
Journal of Environmental Management 323 (2022) 116219

Available online 12 September 2022
0301-4797/© 2022 Elsevier Ltd. All rights reserved.

Research article 

Priority setting for restoration in surrounding savannic areas of the 
Brazilian Pantanal based on soil loss risk and agrarian structure 
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A B S T R A C T   

Soil health is at the core of the sustainability agenda. As in many agroecosystems in the tropics, soil erosion is a 
major issue in poorly managed pasturelands. A noteworthy case is located in the Upper Taquari River Basin 
(UTRB), as part of the Upper Paraguay Basin on the plateau with drainage waters for the Taquari megafan in the 
Brazilian Pantanal. Here we combine slope (S-factor), erodibility (E-factor), rainfall-rainy day ratio (R-factor), 
and vegetation and soil indices (C-factor) to locate erosion risk and prioritize eco-engineering interventions via 
palisades and small dams in UTRB. The method consisted of assessing distinct weights between Universal Soil 
Loss Equation (USLE) factors in a GIS platform, providing 35 combinations of classes as low, moderate, high, and 
very high erosive risk. The validation of the method was based on the ravine and plain ground truths obtained 
from high-resolution raster data. The best weight of USLE factors aids to locate critical erosive sites and vege-
tation patterns. Then, erosion risk and interventions were analyzed according to land use and rural property sizes 
in the government’s Rural Environmental Registry (CAR) database. Overall, the natural factors of slope and 
erodibility in a proportion of 25% and 75% in GIS algebra provided the best mapping accuracy result. About 65% 
of the UTRB has high or very high erosion risks, and 70% of the available area can be acknowledged as degraded 
pasturelands. A total of 4744 erosion interventions were recorded, with an accuracy of 65.28% and 61.15% for 
check dams and palisades interventions, respectively. The number of necessary interventions in areas of native 
vegetation was almost 50% higher than in pasturelands. Even though micro landowners occupy most of the 
watershed, large properties have about ten times as many areas at high risk of erosion. The mutual cooperation 
between properties, independently of size, is supported by governmental public policies like incentives for 
ecosystem services restoration of critical gullies, with CAR compliance and fiscalization.   

1. Introduction 

Soil erosion is an important issue in implementing a Global Sus-
tainable Agenda (Wuepper et al., 2020). Decreasing land degradation 
responds positively to six of seventeen UN Sustainable Development 
Goals (Keesstra et al., 2016). Eroded soils provide ecosystem disservices 
that refute their natural capital stocks (Dominati et al., 2010). The 
impact for landowners is direct, given the need for nonrenewable re-
sources for maintaining agricultural production (Telles et al., 2013), but 
also indirect and cumulative for society due to loss of biodiversity and 

ecosystem services of support and regulation (García-Ruiz et al., 2017). 
Land use intensification scenarios associated with climate change esti-
mate erosion rate growth of up to 66% by 2070 worldwide (Borrelli 
et al., 2020). 

Agricultural countries in tropical regions invariably perceive soil loss 
as an unsolved task. For instance, Wuepper et al. (2020) put Brazil on the 
top shelf of soil loss at around 4 t ha− 1 yr− 1, almost twice the global 
average of 2.4 t ha− 1 yr− 1. Mapping active erosive features (Senanayake 
et al., 2020) or the location of interventions in severe erosions (Pour-
ghasemi et al., 2020) are issues for conservation and food security, 
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where GIS and RS are widely applied (Sepuru and Dube, 2018). Spati-
alization makes it possible to plan mitigating actions and reduce impacts 
on and off-site (Boardman et al., 2019). At the landscape scale, the rate 
of soil erosion is critical for the quantitative assessment of land degra-
dation (Abdulkareem et al., 2019). Models are the most appropriate 
tools for simulating soil erosion at a relatively large spatial scale (Gao 
and Wang, 2019). Among the most widely used, the Universal Soil Loss 
Equation (USLE), developed by Wischmeier and Smith (1965) for agri-
cultural sites in the United States, remains valid and commonly applied 
around the world to assess gross erosion or disaggregated soil sediments 
in plots (Alewell et al., 2019). 

Much of such success of USLE is due to the ease of estimating factors 
influencing erosion, such as relief, soil erodibility, rainfall erosivity, and 
land use or cover changes, both by remote sensing data (RS) and data 
layers within the Geographical Information System (GIS) platforms 

(Pruski, 2006). In this sense, RS with GIS techniques allows demon-
strating a quali-qualitative picture of the risk of soil loss, broadening the 
view on the management of natural resources (Yesuph and Dagnew, 
2019). Despite the robustness of mathematical erosion prediction 
models, there is still room for uncomplex layer algebra techniques for 
the erosion risk dimension (Ewunetu et al., 2021), which is very 
appropriate for decision makers to flash allocation of resources for local 
restoration (Pena et al., 2020). 

Spatialization of active erosive alone is not enough for setting pri-
orities for restoration. Although there have been significant advances in 
increasing ecological resilience on a large scale (Beller et al., 2019), 
landscape restoration projects need to incorporate socioeconomic di-
mensions, such as governance, social-political, and financial constraints, 
and agrarian structure because they are key determinants of restoration 
success (Armsworth, 2014). 

Fig. 1. Location of the Upper Taquari River Basin. (a) official map of Brazilian biomes with emphasis on the UTRB as part of the UPRB and located in the Cerrado, as 
well as the Taquari megafan in the Pantanal; (b) cities, main rivers of UTRB and rainwater stations of “Agência Nacional das Águas - ANA” used to calculate the 
rainfall index (item 2.2.1), overlaid by DEM ALOS-PALSAR (item 2.2.3); (c) Land Use/Land Cover from MapBiomas project of 2019 (Souza et al., 2020). 
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Here we use a highly tropical eroded area around the Pantanal, the 
biggest continuous wetland in the world, as an example to apply a multi- 
criteria approach based on USLE parameters on a GIS and RS that 
identifies priority areas at risk of soil loss and land restoration, including 
drainage criteria from high-resolution RS, through small dams and 
palisade interventions. Furthermore, we analyze the agrarian structure 
of the region and discuss possible solutions to mitigate the problem 
based on the fact that the real agents are the rural landowners. We 
choose the noteworthy Upper Taquari River Basin (UTRB) as a study 
case because this region has experienced rapid land cover clearance over 
the last 30 years (Roque et al., 2016). Gigatonnes of topsoil layers have 
been transported to the Pantanal by uncontrolled runoff, conjointly with 
the loss of invaluable biodiversity (Bergier, 2013; Lo et al., 2022). As 
climate changes may alter rainfall and droughts patterns in the Pantanal 
watersheds (Thielen et al., 2020), one can expect an increase in summer 
river runoff and sediment load to the plains (Bergier et al., 2018), and an 
increase in winter wildfire recurrence, both adversely affecting Pan-
tanal’s biodiversity and ecological functioning (Silva et al., 2019; 
Libonati et al., 2020). For the sediment load, Colman et al. (2019) 
pointed to up to 40% increased soil loss by 2050 from land-use changes, 
accompanied by on-site (UTRB) and off-site (Pantanal) pesticide inputs 
(Roque et al., 2021), and a greater probability of river avulsions of the 
Taquari River in lowlands (Bergier et al., 2018; Louzada et al., 2020, 
2021). 

2. Material and methods 

2.1. Study area 

As an important watershed of the Upper Paraguay River Basin 
(UPRB), the Upper Taquari River Basin (UTRB) covers 28,111 km2 of the 
states of Mato Grosso and Mato Grosso do Sul in the central-western 
region of Brazil, bounded by latitudes 17◦30′S to 19◦30′S and longi-
tudes 53◦00′W to 55◦00′W (Fig. 1). The elevation ranges from 178 to 
921 m above sea level. In general, the relief is a mosaic of depressions, 
isolated planes, and elongated plateaus, highlighting the Maracaju 
plateau near the city of Coxim, which shares the plateau with the Pan-
tanal (plain). The rivers of the UTRB are geologically stable through 
bedrocks, but connected to unstable alluvial systems in the Pantanal 
wetland (Assine, 2005). The systematic decrease in the longitudinal 
gradient in the Pantanal associated with the high sediment load of the 
uplands determined one of the most notable depositional systems in the 
world, the Taquari megafan (Assine, 2005). 

A large part of the UTRB soils originates from sedimentary rocks. 
Therefore, it presents deep horizons with sandy texture and low natural 
fertility (Galdino et al., 2005). In terms of precipitation, the summer 
rainy season runs from November to March (Marengo et al., 2015), 
ranging from 1700–1,800 mm in the extreme NE to 1,200 mm in the S 
and SW regions (Thielen et al., 2020). Regarding vegetation and land 
use, the original formation of the Cerrado (Brazilian savanna) was 
gradually replaced by grazing on sandy soils and agriculture on clay soils 
after the 1970s (Galdino et al., 2005; Souza et al., 2020). 

2.2. Soil erosion risk 

The erosion process can be suitably represented and modeled in the 
GIS environment (El Jazouli et al., 2017). Here, we apply the USLE logic 
with other principles of geospatial analysis on ArcGIS® version 10.4.1. 
In the original equation of USLE, A = RKLSCP, where R is erosivity from 
rainfall, K is soil erodibility, LS is the topographic factor, and C and P 
refer to cover and management. Our set of factors preserved only the 
erodibility factor (E), replacing the original elements of the USLE, such 
as rainfall index (R), slope (S), and the best vegetation index (C). Here, 
conservation practices corresponding to the P-factor were excluded from 
the multicriteria analysis due to missing updated data. Thus, our final 
equation was Erosion risk = RESC, whose weights for each variable are 

established in item 2.3. 

2.2.1. Rainfall index (R) 
In tropical regions, precipitation is the most important driver of the 

erosive process. Summer heavy rains have been more frequent in the last 
decade in the UTRB (Bergier et al., 2018; Thielen et al., 2020). Thus, we 
consider the method of Bergier et al. (2018) more relevant to compose 
the R factor as it calculates the rain index as a simple ratio of historical 
total precipitation in mm to the sum of rainy days. The data were 
collected at ANA pluviometric stations available in the hidroweb (https 
://www.snirh.gov.br/hidroweb/). A total of 21 stations were selected 
(see Fig. 1b) based on location criteria, within or within 50 km of the 
UTRB seeking to fill the entire study area. The results of the ratio are 
shown in Supplementary Material (see Table S1). The R factor as raster 
data was prepared by kriging available on ArcGIS spatial analyst tools 
applying the default parameters across the watershed boundaries. 

2.2.2. Soil erodibility (E) 
The spatialization of soil erodibility was based on the recent review 

of the theme by Godoi et al. (2021) using multilayer soil properties in a 
cell size of 250 m. 

2.2.3. Slope (S) 
The topographic slope factor was generated from DEM of ALOS- 

PALSAR images, specifically, the radiometric terrain corrected by 
resampling of SRTM with a spatial resolution of 12.5 m (Laurencelle 
et al., 2015), available at (https://search.asf.alaska.edu/#/). Table S2 
shows the list of scenes for the DEMs mosaic (Fig. 1b) and slope (S). 

2.2.4. Land Use/Land Cover (C) 
Land use and land cover generally vary with the seasons. This is the 

case of agriculture, whose planting of grains in Brazil has, on average, 
two harvests interspersed with a fallow period to control Asian soybean 
rust, which lasts from June to September in the Cerrado biome (Seixas 
and Godoy, 2007). During these months, the soil is exposed to runoff but 
that practice is made at the apex of the dry season, which would wrongly 
entail potential erosive risk. In this sense, the vegetation indices of 
orbital images are useful to extract seasonal surface features to calculate 
the C factor in the USLE (see applications in Durigon et al., 2014; Chen 
et al., 2019). 

Here, we tested eight vegetation and soil indices two times (Table 1), 
September 2020 (dry) and April 2021 (wet-dry transition) using 
Sentinel-2A Level 2 data available from the European Space Agency. For 
the calculations, we use the SNAP software version 8.0.0 (https://step. 
esa.int/) on spectral bands green (G), red (R), and near-infrared (NIR) 

Table 1 
List of vegetation and soil radiometric indices applied to the calculation of C. 
factor.  

Type Index Equation Reference 

Vegetation Normalized Difference 
Vegetation Index (NDVI) 

(NIR - R)/(NIR + R) Rouse et al. 
(1973) 

Transformed Normalized 
Difference Vegetation 
Index (TNDVI) 

sqrt((NIR - R)/(NIR 
+ R) + 0.5) 

Senseman 
et al. (1996) 

Enhanced Vegetation 
Index (EVI) 

2.4 * (NIR - R)/(NIR 
+ R + 1) 

Jiang et al. 
(2008) 

Soil Adjusted Vegetation 
Index (SAVI) 

(1 + L) * (NIR - R)/ 
(NIR + R + L) 

Huete (1988) 

Transformed Soil Adjusted 
Vegetation Index (TSAVI) 

s * (NIR - s * R - a)/(s 
* NIR + R - a * s + X * 
(1 + s^2)) 

Baret and 
Guyot (1991) 

Modified Soil Adjusted 
Vegetation Index (MSAVI) 

(1 + Z) * (NIR - R)/ 
(NIR + R + Z) 

Qi et al. 
(1994) 

Soil Brightness Index (BI) sqrt((R^2) + (G^2)/2) Mathieu et al. 
(1998) 

Colour Index (CI) (R - G)/(R + G) Escadafal 
(1989)  
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with a pixel resolution of 10 m. 
Terms of the above equations. SAVI: L is the adjustment factor; 

TSAVI: a is the soil line intercept; s is the soil line slope; X is the 
adjustment factor to minimize soil noise. For MSAVI, the Z is calculated 
by (1–2 * NDVI * s * (NIR - s * R), where s is the soil line slope. 

The process of choosing the best date and index to obtain the C factor 
was based on the comparison of the difference of the means between 
samples of a gully (high risk), obtained at a scale of 1:10,000 of the high- 
resolution base map ArcGIS, and the opposite flat relief (low risk), with 
agricultural areas practice (Fig. S1 in Supplementary Material). Besides, 
the Sentinel-2 scenes were used to replicate the method and compose the 
C-factor mosaic in the UTRB according to the two possibilities of date 
imagery (all scenes and multispectral bands information are shown in 
Table S3). 

2.3. Multicriteria analysis and validation 

Before multicriteria analysis, spatial factors were resampled to the 
same 10 m C-factor resolution. The natural breaking method was applied 
in the reclassification of all rasters (Gao and Wang, 2019), as low risk of 
erosion (class 1), moderate (class 2), high (class 3), and very high risk of 
soil erosion (class 4). 

In this study, we evaluated the importance of each factor using 
weights in the raster calculation tools. Thus, a set of possibilities was 
derived by considering an increase of 25% in the factor, hence totalizing 
35 tests (Table 2). 

To validate the maps, we preserved the method of comparison of 
eroded to non-eroded themes in item 2.2.4., including 2 preserved flats 
sites and 32 gullies spatialized in the UTRB (see examples in Fig. S2). 
The selection was done by the average percentage of pixels in class 4 
(very high) expected for gullies and class 1 (low) for flat sites. The lo-
cations of all validation samples in the UTRB are exhibited in Fig. S3 of 
the Supplementary Material. 

2.4. Locations for intervention 

An effective gully recovery scheme should consider vegetative, 
edaphic, and mechanical techniques (Machado et al., 2006), especially 
on fragile soils primarily composed of sand (Filizola et al., 2011). For 
quick mitigation of soil losses, we evaluate the best location of recovery 
techniques for gullies. Hence, the methods of intervention were based on 
principles of ecohydrology or eco-engineering (e.g., low landscape im-
pacts, organic and in situ materials), in contrast to classical civil engi-
neering (Norris et al., 2008). Within the scope of techniques, we 
evaluated the palisades represented by perpendicular posts of bamboo 
or Eucalyptus sp. wood installed on sloping lands, which previously have 
shown promising results (Tardio et al., 2017; Rodrigues, 2018). Like-
wise, checking (small) dams through the soil, sandbags, or stone lines in 
the gullies’ bed have been effective in reducing stream flow (Xu et al., 
2020). 

To determine the points suitable for palisades and check dams, firstly 
we vectored all drainage lines in the UTRB in a similar way to gully 
samples. In total, 31,413 drainages were identified (see Fig. S3 on the 
Supplementary Material). This step was necessary because ANA’s 

official watercourses are incomplete, displaced, and do not include 
erosions’ ramifications. Palisades were calculated by transforming the 
starting line into a point, then selecting only combined points in class 4 
that pixels are in the appropriate erosion risk test. To avoid false posi-
tives, we added another layer of exclusion based on thresholds of the 
2019 map of Mapbiomas of savanna and forest formation, which was 
derived from one of the land use factors in Table 1 that were not applied 
in the assessment tests. 

For check dams, we analyzed the distribution of drainage length in 
gullies samples, looking for lines in a range equal to the last quartile of 
erosion lines. The results showed that 22,313 features had an equivalent 
length (123 m–1,623 m). In hydrographic basins, the main trunk river is 
the regional base level. For ravines, the bed is also expected to be at the 
local minimum, hence an adequate point of sediment impoundment. 
Sequentially, the nodules of the lines were changed to points with the 
selection clause where once again lines overlapped by class 4, excluding 
the points of the palisades and the same vegetation thresholds. 

The assessment of eco-engineering interventions was also referenced 
in the high-resolution image from the base map plugin of the ArcGIS. 
Using a simple random points sampler, with a 95% confidence interval, 
at a minimum distance of 1 km, it was possible to visually inspect 
whether palisades and check dams were in erosion (valued 1) or not 
(valued 0). 

2.5. Exploratory analysis of the forest code CAR data 

The degree of compliance with environmental legislation on farms, 
established by the Brazilian Forest Code (Law 12,651/2012), is precisely 
linked to the size of the property (Stefanes et al., 2018). Thus, we 
searched for the Rural Environmental Registry (CAR) database available 
on the SICAR website (https://www.car.gov.br/publico/imoveis 
/index), which gathers the main attributes of rural properties, to sup-
port a conservation action prioritization plan at the farm scale. Here, we 
selected the layers of: i) total area; ii) Legal Reserve (RL) area with a 
minimum of 20% of native vegetation; iii) permanent preservation area 
(APP) that represents the riparian watercourse; and iv) unrestricted or 
consolidated area (AC) for economic activities, mainly as providing 
services of food (meat/grain), timber/fiber (planted wood) and liquid 
biofuels (sugarcane/grain). An example of layers of property is shown in 
Fig. S4. 

The polygons of properties were divided into four categories ac-
cording to the Forest Code: micro (0–4 modules), small (4–10 modules), 
medium (10–20 modules), and large (above 20 modules). The modules 
vary according to the size of the municipality, for which ranges were 
arbitrarily chosen except for the first category (up to four modules) 
belonging to a general rule of the forest code for special APP size 
treatments. 

3. Results 

3.1. Suitable C-factor 

The gully and the flat terrain are close together and located in the 
same Sentinel-2 scene, therefore sharing the same weather conditions. 

Table 2 
Algebra map scheme to calculate soil erosion risk tests. In correspondence to the original USLE elements, S is the topographical factor, E is the soil erodibility, R 
represents the rainfall index factor and C is the land use/land cover factor.  

Test Algebraic model Test Algebraic model Test Algebraic model Test Algebraic model Test Algebraic model 

1 S1 8 S0.5 + E0.25 + R0.25 15 S0.25 + E0.5 + C0.25 22 E0.75 + R0.25 29 E0.25 + R0.75 
2 S0.75 + E0.25 9 S0.5 + E0.25 + C0.25 16 S0.25 + E0.25 + R0.5 23 E0.75 + C0.25 30 E0.25 + C0.75 
3 S0.75 + R0.25 10 S0.5 + R0.25 + C0.25 17 S0.25 + E0.25 + C0.5 24 E0.5 + R0.5 31 R1 
4 S0.75 + C0.25 11 S0.25 + E0.75 18 S0.25 + R0.5 + C0.25 25 E0.5 + C0.5 32 R0.75 + C0.25 
5 S0.5 + E0.5 12 S0.25 + R0.75 19 S0.25 + R0.25 + C0.5 26 E0.5 + R0.25 + C0.25 33 R0.5 + C0.5 
6 S0.5 + R0.5 13 S0.25 + C0.75 20 S0.25 + E0.25 + R0.25 + C0.25 27 E0.25 + R0.5 + C0.25 34 R0.25 + C0.75 
7 S0.5 + C0.5 14 S0.25 + E0.5 + R0.25 21 E1 28 E0.25 + R0.25 + C0.5 35 C1  
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In addition, their sizes are equivalent, with 5.73 ha (576 pixels) for the 
canyon and 5.34 ha for the plain (538 pixels). Here, we assume the 
indices are positive and closer to the maximum for photosynthetically 
active vegetation. In this case, it resembles grasses or plantations in the 
flat relief area, while in the exposed soil of the gully the values tend to be 
much lower. The means of indices from the dry period (September 
2020), and the transition of wet/dry (April 2021) are shown in Table 3. 
The vegetation indices for April 2021 were more consistent regarding 
the differentiation premise between healthy vegetation and exposed 
soil. In general, the indices presented similar results, but the MSAVI 
factor was chosen to compose the C-factor because it overlaps the others 
on differences between the antagonistic areas. 

3.2. Maps of soil erosion risk in UTRB 

The Rainfall Index (R), Soil erodibility (E), Slope (S), and Land Use/ 
Land Cover (C) factors are shown in Fig. 2. The R data, derived from the 
ANA database, showed a coefficient of variation CV = 8.9%, in which 
the first class of low erosion risk varied from 13.36 to 15.22, mostly in 
the center-north area that gathers most of the UTRB. In contrast, higher 
potential areas for soil erosion (17.82–19.35) were restricted to the 
extreme south and southwest. 

The soil erodibility map produced here clearly evidences the pre-
dominance of the very high class, determined by quartzarenic neossols 
and cambisols with 0.020–0.042 t ha− 1.MJ− 1.mm− 1 over 23.58% of the 
total area. The high class of erodibility was predominant with 40.27% of 
UTRB ranging from 0.016 to 0.020 t ha− 1.MJ− 1.mm− 1, comprising 
litholic neosols and plinthosols. The least restrictive class of low soil loss 
(0.002–0.011 t.ha-1.MJ-1.mm-1) gathered flat areas with planosols and 
gleysols in about 11.44%. 

An average value of 5.19◦ or 9.23% of the third factor (S) was pre-
sented, however, the most important declivity class gathered almost 
61% of the pixels distributed between 0◦ and 4.71◦, called low in our soil 
model, and correlated to 0–3% and 3–8% of Embrapa’s flat and smooth 
wavy relief, respectively. The second prominent class by area was the 
moderate with 31% of the pixels in a range from 4.71◦ to 10.54◦ of the 
slope. Extremes of mountainous (very high) represented just over 2% of 
the pixels. 

The MSAVI high values are related to the low probability of soil loss 
and vice-versa. The map of Fig. 2d showed that approximately 76% of 
the area is included in moderate (41%) and high (35%) classes. The most 
fragile class ranged from 0.2 to − 0.37, occupying approximately 14%. 

The thirty-five assessments of soil erosion risk (USLE) were calcu-
lated based on the combination of factors and respective weights 
(Table 2). Altogether, gully and flat samples generated 18,808 and 
10,222 pixels. The evaluation was carried out using a percentage of 
pixels in the most restrictive or very high associated with the flat or low 
probability of soil loss (Fig. S5). An isolated observation for the two 
parameters points out in test 13 (S0.25 + C0.75) with 71.15% of the 
pixels in the very high class for the gully samples. In the flat sample, test 
21 (E1) showed 100% of pixels within the low range, nonetheless, the 
combination of samples brought test 11 (S0.25 + E0.75) with the highest 

average with 67.43% of pixels with low and/or very high erosive risk. 
Test 30, in which all factors have the same 25% weight, was closest 

to the original USLE. However, the pixel average of 5.03% in the very 
high and low classes for the ravine and flat area samples did not accredit 
it for the final map of the erosive risk. The algebraic models in which the 
R-factor was predominant showed the worst outputs in the means, such 
as test 6 and tests 31 to 34. In summary, the spatial discrepancies be-
tween tests 6 and 11 can be verified in Fig. 3. 

3.3. Analysis of interventions in gullies 

As expected, the UTRB presented many interventions led by the 
critical class 4 rate. Based on the land cover results in Table 3, we 
included the NDVI thresholds from the 2020 image of forest formation 
(>0.65), savanna (>0.57), and water (<0) to eliminate false positives 
(Fig. S6). Thus, the spatial algebra identified suitable locations for 3604 
check dams and 1140 palisades (Fig. 4). The state of MS had 3598 or 
76% of the total interventions, however, both states presented compa-
rable densities of palisades and check dams per area, with 0.15 (MS) and 
0.30 intervention/sq.km (MT). 

The method for finding places for interventions was validated by the 
random sampler, with 95% CI, resulting in 360 and 296 samples for 
check dams and palisades, respectively. The validation indicates that 
235 points or 65.28% of the check dam were assigned correctly 
considering the criteria described in item 2.4 (all sample points are 
shown in Table S4). On the other hand, palisade locations achieved a 
slightly lower percentage of 61.15%, representing 181 points. Fig. 5 
depicts examples of the validation process with confirmed/unconfirmed 
points. 

The method for the location of dam interventions showed promising 
accuracy, however, some drainage end points coincided with sandbanks 
in trunk rivers, such as the Coxim River in A2 in Fig. 5. Overall, the 
palisades were correlated with the environment ruled by the sloping 
terrain and unprotected soil, despite some non-exclusions by native 
gramineous (see example B2 on Fig. 5). 

3.4. Integration of soil erosive risk, interventions, and CAR database 

About 62.71% of the UTRB is composed of micro properties ranging 
from 0.24 to 279.9 ha, including rural settlements, whereas less than 
10% represent large properties above 767.9 ha. In absolute terms, the 
area at high and very high risk of soil loss in large farms is almost 3 times 
the sum of micro, small and medium properties. However, the size of the 
property little influenced the average risk of soil erosion (see Fig. S7a), 
since all classes were close to 3 (high potential), and one-way ANOVA 
indicates no significant differences between classes of areas (p = 0.33). 
In comparison to the property’s sizes, the features of AC, APP, and RL 
(Fig. S7b) were also equivalent with a mean erosive risk close to 3 but 
have significant differences by ANOVA (p = 1.48E-7), with RL distinct 
from AC and APP by Tukey’s pairwise test (p < 0.01). 

By linking the 4744 intervention points with polygons of 6571 
properties of the SICAR database within the limits of the UTRB, we 
found that 8.3% of the dams and palisades were in micro properties, 
followed by 17.4 in small properties, 23.9% in medium size, and 50.3% 
inside large properties. In terms of internal polygons, AC has demanded 
774 interventions, followed by RL with 1452 and APP with 1369 
intervention points. The number of degraded lands in protected areas by 
legislation (RL and APP) was almost 50% higher than AC. 

4. Discussion 

4.1. Main drivers of soil loss in the region 

The relative roles of land use and soil properties in shaping patterns 
of soil loss vary in different landscapes. Here we figured out that relief 
and erodibility are the main drivers. This finding calls into question the 

Table 3 
Mean of vegetation and soil radiometric indices between September 2020 and 
April 2021.  

Index September 2020 Difference April 2021 Difference 

high low high low 

NDVI 0.38 0.53 − 0.15 0.36 0.59 − 0.23 
TNDVI 0.40 0.53 − 0.13 0.39 0.59 − 0.20 
EVI 0.38 0.53 − 0.15 0.36 0.59 − 0.23 
SAVI 0.36 0.55 − 0.19 0.37 0.61 − 0.24 
TSAVI 0.79 0.55 0.24 0.52 0.62 − 0.10 
MSAVI 0.37 0.55 − 0.18 0.35 0.61 − 0.26 
BI 0.40 0.51 − 0.11 0.38 0.44 − 0.06 
CI 0.53 0.49 0.04 0.67 0.47 0.20  
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weight of anthropogenic changes in land use as the main factors of soil 
loss in the basin. On the other hand, recovery strategies directly involve 
farmers in the correct management of pastures added to the installation 
of mechanisms to stop the flow of eroding sediments. Our set of multi- 
criteria rules based on USLE principles, GIS algebra, and RS data 
allowed us to infer that about 65% of the UTRB area has a high risk of 
soil loss. Relief and soil properties are commonly highlighted as decisive 
factors in the erosion rate (Ruiz-Sinoga and Diaz, 2010; Lu et al., 2020), 
however, as a new contribution, we demonstrate that the soil cover 
factor does not seem to play the main role designed by Galdino et al. 
(2005), recently updated by Guerra et al. (2020). This may have 
occurred due to the fact that the most restrictive class of MSAVI belongs 
to portions with the total absence of vegetation (Sarparast et al., 2020), 
belonging to only 0.7% of the basin according to Mapbiomas 2019 
(Souza et al., 2020). Even so, considering that the poorly managed 
pasture is the main villain of the erosive processes of the savanna pas-
tures (Galdino et al., 2016; Colman et al., 2019), future studies main-
taining our finest spatial resolution may add a possible correction to 
these effects by integrating the C-factor to the P-factor for erosion on a 
regional scale (Panagos et al., 2015). 

4.2. Methodological challenges 

Easy, fast, and free data for soil resource management is one of the 
bottlenecks for developing countries (Rosas and Gutierrez, 2020). As an 
open database, our algebra method exploited freely available resources 
and data. So, it can be a promising alternative for planning the territory 
of hydrographic basins already degraded by erosion, especially in 
developing countries (Mennecke and West Jr, 2001; Arabameri et al., 
2019). Other advancements may provide for the inclusion of accurate 
relief models (see TanDEM-X performance at Boulton and Stokes, 2018). 
In addition, the analysis of soil spectral responses by RS would provide 
proxies for new pedological maps (Poppiel et al., 2019), which can 
contribute to the greater accuracy of the model. In the same way, the 
role of land cover, more precisely of native vegetation, could be aggre-
gated in the form of historical data. That eliminates, for example, the 
focus on places with high potential for natural erosion, but the regen-
eration of vegetation cover has been mitigating the effect of rainfall on 
the soil (Zhang et al., 2004; Gahrizsangi et al., 2021). 

The identification of locations with erosion for recovery in-
terventions is the main outcome of our proposed spatial algebraic rules. 

Fig. 2. The sequence of the factors for soil erosion risk evaluation: a) Rainfall index (R), b) Soil erodibility (E), c) Slope (S), and d) Land Use/Land Cover (C).  
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We identified 4744 interventions, 76% of which are suitable for con-
trolling dams. Proportionally, this is much higher than the 327 check 
dams reported by Rahmati et al. (2019), and 27 by Dash et al. (2021). 
According to our accuracy assessment, more than 60% of the palisades 
and check dams had locations related to severe erosive features, how-
ever new layers to false positive exclusion due to the influence of 
vegetation can be coupled in the method. By putting this into practice, 
we provide a basis for decision-makers to block more than half of the 
concentrated flow of sediment in the basin. 

We emphasize that the zoning of interventions within erosions was 
only possible with the vectorization of the drainage lines through visual 
inspection. Although the current trend of applying machine learning 

algorithms dominates publications on the spatialization of erosive pro-
cesses (Ghorbanzadeh et al., 2020) or the detection of ravine edges (Li 
et al., 2021), here we highlight the importance of human expertise on RS 
images analysis. In this sense, our algebra of selection and exclusion of 
false positives can be useful as an attribute for achieving more robust 
models (Minella et al., 2010), or even for integrating variables in GIS, 
such as distance to roads, lithology, slope curvatures, and topographic 
indices (Zabihi et al., 2018; Pourghasemi et al., 2020; Amiri and Pour-
ghasemi, 2020), especially regarding the locations suitable for palisades, 
whose studies are still scarce. 

Mapping the structures is the first step toward achieving basin sus-
tainability. Unquestionably, check dams and palisades are effective in 
controlling sediment flow (Xu et al., 2020), however, this rule is limited 
to biophysical parameters alone and does not provide an integrated 
view. Studies have shown that for implementation it is necessary to take 
into account economic, social, and agrarian structure (Wynants et al., 
2019). 

4.3. Adding pieces to the puzzle: erosive risk, interventions, and agrarian 
structure 

Based on our analysis of USLE parameters, we could identify prior-
ities for erosion recovery interventions at a landscape scale in the Upper 
Taquari River Basin, however much work remains to translate it into 
action. In the real world, it is critical to assess cost, opportunities, eco-
nomic, social, and policy aspects (Armsworth, 2014). By including in-
formation on the land structure of the region in our study, we were able 
to find that an erosion risk area on large properties is about 10 times 
greater than on micro properties. In this perspective, we agree with 
Stefanes et al. (2018) that the recovery of cattle pastures on large 
properties should be prioritized, as few properties already represent a 
gain in scale (area) to the renewal of the basin. Although we do not 
despise the micro properties, which lack technology and resources, this 
would represent a gain in participation and social engagement in rela-
tion to the conservation of natural resources (Tesfahunegn, 2019). Thus, 
we understand that the approaches are different and complementary. 

Technically, large properties have an area available to carry out 
zoning between soil recovery (temporary stoppage) and agricultural 
production. In addition, they often have access to rural credit and ma-
chinery to support conservation activities (see an example in China’s 

Fig. 3. Comparison map between the worst risk of soil erosion (a) of test 6 for 50% of S-factor and R-factor, and the best (b) of test 11 for 25% of S-factor and 75% of 
E-factor. 

Fig. 4. Suitable areas for interventions with palisades and check dams detected 
in the UTRB. 
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land arrangement by Ma et al., 2020). On the other hand, small prop-
erties do not have areas available for rotation, access to technology, and 
credit due to a lack of collateral registration (Carrer et al., 2020). 
Meanwhile, they may have the manpower to implement conservation 
practices, including operating machinery or collecting and planting seed 
species in gullies (Agidew and Singh, 2018; Schmidt et al., 2019). 
Therefore, given the dispersion of erosion points along the basin, we 
propose to divide the area into smaller projects, probably into micro 
catchments whose ecological trade-offs (Zhao et al., 2018) and 
cascading effects downstream on soil retention are measurable. (Sun 
et al. al., 2020). The regions of interest are also more favorable for the 
interaction between micro and large properties in the implementation of 
recovery actions (Toledo et al., 2018). 

But where to start considering that active gullies on all properties are 
important for land restoration? The prioritization criteria may be con-
strained by a combination of costs, biodiversity conservation, and 
climate change mitigation (Strassburg et al., 2020). Indeed, setting 
restoration priorities is not a consensual issue. Overall, highly degraded 
areas are prioritized because they need urgent action (Lamb et al., 

2005). However, a crescent number of studies also suggest that inter-
mediate degraded areas should be prioritized because the costs and 
benefits are higher (Tambosi et al., 2014). According to Toledo et al. 
(2018), active restoration may be complemented by spontaneous 
regeneration in areas with less adverse conditions. In addition to the 
criteria already discussed we suggest to the decision makers an inclusion 
of a percentage of RL and APP surrounding the erosions to ranking 
gullies recovery. Basically, gullies permeated by vegetation can be 
rehabilitated a posteriori, according to their power of self-regeneration 
(Yang et al., 2018; Prieto et al., 2022). Erosion around the matrices 
(cattle) will likely be more costly due to the absence of native fragments 
but should be a priority to increase ecosystem connectivity (Tambosi 
et al., 2014; Blake et al., 2021). 

The solutions for articulating interventions with the agrarian struc-
ture permeate the State’s performance. We understand that large 
properties must be provoked by the government to achieve compliance 
with the Forest Code (Roitman et al., 2018; Stefanes et al., 2018), while 
structures in small and micro properties can be provided from specific 
public credit and payment programs for environmental services 

Fig. 5. Examples of check dams (A) and palisades (B) samples overlaid by a high-resolution orbital image available in the ArcGIS plugin. The numbers indicate those 
correctly (A1 and B1) and incorrectly (A2 and B2) determined by GIS algebra. 
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(Brancalion et al., 2016). 

5. Conclusion 

The development of multi-criteria can be seen as a first step to 
planning the basin recovery. Areas of the high potential risk of soil loss 
in UTRB are evenly distributed between small and large properties, 
areas of anthropic use, and those reserved for conservation or preser-
vation of natural resources. Similar status has been observed in pastures 
of savannas in tropical regions; therefore, the widespread degradation 
requires urgent prioritization for regional stabilization of tropical crit-
ical gullies. 

The inclusion of agricultural information enriches the visualization 
of potential implementation opportunities. The weaknesses of one 
ownership group can be addressed by the strengths of others, as in a 
collaborative action system. However, the State government is instru-
mental in invoking, especially with the creation of specific financial 
resources rooted in public policies for groups of fragile properties in 
compliance with the Forest Code through the CAR. 
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Poppiel, R.R., Lacerda, M.P.C., Demattê, J.A.M., Oliveira, M.P., Gallo, B.C., Safanelli, J. 
L., 2019. Pedology and soil class mapping from proximal and remote sensed data. 
Geoderma 348, 189–206. https://doi.org/10.1016/j.geoderma.2019.04.028. 

Pourghasemi, H.R., Yousefi, S., Sadhasivam, N., Eskandari, S., 2020. Assessing, mapping, 
and optimizing the locations of sediment control check dams construction. Sci. Total 
Environ. 739, 139954 https://doi.org/10.1016/j.scitotenv.2020.139954. 

Prieto, P.V., Bukoski, J.J., Barros, F.S.M., Beyer, H.L., Iribarrem, A., Brancalion, P.H.S., 
Crouzeilles, R., 2022. Predicting landscape-scale biodiversity recovery by natural 

tropical forest regrowth. Conserv. Biol. 36 (3), e13842 https://doi.org/10.1111/ 
cobi.13842. 

Pruski, F.F., 2006. Conservação de solo e água: práticas mecânicas para o controle da 
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