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Abstract
Several diseases, such as anthracnose, which are caused by the 
fungus species Colletotrichum gloeosporioides, negatively affect 
the cultivation of the cowpea (Vigna unguiculata). This work was 
conducted to measured the time-course activities and evaluate the 
possible roles of superoxide dismutase (SOD), catalase (CAT), 
ascorbate peroxidase (APX) and hydrogen peroxide (H2O2), and 
the pathogenesis-related proteins (PR-proteins), peroxidase 
(POX), β-1,3-glucanase (GLU) and chitinase (CHI), in the resistant 
(TE97) and susceptible (BR3) cowpea genotypes in response to 
C. gloeosporioides infection. During infection, the SOD activity was 
increased, while the CAT activity was decreased in TE97. The APX 
activity in TE97 was similar to that in BR3 at 12 to 24 after infection 
(HAI). These data were consistent with the increased production 
and accumulation of leaf H2O2 within this time period in TE97; the 
generation of H2O2 was also observed in BR3, but to a lesser extent. 
The fungal inoculation also induced changes in the PR-proteins 
analyzed. Overall POX, GLU and CHI activities were higher in the 
resistant genotype TE97 compared with those in the susceptible 
genotype BR3. Altogether, these results showed that H2O2 and the 
PR-proteins play important roles in the interactions of cowpea and 
C. gloeosporioides.
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Introduction
After pathogen recognition, highly localized biochemical events 

are rapidly induced to inhibit the further development of the attacking 
pathogen. The rapid production and accumulation of reactive oxygen 
species (ROS), particularly the superoxide anion (O2

-) and hydrogen 
peroxide (H2O2) [1], culminates with a hypersensitive response (HR) 
and localized programmed cell death (PCD) to impair the pathogen 
establishment and development inside the host tissues and deprive 
the pathogen of further access to nutrients. Concomitant with or 
following HR, several pathogen defense-related genes are translated 
into antioxidant enzymes and PR-proteins [2] that confer resistance 
to the plant in defense against pathogen attack.

Plants possess a number of antioxidant enzymes that eliminate 
ROS. Superoxide dismutase (SOD) catalyzes the conversion of the 
superoxide free radical (O2

-) to molecular oxygen and H2O2 [3]. The 
production of SOD is specifically induced during oxidative stress, 
when the levels of superoxide in the cell exceed the spontaneous 
dismutation rate. H2O2 is eliminated by catalase (CAT), ascorbate 
peroxidase (APX), peroxidase (POX) and other scavenging enzymes, 
such as glutathione peroxidase (GPX) and various peroxiredoxins 
(Prx) [1], leading to oxidative stress tolerance and pathogen 
resistance. Beside to ROS generation and scavenging, HR, PCD 
and reinforcement of the cell wall, plants respond to pathogen 
attack using a variety of compounds and proteins. Pathogenesis-
related proteins (PR-proteins) are specifically induced in response 
to infection by pathogens such as fungi, bacteria, and viruses, or to 
adverse environmental factors [2]. Presently there are 17 recognized 
families of PR-proteins, including β-1,3-glucanase (PR-2 family), 
chitinase type I, II, IV, V, VI, VII (PR-3), chitinase type I, II (PR-4), 
chitinase type III (PR-8), chitinase type I (PR-11) and peroxidase (PR-
11) [2]. Peroxidases (POXs) are enzymes that catalyze the oxidation 
of several substrates at the expense of H2O2, playing a key role in the 
detoxification of H2O2 during the H2O2-dependent polymerization 
of hydroxycinnamyl alcohols involved in the lignification process 
(lignin biosynthesis) and H2O2-dependent cross-linking of cell wall 
proteins, such as hydroxyproline-rich glycoproteins and proline-rich 
proteins associated with the reinforcement of plant cell walls [4]. 
Several studies have shown POX induction associated with the defense 
against viruses [5], bacteria [6], fungi [7], nematodes [8], and insects 
[9]. Khairullin et al. [10] showed the association of an anionic wheat 
peroxidase with chitin, and recently, Maksimov et al. [11] reported 
a similar association for both cationic and anionic isoforms from 
various plants species, which suggested the participation of POXs in 
plant defense mechanisms against chitin-containing fungi. Indeed, it 
has been reported that some POXs possess antifungal activity [12,13].

Cell wall appositions, such as papillae, also represent an 
important barrier to pathogen penetration. In cereal-powdery 
mildew interactions, papillae are formed on the inner side of the outer 
epidermal cell wall subjacent to primary and appressorial germ tubes 
in response to pathogen attack. Many compounds accumulate in 
these papillae, such as callose, proteins, and phenolic and guanidine 
compounds [14,15].

The fungal cell wall is primarily composed of glucans, chitin, 
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mannans and glycoproteins. Glucans are major structural 
polysaccharides that constitute approximately 50–60% of the fungal 
wall dry weight. An estimated 65-90% of the cell wall glucans are β-1,3-
glucans. Chitin is composed of β-1,4-linked N-acetylglucosamine 
residues and is typically less abundant than either the glycoprotein 
or glucan fractions, as it represents only 10-20% of the cell wall of 
filamentous fungi. Glucans bind to chitin to form the chitin-glucan 
complex (CGC). The CGC is present in all fungi, except zygomycetes, 
and cross-links with glycoproteins to form the structural basis of the 
fungal cell wall, providing mechanical strength and integrity [16].

β-1-3-glucanases (GLUs) are enzymes that predominantly 
promote the endohydrolytic cleavage of β-1,3-glucosidic linkages 
in β-1,3-glucans. Plant GLUs are involved is several physiological 
functions and developmental processes, such as cell division, 
microsporogenesis, pollen germination, tube growth, fertilization, 
embryogenesis, fruit ripening, seed germination, mobilization of 
storage reserves, and bud dormancy. In addition, these enzymes have 
been implicated in the response to pathogen attack, wounding, cold, 
ozone and UV-B [17].

Chitinases (CHIs) act on the β-1,4-glycosidic linkage of chitin. 
In plants, CHIs have also been implicated in the mechanisms of 
resistance against pathogens and insect pests, and other functions, 
such as nodulation, embryogenesis, and functions unrelated to 
their catalytic activity, including antifreeze proteins and inhibitors 
of α-amylases [18]. Several CHIs inhibit the growth of many fungi 
through the lysis and disarrangement of the cell wall structure, 
particularly in combination with GLUs. The combined expression 
of CHI and GLU genes in rice (Oryza sativa L. subsp. indica variety 
Pusa Basmati 1) enhanced resistance against Rhizoctonia solani [19]. 
Moreover, at the cell wall, CHIs can release chitin oligomers, namely 
pathogen (microbe)-associated molecular patterns (PAMPs or 
MAMPs, respectively) [20], which activate a variety of plant defense 
responses, including ROS generation, the production and export of 
anti-microbial compounds and the fortification of the plant cell wall 
[21].

The cowpea is one of the most important legumes for human 
consumption, particularly in tropical and subtropical regions of 
Africa, Asia and South America [22]. The production of this crop is 
negatively affected by several diseases, including anthracnose, caused 
by fungal species of the Colletotrichum genera, which are among the 
most potent plant pathogenic fungi and cause severe losses worldwide 
[23].

The objective of this present work was to evaluate the possible 
role of the antioxidant enzymes (SOD, CAT, and APX), H2O2, and 
the PR-proteins (POX, GLU, and CHI) in the infection of two cowpea 
genotypes, resistant (TE97) and susceptible (BR3) [24], with the 
hemibiotrophic fungus Colletotrichum gloeosporioides.

Materials and Methods
Biological materials and inoculation

The isolate of the hemibiotrophic fungus C. gloeosporioides [(Sacc. 
& Magnus) Briosi & Cav.] was previously identified [24] and cultured 
on potato dextrose agar (PDA, Difco, Detroit, MI) under continuous 
fluorescent light at 25°C. The spore suspensions were prepared by 
washing the surface of 12-d-old cultures with sterile distilled water 
and passing the suspension through a four-layer muslin cloth to 
remove fungal mycelia and other debris. The conidium suspension 

was adjusted in sterile water to a known concentration after counting 
in a Neubauer chamber under a microscope (Olympus System BX60) 
and used as inoculum.

The seeds of the resistant (TE 97-411-1E [hereafter, TE97]) and 
susceptible (BR 3 Tracuateua [hereafter, BR3]) cowpea were obtained 
from Embrapa Meio-Norte (Piauí, Brazil). The seeds were surface 
disinfected with 1% (v/v) hypochlorite (0.05% active chloride) for 3 
min, rinsed exhaustively with distilled water, soaked in distilled water 
for 10 min, and sown in 0.5-L pots containing autoclaved (120 °C, 
1.5 KGF, 30 min) river sand. The seeds were cultivated at 27-35°C in 
a greenhouse exposed to 12 h natural light gradients varying from 
300-650 µmol m-2 s-1 photosynthetically active radiation (PAR), at 
canopy level, and daily irrigated with autoclaved (120 °C, 1.5 KGF, 20 
min) water for up to 4 days after sowing. Subsequently, the seedlings 
were irrigated with a 5-fold diluted nutritive solution [25]. Ten days 
after sowing, visually healthy plantlets were selected and transferred 
to a growth chamber at 25-30°C, 85 ± 5% relative humidity with a 
12 h photoperiod at an intensity of approximately 280 µmol s-1 m-2 
photosynthetically active radiation (PAR). Two days later, the primary 
leaves were inoculated by applying two 25 µL equidistant droplets of 
C. gloeosporioides spore suspension (4.0 x 105 mL-1 in sterile distilled 
water) at each side of the adaxial leaf blade separated by the main vein. 
The control plants were inoculated with sterile water. The primary 
leaves (2 per plant) of six individual plants (n = 12) were excised at 
0, 12, 24, 48, 72, and 96 hours after inoculation (HAI) and used for 
subsequent analyses. The experiment was repeated three times.

Hydrogen peroxide (H2O2) accumulation

To visualize H2O2 accumulation in the cowpea primary leaves 
using light microscopy, DAB (3´-3´-diaminobenzidine; Sigma) 
was infiltrated according to Thordal-Christensen et al. [14]. Briefly, 
the stems of cowpea plantlets collected at six different periods after 
inoculation with C. gloeosporioides, as previously described, were 
cut at 2 cm above the cotyledon insertion region, and the cut end 
of the upper plantlet was immersed in a solution containing 1.0 
mg DAB mL-1. DAB was dissolved in Milli-Q grade water adjusted 
initially to pH 3.0 with 1.0 N HCl and heated to 50 °C, followed by 
the addition of 1.0 N NaOH, pH 4.0. After an 8-h treatment, the 
cowpea leaves were decolorized by incubation in 1.5 g L-1 TCA in a 
3:1 (v/v) mixture of ethanol + chloroform for 48 h with at least three 
changes of the bleaching solution and examined by light microscopy. 
To detect papilla (callose) formation, the leaf pieces were soaked 
with phosphate buffer (0.1 M KH2PO4/K2HPO4, pH 9.0) for 24 h, 
and the leaf pieces with infection sites were placed on glass slides 
in phosphate buffer, as previously described [24]. Subsequently, the 
samples were stained with a 0.1 g L-1 buffered solution of aniline blue 
for 2 h [26]. The leaf pieces were mounted on a microscope glass 
slide, cleared by drop washing with concentrated HCl (ca. 2 min), 
and covered with a glass cover slip in glycerol [27]. To visualize the 
fungal structures, the DAB-treated leaf pieces were further stained 
with 0.5 g L-1 aniline blue in lactophenol for 2-3 min at 70 °C [28]. 
The fungal structures were strongly stained blue. Light microscopy 
was performed using an Olympus System Model BX60F5 microscope 
(Olympus Optical Co. Ltd, Japan). Images were acquired using an 
Olympus photomicrography system PM-20. The experiments were 
repeated three times with three replications.

The quantitative production of H2O2 was detected using 
spectrometry, as previously reported [29]. The primary leaves 
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of control and infected BR3 and TE 97 cowpea genotypes were 
collected at six different time periods after treatment. The leaves were 
homogenized (1:5, m/v) in 50 mM borax-borate extraction buffer 
(0.61 g of boric acid in 150 mL of Milli-Q grade water and 0.95 g of 
sodium tetraborate in 50 mL of Milli-Q grade water, adjusted to pH 
8.4) using a mortar and pestle. The homogenate was filtered through 
one layer of cheesecloth and centrifuged at 12,000 ×g for 20 min at 
4ºC. The supernatant was used in the assay reaction mixture, which 
consisted of 0.2 mL of the supernatant + 1.0 mL Solution A + 10 mL 
solution B. Solution A contained 25 mM FeSO4 + 25 mM (NH4)2SO4 
+ 25 mM H2SO4. Solution B consisted of 0.125 mM xylenol orange 
+ 100 mM sorbitol. The H2O2 accumulation was calculated based on 
the standard curve generated using freshly prepared H2O2 solutions of 
known concentrations (0-8.0 nmol H2O2/1.2 mL). H2O2 concentration 
was expressed as nmol H2O2 per gram leaf fresh weight (nmol H2O2 
g-1 FW)

Enzyme extraction and activity assays

The primary leaves of the TE97 and BR3 genotypes which were 
inoculated and mock-uninoculated (control) with C. gloeosporioides 
were separately homogenized on ice in extraction buffer (0.5 M 
Na-acetate buffer, pH 5.2, containing 0.5 M NaCl) using a mortar 
and pestle. The homogenates were filtrated through one layer of 
cheesecloth and centrifuged at 10,000 ×g for 20 min at 4°C. The 
supernatants were dialyzed exhaustively against the extraction buffer 
and used as sources of antioxidant enzymes and PR-proteins.

Superoxide dismutase (SOD; EC 1.15.1.1) activity assay was based 
on a previously described method [30], which measures the inhibition 
of the photochemical reduction of NBT (Nitroblue-tetrazolium; 
Sigma), induced by this enzyme. Different volumes (0.050, 0.060, 
0.070, 0.080 and 0.090 mL) of the dialyzed leaf extracts were added 
into the wells of a microtiter plate containing 0.02 mL of 500 mM 
sodium phosphate buffer, pH 7.8, 0.01 mL of 0.50% Triton X-100, 0.02 
mL of 130 mM L-methionine, 0.01 mL of 2.0 mM EDTA, 0.02 mL of 
0.75 mM NBT, 0.02 mL of 1.0 mM riboflavin and Milli-Q grade H2O 
to 0.20 mL final volume. The reaction took place in a chamber under 
illumination by a 32-W fluorescent lamp and was terminated after 
5 min by turning off the illumination. The blue formazan produced 
by NBT photoreduction was measured as the increase in absorbance 
at 630 nm (Automated Microplate Reader, model ELX800-Bio-Tek 
InstrumentsR, Inc., USA). The control reaction mixture was prepared 
in the same manner as the experimental reaction but without the 
enzyme extract and maintained in the dark. SOD activity was 
calculated as the difference between the absorbance of control and 
that of its experimental equivalent estimated for a one-min reaction. 
One unit of SOD activity (1 UA) was defined as the amount of sample 
required to inhibit 50% of the NBT photoreduction [31]. The enzyme 
activity was expressed in units of activity per gram of leaf fresh weight 
(UA g-1 FW).

Catalase (CAT; EC. 1.11.1.6) activity was assayed as previously 
described [32]. The dialyzed leaf extract (0.05 mL) was added to 0.95 
mL of 12.5 mM H2O2 in 50 mM potassium phosphate buffer, pH 7.0. 
The reaction mixture was incubated at 30 ºC. The CAT activity was 
measured by the decrease in absorbance at 240 nm, in 30-second 
intervals up to 2 min [33]. CAT activity was calculated using the 
molar extinction coefficient of 36 x 103 mM-1 cm-1 [34] and expressed 
as µmol H2O2 oxidized per gram of leaf fresh weight per min (µmol 
H2O2 g

-1 FW min-1).

Ascorbate peroxidase (APX; EC. 1.11.1.11) was determined 
according to the methodology of Koshiba [35]. The reaction mixture 
consisted of 0.83 mL of 50 mM potassium phosphate buffer, pH 6.0, 
containing 0.5 mM ascorbate, 0.10 mL of 2.0 mM H2O2 and 0.07 
mL of the dialyzed leaf extract. Total APX activity was measured 
by monitoring the decrease in absorbance at 290 nm for 3 min as 
a measure of ascorbate oxidation. The APX activity was calculated 
on the basis of a standard curve built using known concentrations 
of ascorbate (0.1-1.0 µmol ascorbate mL-1). The APX activity was 
expressed as µmol oxidized ascorbate (Asc) per gram of leaf fresh 
weight per min (nmol Asc g-1 FW min-1).

Guaiacol peroxidase (POX; EC 1.11.1.7) was measured according 
to the method of Urbanek et al. [36], using guaiacol as substrate 
and H2O2 as a co-substrate. Aliquots of 0.02 mL of the dialyzed leaf 
extract, previously diluted (6X) were mixed with 0.98 mL of 50 mM 
sodium acetate buffer, pH 5.2, 0.5 mL of 60 mM H2O2 and 0.5 mL of 
20 mM guaiacol in a total volume of 2.0 mL. The reaction mixture was 
incubated at 30 ºC for 10 min, and the absorbance was measured at 
480 nm. The variation of one unit of absorbance per min was defined 
as one unit of peroxidase activity (1 UA) and expressed per gram of 
leaf fresh weight (UA g-1 FW).

β-1,3-glucanase (GLU, EC 3.2.1.39) was assayed based on the 
amount of glucose liberated by the action of the enzyme on laminarin 
(Sigma Chemical Company) used as substrate [37]. The amount of 
glucose liberated was calculated using a standard curve created with 
known amounts (7.5-240 µg mL-1) of the sugar. The activity was 
expressed as nanokatal per gram fresh leaf weight (nkat g-1 FW). One 
nkat was defined as 1.0 nmol of D-glucose liberated from laminarin 
per second under the assay conditions.

Chitinase (CHI, EC 3.2.1.14) assay was conducted colorimetrically 
[37] by measuring the amount of N-acetyl-D-glucosamine (NAG) 
produced [38] by the combined hydrolytic action of chitinases and 
β-glucuronidase on non-radioactive colloidal chitin [39] used as 
substrate. The amount of NAG produced was calculated using a 
standard curve produced with known concentrations (100-700 ng 
mL-1) of commercial NAG dissolved in 0.050 M sodium acetate buffer 
(pH 5.2) The assay was performed five times, and the CHI activity was 
expressed as nanokatal per gram fresh leaf weight (nkat g-1 FW). One 
nkat was defined as 1.0 nmol of NAG produced per second at 37 ºC.

Statistical analyses

Data from the enzyme assays and quantitative production of 
H2O2 were subjected to analysis of variance (ANOVA) followed by 
Tukey’s test.

Results
Kinetics of the enzymes involved in the oxidative stress

The basal level of SOD (Figure 1A) in the primary leaves of the 
cowpea was measured at the beginning of the experimental period 
(0 HAI), and a slight but significantly (ρ≤0.05) higher level of 
expression was detected in TE97 (111.93 ± 1.06 AU g-1 FW) compared 
with BR3 (96.33 ± 0.37 AU g-1 FW). The results of the time-course 
experiment showed that the activity of SOD was induced in both 
cowpea genotypes upon C. gloeosporioides infection. However, for 
the resistant genotype TE97, increased activity was observed at 12 to 
24 hours after inoculation (HAI), when the activity (230.53 ± 4.64 AU 
g-1 FW) was significantly (ρ≤0.05) higher (1.7-fold) compared with 
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7.39 nmoles g-1 FW) 4.7 times more elevated compared with the basal 
level (38.36 ± 4.62 nmoles g-1 FW), whereas, at this same time point, 
the H2O2 accumulation in BR3 (136.53 ± 8.81 ηmoles g-1 FW) showed 
an increase of only 1.69-fold compared with the basal concentration 
of H2O2 (80.90 ± 6.96 nmoles g-1 FW). Thus, at 12 HAI, the H2O2 
accumulation in TE97 was 31% higher than in BR3. Thereafter, 
the H2O2 concentrations in both genotypes gradually decreased up 
to 48 HAI. Subsequently, both genotypes showed increased H2O2 
accumulation, but at 96 HAI, the accumulation of H2O2 in TE97 
(126.74 ± 7.42 nmoles g-1 FW) was significantly higher than that in 
BR3 (101.83 ± 2.55 nmoles g-1 FW).

Macroscopic analysis
The visual examination of cowpea leaves inoculated with C. 

gloeosporioides revealed the presence of small necrotic lesions in the 
resistant genotype (TE97), while in BR3, well-developed lesions that 
enlarged over the experimental period were observed, consistent with 
the observations obtained in our previous study [24].

H2O2 generation during papillae development and HR
In response to C. gloeosporioides infection, cowpea leaves form 

papillae (PP, brownish halo) beneath the appressoria (AP) in both 
genotypes (Figures 2A and 2B). In addition, as from 48 h to 96 h 
the H2O2 levels increased again over that of the basal level (0 h) for 
both the C. gloeosporioides-resistant cowpea genotype TE97 and the 
susceptible BR3 genotype (Figure 1D), photomicrographs taken at 
72 HAI showed that H2O2 accumulated at the sites of penetration, 
beneath and/or radial to the melanized fungus appressoria and 
papillae (Figures 2A-2C) in both cowpea genotypes, and that TE97 
epidermal cells undergone HR (Figure 2D), which were reddish-
brown in color [23].

Kinetics of PR-proteins

A gradual and significant (ρ≤0.05) increase of POX activity 

that of the susceptible genotype BR3 (134.71 ± 18.64 AU g-1 FW). 
Thereafter (48 to 96 HAI), contrasting SOD kinetics were observed, 
as the BR3 genotype presented increasing activities, whereas TE97 
experienced a drastic decline, and the activity remained below basal 
level (0 HAI) until the end of the experimental period.

The basal level (0 HAI) of CAT in the dialyzed extracts of cowpea 
primary leaves was higher for TE97 (91.67 ± 12.02 µmol H2O2 g

-1 FW 
min-1) than for BR3 (50.00 ± 2.36 µmol H2O2 g

-1 FW min-1) (Figure 
1B). However, at 12 HAI with C. gloeosporioides, the CAT activity of 
TE97 decreased to 65.83 ± 1.18 µmol H2O2 g

-1 FW min-1, whereas for 
BR3, this activity increased to 171.67 ± 25.93 µmol H2O2 g

-1 FW min-1, 
which was significantly (ρ≤0.05) higher than that of TE97. Thereafter, 
from 48-96 HAI, the CAT activity in BR3 decreased, whereas the 
activity was significantly (ρ≤0.05) increased in TE97.

The results of the time-course experiment showed that the overall 
activity of APX in the primary leaves of TE97 gradually increased 
from 0 to 96 HAI (Figure 1C). Accordingly, the basal value for TE97 
at 0 HAI was 0.45 ± 0.11 µmol Asc. g-1 FW min-1, the APX activity 
doubled at 12 HAI (0.82 ± 0.16 µmol Asc. g-1 FW min-1) and was three 
times higher after 96 HAI (1.36 ± 0.08 ηmol Asc. g-1 FW min-1). In 
BR3, a slight but not significant increase in APX activity was observed 
at 0 to 24 HAI, which subsequently decreased at 24 to 72 HAI and 
returned to basal levels at 96 HAI. Thus, the APX activity of TE97 
increased to levels that were significantly (ρ≤0.05) higher than those 
of BR3 from 48 to 96 HAI.

H2O2 accumulation

The H2O2 kinetic patterns from 0 to 96 HAI were biphasic for 
both genotypes, but the patterns differed with regard to accumulation 
in primary leaves inoculated with C. gloeosporioides (Figure 1D). The 
H2O2 level in the resistant genotype TE97 at 12 HAI was (178.77 ± 

Figure 1: Kinetics of the antioxidant enzymes SOD (A), CAT (B), and APX 
(C), and H2O2 (D) in the leaves of C. gloeosporioides-infected cowpea (Vigna 
unguiculata), genotypes TE97 (resistant, -●-) and BR3 (susceptible, -o-). Each 
data point represents the mean of three independent experiments ± standard 
error (bar).
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Figure 2: (A) H2O2 accumulation around conidium (CN) and germ tube 
(GT) of C. gloeosporioides in the primary leaves of the resistant cowpea 
(V.  unguiculata) genotype TE97 at 72 hours after inoculation (HAI), (B)  
H2O2 accumulation in the papilla (PP) region (dark yellow halo), around the  
appressoria (AP) of C. gloeosporioides in the primary leaves of TE97 at 72 
HAI. (C) Cell presenting HR with H2O2 accumulation in the primary leaves of 
TE97 at 48 HAI. (D) H2O2 accumulation in the papilla (PP) region (dark yellow 
halo), around the appressoria (AP) of C. gloeosporioides in the primary leaves 
of the susceptible cowpea genotype BR3 at 48 HAI. S = stoma. The leaves 
were stained with diaminobenzidine (DAB) and lactophenol aniline blue. Bar 
= 10 µm.
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was observed from 0 (24.71 ± 1.48 UA g-1 FW) to 24 HAI (46.60 ± 
3.98 UA g-1 FW) in the primary leaves of TE97 plants inoculated 
with C. gloeosporioides, whereas the BR3 plants exhibited decreased 
POX activity (Figure 3A). Moreover, at 12 and 24 HAI, the POX 
activity in TE97 was approximately 35.37 ± 0.19 and 46.60 ± 3.98, 
respectively, which was 30% and 60% higher than the corresponding 
values (27.09 ± 1.88 and 29.18 ± 2.58 AU g-1 FW, respectively) in the 
C. gloeosporioides-susceptible genotype BR3. In contrast, the BR3 
genotype experienced a significant (ρ≤0.05) increase in POX activity 
at 96 HAI (53.08 ± 2.45 AU g-1 FW), which was nearly 1.7-fold higher 
compared with the basal (0 HAI) activity (32.14 ± 1.00 AU g-1 FW) 
and the POX activity observed in TE97 (39.30 ± 1.14 AU g-1 FW). A 
comparison of the POX activity in both inoculated genotypes showed 
that the activity in TE97 was more prominently induced than that in 
BR3 upon infection from 0 to 72 HAI.

The basal (0 HAI) GLU activities for the cowpea genotypes TE97 
(1.63 ± 0.14 nkat/g FW) and BR3 (1.81 ± 0.09 nkat/g FW) were similar 
(Figure 3B). Upon infection with C. gloeosporioides, the activity 
increased in both genotypes between 0-24 HAI, with a significant 
difference in GLU activity between TE97 (5.46 ± 0.07 nkat/g FW) and 
BR3 (3.82 ± 0.46 nkat/g FW) at 24 HAI. However, the most noticeable 
effect on GLU activity occurred for TE97 at 72 (10.56 ± 0.00 nkat/g 
FW) and 96 HAI (7.10 ± 0.68 nkat/g FW), showing 3.1 and 1.4-fold 
higher increases compared with BR 3 (3.45 ± 0.45 nkat/g FW and 5.22 
± 0.44 nkat/g FW, respectively).

The chitinolytic activity of TE97 increased 2-fold from 0 HAI 
(0.012 ± 0.001 nkat/g FW) to 48 HAI (0.024 ± 0.004 nkat/g FW) and 
was consistently higher than that in BR3 at earlier stages (0-24 HAI) 
after inoculation with C. gloeosporioides (Figure 3C). Subsequently 
(48-72 HAI), the chitinolytic activity of BR3 was higher than that of 
TE97, and at 96 HAI there was no difference between the activities 
of the two inoculated genotypes. Overall, the CHI activity increased 
immediately after inoculation in TE97, whereas the induced response 
was delayed in BR3.

Discussion
Plants have developed a variety of complex mechanisms that 

involve the biosynthesis and accumulation of metabolites and novel 
and constitutive proteins that directly or indirectly function in the 
defense response to pathogens. In the present study, a significantly 
higher increase of SOD activity and a suppression of CAT activity 
were observed in TE97 than in the BR3 cowpea genotype within 
24 h after inoculation (HAI) with Colletotrichum gloeosporioides 
(Figure 1A and 1B). Fang et al. [40] reported increased SOD activity 
from ~80% to ~200% of the control during the first 72 HAI in 
strawberry (Fragaria ananassa) leaves infected with Colletotrichum 
fragariae. However, those authors observed increased CAT activity 
after infection compared with the uninfected control at 24 HAI 
and according to the authors, this effect was not associated with the 
fungus infection [40]. Although a gradual increase in APX activity 
was observed in TE97 (Figure 1C), the total APX activity in BR3 was 
higher from 0 to 24 HAI compared with that in TE97. The increase 
in SOD activity, decrease in CAT activity and APX activity values 
below those of BR3 at 12 to 24 HAI are consistent with a greater 
accumulation of H2O2 within this period in the C. gloeosporioides-
resistant cowpea genotype TE97 than in the susceptible BR3 genotype 
(Figure 1D), which also exhibits H2O2 accumulation, but to a lesser 

Figure 3: Kinetics of the PR-proteins POX (A), GLU (B), and CHI in 
the leaves of C. gloeosporioides-infected cowpea (Vigna unguiculata) 
genotypes TE97 (resistant, -●-) and BR3 (susceptible, -o-). Each data 
point represents the mean of three independent experiments ± standard 
error.
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extent. The results obtained from this study and a previous study 
[24] from our laboratory showed that the invasion of the cowpea 
primary leaves of BR3 and TE97 with C. gloeosporioides preferentially 
occurred in the leaf epidermal cells through penetration tubes that 
emerged from appressoria. Recently, it was shown that in susceptible 
and resistant coffee genotypes, hypocotyl penetration occurs directly 
in the epidermal cell cuticle through a thin infection hypha emerging 
from the melanized appressoria [15]. The primary leaves of TE97 
showed enhanced penetration resistance to C. gloeosporioides 
associated with increased epidermal H2O2 accumulation beneath 
the appressoria and primary germ tubes, in addition to papillae 
formation [24]. The accumulation of H2O2 in infected cells and 
beneath appressoria was also observed in maize leaves during 
Colletotricum graminicola infection [41]. The interaction of cowpea 
x C. gloeosporioides studied in the present work and the macroscopic 
examination of the primary leaves of both cowpea genotypes revealed 
the presence of shrunken necrotic lesions, which are characteristic of 
anthracnose. In the genotype TE97, cell death was also observed, but 
only at a reduced percentage of the infection sites, indicating that cell 
death was restricted to the infection sites, as the small macroscopic 
lesions did not multiply in number neither increase in size during the 
21-day experimental period, as previously observed [24]. In contrast, 
necrotic lesions increased in size and spread to the neighboring cells 
in the BR3 genotype, as observed in the C. lagenarium infection 
of susceptible melon leaves and other hosts infected with other 
Colletrotrichum species [42]. These results are also consistent 
with our previous observation that C. gloeosporioides establishes a 
compatible relationship and succeed in colonizing the BR3 cowpea 
genotype [24]. The restricted necrotic spots on the primary leaves of 
TE97 might be associated with HR in response to the accumulation 
of H2O2. As previously discussed, H2O2 accumulated biphasically with 
the time (0-12 and 48-72 HAI) in both cowpea genotypes, BR3 and 
TE97, after interaction with C. gloeosporioides (Figure 1D). H2O2 
accumulation was confirmed through the microscopic examination 
of the DAB-treated primary leaves at 48-72 HAI around the papillae 
and subjacent to the appressoria of both genotypes at the infection 
sites (Figure 2). This observation suggests that the oxidative cross-
linking of some constituents might strengthen the cell wall, forming a 
structural barrier against fungal ingress. Although papillae formation 
was observed, the pathogen infiltrated the host cells through 
penetration tubes formed in the appressoria, particularly in the BR3 
genotype, for which higher numbers of appressoria with penetration 
tubes and necrotic lesions were observed during the experimental 
period (0 to 22 DAI) [24].

It has been suggested that H2O2 has direct antimicrobial 
effects and is involved in other defense responses, such as cell 
wall modification, lipid peroxidation, phytoalexin production, 
HR and defense-related gene activation, and serves as an intra- or 
intercellular signaling molecule in the activation of plant defense 
mechanisms against pathogen attack [1]. It was recently reported that 
treatment with bacterial and fungal elicitors (F. oxysporum cell wall 
elicitor, conserved epitopes of bacterial flagellin Flg22, elongation 
factor Elf26, and purified oligogalacturonides) induces apoplastic 
H2O2 production in Arabidopsis thaliana cell culture and that H2O2 
generation is dependent on two cell wall peroxidases, PRX33 and 
PRX34 [43]. Vascular plants possess several genes encoding a number 
of POXs, and there might be some distinct physiological functions 
for each class in protecting the cell membrane against oxidative 
damage, which occurs in plants under biotic and abiotic stresses [4]. 

For example, the treatment of the primary leaves of cowpea cv. Vita 
3 with 10 mM salicylic acid increased the total activity of the anionic 
POX isoform but not the cationic isoform [44]. POX could use H2O2 
as a substrate for the oxidative polymerization of hydroxycinnamyl 
alcohol monolignols in the phenylpropanoid pathway to yield lignin 
[45], which reinforces the plant cell wall as a mechanism of disease 
resistance [46]. Equally important, some POXs exert antifungal 
activity against a variety of fungal species, including Trichosporium 
vesiculosum, Macrophomina phaseolina, Coprinus comatus, 
Mycosphaerella arachidicola, Fusarium oxysporum and Botrytis 
cinerea [12,13].

In the present study, the infection of the cowpea genotypes with 
C. gloesporioides induced POX activity in both resistant (TE97) and 
susceptible (BR3) genotypes. However, POX induction was temporally 
distinct because the TE97 POX activity increased immediately after 
inoculation, whereas in BR3, the activity was clearly retarded (Figure 
3A). The differentiated POX kinetics might provide a mechanism for 
the defense strategy of TE97 against C. gloeosporioides. In a study 
where Gossypium barbadense cv. 7124 (resistant) and G. hirsutum 
cv. YZ-1 (susceptible) were infected with the highly aggressive 
defoliating fungus Verticillium dahliae strain V991, the resistant 
plants accumulated a higher level of POX activity than the susceptible 
plants in both the roots and stems [46].

The interaction of C. gloeosporioides with the resistant (TE97) 
and susceptible (BR3) cowpea genotypes induced significantly (ρ≤ 
0.05) higher β-1,3-glucanase (GLU) activity at 24, 72 and 96 HAI in 
the resistant than in the susceptible genotype (Figure 3A). A second 
GLU response in TE97 showed 175% higher activity compared with 
that in BR3. An increase in chitinase (CHI) activity occurred in both 
cowpea genotypes from 0 to 48 HAI compared with the basal values 
at 0 HAI (Figure 3C). However, from 0-24 HAI, the CHI activity in 
TE97 was consistently higher (ρ≤ 0.05) than that in BR3. Moreover, 
a second increased CHI response was observed only in the resistant 
genotype TE97. The participation of GLUs in the plant defense 
response against fungal attack is associated with the ability of these 
enzymes to partially degrade the cell wall of the pathogens. The PR-
proteins, GLU and CHI, often act synergistically to degrade chitin 
and β-1,3-glucans, respectively, which are the primary constituents of 
the fungal cell wall [16]. The inoculation of common bean (Phaseolus 
vulgaris) hypocotyls with a non-pathogenic species of Rhizoctonia 
(BRN) not only induced resistance to the virulent Rhizoctonia solani 
and Colletotrichum lindemuthianum but systemically induced POX, 
GLU and CHI compared with diseased control plants [47]. Daugrois 
et al. [48] reported that GLU and CHI activities were induced earlier 
in the incompatible interaction of P. vulgaris (cultivar Processor 
PrR) and C. lindemuthianum than in the compatible relationship 
with the cultivar Processor PrS. In this case, GLU and CHI activities 
were increased at 24 and 72 HAI, respectively, in the cv. resistant, 
whereas symptoms appeared at 96 HAI in the cv. susceptible. In vivo 
antifungal activity was demonstrated, as the results of a leaf disk 
bioassay revealed that the over-expression of a transgenic cacao class 
I CHI gene in Theobroma cacao significantly inhibited the growth of 
C. gloeosporioides and the development of leaf necrosis compared 
with control leaves that were wound inoculated with 5,000 spores 
[49]. In the incompatible interaction of the common bean (Phaseolus 
vulgaris, genotype SEL 1308) with race 73 of C. lindemuthianum, an 
accumulation of GLU transcripts (at 24, 48, 72, 96 HAI) was observed 
in the leaves, epicotyls and hypocotyls [50]. Similarly, the significant 
induction of CHI and GLU activity in the roots, cotyledons, 
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hypocotyls, and leaves of cowpea (cv. EPACE 10) seedlings infected 
with Fusarium oxysporum f. sp. cubenses and F. oxysporum f. sp. 
Phaseoli was observed at 72 and 96 HAI compared with control 
plants [51]. In the Acacia species, protection of the extrafloral 
nectar, which is rich in primary metabolites, from infestation with 
various phytopathogens is conferred through GLU and CHI activity, 
which potentially represents the most important prerequisite in this 
defensive mechanism, together with other PR-proteins [52].

Conclusion
In summary, the data presented in this study suggest that C. 

gloeosporioides induced oxidative burst in both cowpea genotypes 
TE97 and BR3 characterized by H2O2 generation. However, the 
higher H2O2 accumulation in TE97 together with the enhanced POX 
activity involved in lignification, as observed in coffee resistance to 
Colletotrichum kahawae [15], provides reinforcement of the plant 
cell wall for the restriction of the fungus spreading to neighboring 
cells. In addition, the induced levels of the PR-proteins GLU and 
CHI of TE97, compared with those of BR3, highlight the crucial role 
of these enzymes against phytopathogen attacks and confirm their 
participation in the defense strategy of the resistant cowpea genotype 
TE97 against C. gloeosporioides.
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