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ALLOCATION AND AVAILABILITY IMPACTS ON AGRICULTURAL INCOME 
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ABSTRACT: The Buriti Vermelho experimental Basin (BHBV) is characterized by agricultural activities, 

seasonal water flow uncertainty and heterogeneous water allocation among rural farmers. In this context, 
this paper follows an interdisciplinary modeling approach that involves economics, hydrology and 

agronomy. The model developed is then used to evaluate the short-run impacts on agricultural income from 
changes on precipitation and irrigation water supply. The economic regional model follows a Positive 
Mathematical Programming approach which allows for the calibration of crop and farmer specific 

production functions. The hydrological model follows a water balance approach and yields water 
availability estimates on a proper time and spatial resolution. The two models are coupled together and 
calibrated with primary data collected in situ. Alternative temperature and precipitation regimes are 

simulated. Considering that the hydrologic characteristics of the region which, in normal years, guarantees 
a much higher supply of water for irrigation in the reservoirs relatively to demand and the fact that irrigated 

crops have a much heavier weight on the net revenue of the region than rainfed crops, a 5% decrease in 
water availability would be accompanied by a decrease of only 1.2% in the regional net revenue. This 
percentage, however, would increase to 11% and 32% when water availability reduces to 50 and 90% 

respectively. 
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MODELO HIDROECONÔMICO PARA AVALIAÇÃO DOS IMPACTOS DA ALOCAÇÃO E 

DISPONIBILIDADE DE RECURSOS HÍDRICOS NA RENDA AGRÍCOLA 

 
RESUMO: A sub-bacia hidrográfica do rio Buriti Vermelho (BHBV), localizada nas proximidades de 
Brasília, caracteriza-se por intensa atividade agrícola desenvolvida sob uma distribuição heterogênea de 

água ao longo do tempo e do espaço. Neswte contexto, o artigo desenvolve um modelo hidro-econômico 
para quantificação dos impactos de curto-prazo na renda regional agrícola de mudanças nos regimes de 
precipitação e de disponibilidade de água. O modelo econômico se baseia no método de Programação 

Matemática Positiva que possibilita a construção de funções de produção agrícolas específicas por cultura e 
por produtor rural, mesmo para pequenas áreas com poucas observações. Do lado hidrológico, um modelo 

de naturalização de vazões acoplado a um modelo de balanço de água no solo é utilizado para a estimativa 
da vazão do rio e dos canais de irrigação. Os modelos econômico e hidrológico são interligados e 
calibrados com dados primários coletados in situ. Considerando as características hídricas da região, as 

quais, em anos típicos, garantem uma oferta de água para irrigação nos reservatórios bem acima da 
demanda, e que culturas irrigadas tem um peso muito maior na composição da receita líquida da região do 
que culturas de sequeiro, os resultados preliminares indicam que uma redução de 5% na disponibilidade de 

água e na precipitação provocaria uma queda de apenas 1,2% na receita líquida da sub-bacia. Este 
porcentual, contudo, aumentaria para 11% e 32%, quando a disponibilidade de água e precipitação se 

reduzissem para 50 e 90%, respectivamente.  
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INTRODUCTION 

 

Farmers are the dominant water users worldwide, and as part of a resource based system, 

farmers compete for water resources which are heterogeneously distributed across time and space. 

Changes in water availability affect agricultural income, productivity and cropping strategies and have 

potential environmental effects for the hydrologic system as a whole. Therefore, an accurate 

evaluation of how farmers may react to different water resource policies or environmental scenarios 

(e.g.: temperature, water supply etc) is important for policy makers and can help to shed light on ways 

to increase farmers’ income and to alleviate poverty in many parts of the rural world. Empirically 

examining the effects of alternative water allocation regimes on agricultural communities and how 

farmers’ reaction may impact the regional hydrologic system is complex and needs to be 

interdisciplinary. In fact, several examples of studies that develop models involving economics, 

hydrology, ecology and agronomy have been developed (Harou et al. 2009). Although all studies 

represent an effort to integrate different disciplines, each one focuses on a particular issue. For 

example, Rosegrant et al. (2000) , Cai et al. (2003) on salinity and water availability for irrigation; Cai 

(2008) on the optimal strategies for water allocation among competing sectors and Harou and Lund 

(2008) on water pricing, irrigation and institutional constraints; Loucks (2006) on the integration of 

economics and ecology and Guan and Hubacek (2007) on the relationship between economic activity 

and water quality; and finally Krol et al. (2006), Medellín-Azuara et al. (2008) and Harou et al. (2006) 

focus on estimations of the impacts of droughts and climate change on water availability for 

agriculture. While in the cited literature above there are several examples of studies applied to many 

parts of the world, such as China, California, Spain e Chile to name a few, the only example with an 

application to Brazil is Krol et al.. Other two more recent studies on Brazil are Maneta et al. (2009), 

based on pseudo data, and Torres et al. (2012) on the 1995-1996 Ag-Census data. Both studies use a 

regional agricultural production and revenue model but the latter at the município level and the former 

at the farm level. These different spatial scales imply different hydrological models. The farm scale 

allows for more sophisticated, fine-tune models, such as the  3D hydrological model MOd-HMS, 

HydroGeoLogic, Inc. (1996), used in Maneta et al. On the other hand, the larger scale at the município 

level calls for a courser resolution. As a result, Torres et al. follows the mass-balance model Mike-

Basin, Danish Hydraulic Institute (2005). In this context, the present study adds to the scarce Brazilian 

literature on hydroeconomic modeling. It uses an externally coupled hydroeconomic model to estimate 

and predict the short-run impacts of precipitation cuts on irrigation reservoir levels and the impacts of 

lower irrigation water supply on farmers’ agricultural income. As in Maneta et al., 2009, the focus is 

on the Buriti Vermelho river sub-basin, situated in the Federal District, near Brasília. The database 

however is made of primary data collected from interviews performed during the dry and wet seasons 

of the 2007/2008 agricultural year.   More specifically, the economic model uses seasonal observations 

of outputs and inputs (quantities and prices) per crop from 25 farmers that operate within the sub-

watershed and farmer, and the hydrological model uses an extensive database on local soil, climate 

and discharge patterns. 

 

METHODOLOGY 
 

Economic Component 

The economic model is based on a class of models called Positive Mathematical Programming 

or PMP, (Howitt 1995) and largely used in applied economics (House, 1987; Howitt and Gardner, 

1986; Kasnakoglu and Bauer, 1988; Lance and Miller, 1998; Chatterjee et al, 1998;  Paris and Howitt, 

1998; Maneta et al 2009, Torres et al. 2012, Howard et al. 2012).  

Each farmer g’s goal is to choose Xhi, the quantity of input h that should be applied on crop i in 

order to maximize the net income derived from their agricultural activities. More formally4,    
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4 Subscript g omitted for clarity. 
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The first term inside the brackets represents gross income where pi is the unitary selling price of 

crop i which is produced through a production function qi(Xhi), discussed in more detail below. The 

second term represents total cash costs, in which ph is the price of input h. The h inputs considered are 

land (land), surface water (sw), labor (lb), family labor (flabor) and materials (mat). This last category 

of inputs include the expenditures with fertilizers, pesticides and seeds.  The last term (in parenthesis) 

represents the implicit cost resulting from the allocation of land to a specific crop i  and has a 

quadratic form with parameters i  and i . This cost is related to the farmer’s land allocation process 

and is not directly observed by the researcher. Such non-linearity in costs may arise, for example, from 

managerial constraints, heterogeneity in land quality, spatially non-uniform access to water on farms. 

The production functions follow a CES (Constant Elasticity of Substitution) functional form and are 

adapted for rainfed and irrigated conditions. More formally, for rainfed crops, (superscript r), 

production is represented by  

  
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Where Ai , bhi ,   and i are parameters. As a rainfed crop, farmers can use all inputs except 

surface water. So h in (2) represents land, labor, family labor and materials only. The  parameter   is 

defined as 


 1
, in which σ is the elasticity of input substitution. εi is the parameter associated with 

returns to scale. If equals 1, greater than 1 or smaller than 1, we have constant returns, decreasing 

returns or increasing returns respectively . 
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iP is how much precipitation is 

expected to fall onto crop i and 
a

iP  is the actual amount of precipitation that falls onto crop i. 

 

For irrigated crops (superscript ir) production is represented by 

 
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Where the arguments and parameters are defined as above, with the difference that famers can 

now use surface water (sw) and apply it to crop i.  

Notice that in (3) precipitation affects production only via its effects on the availability of 

surface water bodies, such as lakes, rivers and man-made reservoirs. This may not be realistic since in 

many areas of the world, a significant amount of water that are in fact used for irrigation comes from 

precipitation that falls directly onto the crops, as in the case of the Buriti Vermelho. Since the water 

bodies store water from previous periods, they are capable, in a given time period,  of offering water 

for irrigation even in the event of a drought. Therefore, if precipitation is lower than expected, farmers 

may react, ceteris-paribus, by pumping more water from the surface-water bodies to irrigate their 

crops. That is, precipitation and surface water act as substitute inputs. Therefore, ideally, precipitation 

level should be included explicitly as an argument of the production function in (3). Due to the lack of 

time this is not considered in this paper. Future research will properly tackle this issue. 

 

Calibration and Simulation Model 

The parameters of the production function and the land implicit cost term are estimated 

analytically based on a system of equations implied by the first order conditions for revenue 

maximization (FOC’s) and based on assumptions on the returns to scale and the elasticity of input 

substitution. The FOC’s state that farmers maximize their net revenue by choosing an amount of input 

applied to crop i (Xhi) such that the value of its marginal marginal product equalizes its economic 

marginal cost. This economic marginal cost is composed by the sum of the market input price (if the 

input is traded in a market) and a positive or zero shadow price, in the case of inputs with limited 

supply. These limiting supply shadow prices may be zero if the restrictions are nonbinding or positive 

if binding. Fixed supply inputs considered here are land, family labor and surface water.  

Besides the market price and the limiting supply shadow price associated with the land input, 

the PMP approach considers a third component of the economic marginal cost of land. This 



M. de O. Torres et al. 

312 

component is the value of the Lagrange multiplier associated with a calibration constraint that restricts 

the maximum amount of land that can be applied to a given crop to be equal to the amount actually 

allocated in the base year during which the observed data were collected. This Lagrange multiplier 

represents in fact an estimation of the marginal implicit cost of land and is set to be equal to derivative 

of the implicit cost term (
2

  50 ilandiilandi X.X   ) with respect to ilandX  . The value of the Lagrange 

multiplier is crop and farmer specific. All shadow prices and the Lagrange multipliers are calculated 

through a regional linear programming model of land allocation setup with the mathematical 

optimization software GAMs.  

The additional assumptions on the returns to scale and elasticity of input substitution are 

required to make the system of equations identifiable. That is we assume that farmers operate under 

constant returns to scale (  1  i
) and that the elasticity of input substitution (σ) is 0.25. An explicit 

exercise that shows how the parameters are in fact calculated may be seen in Maneta et al. 2009.  

Once the parameters are calculated, their values are re-introduced in (1) and a non-linear 

regional net revenue maximization problem is set as:  
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Notice that the sum is over i and g (subscript omitted for clarity) since the model chooses ihX  

such that the regional net-income is maximized. )( hi

r

i Xq̂
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i Xq̂ are respectively the rainfed 

and irrigation production functions, specified in (2) and (3), and parameterized with hib̂  and iÂ , the 

calculated values of the parameters hib  and Ai. The estimates i̂  and  i̂  are the calculated values of 

the parameters i  and i . 

This regional maximizatiom problem is subject to the following set of constraints:  
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Where, idlaX  n , iflaborX   are respectively the amount of land and family labor applied to crop i  

by farmer g. 
miswX  is the quantity of surface water used in month m to irrigate crop i by farmer g. 

landB and flaborB  are the maximum quantity of land and family labor available for farmer g. 
mswB is the 

maximum of surface water that can be used by a given farmer g in month m (subscript g is omitted for 

clarity in (5)).  

The last equation in (5) involving the term Met establishes the monthly allocation rule of the 

annual amount of surface water used for irrigating crop i, iswX  . Suppose that a given crop i is planted 

in January and harvested in April. Suppose also that given the observed level of precipitation and 

evapotraspiration in these 4 months, irrigation was necessary in March and April only, with 30% in 

March and the rest in April. In this case the allocation rule says that the farmer must allocate its 

intended total annual water to crop i, iswX , accordingly to these percentages.  

The model is calibrated when the results from the regional maximizatiom problem formed by 

equations (4) and (5), in terms of output and input mix for each farmer g, approach the mix of outputs 

and inputs observed by the researcher in the base year. Once calibrated, the model is then used for 

simulation using non-linear programming techniques with the GAMs mathematical optimization 

software. 
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Modelo hidrológico e de naturalização de vazões 

The Buriti Vermelho River has five small reservoirs, two of which are used for irrigation by the 

small farmers. Each of the two utilized reservoirs has one canal, which serve different parts of the 

community. The canal that comes from the first reservoir splits into two by the time it reaches parcels 

within the community. As the canals are not operated, a model to calculate how much water flows in 

the canals and how much water each farmer will get was developed. The model simulates discharge in 

function of the water height above the pipe line. This model was couplet with a hydrologic model, 

which is based on Thornthwaite and Mather, 1955, procedure (Liebe et al., 2009). Simulations were 

done daily and the results were aggregated monthly to feed the economic model. 

 

Site of Study, Data and Simulations 

The area of study is the Buriti Vermelho subwatershed, located at about 100 kms of Brasília. 

The primary data were collected in situ through the application of a survey to all the 25 famers that are 

located within the basin and that use water from the basin during the agronomical year 2007/2008 

(October 2007 through September 2008). The survey was applied in two phases: one right after the 

wet season (October 2007 – March 2008) and another right after the dry season (April – September of 

2008).  For each farmer and crops produced during the agronomical year, it was collected data on 

outputs (prices received and quantity produced) and inputs (prices paid and quantity used). For the 

setting up of imMet  it was used a planting and harversting calendar for each crop and each farmer plus 

monthly evapotraspiration data, water demand coeficients for each crop and precipitation data. The 

database on water used per crop per farmer was built with information collected on the frequency and 

duration of irrigation, the type of irrigation technology used and the type of pump.   

The simulations performed here represent a preliminary effort to demonstrate the analytical 

capacity of the modeling approach. More specifically, it was simulated a reduction in precipitation of 

5, 20, 50, 70, 90 % evenly distributed across all the months and estimated its impacts on the monthly 

water level in the reservoirs and on the farmers’ agricultural income.  

 

RESULTS 
 

The estimates of precipitation and amount of water available for irrigation per farmer per month 

are given by the hydrological model and used as inputs for Precipi and 
mswB in equations (2) and (4) 

respectively.  Figure 1 presents, as a result of the cuts in precipitation and on irrigation water supply, 

the effects on agricultural income from rainfed and irrigated crops. (Figure 1A ). It is assumed that a 

cut in precipitation of X% induce a reduction in the amount of water in the reservoirs by also X%.5   

As we can see, losses in terms of net income become non-linearly more significant, as 

reductions in irrigation water availability and precipitation become more accentuated. For example, a 

reduction of 5% will induce a loss of 1.1% in the regional and aggregated (rainfed and irrigated crops 

combined) net-income. This percentage increases to 11% and 32% when the amount of water and 

precipitation reduce by 50 and 90% respectively (Figure 1A). 

 

                                                 
5 A cut of X% in precipitation in a given period in fact induce a cut on the amount of water available for 

irrigation in the reservoirs by less than X% in that given period since the they store water from previous periods. 

Hydrological simulated estimates of the actual impact of precipitation on the supply of water in the reservoir are 

in course and will be subject of future research.           
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(A) (B) 

  

Figure 1 – Reductions in precipitation and irrigation water supply and their impacts on total 

regional net-income and on the net-income derived from irrigated and rainfed crops.   

 

 

These may be seen as small considering the significant cuts in precipitation and water supply, 

but it is important to bear in mind two factors: 1) irrigated crops have a much larger weight on the total 

agricultural income in the region, and 2) water in the reservoirs only start to become binding and 

restrictive for irrigated crops when reductions in the irrigation water supply are above 50% (Figure 

1B). In other words, since rainfed crops are more vulnerable to cuts in precipitation than irrigated 

crops, and given our assumption that precipitation and irrigation water fall in the same proportion, for 

a given cut in precipitation, losses in profits derived from rainfed crops are much higher than the ones 

from irrigated crops. 

More specifically, in Figure 1B, we see that a 5 to 20% decrease in precipitation would be 

followed by a decrease of 7% to 27% in the regional net-income derived from rainfed crops and a null 

effect on net-income based on irrigated crops. This scenario starts to change when cuts in precipitation 

and in the irrigation water supply are 50% or more. In fact, a 50% cut would induce a decrease of 63 

and 0,2%6 in the regional net-revenue derived from rainfed and irrigated crops respectively. For 

reductions of 90%, the estimated regional impacts would be of 98 and 18% for the rainfed and 

irrigated crops respectively. 

 

CONCLUSION 
 

Water and precipitation scarcity may have significant and negative impacts on the Buriti 

Vermelho agricultural net-income. These impacts are more significant for the rainfed crops and as a 

consequence for the farmers specialized in these crops. Farmers specialized in irrigated crops are also 

not immune though. In normal years, water in the reservoirs is kept in a sufficient level to irrigate the 

total area covered by irrigated crops in the region year-round but this may not hold in the event of a 

drought. In fact, our simulations show that reductions in precipitation and irrigation water supply at 

50% or more, compared to the base-year, would start to affect the net income derived from irrigated 

crops as well. It is important to highlight however that these effects over the irrigated crops are likely 

to be subestimated due to the fact that in the present version of the paper, the economic model does not 

consider the direct effects of a reduction in precipitation on the productivity the crops. Only indirectly 

via the impacts of precipitation in the amount of water available for irrigation in the reservoirs.  
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