Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1083291
Title: Automatic grape bunch detection in vineyards based on affordable 3D phenotyping using a consumer webcam.
Authors: SANTOS, T. T.
BASSOI, L. H.
OLDONI, H.
MARTINS, R. L.
Affiliation: THIAGO TEIXEIRA SANTOS, CNPTIA; LUIS HENRIQUE BASSOI, CNPDIA; HENRIQUE OLDONI, Unesp Botucatu; ROBERTO LUVISUTTO MARTINS, Unesp Botucatu.
Date Issued: 2017
Citation: In: CONGRESSO BRASILEIRO DE AGROINFORMÁTICA, 11., 2017, Campinas. Ciência de dados na era da agricultura digital: anais. Campinas: Editora da Unicamp: Embrapa Informática Agropecuária, 2017.
Pages: p. 89-98.
Description: This work presents a methodology for 3-D phenotyping of vineyards based on images captured by a low cost high-definition webcamera. A novel software application integrated visual odometry and multiple-view stereo components to create dense and accurate three-dimensional points clouds for vines, properly transformed to millimeter scale. Geometrical and color features of the points were employed by a classification procedure that reached 93% of accuracy on detecting points belonging to grapes. Individual bunches were automatically delimited and their volumes estimated. The sum of the estimated volumes per vine presented a coefficient of correlation of R = 0.99 to the real grape weight observed in each vine after harvesting.
Thesagro: Viticultura
NAL Thesaurus: Viticulture
Phenotype
Keywords: Estimativa de podução
Métodos não-invasivos
Fenotipagem 3D
Visão estéro múltipla
Simultaneous localization and mapping
Yield estimation
Non-invasive methods
3-D phenotyping
Multiple view stereo
Videira
ISBN: 978-85-85783-75-4
Notes: SBIAgro 2017.
Type of Material: Artigo em anais e proceedings
Access: openAccess
Appears in Collections:Artigo em anais de congresso (CNPTIA)

Files in This Item:
File Description SizeFormat 
AutomaticgrapeSBIAgro.pdf6.16 MBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace