Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1153402
Title: Using brainwave patterns recorded from plant pathology experts to increase the reliability of ai-based plant disease recognition system.
Authors: MEIR, Y.
BARBEDO, J. G. A.
KEREN, O.
GODOY, C. V.
AMEDI, N.
SHALOM, Y.
GEVA, A. B.
Affiliation: YONATAN MEIR, INNEREYE LTD.; JAYME GARCIA ARNAL BARBEDO, CNPTIA; OMRI KEREN, INNEREYE LTD.; CLAUDIA VIEIRA GODOY, CNPSO; NOFAR AMEDI, INNEREYE LTD.; YAAR SHALOM, INNEREYE LTD.; AMIR B. GEVA, INNEREYE LTD., BEN GURION UNIVERSITY.
Date Issued: 2023
Citation: Sensors, v. 23, n. 9, 4272, 2023.
Pages: 13 p.
Description: This study investigates how the use of electroencephalograms from plant pathology experts can improve the accuracy and robustness of image-based artificial intelligence models dedicated to plant disease recognition.
Thesagro: Soja
NAL Thesaurus: Soybeans
Digital images
Plant pathology
Plant diseases and disorders
Artificial intelligence
Keywords: Patologia de planta
Ondas cerebrais
Eletroencefalograma
Imagem digital
Aprendizado ativo
Inteligência artificial
Electroencephalogram
Labeling
Active learning
DOI: 10.3390/s23094272
Type of Material: Artigo de periódico
Access: openAccess
Appears in Collections:Artigo em periódico indexado (CNPSO)


FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace