Please use this identifier to cite or link to this item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1124129
Title: | Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. |
Authors: | FERREIRA, M. P.![]() ![]() ALMEIDA, D. R. A. de ![]() ![]() PAPA, D. de A. ![]() ![]() MINERVINO, J. B. S. ![]() ![]() VERAS, H. F. P. ![]() ![]() FORMIGHIERI, A. ![]() ![]() SANTOS, C. A. N. ![]() ![]() FERREIRA, M. A. D. ![]() ![]() FIGUEIREDO, E. O. ![]() ![]() FERREIRA, E. J. L. ![]() ![]() |
Affiliation: | Matheus Pinheiro Ferreira, Instituto Militar de Engenharia (IME); Danilo Roberti Alves de Almeida, Universidade de São Paulo (USP); DANIEL DE ALMEIDA PAPA, CPAF-AC; Juliano Baldez Silva Minervino, Universidade Federal do Acre (Ufac); Hudson Franklin Pessoa Veras, Universidade Federal do Paraná (UFPR); Arthur Formighieri, Universidade Federal do Acre (Ufac); Caio Alexandre Nascimento Santos, Bolsista Embrapa Acre; Marcio Aurélio Dantas Ferreira, Fundação de Tecnologia do Estado do Acre (Funtac); EVANDRO ORFANO FIGUEIREDO, CPAF-AC; Evandro José Linhares Ferreira, Instituto Nacional de Pesquisas da Amazônia (Inpa). |
Date Issued: | 2020 |
Citation: | Forest Ecology and Management, v. 475, n. 118397, p. 1-11, 2020. |
Description: | Information regarding the spatial distribution of palm trees in tropical forests is crucial for commercial exploitation and management. However, spatially continuous knowledge of palms occurrence is scarce and difficult to obtain with conventional approaches such as field inventories. Here, we developed a new method to map Amazonian palm species at the individual tree crown (ITC) level using RGB images acquired by a low-cost unmanned aerial vehicle (UAV). Our approach is based on morphological operations performed in the score maps of palm species derived from a fully convolutional neural network model. We first constructed a labeled dataset by dividing the study area (135 ha within an old-growth Amazon forest) into 28 plots of 250 m×150 m. Then, we manually outlined all palm trees seen in RGB images with 4 cm pixels. We identified three palm species: Attalea butyracea, Euterpe precatoria and Iriartea deltoidea. We randomly selected 22 plots (80%) for training and six plots (20%) for testing. We changed the plots for training and testing to evaluate the variabilityn, in the classification accuracy and assess model generalization. Our method outperformed the average producer?s accuracy of conventional patch-wise semantic segmentation (CSS) in 4.7%. Moreover, our method correctly identified, on average, 34.7 percentage points more ITCs than CSS, which tended to merge trees that are close to each other. The producer's accuracy of A. butyracea, E. precatoria and I. deltoidea was 78.6 ± 5.5%, 8.6 ± 1.4% and 96.6 ± 3.4%, respectively. Fortunately, one of the most exploited and commercialized palm species in the Amazon (E. precatoria, a.k.a, Açaí) was mapped with the highest classification accuracy. Maps of E. precatoria derived from low-cost UAV systems can support management projects and community-based forest monitoring programs in the Amazon. |
Thesagro: | Floresta Tropical Espécie Nativa Açaí População de Planta Biogeografia Sensoriamento Remoto Aerofotogrametria |
NAL Thesaurus: | Rain forests Arecaceae Euterpe precatoria Tropical wood Biogeography Remote sensing Unmanned aerial vehicles Aerial photography |
Keywords: | Palmeira Palm trees Mapeamento Drone Aerial surveys Imagem RGB DeepLabv3+ Bosques lluviosos Madera tropical Teledetección Vehículos aéreos no tripulados Fotografía aérea Embrapa Acre Rio Branco (AC) Acre Amazônia Ocidental Western Amazon Amaz Amazonia Occidental |
ISSN: | 0378-1127 |
DOI: | https://doi.org/10.1016/j.foreco.2020.118397 |
Type of Material: | Artigo de periódico |
Access: | openAccess |
Appears in Collections: | Artigo em periódico indexado (CPAF-AC)![]() ![]() |