Please use this identifier to cite or link to this item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1140859
Title: | The role of plant-associated bacteria, fungi, and viruses in drought stress mitigation. |
Authors: | POUDEL, M.![]() ![]() MENDES, R. ![]() ![]() COSTA, L. S. A. S. ![]() ![]() BUENO, C. G. ![]() ![]() MENG, Y. ![]() ![]() FOLIMONOVA, S. Y. ![]() ![]() GARRETT, K. A. ![]() ![]() MARTINS, S. J. ![]() ![]() |
Affiliation: | MOUSAMI POUDEL, University of Florida; RODRIGO MENDES, CNPMA; LILIAN S A S COSTA; C GUILLERMO BUENO, University of Tartu; YIMING MENG, University of Tartu; SVETLANA Y FOLIMONOVA, University of Florida; KAREN A GARRETT, University of Florida; SAMUEL J MARTINS, University of Florida. |
Date Issued: | 2021 |
Citation: | Frontiers in Microbiology, v. 12, article 7435122021, 2021. |
Pages: | p. 1-21. |
Description: | Abstract: Drought stress is an alarming constraint to plant growth, development, and productivity worldwide. However, plant-associated bacteria, fungi, and viruses can enhance stress resistance and cope with the negative impacts of drought through the induction of various mechanisms, which involve plant biochemical and physiological changes. These mechanisms include osmotic adjustment, antioxidant enzyme enhancement, modification in phytohormonal levels, biofilm production, increased water and nutrient uptake as well as increased gas exchange and water use efficiency. Production of microbial volatile organic compounds (mVOCs) and induction of stress-responsive genes by microbes also play a crucial role in the acquisition of drought tolerance. This review offers a unique exploration of the role of plant-associated microorganisms?plant growth promoting rhizobacteria and mycorrhizae, viruses, and their interactions?in the plant microbiome (or phytobiome) as a whole and their modes of action that mitigate plant drought stress. |
Thesagro: | Fauna Microbiana Microbiologia do Solo Solo |
NAL Thesaurus: | Microbiome Climate change Arabidopsis food security |
Keywords: | Plant-microbiome interaction AMF PGPR |
ISSN: | 1664-302X |
DOI: | https://doi.org/10.3389/fmicb.2021.743512 |
Type of Material: | Artigo de periódico |
Access: | openAccess |
Appears in Collections: | Artigo em periódico indexado (CNPMA)![]() ![]() |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Mendes-Role-plant-associated-2021.pdf | 1.49 MB | Adobe PDF | ![]() View/Open |