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Texture has long been recognized as valuable in improving land-cover classification, but
how data from different sensors with varying spatial resolutions affect the selection of
textural images is poorly understood. This research examines textural images from the
Landsat Thematic Mapper (TM), ALOS (Advanced Land Observing Satellite) PALSAR
(Phased Array type L-band Synthetic Aperture Radar), the SPOT (Satellite Pour
l’Observation de la Terre) high-resolution geometric (HRG) instrument, and the
QuickBird satellite, which have pixel sizes of 30, 12.5, 10/5, and 0.6 m, respectively, for
land-cover classification in the Brazilian Amazon. GLCM (grey-level co-occurrence
matrix)-based texture measures with various sizes of moving windows are used to extract
textural images from the aforementioned sensor data. An index based on standard devia-
tions and correlation coefficients is used to identify the best texture combination following
separability analysis of land-cover types based on training sample plots. A maximum
likelihood classifier is used to conduct the land-cover classification, and the results are
evaluated using field survey data. This research shows the importance of textural images in
improving land-cover classification, and the importance becomes more significant as the
pixel size improved. It is also shown that texture is especially important in the case of the
ALOS PALSAR and QuickBird data. Overall, textural images have less capability in
distinguishing land-cover types than spectral signatures, especially for Landsat TM ima-
gery, but incorporation of textures into radiometric data is valuable for improving land-
cover classification. The classification accuracy can be improved by 5.2–13.4% as the pixel
size changes from 30 to 0.6 m.

1. Introduction

Remote-sensing data show land surface featureswhen a spaceborne or airborne craft passes over
terrain and are commonly used for mapping land-cover distribution. A land-cover classification
from remote-sensing data is a comprehensive procedure that requires careful consideration of
different aspects, such as user’s needs, complexity of land-cover types, extent of the study area,
classification system, selection of remote-sensing variables and corresponding classification
algorithms, as well as the analyst’s experience and knowledge (Lu and Weng 2007). When one
decides to implement a classification, the data sets, study area, and classification system may be
already determined, thus one critical step is to select suitable variables for implementing land-
cover classification using a proper algorithm. Much previous research has explored
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classification algorithms, from statistics-based (e.g. maximum likelihood, minimum distance) to
non-statistics-based algorithms (e.g. neural network, decision tree, k-nearest neighbour, support
vector machine) and from pixel-based to subpixel-based and object-oriented algorithms (Lu and
Weng 2007; Marpu et al. 2012; Yu et al. 2012). Because of the difficulty in identifying the best
classification algorithm, a comparative analysis of different classification algorithms is usually
conducted for a specific study area (Lu et al. 2004; Li, Lu, Moran, and Sant’Anna 2012).

In addition to development of advanced classification algorithms, another active research
topic is the selection of suitable variables. Different sensor data may have various capabilities
for land-cover classification. For example, optical sensor data have spectral, spatial, radio-
metric, and temporal features, and radar data have unique features in polarization options (HH,
horizontal transmitted and received polarization; HV, horizontal transmitted and vertical
received polarization; VV, vertical transmitted and received polarization; VH, vertical trans-
mitted and horizontal received polarization).When one decides to use specific sensor data such
as Landsat for land-cover classification, the radiometric and temporal features are constant, but
the spectral and spatial features are the most important features to be further explored. From
multispectral bands, one can produce many new variables using image-processing techniques,
such as vegetation indices and image transforms (Bannari et al. 1995; McDonald, Gemmell,
and Lewis 1998). These techniques are based on individual pixels without incorporation of
spatial relationships.

Spatial features reflect the association between nearby pixels; that is, the spatial relation-
ships between one central pixel and its neighbours (Dutra and Mascarenhas 1984). One
common method that uses spatial features is through the use of textural images. Texture refers
to spatial variation of image tones. There is more homogeneity within the texture than
between different textures. In general, a good texture image should have three key compo-
nents: enhanced features of interesting land surfaces, reduced heterogeneity within the same
land-cover type, and preserved clear boundaries between different land-cover types. Of the
many textural measures (Li, Lu, et al. 2011; Kourgli et al. 2012; Rodriguez-Galiano et al.
2012; Seetharaman and Palanivel 2013), GLCM (grey-level co-occurrence matrix) (Haralick,
Shanmugam, and Dinstein 1973; Marceau et al. 1990) may be the most commonly used
method to extract textural images from remotely sensed data, especially from high spatial
resolution images such as IKONOS and QuickBird (Herold, Liu, and Clarke 2003; Coburn
and Roberts 2004;Wang et al. 2004; Johansen et al. 2007; Agüera, Aguilar, and Aguilar 2008;
Su et al. 2008) and even Landsat (Li, Lu, et al. 2011; Wood et al. 2012). Textures have been
used for different applications such as land-cover classification (Li, Hayward, et al. 2011; Jin
et al. 2012; Rodriguez-Galiano et al. 2012) and estimation of forest attributes such as biomass
and tree height (Kuplich, Curran, and Atkinson 2005; Kayitakire, Hamel, and Defourny 2006;
Sarker and Nichol 2011; Cutler et al. 2012; Lu et al. 2012; Wood et al. 2012) and biodiversity
(e.g. plant species richness, avian species richness) (Culbert et al. 2012; Viedma et al. 2012).

Although textural images have been extensively explored and applied in previous research,
how different sensor data with various spatial resolutions affect the selection of textural images
and how this affects land-cover classification are poorly understood. The complexity in
identifying suitable textures for a specific study makes it difficult to select optimal textural
images because it requires one to take texture measures, image bands, moving window sizes,
quantization levels, and other factors into account (Chen, Stow, and Gong 2004). No general
guidelines to support the selection of an optimal texture are available because of the different
spatial patterns and compositions of the land-cover types under investigation. Therefore,
textural images are not extensively applied as spectral features in land-cover classification in
practice, but they have been regarded as effective ways to improve classification performance if
the optimal textural images can be obtained for a specific study. Based on our previous research
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in the Brazilian Amazon using data acquired by the Landsat Thematic Mapper (TM), ALOS
(Advanced Land Observing Satellite) PALSAR (Phased Array type L-band Synthetic Aperture
Radar), the SPOT (Satellite Pour l’Observation de la Terre) high-resolution geometric (HRG)
instrument, and the QuickBird satellite (Li, Lu, et al. 2011, Li, Lu,Moran, Dutra, et al. 2012; Lu
et al. 2008, 2012), this article provides a comparative analysis of textural images from the
aforementioned sensor data to examine how different sensor data with various spatial resolu-
tions affect the selection of textural images. Through this comparative analysis, we can better
understand the roles of textural images in improving land-cover classification and how to
effectively select suitable textures from different sensor data, which have not been examined in
previous research.

2. Study areas

After considering data availability (satellite images and field survey data) and the land-cover
classification objectives, three study areas in the Brazilian Amazon – Altamira in Pará State,
Machadinho d’Oeste in Rondônia State, and Lucas do Rio Verde in Mato Grosso State – were
selected in this research (Figure 1). These areas vary considerably in terms of their land-use

Figure 1. Study areas: (1) Lucas do Rio Verde in Mato Grosso State, shown using a QuickBird
image; (2) Altamira in Pará State, shown using a Landsat 5 TM image; and (3) Machadinho d’Oeste
in Rondônia State, shown using a SPOT 5 HRG image.

Note: The colour image is a composite of near-infrared, red, and green spectral bands by assigning
as red, green, and blue, respectively.
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history and complexity of landscapes. Altamira is located along the Transamazon Highway in
the northern Brazilian state of Pará. The terrain is undulating with the highest elevation of
approximately 350 m in the uplands and the lowest elevation of approximately 10 m in
floodplains along the Xingu River. The dominant native vegetation types are mature moist
forest and liana forest. Since the early 1970s, deforestation has led to a complex composition of
different land-cover types such as successional forest stages, pasture, and agricultural lands.
Machadinho d’Oeste is located in the northeast part of Rondônia State in western Brazil. The
terrain is undulating with elevation ranging from 100 to 450 m. Major deforestation began here
in the late 1980s. Due to land-use intensification, most successional vegetation is in the initial
and intermediate stages. In deforested areas, pastures, perennial crops (e.g. coffee, cocoa),
agroforestry (e.g. cocoa associated with rubber-producing trees), and small fields of annual
crops are common land uses. Lucas do Rio Verde is a relatively small county and yet has
complex urban–rural spatial patterns derived from its highly capitalized agricultural base of
soybean production, large silos and warehouses, and planned urban growth. The major
vegetation includes primary forest, cerrado, and limited areas of plantation and regenerating
vegetation. The three study areas provide a range of land-cover conditions, spatial patterns, and
types of land use that together make them an ideal set of areas to test the ideas described in this
article.

3. Methods

3.1. Data collection and preprocessing

Landsat TM, ALOS PALSAR, SPOTHRG, and QuickBird images with original pixel sizes of
30, 12.5, 10/5, and 0.6 m, respectively, were used for a comparative analysis of land-cover
classification in the Brazilian Amazon. The major features of the selected data sets, which
included satellite images and field survey data, are summarized in Table 1. The Landsat TM
imagery has six spectral bands covering the visible, near infrared (NIR), and shortwave
infrared (SWIR) bands with 30 m spatial resolution. This image was radiometrically and
atmospherically calibrated using the improved image-based dark object subtraction model
(Chavez 1996; Chander, Markham, and Helder 2009). Both Landsat TM and ALOS PALSAR
data were used for land-cover classification at Altamira. The 2008 Landsat TM imagery was
geometrically registered to a previously corrected Landsat 5 TM image with UTM coordinates
(zone 22 south) and the geometric error (i.e. root mean square error, RMSE) was less than 0.5
pixels. The ALOS PALSAR L-band image was then registered to the 2008 Landsat TM image
with an RMSE of 1.020 pixels based on 28 control points. The ALOS PALSAR HH and HV
images with a pixel size of 12.5 m were resampled to a pixel size of 10 m using the nearest-
neighbour technique during the image-to-image registration. Speckle was reduced using the
Lee-Sigma filtering algorithm with a window size of 5 × 5 pixels (Li, Lu, et al. 2011).

The SPOT HRG image has five bands covering one panchromatic band with 5 m spatial
resolution, two visible (green and red) bands and one NIR band with 10 m spatial resolution,
and one SWIR band with 20 m spatial resolution. The HRG image was also atmospherically
calibrated by image-based dark object subtraction (Lu et al. 2008). The 20 m SWIR image was
resampled to 10 m, the same pixel size as the SPOT visible and NIR images. No geometric
rectification for this SPOT image was conducted due to the fact that this image had precise
geometric accuracy through comparison with the previously registered Landsat TM imagery.

QuickBird has four multispectral bands with 2.4 m spatial resolution and one panchro-
matic band with 0.6 m. In order to make full use of its multispectral and panchromatic
features, the wavelet-merging technique was used to integrate both multispectral and
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panchromatic data into a new fused multispectral image with 0.6 m spatial resolution (Lu,
Hetrick, and Moran 2010). Because of its high geometric accuracy, no geometric rectifi-
cation was needed.

In addition to the satellite images, field survey data for each study area were also collected;
part of the data set was used as training samples for land-cover classification, and the
remaining samples were used as test samples for evaluation of the classification results. The
number of training and test samples used in each study area is also summarized in Table 1.

3.2. Extraction of textural images

Figure 2 illustrates the framework for integrating textural images as extra bands into
multispectral or radiometric images in order to examine the role of texture in improv-
ing land-cover classification accuracy. In this research, the critical step is to identify
suitable textures for use in image classification. Therefore, the GLCM-based texture
measures are used and the relevant formulae are summarized in Table 2. The methods
for extracting textural images from different sensor data (e.g. Landsat TM, ALOS
PALSAR, SPOT HRG, and QuickBird) are summarized in Table 3, for which radio-
metric bands and window sizes are considered for each texture measure. Previous
research has indicated that a single texture image is not enough to effectively extract
the spatial features; however, a combination of two textural images can provide
sufficient capability but adding more textural images does not significantly improve
the land-cover classification (Lu et al. 2008; Li, Lu, et al. 2011). Based on the analysis
of the training samples using the textural images, separability analysis using the
transformed divergence algorithm was used to identify potential combinations of two
textural images. Because not all texture combinations were needed, it was necessary to
develop a suitable method to make sure that the selected combination provides the
richest source of information for land-cover classification (Pathak and Dikshit 2010;
Li, Lu, Moran, Dutra, et al. 2012). One simple solution is based on the analysis of
standard deviations and correlation coefficients according to Equation (1):

Figure 2. Framework for combining textural images as extra bands into multispectral or radar data
for land-cover classification.

International Journal of Remote Sensing 8193
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Best texture combination ðBTCÞ ¼
Pn
i¼1

STDi

Pn
j¼1

rij
�� �� ; (1)

where STDi is the standard deviation of the textural image i, rij is the correlation coefficient
between two textural images i and j, and n is the total number of textural images available. A
higher BTC value indicates a better combination of textural images (Li, Lu, et al. 2011).

3.3. Land-cover classification and evaluation

As shown in Figure 2, the identified best combination of textural images is combined into
multispectral (or radiometric for ALOS PALSAR) data as extra bands, and these are then
used for land-cover classification. As a comparison, the classification was also conducted
for spectral/radiometric data only. Training samples are collected during the fieldwork in
different years for each study area. Because use of a maximum likelihood classifier is the
most common approach that is both robust and also available in all image-processing
software (Lu and Weng 2007), it was used in this research to implement the land-cover
classification for the corresponding images. The classification results were evaluated
using the test sample plots from the field surveys.

An error matrix is commonly used for assessing land-cover classification results.
Overall accuracy, kappa coefficient, and user’s and producer’s accuracies are then calculated
from the error matrix (Congalton 1991; Congalton and Green 2008; Foody 2002, 2009). The

Table 2. The GLCM-based texture measures.

No. Texture measure Formula

1 Mean (MEA)
MEA =

PN�1

i; j¼0
iðPi; jÞ

2 Variance (VAR) VAR =
PN�1

i; j¼0
Pi;jði�MEAÞ2

3 Homogeneity (HOM) HOM =
PN�1

i; j¼0

Pi;j

1þði�jÞ2

4 Contrast (CON) CON =
PN�1

i; j¼0
Pi; jði� jÞ2

5 Dissimilarity (DIS) DIS =
PN�1

i; j¼0
Pi;jji� jj

6 Entropy (ENT) ENT =
PN�1

i; j¼0
Pi; jð� lnPi; jÞ

7 Second moment (SEM) SEM =
PN�1

i; j¼0
Pi; j

2

8 Correlation (COR) COR =
PN�1

i; j¼0
Pi; j

ði�MEAiÞðj�MEAjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVARiÞðVARjÞ

p
� �

Note: Pi, j = Vi; j

, PN�1

i; j¼0
Vi;j, where Vi; j is the value in the cell (i, j) (row i and column j) of the moving window

and N is the number of rows or columns.
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user’s and producer’s accuracies are commonly used to assess the accuracy of individual
classes, but sometimes this may lead to mistakes because, for some land-cover classes, the
producer’s accuracy may be high but the user’s accuracy may be low, or vice versa. In order
to avoid this problem and provide comparative analysis of classification results among
different scenarios using the textural images from different sensor data, the accuracy for an
individual land-cover class (AILC) is defined as:

AILC ¼ PAð Þ � UAð Þ
PAð Þ þ UAð Þ½ �=2 ; (2)

and overall accuracy based on AILC (OA_AILC) is defined as:

OA AILC ¼ 1

n

Xn
i¼1

AILCi; (3)

where UA and PA are user’s and producer’s accuracies, n is the number of land-cover
classes, and AILCi represents the ith land-cover type. Therefore, we can easily evaluate
the individual land-cover classification accuracy using AILC and compare the perfor-
mances of different classification results using OA_AILC.

4. Results and discussion

4.1. Analysis of the best combination of textural images

Based on the analysis of BTC for potential textural images, the best combination of
textural images for each satellite image was obtained, and the results are summarized in
Table 4. Although the best combination of textural images for different sensor data varies,
the results in Table 4 indeed provide some important information about the selection of
texture measures and window sizes. For example, a window size of 9 × 9 pixels is suitable
for optical sensor data, but a large window size of 25 × 25 pixels is needed for ALOS
PALSAR data. A large window size for ALOS PALSAR data may be beneficial to further
reduce the speckle problem (Li, Lu, Moran, Dutra, et al. 2012). Concerning the selection
of texture measures, dissimilarity seems good for optical sensor data, and contrast and
second moment are suitable for ALOS PALSAR data. Table 4 also indicates that the best
texture combinations vary, depending on the specific sensor, implying the necessity to
identify the optimal texture combination corresponding to a specific data set. The different
characteristics of various sensor data and different biophysical environments of study

Table 4. Identified best combinations used in land-cover classification procedures.

Sensor Best texture combination Band
Texture

measure(s) Window size(s)

Landsat 5 TM Red-DIS9, NIR-DIS9 Red, NIR DIS 9 × 9
ALOS PALSAR L-band HH-SEM25, HH-CON31 HH SEM, CON 25 × 25, 31 × 31

HV-CON25, HV-SEM19 HV CON, SEM 25 × 25, 19 × 19
SPOT 5 HRG PAN-ENT9, PAN-DIS15 PAN ENT, DIS 9 × 9, 15 × 15
QuickBird Red-DIS9, Red-MEA9 Red DIS, MEA 9 × 9

Note: See Table 2 for explanations of texture measures.
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areas require analysts to identify specific texture images for each situation. This produces
a challenge for quickly identifying the best textural images for a specific study.

Figure 3 provides a comparison between a Landsat TM NIR image and two corre-
sponding textural images, implying different characteristics in reflecting land covers. The
textural image based on the red band (i.e. Landsat TM band 3, shown in Figure 3(b))
highlights non-vegetation information such as urban buildings and roads, and the textural
image based on the TM NIR image (Figure 3(c)) highlights the difference between
vegetation and non-vegetation types. Figure 4 illustrates the textural images that are
calculated using different measures but the same window size (9 × 9) using the SPOT
HRG panchromatic band, implying their different capabilities in extracting land surface
features. For example, the textural images using Variance (Figure 4(b)), Contrast
(Figure 4(d)), and Dissimilarity (Figure 4(e)) highlight similar linear features such as
roads, and the textural image using Entropy (Figure 4(f)) further enhances the finer linear
features. On the other hand, the texture image produced using the second moment has
richer information than that obtained using the correlation coefficient (Figure 4(g) vs.
Figure 4(f)). Figure 4 also indicates the high correlations that exist between some textural
images because they represent similar information such as Figures 4(d) and (e). Figure 5
compares ALOS PALSAR HH and HV, and their two corresponding texture images,
indicating their complementary information. Comparing them with Figure 3 for the same
study area, the textural images from ALOS PALSAR can be seen to contain much less
information than the Landsat TM optical images, implying that the ALOS PALSAR-based
textural images have less capability for representing land-cover surface characteristics.
Figure 6 provides a comparison of textural images using the same texture measure but
different window sizes, implying the importance of using an optimal window size in
extracting land-cover features. Large window sizes produce blurred boundaries between
land-cover types and enlarge linear features such as roads, resulting in poor classification
for some land-cover types such as roads and small patch classes with high spectral
signatures.

4.2. Analysis of land-cover classification results

Landsat TM multispectral images indeed provide much better classification accuracy than
pure textural images, as shown in Table 5. However, incorporation of spectral and textural
images improved overall classification accuracy by 3%. Considering individual classes,

(a) (b) (c)

km

5

Figure 3. A comparison of (a) Landsat TM band 4 (NIR), (b) textural image obtained using the
measure ‘dissimilarity’ on band 3 (red) and a window size of 9 × 9 pixels, and (c) textural image
obtained using dissimilarity on band 4 (NIR) and window size of 9 × 9 pixels at Altamira.
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most land-cover classes, except upland forest and urban, have better classification results
using spectral signatures than using textural images. Yet, a combination of spectral and
textural images improved the accuracy of most land-cover types, except liana forest, initial
secondary succession (SS1), and pasture, implying the important role of textural images in
improving land-cover classification, but not for all land-cover types. When the overall

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Textural images obtained from the SPOT panchromatic band based on different texture
measures but the same window size (9 × 9) for Machadinho d’Oeste; (a), (b), (c), (d), (e), (f), (g),
and (h) represent the textural images calculated using mean, variance, homogeneity, contrast,
dissimilarity, entropy, second moment, and correlation coefficient, respectively.
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accuracy is evaluated using OA_AILC, the accuracy improved by 5.2% from 76.6%
to 81.8%.

Compared to the classification results for the Landsat TM image (see Table 5),
ALOS PALSAR data provided lower classification accuracy for the same study area,
as summarized in Table 6. ALOS PALSAR radiometric data can provide good

(a) (b) (c)

(d) (e) (f)

Figure 5. A comparison between ALOS PALSAR L-band HH and HV images and corresponding
textural images of Altamira; (a), (b), and (c) are HH image and HH-derived SM25 and CON31
textural images; (d), (e), and (f) are HV image and HV-derived CON25 and SM19 textural images.
(For definitions, see Table 4.).

Figure 6. Comparison between textural images obtained from the QuickBird image of Lucas do
Rio Verde; (a) red-band image; (b), (c), and (d) textural images derived using dissimilarity texture
measure on the red-band images with window sizes of 9 × 9 pixels, 15 × 15 pixels, and 21 × 21
pixels, respectively.
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accuracy only for flooded forest, agropasture, and water, and textural images provide
reasonably good results for agropasture and water. Overall, textural images have less
capability in land-cover classification than ALOS PALSAR radiometric data, but the
combination of them did improve overall accuracy by 8%, from 48.1% to 56.1%, and
OA_AILC by 10.2%. Because ALOS PALSAR data represent the roughness of land-
cover surface, the similar roughness among upland forest, liana forest, and advanced
secondary succession (SS3) result in poor separability among them. Yet, the ALOS
PALSAR data can penetrate forest canopy to capture some information under the
canopy, such as water in a flooded forest, thereby making ALOS PALSAR data
capable of providing better classification performance for flooded forest in comparison
with other forest types.

The higher spatial resolution of SPOT HRG data does not guarantee improvement in
vegetation classification compared to Landsat images with 30 m spatial resolution; however,
the study areas lack sound comparison because of the use of different vegetation classification
systems and the presence of different biophysical environments. The combination of spectral
and textural images improved overall classification accuracy by 5.5% when comparing only
spectral signatures of the SPOT data. For individual classes, the combination improved
classification of most land-cover types, especially for upland open forest and cultivated
pastures (Table 7). When we compared the same pixel sizes of ALOS PALSAR and SPOT
HRG images, textural images obtained from ALOS PALSAR data seem to play a more
important role in improving land-cover classification than those from SPOT data.

For very-high-spatial-resolution QuickBird images, the land-cover classification in the
urban–rural landscape cannot provide satisfactory results using only spectral signatures. The
major problem is the shadows cast by buildings and tall trees, the spectral confusion between
impervious surfaces, bare soils, and low-spectral objects such as water and shadow, and high
spectral variation within the same land-cover types (Lu, Hetrick, and Moran 2010). Use of
textural images can reduce some problems such as the spectral variation within the same land
cover and the shadows. Therefore, the combination of spectral and textural images improved
land-cover classification by 11.6% in overall accuracy or 13.4% in OA_AILC compared to
using only QuickBird spectral signatures (Table 8). All land-cover classification accuracy is
improved through incorporation of textural images into multispectral data, implying the
importance of using textural images in high-spatial-resolution images.

4.3. Comparative analysis of overall classification performance among different types
of sensor data

A summary of overall classification assessment results is provided in Table 9, indicating
that there are significantly different roles for textural images obtained from different
sensors in improving land-cover classification. Comparing Landsat TM 30 m optical
data to 10 m SPOT multispectral data and the 0.6 m fused QuickBird multispectral
image, the OA_AILC increased from 5.2% to 13.4%, suggesting that there is an important
role for textural images in improving land-cover classification as the spatial resolution of
the optical sensor data increases. Compared to optical sensor data, incorporation of
textural images into ALOS PALSAR data is especially valuable in improving classifica-
tion. For ALOS PALSAR and SPOT HRG data with the same pixel size, the OA_AILC
for the ALOS PALSAR data improved by 10.2% compared to the 6.6% improvement in
OA_AILC for the SPOT data, implying the important role of texture features in reducing
speckle and also the heterogeneity inherent within the same land-cover type in ALOS
PALSAR data.
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Table 8. A comparison of accuracy assessment results obtained using QuickBird images of Lucas
do Rio Verde.

Spectral bands Combination

Land-cover type PA (%) UA (%) AILC (%) PA (%) UA (%) AILC (%)

Forest 92.5 71.0 80.4 95.1 89.2 92.0
Impervious 95.1 76.5 84.8 90.9 85.1 88.0
Pasture/grass 75.0 62.3 68.0 74.5 77.8 76.0
Water 71.0 100.0 83.0 80.0 100.0 88.8
Wetland 31.0 52.9 39.2 88.9 72.7 80.0
Bare land 69.7 82.1 75.4 87.1 93.1 90.0
Fields 75.4 86.7 80.6 89.9 91.2 90.6

Overall accuracy (%) 75.7 87.3
OA_AILC (%) 73.1 86.5

Table 7. Comparison of classification results for different combinations of SPOT HRG multi-
spectral and textural images obtained from the panchromatic band for Machadinho d’Oeste.

Spectral bands Combination

Land-cover type PA (%) UA (%) AILC (%) PA (%) UA (%) AILC (%)

Upland dense forest 62.5 92.6 74.6 67.5 93.1 78.2
Upland open forest 58.3 58.3 58.4 100.0 75.0 85.8
Flooded forest 75.0 42.9 54.6 75.0 46.2 57.2
SS3 66.7 30.0 41.4 66.7 35.3 46.2
SS2 47.2 38.6 42.4 61.1 43.1 50.6
SS1 62.0 63.3 62.6 54.0 62.8 58.0
Dirty pasture 63.2 49.0 55.2 71.1 50.9 59.4
Cultivated pasture 66.0 86.8 75.0 84.0 95.5 89.4
Agroforestry 50.8 76.2 61.0 46.0 85.3 59.8

Overall accuracy (%) 59.2 64.7
OA_AILC (%) 58.4 65.0

Note: SS3, SS2, and SS1 are advanced, intermediate, and initial successional stages of forest, respectively.

Table 9. Summary of overall classification accuracies for data from different sensors.

Data type Pixel size (m)

OA_AILC (%)
Improvement in
accuracy (%)Original bands Combination

Landsat TM 30 76.6 81.8 5.2
ALOS PALSAR 10 44.1 54.3 10.2
SPOT HRG 10 58.4 65.0 6.6
QuickBird 0.6 73.1 86.5 13.4
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Although the importance of using textural images in improving land-cover classifica-
tion is recognized, the above analysis shows the complexity and challenges inherent in
identifying suitable textural images for a specific study as these depend on the specific
sensor data used and the characteristics of the landscapes under investigation. This implies
that it is still difficult to obtain general guidelines that can be used to support the
automatic selection of textural images in a particular study, because the performance of
textural images relies on the complex combination of texture measures, the specific image
data used, window size, and the land-cover types present. Overall, incorporation of
textural images into spectral or radiometric images is beneficial to improving land-cover
classification, but not for all land-cover types. Use of textures may improve the classifica-
tion of some land-cover types such as primary forest due to reduction of spectral
heterogeneity but may reduce the accuracy of the classification of other cover types
such as secondary forest due to its relatively small patch size. More research is needed
to conduct a comparative analysis between images with different spatial resolutions
covering the same study areas. This could be done, for example, for vegetation-dominated
mountainous regions to examine how to select suitable textures for improving vegetation
classification or for landscapes dominated by urban land use to help understand which
textures provide better performance for improving urban land-cover classification.

5. Summary

This research shows the importance of textural images in improving land-cover classification.
The capability of textural features to reduce speckle/noise and to address the heterogeneity
inherent within the same land-cover types makes this especially important for land-cover
classification using ALOS PALSAR data and the very-high-spatial-resolution QuickBird
imagery. Because of the high correlation between some textural images, it is important to
identify the textural images that have good separability for land-cover types but low correla-
tion between the textural images. Not all textural images are needed. A combination of two
textural images is sufficient for land-cover classification, but pure textural images cannot
provide good land-cover classification. Overall, textural images have less capability for
distinguishing between land-cover types than spectral signatures, especially for medium
spatial resolution images, but the textural images become more useful as spatial resolution
increases. The OA_AILC can be improved from 5.2% to 13.4% as the spatial resolution
decreases from 30m to 0.6 m.More research is needed on the development of newmethods to
conduct automatic selection of optimal combinations of textural images for a specific study,
such as for land-cover classification.
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