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Abstract Bioinsecticides from Bacillus thuringiensis

(Bt) are widely used around the world in biological control

against larval stages of many insect species. Bt has been

considered a biopesticide that is highly specific to different

orders of insects, non-polluting and harmless to humans

and other vertebrates, thus becoming a viable alternative

for combating agricultural pests and insect vectors of dis-

eases. The family of Bt d-endotoxins are crystal-protein

inclusions showing toxicity to insects’ midgut, causing cell

lysis leading to starvation, septicemia and death. The aim

of this study is to evaluate the genotoxic potential of

recombinant Bt spore–crystals expressing Cry1Ia, Cry10Aa

and Cry1Ba6 on peripheral erythrocyte cells of Oreochr-

omis niloticus, through comet assay, micronucleus (MN)

test and nuclear abnormalities (NA) analysis. Fish (n = 10/

group) were exposed for 96 h at 107 spores 30 l-1, 108

spores 30 l-1 or 109 spores 30 l-1 of Bt spore–crystals.

Cry1Ia showed a significant increase in comet cells at

levels 1 and 2, but not at levels 3 and 4, so it was not

mutagenic nor did it induce MN or NA. These three spore–

crystals showed some fish toxicity at only the highest

exposure level, which normally does not occur in the field.

Keywords Comet assay � Micronucleus � Spore–

crystal � Biopesticides � Bacillus thuringiensis

Introduction

Insect pests are responsible for losses of around 13 % of the

world’s food crop (Silva-Filho and Falco 2000); pests reduce

the quality of the product for sale and human consumption.

Bacillus thuringiensis (Bt) is a Gram-positive bacterium,

characterized by the production of protein crystals, some

with known insecticidal activity, during sporulation (Martins

et al. 2008). These spore–crystals are widely used as bio-

pesticides in the control of insect pests in agriculture. Bt

expresses several types of d-endotoxins, known as a family

of crystal-proteins showing toxicity to the midgut of larvae,

causing cell lysis leading to starvation, septicemia and death.

These cry-proteins are highly specific to Lepidoptera (but-

terflies and moths), Diptera (mosquitoes and black flies) and

Coleoptera (beetles and weevils) because of their require-

ment to bind to specific cell receptors, forming pores leading

to cell lysis and larvae death (Schnepf et al. 1998). The

bioinsecticide based on Bt, Sporeine�, was first marketed in

France in 1938 (Monnerat and Praça 2006).

The environmental exposure of Bt cry-proteins has

increased in recent years; with its use as a sprayable bio-

pesticide, many genes coding cry-proteins have now been

introduced into different genetically modified crops (Betz

et al. 2000), which makes the cry-proteins become more

available to non-target organisms in terrestrial and aquatic
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environments. In the control of boll weevil in cotton crops,

more than five insecticide sprays normally occur (Gallo

et al. 2002). Three recombinant strains of Bt, BtCry1Ia

(Martins et al. 2008), BtCry10Aa (Aguiar et al. 2012) and

BtCry1Ba6 (Martins et al. 2010) have shown toxic activity

to boll weevil. Besides, Johnson and McGaughey (1996)

reported that the spores can also contribute to the efficacy

because they have a synergistic action with Cry proteins.

Despite the wide use of Bt spore–crystals expressing

these cry-proteins in the biological control of agriculture

pests, there is a certain lack of data evaluating the toxic and

genotoxic risks to non-target organisms. The purpose of

this study was therefore to evaluate the adverse effects of

Bt spore–crystals Cry1Ia, Cry10Aa and Cry1Ba6 on fish

species Oreochromis niloticus. Genotoxicity/mutagenicity

was evaluated through micronucleus (MN) test and comet

assay (Single Cell Gel Electrophoresis) respectively, and

cyto-genotoxicity was evaluated by analyzing nuclear

abnormalities (NA) in peripheral erythrocyte cells. These

endotoxins have already been tested for their potential use

as biopesticides in biological control and to evaluate if they

can be cloned in plants.

Materials and methods

Bt spore–crystals

For this study, we used the three different recombinant

spore–crystals BtCry1Ia (Martins et al. 2008), BtCry1Ba6

(Martins et al. 2010) and BtCry10Aa (Aguiar et al. 2012).

They were lyophilized from the Germplasm Bank of the

Brazilian Agricultural Research Corporation (EMBRAPA)

through its National Genetic Resource and Biotechnology

Research Center (CENARGEN), Brası́lia, DF, Brazil.

These strains of recombinant spore–crystals were grown in

Embrapa medium (Monnerat et al. 2007), supplemented with

06 lg ml-1 of chloramphenicol (Silva-Werneck and Ellar

2008) for BtCry1Ba6 and BtCry10Aa, with 10 lg ml-1

erythromycin (Cantón et al. 2013; Chen et al. 2013) for

BtCry1Ia, incubated for 72 h at 28 �C, and maintained in a

shaker. After growing, these were centrifuged at 12,8009g for

30 min at 4 �C, frozen for 16 h and then lyophilized for 18 h.

The colony forming units test (CFU) was carried out to

quantify the viable Bt spore–crystals and followed the pro-

tocol proposed by Alves and Moraes (1998). Concentrations

of 107 spores 30 l-1, 108 spores 30 l-1 and 109 spores 30 l-1

of water were used in the aquariums to run the assays.

Assays in Oreochromis niloticus

Fish used in the present study belong to the species O.

niloticus and were supplied by the Federal District

Aquaculture Technology Center under constantly moni-

tored sanitary conditions. Animals were acclimatized to

laboratory conditions for 2 weeks prior to starting the

study, in a stable environment within glass aquariums with

filtered water, aeration, controlled light at 14:10 h of light/

dark and constant temperature (25 �C ± 2). Afterwards,

for each exposure to spore–crystals, a total of 10 specimens

weighing on average 10 g were distributed in glass

aquariums of 40 l. Fish were exposed at concentration-

levels of 107 spores 30 l-1, 108 spores 30 l-1 and 109

spores 30 l-1 for 96 h in static system. The test-solutions

were previously sonicated with three pulses of 1 min, fol-

lowed by 1 min interval. Solutions were placed in a 50 ml

beaker on ice to maintain a constant temperature for

releasing the crystal-proteins in the water to achieve better

homogenization (Sanches et al. 1999; Escudero et al.

2006). Exposures were carried out in the fish facility of the

laboratory of Genetic Toxicology, maintained at a constant

temperature of 26 ± 2 �C. The ammonium level and

hardness of the water were constantly monitored. Dis-

solved oxygen was kept higher than 60 %, conductivity at

500 mS and pH at 7.2. After 96 h of exposure, blood was

collected by cardiac puncture, with a heparinized syringe.

The study design was based on the OECD guidelines—Fish

Acute Toxicity Test No. 203 (1992), and the research

project was previously approved by the Animal Ethics

Committee at the University of Brası́lia, UnBDOC #94529/

2010.

Micronucleus and nuclear abnormalities tests

Peripheral blood samples were drawn and immediately

smeared and dried at room temperature, fixed in ethanol for

7 min and stained by Giemsa (5 %). The slides were coded

to not reveal the treatment groups to the scorer. Three

thousand erythrocyte cells were microscopically scored at

1,0009 of magnification, 1,500 erythrocyte cells per slide.

The criteria for the identification of fish MN erythrocytes

were as follows: the MN had to be smaller than one-third of

the main nuclei; the MN could not touch the main nuclei;

the MN could not be refractive and should have the same

color and staining intensity as the main nuclei (Heddle and

Carrano 1977; Ali et al. 2008). NA were classified as

blebbed, lobed, notched, binucleated and vacuolized

(Ayllon and Garcia-Vazquez 2000). Three thousand

erythrocyte cells were scored also to classify NA (Souza

and Fontanetti 2006; Bolognesi and Hayashi 2011).

Comet assay

After being drawn, blood was immediately processed for

the comet assay (alkali method). A drop of each blood

sample was diluted in 500 ll of fetal bovine serum. After
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that, 20 ll of this dilution was mixed with 120 ll of 0.5 %

low melting agarose in PBS saline solution at 37 �C.

Subsequently the material was processed according to the

protocol of Singh et al. (1988) with some modifications for

fish as previously reported by Rivero et al. (2008). One

hundred comets (50 on each slide) were scored visually by

a trained professional as belonging to one of the five

classes proposed by Collins et al. (1995), and the DNA

damage was calculated according to Jaloszynski et al.

(1997). For each treatment, the slides were prepared in

duplicate.

Statistical analysis

Statistical analysis was carried out using SPSS (Statistical

Package for the Social Sciences) version 17.0 and Graph-

Pad Prism version 5.00 softwares. Data were expressed as

mean ± standard error of mean (SEM) and values of

p \ 0.05 were considered statistically significant. The

continuous variables were tested for normal distribution

with Kolmogorov–Smirnov. Possible differences among

the groups were investigated by the Kruskal–Wallis test

followed by the Mann–Whitney U test, since the data were

not normally distributed. P-values with statistical signifi-

cance (p \ 0.05) were only considered when they also

presented biological significance, according to the follow-

ing criteria: (1) negative control compared to all treat-

ments; (2) comparisons among different doses of the same

spore–crystal (concentration-effect); (3) comparisons

among different spore–crystals in the same dose.

Results and discussion

Bt Crystal-proteins normally break down at high temper-

atures (Reardon et al. 1994; Yang et al. 2012). Sanches

et al. (1999) and Escudero et al. (2006) have used soni-

cation for releasing such proteins to the water environment.

Short-term sonications at low temperatures do not break

down such proteins, which become easily available in

water for fish exposure bioassays. These three studied

recombinant cry-proteins expressed in Bt spore–crystals

have been shown to be toxic to larvae of Anthonomus

grandis (Coleoptera: Curculionidade), a well-known cotton

boll weevil, and with potential to be cloned in this plant

(Martins et al. 2010).

The protocol of the United States Environmental Pro-

tection Agency (US-EPA), entitled Microbial Pesticide

Tests Guidelines—Freshwater Fish Testing 885.4200 (EPA

1996) recommends a range of findings from 106 up to 108

microorganisms-cells for toxicity testing in laboratory

assays. In our assays, the number of spore–crystals used in

the tested concentrations was in accordance with this

protocol. Previous studies with different strains of Bt have

used exposures at 4 9 107 (Carvalho et al. 2011), 5 9 108

(Günther and Jimenez-Montealegre 2004), and 106 and

5 9 106 for assays of cytotoxicity (Grisolia et al. 2009b).

The levels of exposures chosen for our study were based

on OECD protocol, EPA Microbial Pesticide Tests

Guidelines—Freshwater Fish Testing 885.4200 (1996) and

also in our previous studies, to make comparison possible

among results from different authors.

Regarding morbidity, only fish exposed at 109 spores

30 l-1 for the three tested spore–crystals showed signs of

toxicity, such as loss of balance, changes in swimming

behavior or pigmentation. There was one fish death in the

control group, three fish died in the group exposed to

Cry1Ia at 109 spores 30 l-1, and one at 108 spores 30 l-1.

Only one fish died in the group exposed to the highest

exposure level of 109 spores 30 l-1 of Cry1Ba6, and finally

there was one death in each one of the exposure levels of

Cry10Aa.

Reports in the literature have shown mortality of fish

species Hyphessobrycon scholzei exposed to B. thuringi-

ensis strain 344; however, the exposure concentration

occurred at 1,0009 higher than that used in the field

(Jonsson et al. 2009). In contrast, B. thuringiensis did not

cause any kind of toxic adverse effects to different fish

species exposed to 1.3 and 1.7 9 1010 spores (Johnson and

McGaughey 1996) or up to 106–107 spores/ml to fresh-

water invertebrates (Oliveira-Filho et al. 2011).

The three tested spore–crystals did not cause cytotox-

icity or genotoxicity to adults of O. niloticus. For the MN

and NA evaluations, there were no statistically significant

differences among the exposed groups and control (Fig. 1,

Mann–Whitney, p [ 0.05).

These results are related to previous studies in zebrafish

Danio rerio on the genotoxicity of strains of recombinant

spore–crystals expressing only one type of cry-protein from

the set of Cry1Aa, Cry1Ab, Cry1Ac and Cry2A. Only the

spore–crystal Cry1Aa increased the frequency of MN in

peripheral erythrocyte cells, while Cry1Ab, Cry1Ac and

Cry2A did not show any evidence of toxicity or genotox-

icity even at high exposure-concentration of 100 mg l-1

(Grisolia et al. 2009a).

In another study, B. thuringiensis serotypes kurstaki and

israelensis and crystal proteins of Bacillus sphaericus (Bs

H5) were tested for cytotoxicity on fish species O. niloticus

and D. rerio. In the necrosis–apoptosis study on peripheral

erythrocytes of O. niloticus, an increased frequency of

necrotic cells caused by exposure to Bt israelensis and Bt

kurstaki strains was found. On the other hand, exposure to

Bs H5 did not cause a cytotoxic effect in either tested

system, compared with the controls (Grisolia et al. 2009b).

It is known that the five classes of comets proposed by

Collins et al. (1995) vary according to tail intensity from
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undamaged, 0 (no visible tail), to maximally damaged, 4

(head of comet very small, most of DNA in tail). Thus,

moderately damaged comets are those in classes 1 (rate of

damage 5–20 %) and 2 (rate of damage 20–40 %), while

highly damaged comets are those in classes 3 (rate of

damage 40–75 %) and 4 (rate of damage [75 %). This

criterion has been used in other publications by our group

(Miranda-Vilela et al. 2010; Rivero-Wendt et al. 2013), as

well as by other groups (Cuong et al. 2006; Patetsini et al.

2013).

In the comet assay, while spore–crystals Cry10Aa and

Cry1Ba6 did not induce any significant change in the fre-

quency of DNA damage in the erythrocyte cells of O.

niloticus compared to control, the exposures to Cry1Ia at

25 and 100 mg l-1 significantly increased the frequency of

comets of class 1 and 2 (moderate damage) and reduced

those of comets of class 3 and 4 (high damage) (p = 0.020

and p = 0.034 respectively, Fig. 2), thus reducing the

percentage of total damage to DNA.

A concentration-effect relationship was not observed,

which means that these results are not sufficient to con-

clude that Cry1Ia spore–crystal is genotoxic. A similar

result was observed by Meher et al. (2002), showing that

formulations containing Bacillus thuringiensis var. kenyae

(B.t.k.) do not express toxicity to rats, rabbits and fish.

Besides, Grisolia et al. (2009a) and Mezzomo et al. (2013)

reported non-genotoxicity of spore–crystals Cry1Ab,

Cry1Ac e Cry2A in zebrafish and mice respectively. Even

when well acclimatized in the aquarium and with carefully

monitored physicochemical parameters of water, fish are

under stress. Exposures to chemical compounds and

microbiological agents can cause interference in the fish’s

metabolism, resulting in some mortality, as was observed

in this study (Leite and Amorim 2001).

Fig. 1 Frequencies of MN and NA in O. niloticus exposed to spore–

crystals of B. thuringiensis Cry1Ba6, Cry1Ia and Cry10Aa at

concentration levels of 107, 108 and 109 spores 30 l-1. Data are

mean ± SEM. Letters show differences compared 2-to-2 through

Mann–Whitney test. * Indicates significant differences (p \ 0.05) and

** highly significant (p \ 0.01), c significant compared to group 3,

h significant compared to group 8

Fig. 2 Levels of DNA damage in peripheral erythrocyte cells of O.

niloticus exposed to Bt spore–crystals Cry1Ba6, Cry1Ia, Cry10Aa at

107, 108 and 109 spores 30 l-1. Data are mean ± SEM. Letters

indicate differences in comparisons 2-to-2 analyzed through Mann–

Whitney. * Indicates significant differences (p \ 0.05) and ** highly

significant (p \ 0.01), with a significant compared to group 1,

b significant compared to group 2, c significant compared to group 3,

d significant compared to group 4, e significant compared to group 5,

f significant compared to group 6, g significant compared to group 7,

h significant compared to group 8, i significant compared to group 9
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Contradictory results on the toxicity of Bts can be found

in the literature. Douville et al. (2005) observed persistence

of the pulverized Bt kurstaki (Btk) in soil and samples, and

the resistance of the crystal in water samples; however,

their presence in this second ecosystem was not significant.

Residues of Bt, such as crystals, spore–crystals and trans-

genes have been detected in food such as pasteurized milk,

ice cream made from fruit pulp and green tea (Zhou et al.

2008). Transgenes from Bt-corn have already been detec-

ted in water samples near this crop, as well as their pre-

sence in the tissues of mussels (Douville et al. 2009).

The b-exotoxin from B. thuringiensis was tested for

somatic mutation and recombination in Drosophila mela-

nogaster (SMART-test). Assays were carried out in con-

centrations used for pest control and did not exhibit

mutagenicity (Marec et al. 1989).

Bacillus thuringiensis serotype H-1 and H-14 did not

increase revertents of Salmonella typhimurium TA98 or

TA100 (Ames test) (Carlberg et al. 1995). Ren et al. (2002)

reported induction of chromosome aberration in spermato-

gonia cells of grasshoppers exposed to B. thuringiensis HD-

1. Cry1Ac protein was evaluated in mice bone marrow cells

through MN-test, after oral exposure at 125, 625 or

1,250 lg kg-1. Results did not show increases in the fre-

quencies of MN (Cao et al. 2010). The Ames test performed

by the same authors in S. typhimurium strains TA97, TA98,

TA100 and TA102 at concentrations from 50 up to 5,000 lg/

plate showed no increase in mutants.

Due to such contradictory results on genotoxicity, fur-

ther studies should be carried out to contribute to the

understanding of possible risks. Whereas more than 50

different types of Bt cry-proteins have already been char-

acterized with potential to be used as biopesticides, many

studies might be done in the near future to clarify their

cytotoxic and genotoxic risks, because only a very small

number have been tested so far. However, up to now, most

studies have indicated that they are weak mutagens or not

genotoxic/mutagenic (Cao et al. 2010).

In conclusion, Cry1Ba6 and Cry10Aa spore–crystals did not

show genotoxic or mutagenic risks to O. niloticus. The spore–

crystal Cry1Ia induced a low level of DNA damage, which can

be repaired. These results corroborate our previous studies with

spore–crystals expressing other cry-proteins, suggesting that

each of the Bt spore–crystals presents a specific feature of

toxicity. In general, such adverse effects were observed at high

exposure-levels, not commonly found in the field.
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