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� Submerged fermentation is made possible by liquefaction of biomass.
� Liquefaction gives a flowable slurry.
� Liquefied biomass is an effective fermentation media.
� Liquefied slurry gives 15� higher endoglucanase activity.
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The objective of this paper is to report liquefaction of pretreated and sterilized sugarcane bagasse for
enhancing endoglucanase production through submerged fermentation by Aspergillus niger. After initial
solid state fermentation of steam pretreated bagasse solids by A. niger, fed-batch addition of the substrate
to cellulase in buffer over a 12 h period, followed by 36 h reaction, resulted in a liquid slurry with a vis-
cosity of 0.30 ± 0.07 Pa s at 30% (w/v) solids. Addition of A. niger for submerged fermentation of sterile
liquefied bagasse at 23% w/v solids resulted in an enzyme titer of 2.5 IU mL�1 or about 15� higher pro-
ductivity than solid-state fermentation of non-liquefied bagasse (final activity of 0.17 IU mL�1). Bagasse
not treated by initial solid-state fermentation but liquefied with enzyme gave 2 IU mL�1. These results
show the utility of liquefied bagasse as a culture medium for enzyme production in submerged
fermentations.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The industrial competitiveness of the 2G (cellulose) ethanol
depends on achieving efficient production and use of cellulase
enzymes. Cellulase production by filamentous fungi may be
achieved through either solid-state fermentation (SSF) or sub-
merged fermentation (SmF). Despite many advantages of SSF over
SmF, enzyme production in large-scale SSF bioreactors is hindered
by low solids loadings, or if high solids are used, by solids handling
and mass and heat transfer gradients during the cultivation pro-
cess (Barrios-Gonzalez, 2012; Cunha et al., 2012; Esperança et al.,
2014). Submerged cultivations with high solids loadings remain
challenging since mass transfer and gas hold-up limitations are
also compounded by viscosity increases that occur during the first
hours of cultivation as a result of fungal growth.

Effects of the total solids loading on rheological behavior of
cellulosic and lignocellulosic suspensions with the aim of
improving the enzymatic hydrolysis of cellulose have been
reported (Du et al., 2014; Jorgensen et al., 2007; Stickel et al.,
2009). Rheological properties of sugarcane bagasse, specifically,
were studied by Geddes et al. (2013) and Caldas Pereira
et al. (2011), who demonstrated that a small amount of
enzyme is able to decrease the viscosity of pretreated sugar-
cane bagasse slurries with improvements in hydrolysis coincid-
ing with improved flow properties. Esperança et al. (2014)
described hydrodynamic effects of carrying out microbial fer-
mentation in a pneumatic bioreactor system at solids contents
between 3% and 20% w/v. The current paper reports enzymatic
and microbial liquefaction of steam exploded sugarcane bagasse
in a fed-batch system followed by endoglucanase production at
high solids loading by an Aspergillus niger wild type strain iso-
lated from the Brazilian biome.
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2. Methods

2.1. Material

The inducer substrate for endoglucanase production was steam
exploded sugarcane bagasse (particle size of 1 to 2 mm) kindly
donated by the Sugarcane Research Center (CTC, Brazil). The steam
explosion was conducted at 1667 kPa and 205 �C for 20 min. Com-
position of the pretreated bagasse, determined by standard NREL
protocol (Sluiter et al., 2008) was 71% (w/w) glucan, 0.5% pentosan,
27.8% lignin and 3% ash. Sugarcane bagasse, before pretreatment,
has a composition of 39% cellulose (glucan), 27.7 pentosans
(including acetyl), 24.8% lignin, 3.9% ash, and 5.7% extractives
(Ladisch et al., 2013).

2.2. Microorganism

A. niger wild type A12 strain, from Embrapa Food Technology
collection (Rio de Janeiro, Brazil), isolated from black pepper
(Couri and deFarias, 1995) and maintained at �18 �C in a 20%
(w/w) glycerol/water solution, was activated in potato dextrose
agar medium slants for 4 days at 32 �C. The spores were suspended
by adding 0.3% Tween 80 (v/v) to the slants and their concentration
was determined by counting in a Neubauer chamber.

2.3. Nutrient medium

Mandels nutrient medium was adapted from Mandels and
Sternberg (1976) according to Cunha et al. (2012) and contained
(w/v): 0.14% (NH4)2SO4, 0.20% KH2PO4, 0.03% CaCl2, 0.02% MgSO4

�7H2O, 0.50% peptone, 0.20% yeast extract, 0.03% urea, 0.10% Tween
80 and 0.10% of salt solution (5 mg/L FeSO4�7H2O, 1.6 mg/L, MnSO4

�H2O, 1.4 mg/L ZnSO4�7H2O, and 2.0 mg/L CoCl2).

2.4. Solid state fermentation

The solid-state fermentation (SSF) cultivations were carried out
for 72 h at static conditions and 32 �C in 250 mL Erlenmeyer flasks
containing the steam exploded sugarcane bagasse to which 12 mL
nutrient medium per 5 g bagasse (dry weight basis) was added.
Enzymes were extracted at 35 �C by adding fermented solids at
1:10 (w/v) 50 mM sodium citrate buffer pH 4.8 and agitating at
120 rpm for 40 min. The extracts were vacuum filtered using
Whatman glass microfiber filters and kept frozen at �20 �C until
analysis. Runs were carried out in triplicate.

2.5. Liquefaction of sugarcane bagasse

Endoglucanase C, (Genencor Division of Danisco, Rochester,
NY), 25 mL enzyme in 70 mL buffer was loaded into a 250 mL
Erlenmeyer flask that was capped with a stopper. Pretreated
bagasse was added in 4 g increments (dry weight basis) at 0, 1, 2,
3, 6, and 9 h with an additional 6 g at 12 h until the solids concen-
tration was 30% w/v in 100 mL of 50 mM sodium citrate buffer, pH
4.8. Agitation was at 290 rpm in a bench top mixer (IKA, Wilming-
ton, DE) for 24 or 48 h at either 32 �C or 50 �C. Bagasse treated for
12 h in a solid state fermentation was also liquefied using the same
procedure.

2.6. Submerged fermentation with liquefied sugarcane bagasse

After the liquefaction, the slurry was sterilized at 121 �C for
30 min. Modified Mandels nutrient medium (Section 2.3) was
added and the fungus A. niger A12 was inoculated at 107 spores
per gram of dry biomass. Final solids concentration was 23%
(w/v). The liquefied biomass was then fermented at 32 �C and
250 rpm for 72 h in an orbital shaker incubator (New Brunswick
Innova 144). After fermentation, the remaining slurry was vacuum
filtered using Whatman glass microfiber filters and kept frozen for
analytical assays. Runs were carried out in triplicate.

2.7. Rheological measurements

Viscosity (lapp) of the slurries was measured at 50 �C shear
rates of 0.1 to 100 s�1 in a model AR-G2 rheometer (TA Instru-
ments, USA) using a starch pasting impeller and cup geometry.

2.8. Analytical assay

Endoglucanase activity was measured with 1% (w/v) carboxy-
methyl cellulose in 50 mM sodium citrate buffer pH 4.8 (IUPAC,
Ghose, 1987). One unit of endoglucanase activity was defined as
the amount of enzyme that released 1 lmol of reducing sugar
per min, using the DNS method.

3. Results and discussion

3.1. Liquefaction of sugarcane bagasse

The first liquefaction experiments used 30% solids, all added at
t = 0. After 24 h of reaction, the stiffness of the sugarcane bagasse
slurry was still so high that the measurement of the apparent vis-
cosity was not possible. When the pretreated and fermented solids
were added in a fed batch manner, the high initial enzyme to sub-
strate ratio during the first hours of reaction allowed greater mix-
ing and mass transfer. Bagasse in subsequent 4 g increments was
added to a liquid slurry, thereby enabling mixing and mass transfer
as the solids concentration increased and enzyme/solids ratio
decreased over time. This approach was analogous to that of
Rosgaard et al. (2007) for rice straw.

The resulting bagasse slurries showed non-Newtonian shear-
thinning behavior. This is consistent with corn stover and 10%
(w/v) sugarcane bagasse slurries (Du et al., 2014; Stickel et al.,
2009; Caldas Pereira et al., 2011). The reduced viscosities are
believed to reflect changes in structures of long-chain molecules
and rearrangement of fibrous particles (Caldas Pereira et al.,
2011; Du et al., 2014).

Liquefaction at 50 �C, which is optimal for enzyme activity, was
compared to 32 �C which is suitable for A. niger A12 growth. The
enzyme reaction results in a shear-thinning bagasse slurry
(Fig. 1). A. niger growth caused additional production of enzyme
due to the microorganism that was carried over from the solid
state fermentation. The resulting slurry had an apparent viscosity
of 0.87 Pa s at 100 s�1 shear rate. Slopes of the data sets were sim-
ilar at 24 and 48 h for both enzyme and combined microbial and
enzyme liquefaction, respectively. However, after 24 h. of reaction
time, the viscosity was still too high for an efficient fermentation
(upper curve in Fig. 1). A longer reaction time (48 h) decreased vis-
cosity further (lower curve in Fig. 1).

The viscosity profiles are similar at both 32 and 50 �C, although
enzyme stability is 4� higher at 32 �C than at 50 �C. Overall, the
preferred conditions are a total liquefaction time of 48 h at 32 �C
for bagasse that is treated through a combination of 12 h solid state
fermentation and 36 h enzyme assisted liquefaction. The final
apparent viscosity is 0.30 Pa s at 100 s�1 shear rate (Fig. 1). Lique-
faction using bagasse treated with enzyme, only, corresponded to
0.48 Pa s at 100 s�1 shear rate.

3.2. Endoglucanase production using liquefied sugarcane bagasse

Endoglucanase production by submerged fermentation at 32 �C
for 72 h using sugarcane bagasse, liquefied either in the absence or
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Fig. 1. Change in viscosity (g) as a function of shear rate (c) after 24 and 48 h incubation with 301 IU endoglucanase per gram of dry bagasse. (N, j) Enzyme liquefaction at
32 and 50 �C or (D, h) enzyme combined with microbial liquefaction; -trend lines. Log g = c + A log c. A24 h = �0.660, A48 h = �0.692. Viscosity at t = 0 was not measureable due
to solid characteristics of bagasse at 300 g/L. Initial composition of all samples as indicated in table (analysis by NREL standard procedure (Sluiter et al., 2008).
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presence of A. Niger A12 corresponded to 2 to 2.5 IU mL�1. Fermen-
tation after liquefaction of this material resulted in endoglucanase
activity of up to 15-fold higher than solid-state fermentation, with
enzyme activities of 2.5 ± 0.3 IU mL�1 and 0.17 ± 0.3 IU mL�1

obtained in submerged and solid state cultivations, respectively.
The presence of A. niger A12 during liquefaction resulted in 22%

higher endoglucanase titers compared to liquefaction in the
absence of the fungus where endoglucanase titers were 2 IU mL�1.
In comparison, endoglucanase production on untreated bagasse
obtained in this study was on the same order of that obtained by
Delabona et al. (2012) after 96 h of solid-sate fermentation of
untreated sugarcane bagasse by an A. fumigatus strain isolated
from the Amazon forest. Delabona’s organism gave 0.167 IU mL�1

endoglucanase production after 96 h of solid-state fermentation.
Liquid hot water pretreatment of sugarcane bagasse followed

by additional substrate washing with distilled water gave an
enzyme yield of 0.75 IU mL�1 which was higher than the
0.167 IU mL�1 for untreated substrate of Delabona et al. (2012)
and Rodriguez-Zuniga et al. (2014). Liquid hot water pretreatment
cooks the lignocellulose in hot, pressurized water causing release
of inhibitors into the water (Kim et al., 2013a,b). In this case,
removal of microbial and enzyme inhibitors (for instance phenolic
compounds) by washing may help to achieve both higher enzyme
activity and enzyme production (Ximenes et al., 2010, 2011).

This study has demonstrated, for the first time, the potential
application of enzyme production after liquefaction of sugarcane
bagasse in order to obtain high lignocellulose concentrations. High
solids loading in large-scale cultivations combine the advantages
of high enzyme productivity for solid-state fermentation and the
scalability of submerged fermentation.
4. Conclusions

Enzyme catalyzed liquefaction of sugarcane bagasse enables
submerged fermentation of A. niger and production of endoglucan-
ase at a 12-fold higher yield than solid state fermentation. When a
combined enzymatic and biological liquefaction promoted by A.
niger A12 is used, the viscosity of 0.30 ± 0.07 Pa s is lower than
bagasse liquefied using enzyme alone (0.48 ± 0.08 Pa s, at 100 s�1

shear rate). A 15-fold higher yield of endoglucanase is observed
when using bagasse, processed through combined enzymatic and
biological liquefaction, as culture medium in submerged
fermentation.
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