMI or GEI proposed by Yan et al. (2000),
Ramin and Huhtanen (2013), and Charmley et al. (2016) were among the
best extant equations in all subsets. The developed model 2, including
GEI, had similar predictive performance compared to the first- (Yan et al.,
2000) and second- (Ramin and Huhtanen, 2013) ranked extant equations
and can be an option for predicting CH, production considering all-data.
The IPCC (2006) Tier 2 was the best extant equation predicting enteric
CH,4 for confined dairy cows. This is probably because the Yy, in IPCC
(2006) Tier 2 (6.5%) was close to the average Y, from confined cows
(6.4%) in the current database. Model 7 developed on confined subset
was of comparable performance than IPCC (2006) Tier 2 equation and
also can be used in this condition. For dairy cows under grazing, model
13, including only MY, had similar predictive performance to those pro-
posed by Yan et al. (2000) and Ramin and Huhtanen (2013), which were
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first- and second-ranked among grazing extant equations. However, those
extant equations over-predicted CH, at the high end and under-predicted
it at the low end of production. Still, considering that DMI and GEI are
not always available in commercial dairy farms, models based on MY or
EPCM, which are generally available parameters, can also be used to pre-
dict CH, production for confined cows.

The predictive ability of CH, yield models increased with model com-
plexity, which also agrees with previous research (Niu et al., 2018; van
Lingen et al., 2019). Previously mentioned meta-analyses regarding model-
ing CH, emissions focused on CH, production while little attention was
given to CH, yield. Few studies developed CH, yield prediction models re-
cently (Niu et al., 2018; van Lingen et al., 2019; Congio et al., 2022a,
2022b). Model evaluations across various complexity levels showed that
CH,4 yield of dairy cows under LAC conditions could be predicted reason-
ably. The developed CH, yield models were associated with larger RSR
than CH,4 production models, which agrees with Niu et al. (2018) and van
Lingen et al. (2019). Body weight, FL, EPCM, and dietary GE were selected
for predicting CH, yield from dairy cows using the LAC database. The four
developed models had RSR < 1.00 and outperformed the equation pro-
posed by Niu et al. (2018) in all conditions.

Research involving enteric CH, emissions is relatively recent in the LAC
region, and additional research would considerably improve the predictive
ability of the present models. Future studies should present a more com-
plete nutrient characterization of the diets, avoiding the need to use litera-
ture table values to complete missing parameters in databases (Congio
et al., 2022a). Still, a standardization of laboratory procedures (e.g., net-
work trials) by country or region might also be considered. Understanding
that most dairy operations in the LAC region are pasture-based, the SFg
tracer technique is the main CH4 measurement technique used by LAC re-
searchers and method standardization is highly recommended (Hristov
et al., 2018; Jonker et al., 2020; Della Rosa et al., 2021). A standardization
of DMI estimation using markers is equally advised (De Souza et al., 2015;
Hellwing et al., 2015). Finally, recent research has reported that including
digestibility parameters as predictor covariates can increase the overall pre-
dictive ability of CH, production equations (Benaouda et al., 2020; Ribeiro
et al., 2020). However, these models may have limited use in supporting
LAC national inventories due to limited availability of those parameters at
the farm level.

5. Conclusions

The present analysis is the most comprehensive effort to date to develop
enteric CH, prediction models for dairy cattle in the LAC region. Feed in-
take was the primary predictor of CH4 production, whereas BW and FL
were most important in predicting CH, yield. Our best-developed CH, pro-
duction models were more accurate than IPCC Tier 2 equations in the all-
data and grazing subsets, whereas they had a similar performance for con-
fined dairy systems. Simple regression models containing either MY or
EPCM were also accurate in predicting CH, production and can be a practi-
cal alternative when DMI data are missing. The best-developed CH, yield
models had a satisfactory accuracy and outperformed extant equations in
all subsets. The developed models can be used by police-makers supporting
improvements of GHG inventories from LAC countries, which are still based
on IPCC equations.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.153982.
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