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1. Introduction 

Wetlands constitute around 1 % of the global landmass and their soils are home to many 

specialized organisms that are found nowhere else. Soils formed from waterlogged organic 

matter are known as peats, and contain a high percentage of organic matter. Peatlands are 

estimated to currently store 224 to 455 Pg of carbon, equal to 12-30% of the global soil 

carbon pool. In the high Andean mountains these ecosystems are valued for their role as 

regulator of the hydrological cycle, habitat for plant and animal species, carbon sink, good 

quality grassland, and their scenic value. These tropical and sub-tropical peatlands from the 

Andean highlands or cushion peat bogs are also known by local farmers as bofedales, which 

areas can sensitive to environmental conditions and climate change that might have direct and 

indirect effects on the sustainability of the agroecosystem [1]. 

The objectives of this study were: 1) to study whole soils samples from Andean peat lands 

using Solid-State 
13

C Nuclear Magnetic Resonance (NMR); 2) to make a qualitative 

characterization of predominant chemical structures of these kind of soils; and, 3) to evaluate 

the usefulness of principal component analysis of 
13

C NMR spectra to hypothesize 

distributional patterns of these soils and to characterize the changes throughout the soil 

profile. 

2. Materials and Methods 

Permanent waterlogged and wet grassland (seasonal) bofedales from Huayllapata, Peru at an 

average altitude of 3,881 m asl, were selected as representative wetlands of the Central Andes. 

Seasonal bofedales presented scarcely vegetal coverage, since this grassland type is heavily 
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grazed by sheep, bovines and cameloids during the rainy season that in this study ended right 

before the sampling. The permanent waterlogged bofedales sampled had a more dense 

vegetation and much higher pasture availability. Soil samples were collected in April 2008 at 

different depths: 0-2.5 (1), 2.5-5 (2), 5-10 (3), 10-20 (4) and 20-30 (5) cm in seasonally 

flooded (A) and permanently flooded bofedales (B). Dry soil samples were ground and sieved 

to pass 0.25 mm particle size, in order to reduce the heterogeneity of the samples. The total 

organic carbon concentration of the evaluated wetland soils varied from 121.7 to 215.6 g C 

kg
-1

, in the top 30 cm. Variable-amplitude cross-polarization (VACP) NMR experiments were 

performed using a VARIAN INOVA spectrometer at 
13

C and 
1
H frequencies of 100.5 and 

400.0 MHz, respectively, and a Jackobsen 5-mm MAS double-resonance probe head. Magic-

angle spinning (MAS) at 5 kHz, with total suppression of spinning sidebands (TOSS), was 

employed to suppress spinning sidebands. The TOSS sequence was implemented with 

composite  !pulses, to achieve a better inversion of the magnetization [2]. Two-Pulse Phase-

Modulation (TPPM) proton-decoupling technique with field strength of 60 kHz, cross-

polarization contact time of 1ms, and recycle delay time of 500 ms were used. Principal 

component analysis (PCA) was carried out using the spectra, obtained after area 

normalization and mean-centering of the data. 

3. Results and Discussion 

The 
13

C NMR spectra (Fig. 1) presented typical features of soil organic matter, dominated by 

fresh plant debris such as cellulose and alkyl C groups, probably of plant origin, such as cutin, 

suberin and wax. As expected, the lignin signals were imperceptible due to the major 

contribution of cellulose in fresh material. However, there seems to be an ongoing oxidation 

(humification), since the carboxyl signal is prominent, indicating a partial oxidation of this 

vegetable material, probably cellulose to glucuronic acids. The contribution of fatty acids 

(cutin, suberin and wax) to this signal is also expected [3]. The samples from the upper layers 

(A1 and B1) are very similar, but this similarity decreases with depth. Additional carboxylic 

signal at 169 ppm can be observed in the deeper layers of both soils, but more evident in the 

samples from soil A. This signal can be attributed to carboxyl groups attached to aromatic 

rings. 
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Figure 1: Spectra of peatland soils obtained by VACP/MAS 13C NMR. 

 

In general, 
13

C NMR results can be properly summarized by the PCA analysis (Fig. 2). The 

first principal component (PC1), which accounted for 78% of the total variance, is 

characterized by positive loadings at 130 and 169 ppm, typical of aromatic structures with 

carboxylic moieties, and negative loadings for fresher material such as cellulose (104 and 73 

ppm), methoxyl from lignin, or more probably N-alkyl from proteinaceous material (56 ppm) 

and fatty acids (21, 33 and 172 ppm). This last signal can also be related to oxidised cellulose. 

The scores of this PC showed a clear gradient along the sampling depth, in the soil A. In the 

soil B, this component is present in lower concentration, or even absent. This means that in 

soil A, samples from the bottom of the layer presented a higher concentration of carboxylated 

aromatic structures and lower concentration of fresh material. Soil B, in turn, was better 

characterized by the PC2, which explained 8 % of the total variance. The gradient shown by 

samples from this soil also increased with depth. This component is characterised by positive 

loadings for crystalline polymethylene (33 ppm) and some polyalcohol (77 ppm), probably 

the C-4 of the cellulose or aliphatic portion of lignin structure (unsaturated alcohol) and a 

sharp aryl signal (131 ppm). The negative loadings (i.e., compounds more abundant in the 

surface samples) can be attributed to partially oxidised cellulose to glucuronic acids (172, 103 

and 72 ppm), guaiacyl and/or syringyl from lignin (56 and 152 ppm) and terminal methyl 

groups (16 ppm). 
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(a) (b) 

Figure 2: PCA results from 13C NMR spectra: (a) loadings and (b) scores 

 

4. Conclusions 

These results indicated that the humification process occurs at the bottom of the top layer and 

onwards, where a larger proportion of humified materials are found. This was expected due to 

the constant input of fresh material in the surface. Notwithstanding this process is different in 

each soil. In soil A, the accumulated recalcitrant material is mainly composed of carboxylated 

aromatic moieties; whereas in soil B, the accumulated material is mainly crystalline 

polymethylene. This difference could be due to the specific edaphic conditions in each soil 

and/or differences in the vegetation. On the other hand, the degradable (labile) material is 

similar in both soils (i.e., mainly cellulose and partially oxidised cellulose. The difference in 

the lignin composition in the permanent bofedales soil can indicate a change in the vegetation. 

In the past (deeper samples) the area would have a predominance of C-4 herbaceous 

vegetation  whose lignin has more coumaryl alcohol at the expense of guaiacyl and syringyl 

units, and more recently a predominance of C-3 herbaceous vegetation. 
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