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Introduction
Different breeding methods for creating 
segregating populations can be used in 
rice, an autogamous species, with the aim 
of obtaining recombinant inbred lines su-
perior to those already in cultivation, such 
as the single seed descent (SSD) and the 

population (Bulk) methods (Ramalho et 
al., 2012). The Bulk method consists of 
collecting all plant seeds in each gener-
ation and planting a random sample of 
seeds to propagate the next generation 
(Haddad and Muehlbauer, 1981). Due to 
inequality in fertility, highly competitive 
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variants are represented at higher frequen-
cies in successive generations, resulting 
in decreased variability in the population 
and increased frequencies of closely relat-
ed genotypes. The Bulk method allows the 
conduction of a greater number of segre-
gating populations of interest for breeding, 
with higher grain yield averages and lower 
costs involved in the evaluation of field ex-
periments (Mendes et al., 2011). The SSD 
method consists of removing a single seed 
from each plant, starting from F2, and sow-
ing the seeds to propagate in the next genera-
tion (Silva et al., 2013). As a result, the SSD 
method allows obtaining homozygous lines 
with greater control of the segregating popu-
lation; however, it can reduce the number of 
crosses evaluated, as it requires more space 
for the cultivation of each progeny.
Recombinant inbred lines, with a high de-
gree of homozygosity after successive gen-
erations of self-fertilization, can also be used 
for molecular genetic studies. The genotyp-
ing of RILs allows the determination of the 
average genetic distance between RILs, and 
the identification of genes, or gene blocks, 
associated with characters of interest via 
quantitative trait loci (QTL) analysis. QTL 
loci are chromosomal segments that govern 
quantitative traits, but this definition refers 
only to a statistical association between a re-
gion of the genome and a phenotypic char-
acter, which have a continuous distribution, 
such as plant height, grain yield, etc. (Guo 
et al. 2014). For characters with low herita-
bility, phenotypic selection is carried out in 
more advanced generations, as the herita-
bility and statistical precision of estimating 
progeny averages increase with the increase 
in the number of repetitions, generations, lo-
cations and years of testing, which leads to a 
very large increase in the number of plants to 
be evaluated (Dixit et al., 2019).
The grain yield is regulated by the interac-
tion of several genes with small effects and 
by environmental action on the genotype, 
and tends to have low or moderate heritabil-
ity (Xing and Zhang, 2010). QTL mapping 
and cloning studies have been important in 

identifying genes that regulate grain weight, 
including both genes for grain size and grain 
filling, for example (Qi et al., 2012; Dixit et 
al., 2019). In this study, RILs from the cross 
Epagri 108 (Oryza sativa ssp. Indica) × Irat 
122 (Oryza sativa ssp. Japonica), advanced 
through the SSD and Bulk methods, were 
genotyped by SNPs and SilicoDArTs mark-
ers and evaluated in field experiments. The 
objectives of this study were to compare the 
RILs developed by the two methods in terms 
of genetic variability and productive perfor-
mance, and the ability of these populations to 
identify QTLs related to grain yield.

Material and Methods
Advancement of Bulk and 

SSD Populations
The cross Epagri 108 (O. sativa ssp. Indica) 
× Irat 122 (O. sativa ssp. Japonica) was car-
ried out in the year 2005. The rice cultivar 
for irrigated cultivation system, Epagri 108, 
was commercially released in 1996 and ex-
hibits broad adaptability for cultivation 
throughout Brazil. The cultivar for upland 
cultivation system, Irat 122, was released 
in 1980 by CIAT, introduced in Brazil, and 
maintained in the Embrapa’s Germplasm 
bank. The Epagri 108 x Irat 122 popula-
tion was advanced through the Bulk method 
starting from the F2 generation in 2006. For 
the generation advancement, samples of 500 
seeds were taken and planted again the fol-
lowing year, until the F7 generation, where 
plants were randomly selected, and each 
giving rise to an F7:8 family. These families 
were arranged in five-meter rows, and seeds 
were harvested from each family. The Epagri 
108 × Irat 122 population was also advanced 
through the SSD (single seed descent) meth-
od from 2006. Starting from a population of 
500 seeds in F2, ten seeds from each F2 plant 
were sown, and after 20 days, five seedlings 
were transplanted into the field. From these 
five plants, only one was randomly chosen 
to advance to the next generation. This en-
tire process was repeated until the F7 gener-
ation, when seeds (F8) were harvested from 
all plants of each family. For the two years 
of experiments (2017 and 2018) at Palmital 
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farm in Goianira-GO, 158 Bulk lines (F7:8) 
and 158 SSD lines (F8) were randomly select-
ed to be evaluated in the field experiments.

Assessment of advanced 
families by Bulk and SSD

The SSD and Bulk populations resulting 
from the cross Epagri 108 × Irat 122 were 
evaluated in two field experiments conduct-
ed during the 2016/2017 and 2017/2018 
growing seasons at Palmital Farm, locat-
ed in Goianira municipality, Goiás, Brazil 
(16°30’23’’S; 49°17’00’’W; 823 m). In each 
experiment, 158 RILs from each method, 
along with 8 checks (two parents and the 
cultivars Araguaia, Maninjau, Irga 417, BRS 
Catiana, BRS Tropical, INTA Puitá CL), 
were evaluated using an 18x18 lattice square 
experimental design with plots consisting of 
4 rows of 3 meters, with two repetitions. The 
evaluated trait was grain yield (GY), with all 
plants from the two central rows of each plot 
being harvested and weighed using a preci-
sion scale. The weight values in grams were 
then converted to kg.ha-1.

Statistical Analysis Using 
Mixed Models

The adopted statistical model for data analy-
sis was a mixed-effects model:

(Eq.1)

Yijkmn = µ + gi(m) + rj + bk(j) + pm + tn + εijkmn

Where Yijkmn is the observed value of geno-
type i, in repetition j, within block k, and µ 
is the constant inherent to all observations, 
representing the overall mean of the trial. As 
random effects in the model, we have: gi/m 
is the effect of genotype i within group m, rj 
is the effect of repetition j, bk/j is the effect 
of block k within repetition j, and εijkmn is the 
effect of associated errors. Similarly, as fixed 
effects of the model, we have: pm which is 
the effect of groups containing genotype i, 
and tn, which is the effect of checks n.
The effects of the model were estimated us-
ing the Smmer package in the R software 
(R Core Team, 2022). The variance com-
ponents were estimated using the restricted 

maximum likelihood (REML) method. This 
allowed obtaining the best unbiased estimate 
for fixed effects, i.e., the empirical best lin-
ear unbiased estimators (eBLUEs), and the 
best unbiased linear prediction for random 
effects, the empirical best linear unbiased 
predictors (eBLUPs). The significance of 
each effect within the model was tested both 
in individual analyses and in the joint analy-
sis using the analysis of deviance. The anal-
ysis was performed by disregarding each of 
the effects under test (repetition, block, gen-
otype) and subtracting the deviance from the 
model without the respective effect from the 
deviance of the complete model. The signif-
icance of each effect was verified using the 
likelihood ratio test (LRT), using the χ² dis-
tribution at 1% and 5% probability levels, 
with one degree of freedom.
The coefficient of experimental variation 
(CVe) was determined by the formula:

(Eq.2)

The selective accuracy was determined by 
the formula:

(Eq.3)

Molecular analysis by SNP markers
Genomic DNA was extracted from young 
leaves of the inbred lines and their parents 
using the commercial kit DNeasy 96 Plant 
Kit (Qiagen). After sample preparation, DNA 
was sent to Diversity Arrays Technology 
(DArT) Pty Ltd (Bruce, Australia) for geno-
typing. The DArTseq methodology gener-
ated dominant SilicoDArTs markers (pres-
ence/absence) and SNPs (Single Nucleotide 
Polymorphism). The average genetic dis-
tance between the RILs of each Bulk and 
SSD methods was obtained by the GenAlEx 
version 6.51b2 program (Peakall & Smouse, 
2012) using the distance coefficient of 
Smouse & Peakall (1999).
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LD extension estimates were calculated by 
the usual method (r²) using the LDcorSV 
package in R (Desrousseaux et al., 2013). 
In contrast, the Genetic Relationship Matrix 
(GRM) was estimated by the algorithm pro-
posed by Yang et al., (2010), using the GCTA 
package (Yang et al., 2011). The LD decay 
was explained by the nonlinear model (Hill 
& Weir, 1988) and adjusted to the “nls” func-
tion in the R program. The haplotype blocks 
were identified using the Haploview soft-
ware (Barret et al., 2005), with a minimum 
percentage of genotyping of individuals ≥ 
75% and R² ≥ 0.8.
The linkage map of each RIL population 
(SSD and Bulk) was obtained using the 
MapDisto program version 1.7.7 (Lorieux, 
2012), using LOD ≥ 3 and maximum recom-
bination frequency θ = 0.3. The recombina-
tion fractions were transformed into genetic 
distances (cM) by the Kosambi function. 
QTL analysis was performed using the statis-
tical software R and the R/qtl package, using 
SNP markers and adjusted means of RILs 

(Blups) for the traits grain yield and plant 
height. The multiple QTL mapping strate-
gy was used, with a LOD value considered 
equal to or greater than three. The nomen-
clature of QTLs followed the guidelines de-
scribed by McCouch et al. (1997).

Results
It was verified by the Deviance analysis that 
for the grain yield (GY) character the effects 
of the genotypes from the first year of ex-
perimentation (2017), only the SSD method 
was significant (p<0.05) and, consequently, 
its genetic variance component, while the 
Bulk and the checks showed no statistical 
significance. For the second year (2018), 
the three groups of genotypes (Bulk method, 
SSD method and checks) were significant 
(p<0.01), as well as their genetic variance 
components. For the joint analysis of the two 
years, only SSD was significant (p<0.01). 
Deviance analysis thus demonstrated the 
presence of genetic variability among the 
strains evaluated (Table 1).

Table 1. Deviance analysis data for the RILs-Bulk, RILs-SSD and checks genotype groups for the 
grain yield (GY) trait.

GY - 2017 GY - 2018 GY – Joint Analysis
LRT p.value σ2g LRT p.value σ2g LRT p.value σ2g

RILs-Bulk 2.52 0.11ns 901724.8 39.68 2.99e-10* 281726.1 2.38 0.12ns 221473.2
RILs-SSD 3.92 0.05* 1144089 116.85 0* 697206.8 9.17 0.002* 459966.8
Checks 0.069 0.79ns 603289.2 16.79 4.16e-05* 911485 1.25 0.26ns 806471.6
σ2g = genetic variance; * significant at 5% probability and ns not significant by the LRT test.

With the average values adjusted by BLUEs 
(fixed effects) for the grain yield character, 
the Bulk group stood out with the highest 
averages (4,953.25 kg.ha-1; 3,225.59 kg.ha-1 
and 4,189.42 kg .ha-1), respectively for the 
1st and 2nd year and joint analysis. The SSD 
group had the second best productive per-
formance, with averages (4,284.43 kg.ha-1; 
2,735.15 kg.ha-1 and 3,614.56 kg.ha-1) for 
the 1st and 2nd year and joint analysis. The 
checks had lower averages than the Bulk 
and SSD groups (3,158.01 kg.ha-1; 3,369.85 
kg.ha-1 and 3,456.70 kg.ha-1) for the 1st and 
2nd year and joint analysis (Table 2). Thus, 
the RILs of both methods were superior to 
the check cultivars, indicating that, for the 

locations and years evaluated, they are can-
didates for the development of future com-
mercial rice cultivars.

Table 2. Adjusted means (Blue - fixed effect) of 
the RILs-Bulk, RILs-SSD and Checks groups 
for grain yield (GY).

Grain Yield (GY)
2017 2018 Joint Analysis

RILs- Bulk 4,953.25* 3,225.59* 4,189.42*
RILs-SSD 4,284.34* 2,735.15* 3,614.56*
Checks 3,158.01* 3,369.85* 3,456.70*

* Significant at 5% probability by the F test.

The large magnitude of genetic variance 
(σ2g) indicates that there is genetic vari-
ability within the population of RILs eval-
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uated in the Bulk (RILs-Bulk) and SSD 
(RILs-SSD) methods and in the checks. 
In the first year of the experiment for the 
GY trait, only the SSD group showed a 
significant σ2g component (p<0.05) in the 
LRT analysis, indicating greater genetic 
variability within the group of 158 RILs-
SSD. In the second year of the exper-
iment, for the GY trait, the RILs of both 
methods and checks were significant by 
the LRT test, but the checks showed high-
er σ2g, followed by RILs-SSD and finally, 
RILs-Bulk. For the joint analysis, only the 
SSD group was significant. Consistently, a 
higher h² was also observed in SSD (0.23; 
0.77; 0.29) than in Bulk (0.19; 0.57; 0.17) 

respectively for the 1st year and 2nd year 
and joint analysis (Table 3).
Experimental precision has a large effect on 
estimating the general genetic parameters of 
a population. The experimental coefficients 
of variation (CVe) of this work indicate that 
the two years of experiment had good to 
moderate experimental precision for the trait 
evaluated (Table 3). The CVe in the 1st year 
of experiment was high (59.46), and in the 
2nd year it was within expectations (21.30). 
The accuracy of the present work was mod-
erate to high for the trait evaluated, with the 
experiments considered to have good preci-
sion (Table 3).

Table 3. Estimates of genetic parameters genetic variance (σ2g), heritability (h2), selective accura-
cy (rgg); environmental variance (σ2e) and environmental variation coefficient (CVe) of RILs-Bulk, 
RILs-SSD and Checks for the trait Grain Yield (GY).

Grain Yield (GY)
2017 2018 Joint Analysis

RILs-Bulk RILs-SSD Checks RILs-Bulk RILs-SSD Checks RILs-Bulk RILs-SSD Checks
σ2g 901,724.8 1,144,089.0 603,289.2 2,817,261.0 6,972,068.0 911,485.0 2,214,732.0 4,599,668.0 806,471.6
h2 0.19 0.23 0.14 0.57 0,77 0.81 0.17 0.29 0.42
rgg 0.48 0.85 0.49
σ2e 739,445.7 410,779.0 431,570.0

CVe (%) 59.46 21.30 52.25

Genetic Mapping
Genotyping of RILs-Bulk and RILs-SSD 
and the two genitors using the DArTseq plat-
form resulted in the identification of SNPs 
(codominant) and SilicoDArTs (dominant) 
markers. Genetic mapping distributed the 
markers across the 12 rice chromosomes, 
and the number of polymorphic markers var-
ied between RILs-Bulk and RILs-SSD pop-
ulations, because of the filtering performed 

(Table 4). The no distorted segregation 
markers identified by the X² test which fit the 
expected F8 segregation of 1:1, resulted in 
a total of 2,115 SNP markers for RILs-SSD 
and 2,354 markers for RILs-Bulk (1,272 
SilicoDArTs and 1,082 SNPs) (Table 4). The 
total distance obtained for the map construct-
ed in the RILs-SSD population was 1,572 
cM, while for the RILs-Bulk it was 1,570 cM 
(Table 5).

Table 4. Filters used to obtain the set of SNPs and SilicoDArTs markers for the RILs analyses.
RILs-SSD RILs-Bulk

Initial number of markers 11,279 35,976
Filter 1: elimination of duplicate markers 4,914 5,482
Filter 2: elimination of monomorphic markers; missing 
data; heterozygous loci and distorted loci 768 28,139

Total markers after filters 1 and 2 5,597 2,354
Filter 3: Selection of markers every 50,000 bp 2,115 -
Number of markers for molecular analysis 2,115 2,354
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Table 5. Distribution of markers on the chromosomes of RILs-SSD (SNPs) and RILs-Bulk (SNPs 
and SilicoDArTs).

RILs-SSD RILs-Bulk

Chr Total 
Markers

Total Distance 
(Mbp)

Total Distance 
(cM)

Total Markers 
SilicoDArTs

Total Markers 
SNPs

Total Distance 
(Mbp)

Total Distance 
(cM)

1 135 43 203 173 105 42 203
2 68 34 169 97 94 34 169
3 40 35 190 47 59 35 189
4 274 34 130 137 107 34 130
5 63 27 120 83 81 27 120
6 249 27 114 99 112 29 126
7 327 29 155 59 75 29 155
8 309 27 115 108 98 28 117
9 229 22 92 69 98 22 92

10 286 23 92 82 73 20 75
11 73 28 93 174 98 28 94
12 62 27 99 144 82 27 100

Total 2,115 356 1,572 1,272 1,082 355 1,570
Chr: chromosome; Mbp: megabase pairs; cM: centimorgan.

The linkage disequilibrium (LD) decay pat-
tern was estimated in relation to the distance 
between markers for each chromosome, con-
sidering the 158 RILs from each method sep-
arately. Considering all markers, the distribu-
tion of r² showed a decay with the increase in 
physical distance between markers, presenting 
a high LD for both RILs-SSD and RILsBulk. 
On average, the LD for RILs-SSD did not de-
cay quickly with increasing physical distance 
from the markers, with the average decay 
point being 11.58 Mb, while for RILs-Bulk 
RILs the decay was faster, at 0.84 Mb.
The genotyping data allowed us to estimate 
the genetic distance between the RILs, and 
according to the Smouse & Peakall coeffi-
cient, the average distance between the RILs-
SSD lineages was 17,664.85, while that be-
tween the RILs-Bulk was 7,304.82, that is, 
the first group of RILs was almost two and 
a half times more variable than the second 
group. The expected heterozygosity (He) of 
these data sets also showed a higher value in 
the RILs-SSD group compared to the RILs-
Bulk group (0.49 and 0.25, respectively).

QTL analysis
QTL analysis by multiple mapping identi-
fied six QTLs for productivity (minimum 
LOD of 3.0), with three QTLs identified for 
SSD-RILs and three QTLs for RILs-Bulk. 

Considering the SSD-RILs, two QTLs for 
GY were found for the second year of eval-
uation, located on chromosomes 6 and 9 
(qGYLD6.1 and qGYLD9), with explained 
phenotypic variation values of 23.56% and 
7.45%, respectively, and in the joint analysis, 
a QTL was identified, also located on chro-
mosome 6 (qGYLD6.2) with an explained 
phenotypic variation of 9.45% (Table 6).
For SSD-RILs, considering the GY char-
acter, the QTL peak was identified by 
SNP_6_9538767 (in the 2018 experiment), 
located on chromosome 6, and is within a 
haplotypic block of 329 Kb, and is located 
between the genes LOC_Os06g16590 and 
LOC_Os06g16600. Considering the data 
from the joint analysis, the SNP_6_17931455 
marker is in a 100 Kb block, and is positioned 
in an intergenic region. Another QTL relat-
ed to productivity was identified on chro-
mosome 9, and this QTL had as its peak of 
significance the marker Dart_9_22544728, 
which was located in the gene LOC_
Os09g39240, and is in a haplotypic block 
with an extension of 436 Kb.
Considering the RILs-Bulk, two QTLs were 
located on chromosomes 6 and 9 (qGYLD6 
and qGYLD9) in the 2018 experiment, with 
phenotypic variation of 21.65% and 3.71%, 
respectively. In the joint analysis, a QTL 
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’. was identified on chromosome 7 (qGYLD7) 

with phenotypic variation of 12.90% (Table 
6). With the exception of QTL qGYLD7, all 
other QTLs had the favorable allele coming 
from the parent Epagri 108. On chromo-
some 6, the peak of QTL significance was at 
Dart_6_1901782, and this marker is locat-
ed in the region close to LOC_Os06g04450 
within a block of 46 Kb. In the QTL identi-
fied on chromosome 7, the significant peak 
of significance was at Dart_7_28888504 
and is located in an intergenic region. In 
the QTL of chromosome 9, the marker 
SNP_9_12730961 is positioned in the LOC_
Os09g21110 gene.

Discussion
Phenotypic Analysis

The experimental coefficients of variation 
of this work indicate that the two years of 
evaluation had good to moderate experimen-
tal precision, while selective precision was 
moderate to high, according to Resende and 
Duarte (2007). The crossing between the two 
parents allowed good genetic complemen-
tarity, which provided the RILs with higher 
grain yield than their parents, resulting from 
transgressive segregation. The RILs-Bulk 
group stood out with the highest productivity 
averages in both years and in the joint analy-
sis, while the checks presented lower averag-
es than the Bulk and SSD groups. These re-
sults reflected the high and significant com-
binatorial capacity of the Epagri 108 and Irat 
122 parents previously observed by Ramos 
et al. (2019).
The combining ability reflects the effect of 
gene additivity and is of fundamental im-
portance in selection in autogamous plants 
(Bernardo et al., 2010). Kambar et al. (2011) 
found a similar result in rice, and Silva et 
al. (2013) in common bean, where the Bulk 
method was superior to the SSD method 
in obtaining inbred lines with higher aver-
age grain productivity. This indicates that 
the most productive plants left the greatest 
number of seeds and with each generation 
of population advancement, these plants had 
greater representation. This was also reflect-
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ed in the smaller genetic distance between 
RILs-Bulk in relation to RILs-SSD obtained 
by SNP markers, and greater genetic vari-
ance and heritability in RILs-SSD than in 
SSD-Bulk, as observed by Miladinovic et al. 
(2011). According to Funada et al. (2013), 
through simulation, in the SSD method, 
82% of plants in F2 are represented in the 
F6 generation. On the other hand, Kervella 
and Fouillou (1992), also using simulation, 
showed that in the Bulk method, only 67% 
of the plants in F2 are represented in F5, that 
is, indicating losses due to sampling of the 
method.

Genotypic Analysis
The molecular markers were positioned on 
the 12 chromosomes and ensured broad dis-
tribution throughout the genome of both RIL 
populations. Any factor that alters allele fre-
quencies can interfere with the LD dynam-
ics observed in the RIL populations of the 
study, such as natural or artificial selection, 
sampling processes, among others (Schaper 
et al., 2012).
In rice, linkage disequilibrium values are 
quite variable, for example, in inbred lines, 
the LD varies from 100-500 Kbp, but these 
values are not common and result from the 
specific breeding processes to which the 
population was subjected (Liu et al., 2013). 
Chen et al. (2013) observed LD in O. sativa 
Japonica subspecies from temperate regions 
being the one with the highest LD (> 500 
Kb), followed by O. sativa Japonica from 
tropical regions (approximately 150 Kb) and 
O. sativa Indica (approximately 75 Kb).
The linkage map was constructed by 2,115 
SNP markers for RILs-SSD and 2,354 
markers for RILs-Bulk (SNPs and DArTs). 
According to Shabir et al. (2017), genetic 
mapping of a suitable number of markers, 
and a progeny with 50 to 250 individuals, 
provides a wide marker distribution across 
the rice genome, and increasing marker den-
sity greatly improves map resolution and ac-
curacy for QTL analysis (Yonemaru et al., 
2014). The map obtained in the study has 
1,572 cM for RILs-SSD and 1,570 cM for 

RILs-Bulk, and whose distances are relative-
ly greater in relation to the map by Ma et al. 
(2016) in rice, which presented 1,070 cM.
In the present work, six QTLs for produc-
tivity were identified (three for RILs-SSD 
and three for RILs-Bulk). Although the same 
QTLs were not found in the different years 
evaluated, the LOD values were high enough 
to determine that the results were quite con-
sistent in each location, which makes the 
use of the QTL for assisted selection only 
for the environment where it was identified. 
According to Cobb et al. (2019), it is not 
possible to transfer the results of QTL analy-
sis to other environments, years or other pop-
ulations, due to the quantitative inheritance 
of traits such as productivity.
Silva et al. (2022), in a QTL analysis using 
different RILs-SSD, but derived from the 
same crossing Epagri 108 × Irat 122, and 
evaluated in the same location (Goianira, 
GO), but in another cropping season, iden-
tified the same SNP associated with the pro-
ductivity QTL of chromosome 9 (qGYLD9; 
SNP_9_22544728). This result is very inter-
esting, as two independent experiments, car-
ried out in different years, and with different 
SNP data sets, identified the same SNP re-
lated to the productivity trait. This SNP is a 
candidate to be studied in detail for the devel-
opment of a marker for assisted selection for 
productivity. SNP_9_22544728 (qGYLD9), 
which has a modifier effect, is located in 
an exon of the gene LOC_Os09g39240, 
and is translated into a protein with a func-
tion that has not yet been determined. The 
SNPs that identified the QTLs qGYLD6.1 
and qGYLD6.2 were not located in the rice 
genes.
In RILs-Bulk, two QTLs were identified for 
the GY trait in the 2nd year. qGYLD6 was 
identified on chromosome 6, where the sig-
nificant SNP was positioned within the LOC_
Os06g04450 gene with a putative function as 
a transport protein of the Sec1 family, whose 
function has not yet been determined in 
plants. The qGYLD9 QTL on chromosome 9 
is located in the LOC_Os09g21110 gene, re-
sponsible for the synthesis of the leucyl-tR-
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NA synthetase enzyme, and although already 
identified in Arabidopsis, corn, sorghum and 
grapes, its function has been more studied in 
humans, and related to growth regulation cel-
lular via the TOR complex route (Son et al., 
2019). The SNP variants that identified the 
genes LOC_Os06g04450 (QTL qGYLD6) 
and LOC_Os09g21110 (QTL qGYLD9) 
have a modifier impact and are located in a 
3’ UTR region. The SNP that identified the 
QTL qGYLD7 is located in an intergenic 
region.
Two QTLs (qGYLD6.2 and qGYLD7) were 
detected only by joint analysis, where the 
productivity values are the result of the aver-
age of the genotypic values of the two years 
of experiment. The phenotypic contrasts be-
tween the RILs are determined by the av-
erage value of the years, finding a distinct 
value, resulting from the G x E interaction, 
which then generate a data matrix that would 
be equivalent to a third population. However, 
the joint analysis data, despite being an esti-
mate, may reflect the identification of more 
stable QTL loci. According to Wang et al. 
(2019), joint analyzes across multiple years 
and locations can be used to determine QTL 
stability and estimate the interaction between 
the additive QTL and the environment.
The choice of the most efficient breeding 
method for managing segregating popula-
tions depends on variables such as the her-

itability of the trait, the financial resources 
available for each breeding program, the 
skill of breeders, the trait to be improved and 
the parents used (Ramalho et al., 2012). Of 
the limitations that a breeding program faces, 
the cost factor generated for experimentation 
and the labor required to conduct field exper-
iments are the most impactful. Both the SSD 
and Bulk methods were efficient in obtain-
ing high grain yield RILs and in the ability 
to identify QTLs. However, the Bulk method 
was more practical to handle and cheaper to 
obtain RILs compared to SSD.

Conclusions
1) The Bulk method obtained RILs with less 
genetic distance between them, but presented 
higher average grain yield compared to RILs 
derived from SSD.
2) Both RILs derived from Bulk and SSD 
showed sufficient phenotypic contrast to 
identify QTLs for the grain yield trait.
3) Considering the higher average grain yield 
of RILs-Bulk and the identification of RIL-
SSD with higher GY, it was not possible to 
choose the most efficient method. However, 
the Bulk method is easy to manage seeds 
over generations, a point that may be import-
ant in order to reduce the cost of population 
development.
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