Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1174128
Title: Predicting sugarcane yield through temporal analysis of satellite imagery during the growth phase.
Authors: VASCONCELOS, J. C. S.
ARANTES, C. S.
SPERANZA, E. A.
ANTUNES, J. F. G.
BARBOSA, L. A. F.
CANÇADO, G. M. de A.
Affiliation: JULIO CEZAR SOUZA VASCONCELOS, FUNDAÇÃO DE APOIO A PESQUISA E AO DESENVOLVIMENTO; CAIO SIMPLICIO ARANTES, FUNDAÇÃO DE APOIO A PESQUISA E AO DESENVOLVIMENTO; EDUARDO ANTONIO SPERANZA, CNPTIA; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; LUIZ ANTONIO FALAGUASTA BARBOSA, CNPTIA; GERALDO MAGELA DE ALMEIDA CANCADO, CNPTIA.
Date Issued: 2025
Citation: Agronomy, v. 15, n. 4, 793, Apr. 2025.
Description: This research investigates how to estimate sugarcane (Saccharum officinarum L.) yield at harvest by using an average satellite image time-series collected during the growth phase. This study aims to evaluate the effectiveness of various modeling approaches, including a heteroskedastic gamma regression model, Random Forest, and Artificial Neural Networks, in predicting sugarcane yield based on satellite-derived vegetation indices and environmental variables. Key covariates analyzed include sugarcane varieties, production cycles, accumulated precipitation during the growth phase, and the mean GNDVI vegetation index. The analysis was conducted in two locations over two consecutive growing seasons. The research emphasizes the integration of satellite data with advanced statistical and machine learning techniques to enhance yield prediction in agricultural systems, specifically focusing on sugarcane cultivation.
Thesagro: Cana de Açúcar
Agricultura de Precisão
Saccharum Officinarum
NAL Thesaurus: Sugarcane
Crop yield
Statistical models
Keywords: Agricultura digital
Rendimento de cultura
Modelo estatístico
Aprendizado de máquina
Digital agriculture
Machine learning
DOI: https://doi.org/10.3390/agronomy15040793
Type of Material: Artigo de periódico
Access: openAccess
Appears in Collections:Artigo em periódico indexado (CNPTIA)

Files in This Item:
File Description SizeFormat 
AP-Predicting-sugarcane-2025.pdf39.14 MBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace