CONTROLE DE CAPIM-AMARGOSO COM DIFERENTES MISTURAS

OSIPE, J.B. (UENP – Bandeirantes/PR – jethrosipe@gmail.com); ADEGAS, F.S. (EMBRAPA – SOJA - Londrina/PR); OSIPE, R. (UENP – Bandeirantes/PR); ALVES, A.J. (UENP – Bandeirantes/PR); BENTO, D.C. (UENP – Bandeirantes/PR); ROSSI, E. (UENP – Bandeirantes/PR); PANZIERA, A.C. (UENP – Bandeirantes/PR); SALLES JUNIOR, A.J. (UENP – Bandeirantes/PR)

RESUMO: A dificuldade no controle de capim amargoso com o herbicida glyphosate gera a necessidade da utilização de outros herbicidas para um manejo adequado da espécie. Assim sendo, objetivou-se com o presente trabalho avaliar o controle de *Digitaria insularis* (capim-amargoso) por meio de combinações de herbicidas de diferentes mecanismos de ação. O delineamento experimental foi o de blocos ao acaso, com 22 tratamentos e 4 repetições. Os herbicidas foram aplicados quando as plantas estavam com altura próxima a 80 cm. Os resultados mostraram que o herbicida Select foi o graminicida que apresentou melhor níveis de controle para a espécie. Com relação às misturas dos graminicidas com os latifolicidas, verificou-se que pode haver antagonismo entre eles. A possibilidade desta ocorrência foi mais evidente para as misturas Targa + Finale; Targa + Gramocil e Podium + Gramocil; Panther + Gramocil e Podium + Classic.

Palavras-chave: Digitaria insularis, graminicidas, herbicidas

INTRODUÇÃO

O capim-amargoso (*Digitaria insularis*) uma espécie perene, herbácea, entouceirada, ereta, rizomatosa, de colmos estriados, com 50 a 100 cm de altura (KISSMANN & GROTH, 1997), e altamente competitiva. Em função das aplicações constantes do herbicida glyphosate, surgiram biótipos resistentes ao herbicida em diversas regiões do país. O primeiro caso relatado sobre um biótipo do capim-amargoso resistente ao herbicida glyphosate foi no Paraguai em 2006 (HEAP, 2011).

O ponto chave no incremento da ocorrência de D. insularis é que, uma vez que a planta esteja estabelecida com o início da formação dos rizomas e posterior formação de grandes touceiras, ela se torna de difícil controle. Uma vez ocorrido o processo de perenização, esta planta pode florescer e disseminar sementes com baixos níveis de dormência durante o ano todo (GEMELLI et al., 2012).

A aplicação de herbicidas de diferentes mecanismos de ação e com o mesmo espectro de controle (sobreposição de espectro de ação na planta daninha alvo) é com certeza uma estratégia que deve ser utilizada na agricultura (CHRISTOFFOLETI et al.,

2012). A diversificação de manejo pode ser feita através de herbicidas em associação, sequência ou rotação, podendo ser associado a métodos culturais.

Assim sendo, objetivou-se com o presente trabalho avaliar o controle de *Digitaria* insularis (capim-amargoso) por meio de combinações de herbicidas de diferentes mecanismos de ação.

MATERIAL E MÉTODOS

O ensaio foi instalado no município de Itambaracá-PR, no período de novembro a dezembro de 2013, em área com suspeita de resistência do capim-amargoso ao herbicida glyphosate.

O delineamento utilizado foi o de blocos ao acaso, com 21 tratamentos (Tabela 1) e quatro repetições, sendo as parcelas compostas de 3 metros de comprimento por cinco de largura. Considerou-se como área útil para as avaliações apenas a área central da parcela, descontando 0,5 m de cada lado e de cada extremidade.

A aplicação dos tratamentos foi realizada quando as plantas de capim-amargoso estavam em pré-florescimento, com altura próxima de 80 cm. No momento da aplicação, realizada, o solo encontrava-se úmido, a temperatura do ar de 26° C, a umidade relativa do em 63%, céu claro sem nuvens e ventos de 1,5 km h⁻¹. Para as aplicações foi utilizado um pulverizador costal de pressão constante à base de CO₂, equipado com barra com seis pontas (faixa de aplicação de 3,0 m) tipo leque XR-110.02 espaçadas entre si de 0,50 m, sob pressão de 38 lb pol⁻². Estas condições de aplicação proporcionaram uma taxa de aplicação de 200 L ha⁻¹.

As variáveis avaliadas foram: porcentagem de controle (escala visual, 0-100%, onde 0% significa ausência de sintomas e 100% morte total das plantas daninhas) aos 7, 21 e 42 dias após a aplicação (DAA).

Todos os dados foram submetidos à análise de variância pelo teste F e as médias comparadas pelo teste de Scott-Knott, a 5% de probabilidade.

RESULTADOS E DISCUSSÃO

Na Tabela 2 são apresentadas as avaliações de controle sobre as plantas de capimamargoso. Observa-se que entre os graminicidas, o Select foi o que apresentou melhor nível de controle sobre a espécie, atingindo 100% na última avaliação. Apesar das diferenças, todos os graminicidas controlaram com eficiência a planta daninha (acima de 90%).

Tabela 1. Tratamentos e doses dos herbicidas utilizados no experimento com capim-

amargoso. Itambaracá - PR, 2013.

TRATAMENTOS**	DOSES (L Kg p.c. ha ⁻¹)
1. Select*	0,8
2. Panther*	1,5
3. Targa*	2,0
4. Podium*	1,8
5. Classic + Select*	0,1 + 0,8
6. Classic + Panther*	0,1 + 1,5
7. Classic + Targa*	0,1 + 2,0
8. Classic + Podium*	0,1 + 1,8
9. Heat + Select*	0,05 + 0,8
10. Heat + Panther*	0,05 + 1,5
11. Heat + Targa*	0,05 + 2,0
12. Heat + Podium*	0,05 + 1,8
13. Gramocil + Select*	2,0 + 0,8
14. Gramocil + Panther*	2,0 + 1,5
15. Gramocil + Targa*	2,0 + 2,0
16. Gramocil + Podium*	2,0 + 1,8
17. Finale + Select*	2,0 + 0,8
18. Finale + Panther*	2,0 + 1,5
19. Finale + Targa*	2,0 + 2,0
20. Finale + Podium*	2,0 + 1,8
21. Roundup Original	3,0
22. Testemunha sem capina	-

^{*} Tratamentos aplicados em conjunto com Roundup Original a 3,0 L ha-1

Quando se analisa a mistura do Classic com os graminicidas, observa-se que, em associação com o Select, as porcentagens de controles são muito próximas, não havendo diferenças entre eles na avaliação de 42 d.a.a. Já, em conjunto com o Podium, observa-se que a mistura proporcionou controle inferior ao tratamento com Podium isolado, havendo diferenças próximas a 15%.

Os tratamentos com Heat revelaram que, sua adição junto ao graminicida pode acelerar a morte das plantas, obtendo-se níveis de controles superiores a 90% logo na avaliação de 7 d.a.a. Apesar da redução das porcentagens de controle quando se tem a mistura do Heat + graminicidas, observa-se na avaliação final que tais valores são próximos

^{**} Os tratamentos foram aplicados em conjunto com óleo mineral a 0,5% v/v

Para as misturas com Gramocil, também se observa um controle acelerado aos 7 d.a.a.. No entanto, nas avaliações seguintes, as misturas com Panther, Targa e Podium pareceram apresentar um efeito antagônico, quando se comparou aos tratamentos com os graminicidas aplicados isoladamente. A redução foi de valores próximos a 92% a valores ao redor de 30%.

Tabela 2. Médias das porcentagens de controle sobre as plantas de capim-amargoso aos 07, 21e 42 d.a.a. Itambaracá – PR, 2013.

Tratamentos*	Doses	7 d.a.a.		21 d.a.a.		42 d.a.a.		
(Kg L p.c. ha ⁻¹)								
1. Select*	0,8	61,3	d	96,5	а	100,0	а	
2. Panther*	1,5	56,3	е	95,8	b	98,0	b	
3. Targa*	2,0	56,3	е	98,0	а	93,5	d	
4. Podium*	1,8	62,5	d	94,8	b	91,0	е	
5. Classic + Select*	0,1 + 0,8	56,3	е	92,3	С	99,5	а	
6. Classic + Panther*	0,1 + 1,5	51,3	f	93,0	С	96,5	С	
7. Classic + Targa*	0,1 + 2,0	50,0	f	93,0	С	87,3	f	
8. Classic + Podium*	0,1 + 1,8	51,3	f	88,8	d	73,8	g	
9. Heat + Select*	0.05 + 0.8	93,8	а	98,8	а	94,3	d	
10. Heat + Panther*	0,05 + 1,5	90,0	b	98,8	а	96,5	С	
11. Heat + Targa*	0,05 + 2,0	80,0	С	97,3	а	89,5	е	
12. Heat + Podium*	0,05 + 1,8	95,8	а	95,8	b	89,5	е	
13. Gramocil + Select*	2,0 + 0,8	99,0	а	96,5	а	95,0	d	
14. Gramocil + Panther*	2,0 + 1,5	95,0	а	90,0	d	63,8	h	
15. Gramocil + Targa*	2,0 + 2,0	92,5	b	83,3	е	30,0	i	
16. Gramocil + Podium*	2,0 + 1,8	90,5	b	76,5	f	31,3	i	
17. Finale + Select*	2,0 + 0,8	93,8	а	99,0	а	95,0	d	
18. Finale + Panther*	2,0 + 1,5	91,3	b	100,0	а	98,0	b	
19. Finale + Targa*	2,0 + 2,0	90,0	b	98,8	а	75,0	g	
20. Finale + Podium*	2,0 + 1,8	92,5	b	98,0	а	100,0	а	
21. Roundup Original	3,0	52,5	f	45,0	g	26,3	j	
22. Testemunha sem capina	-	0,0	g	0,0	h	0,0	k	
C.V. (%)		4,96		2,41		1,78		

^{*} Tratamentos aplicados em conjunto com Roundup Original a 3,0 L ha-1

^{**} Os tratamentos foram aplicados em conjunto com óleo mineral a 0,5% v/v

dessecação das plantas de capim-amargoso, sendo que com 7 d.a.a. as porcentagens de controle foram superiores a 90%. Aos 21 d.a.a., os valores continuaram crescendo, se aproximando de 100%. No entanto, quando se observa a avaliação final, nota-se que a mistura de Finale com Targa não manteve altos níveis de controle, caindo para 75% de eficiência, indicando a possibilidade de ocorrência de antagonismo para essa mistura.

Associações entre dois ou mais herbicidas é prática comum para a maioria das culturas e objetiva aumentar o espectro de espécies controladas (Damalas & Eleftherohorinos, 2001) ou aumentar o período de controle destas (Vangessel et al., 2000). No entanto, existe a possibilidade ou não de ocorrência de antagonismo, dependendo dos herbicidas associados e da planta daninha a ser controlada. Trabalhos neste sentido, para o controle capim-amargoso devem ser efetuados, considerando que nas áreas agrícolas são comuns a ocorrência de espécies mono e dicotiledôneas.

CONCLUSÕES

As misturas de herbicidas latifolicidas com graminicidas podem reduzir o controle proporcionado pelo graminicida aplicado isoladamente ao capim-amargoso. Nas misturas de Targa + Finale; Targa + Gramocil e Podium + Gramocil; Panther + Gramocil e Podium + Classic isso foi mais evidente. Entre os graminicidas testados, o Select foi o que proporcionou melhores porcentagens de controle ao capim-amargoso.

REFERÊNCIAS BIBLIOGRÁFICAS

CHRISTOFFOLETI, P.J.; LÓPEZ-OVEJERO, R.F. Resistência das plantas daninhas a herbicidas: definições, bases e situação no Brasil e no mundo. In: **Aspectos de resistência de plantas daninhas a herbicidas**. 3. ed. Campinas: Associação Brasileira de Ação a resistência de Plantas aos Herbicidas (HRAC-BR), 2008. p.9-32.

DAMALAS, C. A.; ELEFTHEROHORINOS, I. G. Dicamba and atrazine antagonism on sulfonylurea herbicides used for Johnsongrass (*Sorghum halepense*) control in corn (*Zea mays*). **Weed Technol.**, v. 15, n. 1, p. 62-67, 2001.

GEMELLI, A. et al. Aspectos da biologia de Digitaria insularis resistente ao glyphosate e implicações para o seu controle. **Revista Brasileira de Herbicidas**, v.11, n.2, p.231-240, 2012.

HEAP, I. **The international survey of herbicide resistance weeds**. Disponível em www.weedscience.com. Acesso em 10 junho 2014.

KISSMANN, K. G.; GROTH, D. Plantas infestantes e nocivas. São Paulo: BASF Brasileira, 675-678. Tomo I. 1997.

VANGESSEL, M. J.; AYENI, A. O.; MAJEK, B. A. Optimum glyphosate timing with or without residual herbicides in glyphosate-resistant soybeans (*Glycine max*) under full-season conventional tillage. **Weed Technol.**, v. 14, n. 1, p. 140-149, 2000.