Please use this identifier to cite or link to this item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142848
Title: | Near-real time deforestation detection in the Brazilian Amazon with Sentinel-1 and neural networks. |
Authors: | SILVA, C. A.![]() ![]() GUERRISI, G. ![]() ![]() DEL FRATE, F. ![]() ![]() SANO, E. E. ![]() ![]() |
Affiliation: | CLAUDIA ARANTES SILVA; GIORGIA GUERRISI; FABIO DEL FRATE; EDSON EYJI SANO, CPAC. |
Date Issued: | 2022 |
Citation: | European Journal of Remote Sensing, v. 55, n. 1, 2022. |
Pages: | p. 129-149 |
Description: | Optical-based near-real time deforestation alert systems in the Brazilian Amazon are ineffective in the rainy season. This study identify clear-cut deforested areas through Neural Network (NN) algorithm based on C-band, VV- and VH-polarized, Sentinel-1 images. Statistical parameters of backscatter coefficients (mean, standard deviation, and the difference between maximum and minimum values ? MMD) were computed from 30 Sentinel-1 images, from 2019, used as input parameters of the NN classifier. The samples were manually selected, including forested and deforested areas. After deforestation, mean backscatter signals decreased on the average of 2 dB for VV and 2.3 dB for VH from May to September?October. A Multi-Layer Perceptron (MLP) network was used for detecting near-real time forest disturbances larger than 2 ha. Case studies were performed for both polarizations considered the following input sets to the MLP: mean; mean and standard deviation; mean and MMD; and mean, standard deviation, and MMD. For the 2019 dataset, the latter showed the best performance of the NN algorithm with accuracy and F1 score of 99%. Automatic extraction using 2018 Sentinel-1 images reached accuracy and F1 score of 89% with the MapBiomas reference data and accuracy of 81% and F1 score of 79% with the PRODES reference data. |
Thesagro: | Floresta Tropical Desmatamento |
Keywords: | Floresta Amazônica Rede neural Desflorestamento Extração automática de imagens |
Type of Material: | Artigo de periódico |
Access: | openAccess |
Appears in Collections: | Artigo em periódico indexado (CPAC)![]() ![]() |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Sano-Near-real-time-deforestation-detection-in-the.pdf | 23.35 MB | Adobe PDF | ![]() View/Open |