O bem "agricultura de precisão" nascido de um novo olhar" é a consolidação do trabalho realizado pela equipe da Rede Agricultura de Precisão da Embrapa, cujas atividades iniciaram-se em 2005, já com a proposta de lançar um "novo olhar" sobre o tema Agricultura de Precisão (AP).

A Rede vem intensificando o emprego da tecnologia e desmistificando alguns mitos que envolvem a adoção da Agricultura de Precisão no Brasil. A primeira preocupação foi mudar que a AP é uma forma de ganho de produtividade, acelerando tanto aos produtores quanto aos grandes Produtores e, um dia, desmistificar a ideia de que, para empregar a AP seria necessário utilizar grandes equipamentos caros e resistentes.

Outra iniciativa desenvolvida é a possibilidade de utilização da AP em diversas culturas, além do milho, e com a cana-de-açúcar, mas que a ideia ainda está sendo testada. A produção do segundo volume do livro é encetada pelo projeto de primeira, lançado em 2011. Ao longo dos quatro anos da Rede, a equipe manteve-se atenta e minuciosa ao assunto, envolvendo em torno do tema.

Os livros apresentam os resultados deste novo olhar sobre diversas culturas, como arroz, algodão, milho, soja, trigo, cana-de-açúcar, palmito, oleaginosas, uma inovação e sustentável, maçã e olivais.

As pesquisas realizadas foram acessadas e facilidades pela rede de colaboradores, que envolvem empresas, cooperativas, universidades, extension rural e outros institutos de pesquisa, contribuindo fundamentalmente para o desenvolvimento do projeto. As longas das 62 capítulos, distribuídas em 516 páginas, o livro apresenta uma leitura das respostas obtidas, assim a profundidade das propostas e a contribuição da Rede de Agricultura de Precisão para um tema que, até então, era pouco discutido no país.
AGRICULTURA DE PRECISÃO

Resultados de um Novo Olhar
AGRICULTURA DE PRECISÃO

Resultados de um Novo Olhar

Alberto Carlos de Campos Bernardi
João de Mendonça Naime
Álvaro Vilela de Resende
Luís Henrique Basso
Ricardo Yassushi Inamasu
(editores técnicos)

Embrapa
Brasília, DF
2014
EDITORES TÉCNICOS

Alberto Carlos de Campos Bernardi
Engenheiro-agrônomo,
Doutor em Solos e Nutrição de Plantas
Pesquisador da Embrapa Pecuária Sudeste, São Carlos, SP

João de Mendonça Naime
Engenheiro-eletrônico
Doutor em Ciências da Engenharia Ambiental
Pesquisador da Embrapa Instrumentação, São Carlos, SP

Álvaro Vilela de Resende
Engenheiro-agrônomo
Doutor em Solos e Nutrição de Plantas
Pesquisador da Embrapa Milho e Sorgo, Sete Lagoas, MG

Luís Henrique Bassoi
Engenheiro-agrônomo
Doutor em Ciências
Pesquisador da Embrapa Semiárido, Petrolina, PE

Ricardo Yassushi Inamasu
Ricardo Yassushi Inamasu
Engenheiro-mecânico
Pesquisador da Embrapa Instrumentação, São Carlos – SP
COMISSÃO GESTORA DA REDE AGRICULTURA DE PRECISÃO DA EMBRAPA

Ricardo Yassushi Inamasu
Embrapa Instrumentação

Alberto Carlos de Campos Bernardi
Embrapa Pecuária Sudeste

Carlos Manoel Pedro Vaz
Embrapa Instrumentação

Aroivaldo Luchiari Júnior
Embrapa Informática Agropecuária

João de Mendonça Naime
Embrapa Instrumentação

Leonardo Ribeiro Queiros
Embrapa Informática Agropecuária

Álvaro Vilela de Resende
Embrapa Milho e Sorgo

Marina de Fátima Vilela
Embrapa Cerrados

Luís Henrique Basso
Embrapa Semiárido

Naylor Bastiani Perez
Embrapa Pecuária Sul

Edilson Pepino Fragalle
Embrapa Instrumentação
Nesta época em que os alvos são móveis e difusos, a Ciência e a Tecnologia ocupam lugar importante para o desenvolvimento do País, em particular, da agricultura. A Embrapa desenvolveu um sistema de inteligência estratégica – o Agropensa – para monitorar os sinais de mudanças e as tendências de um futuro que chega cada vez mais rápido.

Em nosso observatório, já detectamos a importância da automação e da agricultura de precisão para que o agronegócio brasileiro continue a bater recordes de produtividade, em harmonia com as questões ambientais. Trata-se de uma condição, não somente de um desejo.

Não estamos em busca apenas de uma agricultura de precisão apoiada por máquinas e equipamentos desenhados para grandes empreendimentos. É certo que isto existirá. Mas queremos mais.

Queremos sistemas de gerenciamento de lavouras e criatórios que sirvam a grandes, médios e pequenos produtores; que lhes digam não apenas a fertilidade, taxa de lotação, adubação e produtividade médias de uma propriedade, mas sim a exata fertilidade, a exata taxa de lotação, a exata adubação, a exata produtividade e qualidade de cada setor diferenciável. Trata-se de deixar de ver o campo e a propriedade como uniforme, enxergando e respeitando as diferenças.

Queremos a aplicação racional de insumos, para reduzir riscos de degradação ambiental e maximizar o retorno econômico em todas as propriedades. Caminhar mais rapidamente na direção da sustentabilidade nos exigirá, cada vez mais, incorporar práticas precisas e manejo sitio-específico à produção agropecuária.

A agricultura brasileira avançou como nenhuma outra na direção da sustentabilidade. Ao longo dos últimos quarenta anos fomos capazes de transformar grandes extensões de terras pobres e ácidas em terras férteis. Fomos também capazes de tropicalizar os mais variados cultivos e sistemas de produção animal.

Fomos capazes de desenvolver uma plataforma de práticas sustentáveis sem igual no planeta - fixação biológica de N, controle biológico, plantio direto, sistemas integrados. Esta foi a primeira grande revolução da agricultura brasileira. Agora estamos prestes a entrar na segunda grande revolução.
E ela começa com a compreensão de que crescimento e progresso econômico não são incompatíveis com o conceito de sustentabilidade. Para rompermos as barreiras e entrarmos em outra revolução, teremos que lançar mão de todo um arsenal de tecnologias e conhecimentos.

Os desafios à nossa frente são substanciais: Mudanças climáticas; Descarbonização da economia; Sistemas integrados para aumentar eficiência; Uso mais racional da água; Urbanização gerando demanda por automação; Sistemas que nos permitam usar insumos de forma inteligente; por fim aumentar a produção de alimentos para atender o crescimento da população mundial nos próximos trinta anos.

Queremos criar sistemas de gestão que nos ajudem, a saber, porque, em cada metro quadrado e em cada época do ano, a resposta aos insumos e aos manejos é diferente. Queremos disseminar esses conhecimentos e avaliar a sua eficiência econômica e ambiental em propriedades de todas as dimensões físicas e econômicas.

O que se busca é obter a mesma eficiência em cada metro quadrado de qualquer área em produção, não só nas lavouras, mas também nos criatórios. Estamos falando não só de agricultura de precisão, mas também de pecuária de precisão. Mas também por uma extensa rede de profissionais e instituições públicas e privadas, trabalhando em parceria.

Começamos no final da década de 90 e, a partir de 2009, estruturamos a Rede Agricultura de Precisão II, que já reúne cerca de 200 pesquisadores, 20 centros de pesquisa da Embrapa, mais de 30 empresas privadas, nove universidades, três fundações e quatro institutos de pesquisa. A Rede AP opera em 15 campos experimentais de culturas perenes e anuais, distribuídos em todo o território nacional.

Este livro traz resultados de quatro anos de pesquisas dessa rede, em diferentes biomas brasileiros. As contribuições podem ajudar os proprietários rurais a, de fato, adotarem a Agricultura de Precisão. Em meio ao desenvolvimento desses trabalhos, tivemos a satisfação de contar com uma nova estrutura, inédita no País, para reforçar ainda mais as pesquisas nesse tema de fronteira.

O Laboratório de Referência Nacional em Agricultura de Precisão (Lanapre), idealizado e construído pela Embrapa, com apoio decisivo de emendas parlamentares no âmbito federal, está localizado em São Carlos (SP), e será uma plataforma poderosa para essa rede de profissionais. Nele vamos pesquisar e desenvolver equipamentos, sensores, componentes mecânicos e eletrônica embarcada. Teremos recursos inéditos como sistemas computacionais de geoinformática para processar os dados coletados em campo e orientar a gestão dos sistemas agrícolas. Recursos
que nos oferecem inúmeras possibilidades - desde o ajustes da aplicação de insumos em taxas variadas até monitoramento preciso do que acontece na superfície, seja do solo, das lavouras que ele sustenta. É preciso oferecer mais alternativas mecânicas para suprir a crescente falta de mão-de-obra na agricultura.

Precisamos de soluções da automação e instrumentação para melhorar a aplicação de insumos, buscando o uso mais eficiente desse fator e menor contaminação ambiental. É algo que buscaremos com afinco - estamos muito determinados a avançar em parceria com a academia e parceiros privados. É muito bom que a ambição científica não tenha limites. E vale ressaltar que o Lanapre já nasce em um sistema inédito de gestão através da criação da Unidade Mista de Pesquisa em Automação para o Desenvolvimento Sustentável, através de parceria estratégica entre Embrapa, a Universidade de São Paulo (USP) e a Universidade Federal de São Carlos (UFSCar).

Parabenizamos os Editores e todos Autores deste importante livro e estimulamos a todos os interessados a voarem em direção ao futuro da agricultura sustentável e que tem na agricultura de precisão uma ferramental fundamental.

Maurício Antonio Lopes

Presidente da Embrapa

Ladislau Martin Neto

Diretor Executivo P&D- Embrapa
SUMÁRIO

Abertura
Introdução
Agricultura de Precisão

FERRAMENTAS PARA AGRICULTURA DE PRECISÃO
A Pedologia e a Agricultura de Precisão
Condutividade Elétrica Aparente do Solo
Sensoriamento remoto: Conceitos Básicos e Aplicações na Agricultura de Precisão
Geoestatística Aplicada a Agricultura de Precisão
Modelagem SIG em agricultura de precisão: conceitos, revisão e aplicações
Análise das Possibilidades e Tendências do Uso das Tecnologias da Informação e Comunicação em Agricultura de Precisão
Uso de veículos aéreos não tripulados (VANT) em Agricultura de Precisão
Agricultura, Precisão e Manejo de Plantas Invasoras na Cultura do Milho
Uso de Mosaico de Imagens Aéreas como Ferramenta de Auxílio ao Diagnóstico de Diversas Culturas
Modelo conceitual para sistema de coleta e comunicação automática de dados para máquina e implemento automatizado e para robô agrícola móvel
Sistematização do índice de oportunidade na adoção da agricultura de precisão para diferentes sistemas produtivos 173

Detecção de Greening dos citrus por imagens multiespectrais 180

AGRICULTURA DE PRECISÃO PARA CULTURAS ANUAIS 192

Aplicações da agricultura de precisão em sistemas de produção de grãos no Brasil 194

Estudo da variabilidade espacial dos atributos químicos e físicos do solo em um agroecossistema de arroz irrigado para suporte à Agricultura de Precisão 209

Variabilidade espacial dos atributos físicos do solo e da produtividade do arroz de terras altas cultivado em integração lavoura pecuária 217

Algoritmos para aplicações de doses variáveis de nitrogênio em tempo real para produção de milho safra e safinha no Cerrado 224

Qualidade física do solo em zonas homogêneas para adoção do manejo sitio-específico 231

Uso do sensoriamento remoto na obtenção de parâmetros biofísicos em plantios de soja 239

Variabilidade espacial e temporal da produtividade da soja em sistema arborizado no Noroeste do Paraná 246

Condiutividade elétrica do solo e produtividade: Uso no Sistema de Integração Lavoura-Pecuária para Determinar Zonas de Manejo Durante o Cultivo de Soja 252

Distribuição espaço-temporal de lagartas desfolhadoras e sua correlação com o rendimento de grãos na cultura da soja 260

Agricultura de precisão no manejo de pragas na cultura da soja no sul do Brasil 267

Perda de produtividade da soja em área infestada por nematoide das lesões radiculares na região médio norte do Mato Grosso 274

Uso de sensor óptico ativo para caracterização do perfil de NDVI em dosséis de trigo submetidos a diferentes estratégias de manejo 279
Aplicação de nitrogênio a taxa variável em cultura de trigo: estudo de caso na Unidade Piloto de Agricultura de Precisão de Náo-Me-Toque, RS 287

Agricultura de precisão na cultura do algodão 295

Uso de imagens orbitais e suborbitais na caracterização da variabilidade espacial da produtividade 306

Agricultura de precisão para o manejo da fertilidade do solo em algodoeiro cultivado no cerrado brasileiro 315

Produtividade do algodoeiro em função da variabilidade espacial de atributos do solo e adubação fosfatada no cerrado 322

Potencial de aplicação da Agrometeorologia em Agricultura de Precisão para produção de grãos 331

Suplementação nitrogenada para o algodoeiro usando dados hiperespectrais obtidos por espectrorradiometria e imagens do sensor AWiFs do ResourceSat-1 338

AGRICULTURA DE PRECISÃO PARA CULTURAS PERENES E SEMI-PERENES 348

Agricultura de precisão em fruticultura 350

Efeito da variabilidade espacial de solos do Vale dos Vinhedos na composição do vinho Merlot - Safra 2012 361

SIG para a gestão vitivinícola no Vale dos Vinhedos, RS 368

Contagem de cachos para estimativa da produtividade em pomar de videira de mesa 374

Variabilidade espacial da fertilidade de solo em pomar de uva de mesa em Petrolina - PE 380

Variabilidade espacial dos teores foliares de nutrientes e produtividade da videira em ambiente semiárido 389

Definição da malha de amostragem do teor foliar de nitrogênio em videira para obtenção de zonas de manejo 400

Aplicação dos conceitos geoestatísticos para o manejo da irrigação em videira no Vale do Submédio São Francisco 407
<table>
<thead>
<tr>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definição da malha de amostragem da condutividade elétrica do solo para obtenção de zonas de manejo em pomar de videira</td>
<td>413</td>
</tr>
<tr>
<td>Avaliação do comportamento espacial e temporal de alguns atributos da planta de pessegueiro, durante três anos de observações</td>
<td>421</td>
</tr>
<tr>
<td>Variabilidade espacial e temporal dos atributos da planta em um pomar de pessegueiro no município do Morro Redondo-RS</td>
<td>427</td>
</tr>
<tr>
<td>Correlação linear e espacial entre os atributos da planta de um pomar de pessegueiro e os atributos físico-hídricos do solo</td>
<td>434</td>
</tr>
<tr>
<td>Agricultura de precisão em cana-de-açúcar</td>
<td>442</td>
</tr>
<tr>
<td>Integração espacial de dados para agricultura de precisão na Unidade Piloto com cana-de-açúcar, Mogi Mirim, SP</td>
<td>458</td>
</tr>
<tr>
<td>Silvicultura de precisão</td>
<td>467</td>
</tr>
<tr>
<td>Silvicultura de precisão em unidades de manejo de plantações florestais</td>
<td>478</td>
</tr>
<tr>
<td>Obtenção de valores de referência do DRIS para Pinus taeda</td>
<td>484</td>
</tr>
<tr>
<td>Manejo de precisão em florestas naturais</td>
<td>488</td>
</tr>
<tr>
<td>Agricultura de Precisão em Pastagens</td>
<td>492</td>
</tr>
<tr>
<td>Análise espacial do índice de área foliar de pastagens utilizando Crop Circle e imagem WorldView-2</td>
<td>500</td>
</tr>
<tr>
<td>Variabilidade espacial e temporal da resistência do solo à penetração após diferentes pressões de pastejo no Norte do Paraná</td>
<td>507</td>
</tr>
<tr>
<td>Variabilidade espacial de propriedades do solo, índices de vegetação e produtividade de pastagem sob manejo intensivo</td>
<td>513</td>
</tr>
<tr>
<td>Manejo da pastagem em ILP e seu impacto nos atributos de solo e da produção</td>
<td>523</td>
</tr>
<tr>
<td>Análise geoestatística da condutividade elétrica aparente do solo em sistemas de integração lavoura-pecuária em Mato Grosso do Sul</td>
<td>530</td>
</tr>
</tbody>
</table>
INOVAÇÃO EM
AGRICULTURA DE PRECISÃO

Aplicações de ferramentas de avaliação de impacto socioeconômico e ambiental para agricultura de precisão

Transferência de Tecnologia em Agricultura de Precisão

Comissão Brasileira de Agricultura de Precisão para o fomento e a difusão da Agricultura de Precisão no Brasil

Adoção da Agricultura de Precisão No Brasil

Avaliação do padrão tecnológico e tendências da Agricultura de Precisão - Safra 2011/12

Estratégias de comunicação em agricultura de precisão

ÍNDICE DE AUTORES
ABERTURA
As tecnologias de Agricultura de Precisão já são uma realidade no campo para os técnicos e produtores rurais. Está se difundindo progressivamente o conhecimento de que existe uma variabilidade nas áreas de produção, que pode ser devida às variações do relevo, solos, vegetação e também do histórico de uso.

O conhecimento da variabilidade da produção e da sua qualidade é útil para qualquer cultura, sejam aquelas cultivadas em pequenas áreas como aquelas que ocupam grandes extensões de terra. Para isso, basta que o produtor ou o técnico inicie este trabalho de observação, medida e registro destas variações. Estas diferenças fazem com que os produtores e técnicos tratem cada região de modo diferente de acordo com suas potencialidades e necessidades.

Atualmente, as tecnologias de amostragem de solo em grades georreferenciadas são as mais utilizadas pelos produtores para mapear as propriedades do solo e aplicar corretivos e fertilizantes em taxas variáveis. O mapeamento da produtividade também está muito difundido para a cultura de grãos (em especial milho e soja), pois as colhedoras já vêm equipadas com monitores de colheita que possibilitem obter estes mapas. Também já existem equipamentos comerciais para mapeamento da produção do algodão. No caso das culturas perenes, como as fruteiras, por exemplo, estes mapas podem ser gerados por meio do monitoramento de planta ou grupo de plantas.

Existe ainda uma ideia equivocada de que para utilizar a AP são necessários máquinas e equipamentos caros e sofisticados. Estas máquinas e equipamentos podem, de fato, auxiliar muito o produtor e o técnico, porém o elemento essencial para adotar a AP é a constatação de que há variabilidade espacial e a sua intensidade é muito elevada para tratá-la como uniforme.

O insucesso da aplicação de AP pode comprometer seriamente a imagem das indústrias de máquinas e dos prestadores de serviços. Por outro lado, o sucesso da implementação traz, além de bons resultados, um processo agrícola mais racional, responsável e rastreável, demandante de mão de obra qualificada e, consequentemente, de desenvolvimento sustentável. As tecnologias disponíveis indicam que há potencial para gerar sistemas de recomendação de aplicação de insumos (corretivos, fertilizantes e defensivos) e uso de recursos naturais de forma mais eficiente, com alta probabilidade de retorno econômico e baixo impacto ambiental. Apesar da grande maioria dos agricultores apresentarem dificuldade na implementação, há alguns casos pioneiros que têm adotado a AP de forma sustentável.

Ciente da necessidade de orientação quanto ao melhor e mais adequado uso da AP e também da necessidade de pesquisa e desenvolvimento de novas tecnologias, a Embrapa criou em 2009 a Rede Agricultura de Precisão (http://www.macroprograma1.cnptia.embrapa.br/redeap2) envolvendo 20 Unidades de pesquisa e mais de 50 parceiros, como empresas, instituições de pesquisa, universidades e produtores rurais - em
unidades pilotos de pesquisa distribuídas pelo território nacional, abrangendo as culturas anuais de milho, soja, algodão, arroz e trigo, e perenes como silvicultura (eucalipto), fruticultura (pessugheiro, macieira, laranja e videira), cana-de-açúcar e pastagem. Nestes locais, estão sendo avaliadas a variabilidade espacial do solo e das culturas, a produtividade, e também promovendo o manejo diferenciado. Os resultados obtidos são utilizados na divulgação da AP e das tecnologias associadas, dos seus benefícios, entraves e alternativas relacionadas à sua adoção.

“Agricultura de Precisão: resultados de um novo olhar” é o segundo livro da equipe da Rede AP. Esta edição reúne mais de 60 capítulos, que englobam revisões sobre temas ligados à AP e a compilação de resultados de pesquisa desenvolvidos pela equipe da Rede AP ao longo dos 4 anos do projeto da Rede. O livro está organizado em quatro grandes tópicos – Ferramentas para Agricultura de Precisão, Agricultura de Precisão para culturas anuais, Agricultura de Precisão para culturas perenes e semiperenes, Inovação em Agricultura de Precisão - com ilustrações, gráficos, mapas e tabelas que ajudam a compreender o tema e tornar a leitura mais atraente.

De modo geral, os grandes empreendimentos agropecuários (produtores de grãos e cana-de-açúcar) estão mais preparados para o uso da AP. Mas, o trabalho realizado pela rede AP da Embrapa, descritos nesse livro, têm mostrado que a AP é viável e possível de ser utilizada em pequenas propriedades também. Os avanços tecnológicos alcançados pela Rede AP, as estratégias na disseminação dos conceitos e no treinamento de técnicos e produtores são apresentados nessa publicação.

Editores
Agricultura de Precisão
Ricardo Y. Inamasu¹, Alberto C. de Campos Bernardi²

¹Embrapa Instrumentação, São Carlos – SP; ²Embrapa Pecuária Sudeste, São Carlos – SP
*E-mail: ricardo.inamasu@embrapa.br; alberto.bernardi@embrapa.br

Resumo: A Agricultura de Precisão ainda desperta fascínio pela tecnologia e o futuro que ela representa. Após quatro anos de atividades e pesquisas, a Rede Agricultura de Precisão da Embrapa procurou definir e divulgar o conceito de Agricultura de Precisão, o momento para adoção, o custo da adoção, o retorno econômico, indicar quais são as tecnologias essenciais e quais outras que ainda devem ser dominadas. Este capítulo inicial apresenta o contexto histórico da Agricultura de Precisão no Mundo e no Brasil, e também na Embrapa e no universo acadêmico do País. A AP para a Embrapa é uma “postura gerencial que leva em conta a variabilidade espacial da lavoura para obter retorno econômico e ambiental”, reforçando a visão de cadeia de conhecimentos, na qual máquinas, aplicativos e equipamentos são ferramentas que podem apoiar essa gestão.

Palavras-chave: Agricultura de Precisão, histórico, rede de pesquisa

Precision Agriculture

Abstract: Precision Agriculture still promoting fascination by the technology use and the future that it can represent. After four years of research and development activities The Precision Agriculture Network of Embrapa sought to define and promote the concept of Precision Agriculture, the moment to adopt it, the cost of adoption, the economic returns, the essential technologies and which others still must be mastered. This initial chapter provides the historical context of Precision Agriculture in the World and in Brazil, and also at Embrapa and academic universe of Brazil. The PA for Embrapa is a “management approach that takes into account the spatial variability of crop for economic and environmental return”, reinforcing the view of knowledge chain in which machinery, equipment and applications are tools that can support such management.

Keywords: precision agriculture, historical, research network

1. Introdução

A Agricultura de Precisão ainda desperta fascínio pela tecnologia e o futuro que ela representa. Aos mais conservadores, porém, tende a gerar uma posição oposta de cautela e desconforto do novo (ou demasiadamente novo). Após uma década e meia no País, ainda há os fascinados e as posições mais conservadoras. Entretanto, o avanço é inegável, houve amadurecimento, o mercado se estabeleceu e a academia trouxe os resultados que são sustentados cientificamente.

Afinal o que é a Agricultura de Precisão? Qual o retorno econômico e ambiental que a adoção pode trazer? Adotar ou não adotar? Qual o custo da adoção? Quais as tecnologias fundamentais que devem ser dominadas?

A rede de Agricultura de Precisão, nesses quatro anos de atividade, buscou responder a essas questões fundamentais que ainda, de certa forma, estavam abertas e mostrar quais ainda permanecerão sem resposta por mais algum tempo.

Em 2012, o Ministério da Agricultura, Pecuária e Abastecimento (Mapa), ao instituir a Comissão Brasileira de Agricultura de Precisão (CBAP), definiu a Agricultura de Precisão como “um sistema de gerenciamento agrícola baseada na variação espacial e temporal da unidade produtiva e visa ao aumento de retorno econômico, à sustentabilidade e à minimização do efeito ao ambiente” (BRASIL, 2012, p. 6). Ou seja, um
sistema de gestão que leva em conta a variabilidade espacial do campo com o objetivo de obter um resultado sustentável social, econômico e ambiental.

Em 2009, ao elaborar a proposta da rede, a Agricultura de Precisão era definida e percebida por diferentes formas pela sociedade. Ao ser definida pelo CBAP, estabeleceu como o Brasil deve entender a AP. O desafio de muitas das questões práticas passam pela organização dos conhecimentos existentes. Percebe-se que há uma expectativa muito elevada por parte da sociedade, de que as máquinas e equipamentos por serem sofisticados, realizem os trabalhos autonomamente reduzindo a necessidade de intervenção humana. Infelizmente ou felizmente os equipamentos, por mais sofisticados que sejam ainda não realizam a gestão da lavoura, porém auxiliam o agricultor a identificar a variabilidade, a analisá-la e a atuar, ajustando doses conforme planejado em um mapa construído durante a etapa de análise. Nesse sentido um agricultor com as percepções aguçadas é ainda um forte pré-requisito para o sucesso do empreendimento.

2. Contexto histórico da Agricultura de Precisão e a origem dos conceitos

Em 1929, num boletim do campo experimental de Illinois, Linsley e Bauer recomendavam ao produtor desenhar um mapa com testes de acidez em solos amostrados em grade para aplicação de calcário. Segundo a literatura, esse é o mais antigo registro de que a variabilidade era conhecida e que já se recomendava ao agricultor levá-la em conta. Stafford (2000), porém, lembra que os agricultores há séculos considera a variabilidade espacial na implantação da lavoura. De fato, considerar a variabilidade é reconhecer que o campo não é uniforme e nela há aptidões agronômicas diferentes, mesmo em uma propriedade cuja dimensão não seja extensa. Agricultores mais atentos reconhecem essas áreas, que podem se mostrar manchadas por ter melhor capacidade de drenagem, ou por ter maior quantidade de matéria orgânica, entre outros fatores, fazendo com que opte por implantar de pomares a hortas, buscando aproveitar o melhor dos atributos agronômicos diferenciados, distribuídos pela propriedade. Em áreas maiores, com cultura extensiva essa forma de gerenciamento da lavoura tornou-se pouco prático. Com as máquinas cada vez maiores e com maior capacidade, diferenciar regiões ficou também impraticável e o trabalho de Linley e Bauer praticamente ficou esquecido, apesar dos autores terem advertido que apenas uma amostra pontual ou composta poderia fazer com que o produtor tenha de aplicar 60 toneladas a mais de calcário em uma área de 16,2 hectares (40 acres), pois o campo apresenta variabilidade.

Na década de 80 era disseminado o uso da eletrônica embarcada em veículos influenciando o desenvolvimento das máquinas agrícolas. No chão de fábrica das indústrias metal-mecânica, as máquinas programáveis, veículos autoguiados e robôs industriais estabeleceram um novo processo de fabricação mais flexível e eficiente. Softwares de desenhos em computadores (Computer-Aided Design - CAD), assim como desenhos de mapas e visualização de imagens de satélite estavam sendo desenvolvidos para terminais gráficos considerados na época de alto desempenho. O primeiro sistema global de navegação por satélite (Global Navigation Satellite Systems - GNSS) desenvolvido pelos EUA e denominado de GPS (Global Positioning System) iniciou as primeiras operações em 1978, e considerado operacional em 1995. A disponibilização de sinal de satélites GPS, viabilizou a instalação de receptores em colhedoras, possibilitando armazenar dados de produção instantânea associada à coordenada geográfica. Em 1996, surge no mercado colhedoras com capacidade de mapeamento da produção, gerando o boom da Agricultura de Precisão no mundo, tornando possível a prática de mapeamento e aplicação de insumos à taxa variada por meio de máquinas.

No País, ainda na década de 80, muitas das indústrias não puderam incorporar, de forma agressiva, o uso dessa tecnologia, talvez pela dificuldade de importação de equipamentos informatizados. Na década de 90, abre-se o mercado e o setor de veículos inicia a incorporação das tecnologias da eletrônica, da informática e da robótica.

O setor acadêmico inicia atividades em Agricultura de Precisão, em 1996, com o primeiro simpósio em Agricultura de Precisão realizado na ESALQ (BALASTEIRE, 2000). Em 1999, a
Embrapa aprova dois projetos em Agricultura de Precisão coordenados pela Embrapa Solos e a Embrapa Milho e Sorgo dentro do Projeto de Apoio ao Desenvolvimento de Tecnologia Agropecuária para o Brasil (Prodetab), marcando o início de seus primeiros trabalhos.

Até o final da década de 90, as indústrias de máquinas agrícolas brasileiras ainda não acompanhavam a inovação realizada pela integração da eletrônica e da informática. Segundo a Anfavea ASSOCIAÇÃO..., (2006), a partir de 2000, o programa Moderfrota em 1999 e a conjunções de vários fatores favoráveis, levaram as montadoras a lançarem o que havia de mais moderno no mundo em maquinaria agrícola, o que a Associação chamou de "salto tecnológico do obsoleto à última geração" (ASSOCIAÇÃO..., 2006, p. 160). Nesse período, os brasileiros presenciaram o início de produtos com a eletrônica embarcada em máquinas agrícolas no mercado Nacional.

É fato que foi na Agricultura de Precisão que as indústrias de máquinas encontraram a melhor oportunidade da eletrônica e informática inovar e contribuir expressivamente. Para a Agricultura de Precisão, a disponibilidade de tais máquinas no mercado foi um reforço alterando definitivamente o seu status no cenário da agricultura. No Brasil, talvez pelo sincronismo da chegada da "tecnologia de última geração" com a Agricultura de Precisão, criou-se uma forte imagem de que a AP é uma agricultura realizada com máquinas sofisticadas. Observa-se ainda que a instalação do GPS em

máquinas agrícolas antecedeu a popularização desse equipamento para uso rodoviário no País, conferindo aos fabricantes que detinham essa tecnologia a posição de vanguarda tecnológica. Como as máquinas agrícolas eram de grande porte, o sistema requerido para o processamento era de alto desempenho para o padrão daquele período. Aliado a isto, o custo elevado do receptor GPS levava a questionar a dimensão mínima da propriedade a qual o emprego dessa tecnologia traria benefícios, sugerindo que a AP seria viável a partir de uma determinada dimensão da propriedade. Ou seja, era imaginado que a AP poderia ser empregada apenas por meio de máquinas de grande porte e por produtores com acesso a recursos consideráveis para investimento.

Essa forma de entendimento havia também se instalada em uma parte significativa da Embrapa. Questionava-se ainda o potencial de retorno econômico dessa prática devido ao alto investimento inicial. Em 1999, foram elaborados na Embrapa dois projetos de pesquisa de porte expressivo em relação aos demais executados na época, uma em milho e a outra em soja, com recursos do Prodetab (Programa de Fundos Competitivos para financiamento da pesquisa agrícola do Banco Mundial) coordenado pela Embrapa Milho e Sorgo e pela Embrapa Solos. O primeiro projeto teve como parceira a AGCO e a Universidade Federal de Viçosa (Departamento de Engenharia Agrícola) e o segundo, a Fundação ABC (Castro, PR) e USP/ESALQ (Escola Superior de Agricultura “Luiz de Queiroz” da Universidade de São Paulo). No mesmo ano havia-se instalado em Lincoln, Nebraska, EUA, o Labex (Laboratório Virtual da Embrapa no exterior) em Agricultura de Precisão, tendo como parceira e contraparte americana a USDA/ARS (United States Department of Agriculture/Agricultural Research Service), instituição equivalente à Embrapa. Nesse sentido, a Empresa buscava responder a se inserir no tema. Em 2003, esses projetos foram concluídos. Em 2004, observou-se a contenção de recursos na Empresa para apoiar a política de aumento do superávit primário e a gestão maior buscou por intensificar projetos que priorizassem a agricultura de pequeno porte, por questões sociais. Nesse período foi iniciado o primeiro projeto em rede no tema Agricultura de Precisão como continuidade das atividades, porém houve dificuldades na execução. Pode-se dizer que foi um período de reflexão dos pesquisadores para a área. O tema dentro da Empresa ainda não atendia os pequenos produtores e não era entendida como uma forte aliada para que a agricultura alcance a sustentabilidade. Em 2008, foi anunciado o PAC (Programa de Fortalecimento e Crescimento) da Embrapa revitalizando a sua estrutura e abrindo oportunidade para elaborar a segunda rede de pesquisa no tema, de forma um pouco mais ousada. Em 2009, a Embrapa aprovou o segundo projeto em rede com base nos pareceres de 19 consultores ad-hoc externos. A liderança dessa rede foi dividida entre oito Unidades descentralizadas com a participação total de 21 Unidades. Foi nesse projeto que a Embrapa pôde estabelecer com clareza, inicialmente para si, os conceitos fundamentais da Agricultura de Precisão, e discernir entre o papel das máquinas e equipamentos e o papel da gestão da variabilidade espacial da lavoura. É esse aspecto que fez com que o primeiro volume do livro sobre Agricultura de Precisão fosse publicado com nome “Um novo olhar”, pois, apesar de não criar novos conceitos, este buscou uma forma diferente de ver a Agricultura de Precisão em relação à visão estabelecida no País. O presente capítulo e demais fazem parte dos resultados dessa rede e estão sintetizados nessa publicação.

3. Conceitos de Agricultura de Precisão

Se na Embrapa os conceitos não estavam claros, na sociedade não era diferente. Para a grande maioria, o argumento de realizar a operação de forma mais precisa, ou seja, com menor erro parece ser suficiente para iniciar a adoção da AP. De forma didática há dois tipos de erros. O antrópico e o natural. O erro antrópico pode ser corrigido na grande maioria das situações por meio de uso e escolha correta das máquinas. A eletrônica embarcada pode auxiliar para que as operações sejam menos dependente da habilidade e experiência do operador, mantendo a máquina dentro dos parâmetros de operação aceitável. Entretanto, o retorno econômico nesse caso é obtido somente se a operação de forma manual apresentar um erro significativo.
Quanto maior o erro, a correção causará maior economia ou maior impacto econômico. Para erros não antrópicos ou naturais o argumento mais comum é a intensidade da diferença. Se uma propriedade apresenta diferença de produção de duas a dez toneladas por hectare e a aplicação de insumo foi uniforme, então, é fácil entender que em algum ponto está-se aplicando excesso de insumo, gerando desperdício e, em outro uma quantidade insuficiente perdendo a oportunidade de se obter uma produção maior. Quanto maior a diferença, maior a oportunidade de se obter retorno econômico ao se tratar adequadamente as características que as diferenciam. Por outro lado, se um sistema de produção apresentar diferença pouco significativa, o retorno econômico seguramente será insignificante ou até negativo.

É por esse motivo que a AP pode ser entendida como uma forma de gestão da lavoura que leva em conta a variabilidade espacial. Recomenda-se somente é se houver potencial de retorno econômico e ambiental e nesse caso é necessário que haja a variabilidade espacial. Apesar da variabilidade espacial ser intrínseca da espacial. Apesar da variabilidade espacial ser intrínseca da as situações o retorno econômico seja obtido, pois, em tese, a variação pode ser suficientemente reduzida para que a lavoura seja considerada próxima do uniforme. Oliveira, Bernardi e Rabello (2011) nessa publicação, apoiado por medidas de condutividade elétrica, apresenta índice de oportunidade para apontar o potencial de retorno econômico da AP. Além da intensidade, se a causa da variabilidade não permitir uma gestão apropriada, o retorno econômico também não será alcançado. Por exemplo, um processo que ainda não está muito bem resolvido comercialmente é o controle de plantas daninhas, pois para esse fator a tecnologia mais eficiente ainda é o manual. Ou seja, o processo de identificação e aplicação realizado manualmente. Devido ao custo da operação, apenas em casos excepcionais, esse processo é economicamente viável. As metodologias de detecção de plantas daninhas em campo ainda dependem do desenvolvimento de sensores que identificariam rápido o suficiente para controlar a aplicação de herbicida de forma localizada em tempo real. Outro exemplo a textura do solo - mesmo encontrando a variabilidade, não há meios de corrigir, mas há meio de buscar proveito dessa variabilidade. Miele, Flores e Alba (2011), em cultura de videira, encontraram solos diferentes em quatro hectares. O vinho produzido apresentou diferenças conforme os solos. Uma colheita estratégica pode favorecer a possibilidades de compor odores, sabores e cores dentro da expectativa do vinho. O leitor poderá conferir detalhes em resultados apresentados pelo grupo.

O retorno econômico, portanto, depende de cada lavoura e dos processos de cada produtor. O primeiro passo é identificar a variabilidade espacial da lavoura. As formas mais comuns aplicadas no Brasil parecem ser por meio de amostragem em grade realizada por empresas de serviço e mapas de produtividade (ou de colheita) obtidos por meio de máquinas. Em qualquer uma das situações, há necessidade de um investimento e, na maioria dos casos o custo não são considerados baixos. Em caso de amostragem de solo, a qualidade do mapa depende do processo de retirada da amostra e da qualidade da análise, pois esse método é o convencional, mas depende também da quantidade de amostras. Para obter uma “fotografia” que mostra a variabilidade da lavoura, o seu refinamento é fundamental. A pergunta mais comum nesse caso é o número de amostragem ou a distância entre as amostras, pois esse fator determina o custo do processo. Muitos realizam uma amostra a cada cinco hectares, os mais refinados alcançam uma amostra a cada hectare, porém esse refinamento pode não ser suficiente, pois há possibilidade de que haja variações entre as leituras, as quais deveriam ser consideradas para aplicação de insumo à taxa variada. Para cada local há um número recomendável de amostras - quantidade pode ser determinada por meio de cálculo de dependência espacial dos dados, ferramenta matemática emprestada da geoestatística. As discussões acaulhadas do nível de refinamento de amostragem foram realizadas por muitos e felizmente há algumas conclusões.

A amostragem em grade na quantidade realizada atualmente não é suficiente para obter um mapa com qualidade para aplicação de insumos como o de fertilizantes, muito embora, é preferível ser uma amostra a cada cinco hectares do que a cada vinte hectares e assim por diante. O refinamento poderia chegar à dimensão do domínio de absorção das raízes, porém, apesar de
alguns defensores dessa resolução, para muitos não faz sentido chegar a tal refinamento se a máquina de aplicação de insumos não consegue atuar com tal resolução. Nesse sentido, se uma máquina tem largura de aplicação de seis metros e o tempo de resposta do sistema responde apenas em seis metros, então essa distância seria considerada a menor, porém para aplicação, por exemplo, de herbicida, poderia ser menor se o processo de identificação da planta alvo e o método de aplicação tiver capacidade de atuar planta a planta. Evidentemente não é possível assegurar uma aplicação nessa resolução se a amostragem foi realizada a cada cinco hectares e esse fato fundamenta os críticos da AP, porém, há formas de atenuar a falta de dados. Mapas de produtividade, mapas de condutividade elétrica aparente do solo, imagens aéreas (sensoriamentos remotos e próximos), topografia (paisagem) com pedologia refinada podem chegar a uma continuidade de leitura ou de dados a cada três metros com custo razoável, e essas medidas indicam indiretamente como ocorre a variabilidade da lavoura. Essas indicações indiretas são medidas que auxiliam e orientam uma amostragem mais estratégica, reduzindo a necessidade de um número elevado de amostras colhidas às cegas em uma distância regular em grade.

A presente publicação apresentam estudos que reforçam essa tese nas condições brasileiras. Essa forma de auxílio ou apoio na amostragem reforça a importância de um mapa de produtividade, quando for permitido, pois se não há variação na produtividade, indica que a variação de elementos que influenciam a produção como o solo não apresenta amplitude de valores suficientemente intensa para que a sua gestão seja economicamente viável. Ou seja, não vale a pena refinhar a amostragem. Mais do que orientar o número de amostragem, mais importante ainda é o local (coordenada geográfica) do ponto de amostragem e como é o formato da fronteira entre as áreas com características distintas. Nessas condições, a interpolação como krigagem encontra as condições matematicamente corretas para o seu emprego. Outra forma importante, também reforçada pelo Gebbler e equipe (vide trabalho nessa publicação), é o conhecimento do produtor. A hipótese é de que o produtor ou algum funcionário que esteja fortemente relacionado com o histórico da terra e do local, possui conhecimento acumulado, de forma empírica, e esse conhecimento pode ser registrado em um mapa, mesmo que seja uma ilustração qualitativa da área da forma como que o produtor entende ser o seu domínio. Esse conhecimento também foi utilizado por Bassoi, para retirar amostras de solo e encontrar diferente capacidade de retenção de água na lavoura e traçar estratégia de aplicação da irrigação considerando a variabilidade do campo. O trabalho foi realizado em uma propriedade de produção de uva para mesa no setor irrigado do Vale São Francisco.

A discussão do retorno econômico em Agricultura de Precisão, portanto, depende da propriedade. Depende da intensidade da variação da produção, o que a faz variar e a estratégia a ser adotada.

Atualmente, aplicam-se insumos à taxa variada como fertilizantes e corretivos. Ainda não se vê comercialmente a aplicação de sementes e agroquímicos em geral, mas os estudos devem avançar para que a viabilidade econômica seja alcançada. Mas um dos grandes avanços que se pode destacar é a gestão da lavoura. Reconhecer a variabilidade como o primeiro passo antes mesmo de iniciar investimentos em Agricultura de Precisão.

Por último, discut-se do uso do termo “precisão”, se estaria corretamente empregado. O termo vem do inglês “precision agriculture” - foi criado nos EUA. Na Europa, o emprego do termo “precision farming” é mais amplo, talvez devido ao termo “farming” contextualizar ou fechar o escopo nas atividades relacionadas à produção da propriedade agrícola, ou seja, gestão da propriedade. No Brasil, houve quem utilizasse o termo em tudo que se referia à atividade realizada com maior precisão por meio de sistemas eletrônicos. Essa forma de uso realçou a necessidade de maior precisão nas tarefas agrícolas como a necessidade de máquinas e sistemas de análise mais precisos, misturando todos os conceitos de medida e atuação agrícola. Uma máquina precisa, ou seja, com sistema de distribuição uniforme e regular, com mínimo de variação dentro das especificações de ajuste, é uma máquina convencional, que realiza uma operação precisa e com erro dentro de uma faixa tolerável, porém, não é uma máquina que se
destina à Agricultura de Precisão, pois não apoia na gestão da variabilidade espacial da lavoura e nem aplica insumos à taxa variada. Portanto, definitivamente uma máquina precisa não está diretamente relacionada a uma máquina para Agricultura de Precisão. Porém, uma máquina para a Agricultura de Precisão deve ser precisa na sua atuação, assim como deve ser para o uso convencional. O mesmo pode ser empregado na análise de solo. A análise do solo pode ser precisa, mas se não obtiver um mapa que represente a variabilidade e esta represente a variação da produtividade, não pode ser considerada uma atividade destinada à Agricultura de Precisão, cuja técnica suscita questionamento quanto à localidade da amostra. Se em uma propriedade, duas amostras de locais diferentes apresentam uma recomendação diferenciada que impacta economicamente, então a aplicação de fertilizante à taxa variável pode vir a ser interessante.

De forma muito simplificada, na teoria de sistemas de medida, os erros de diferentes fontes são considerados para se compor um erro final de um instrumento. Cada fonte fornece uma determinada grandeza de medida. A fonte de maior erro tem a tendência de determinar a grandeza final. Nesse sentido, se os erros das demais composições forem maiores do que as diferenças de valores apresentadas pela variabilidade espacial, a Agricultura de Precisão também não poderá fornecer resposta significativa. O que tem sido observado, entretanto, é que a variação espacial é muito mais significativa em propriedades em que outros erros já estão minimizados por meio de práticas bem sucedidas. Portanto, a Agricultura de Precisão deve ser realizada com demais procedimentos com o intuito de obter melhor rendimento tanto econômico como ambiental. Vale discutir também a natureza dos erros. Há erros sistemáticos e de ganho que são fáceis de corrigir, como os encontrados em balanças e ajustados em processos de calibração. São os de mesma natureza para ajustes em máquinas agrícolas. Os erros aleatórios, para um equipamento em perfeitas condições, são na maioria dos casos tratados estatisticamente. Para a variabilidade espacial utiliza-se a geoestatística. É uma estatística que considera as distâncias entre as medidas, ou seja, a dependência espacial entre os dados. Portanto, a Agricultura de Precisão pode também ser entendida como um sistema produtivo agrícola em que os erros podem ser tratados por meio de geoestatística, entretanto, essa definição com certeza seria muito mais difícil de ser assimilada do que a adotada pelo CBAP.

4. Os desafios da Agricultura de Precisão

É fato que, em 1997, o uso do GPS ofuscou todas as outras tecnologias, pois o impacto da inovação causado por essa tecnologia revolucionaria vários setores, inclusive a agricultura. Naquela época, o grande desafio era dominar a tecnologia oferecida pelo receptor de GPS na automação, aplicá-la em máquinas agrícolas e viabilizá-las para apoiar a gestão operacional da lavoura, levando-se em consideração a variabilidade espacial.

Para os setores da agricultura brasileira, enquanto a eletrônica embarcada ainda se encontrava inexistente ou em estágio muito inicial, o salto tecnológico era demasiadamente alto. Apenas poucas indústrias e instituições acadêmicas conseguiram se estruturar para incorporar a base dessa tecnologia. No primeiro momento, apenas as multinacionais puderam trazer seus produtos enquanto existia ceticismo no setor agrícola, observando que, nesse momento, até mesmo essas empresas tiveram de formar novas equipes de trabalho para incorporar o processo de montagem, uso e manutenção dessas novas ferramentas. Dez anos após, a eletrônica já fazia parte do cotidiano e receptores GPS veicular, disseminado.

Pode-se considerar que a eletrônica embarcada já é realidade no mercado de máquinas agrícolas e essa parte da tecnologia não representa mais o maior desafio da AP como há vinte anos. Atualmente pode-se considerar que o mercado já disponibiliza a maioria das ferramentas para o campo e seus desafios agora são incrementais. Tanto as oportunidades de inovação como a complexidade no desenvolvimento de sistemas em máquinas agrícolas avançou para o campo da TIC (tecnologia da informação e da comunicação), entretanto, o número de empresas nacionais que realmente incorporaram a sua dinâmica ainda é reduzido. Em eletrônica embarcada observam-se esforços por parte de grandes empresas

As máquinas para a AP conhecidas no mercado são as colhedoras de grãos, com grande capacidade para mapear a produção, e as aplicadoras de insumos à taxa variada, por serem utilizadas para ilustrar o uso da AP. São dotadas de receptores GNSS e sistema de armazenamento e leitura de dados. A descrição do seu uso de forma didática tem aumentado nas literaturas internacionais. Essas publicações são dirigidas aos que atuam na agricultura e concentram-se em apresentar as ferramentas para praticar a AP. A literatura científica tem uma linguagem própria muito próxima dessa publicação e é muito rica em resultados, porém devido à sua natureza, os resultados não são diretamente aplicados pelos produtores como uma recomendação, necessitando de uma visão mais global para perceber o uso na sua propriedade. Essa publicação é uma compilação de resultados de pesquisa da rede, assim como o primeiro volume e não tem pretensão de ser um material didático, porém, apresenta uma revisão para contextualizar os assuntos focados nos capítulos.

As literaturas como de Srinivasan (2006) e de Brase (2006) são didáticas e apresentam uma visão global da AP. Adamchuk et al. (2004) apresenta revisão de sensores de solo e Hatfield et al. (2008) explora um número extenso de trabalhos em sensoriamento remoto aplicado à agricultura, cujo conhecimento fundamenta a concepção dos sensores óticos encontrados hoje no mercado. Há muitos trabalhos que buscam desenvolver e propor ferramentas para o uso da AP, inclusive a robótica, mas apenas alguns estão disponíveis e bem sucedidos comercialmente, como as colhedoras, implementos com aplicação à taxa variada e amostrador de solo, todos com GNSS. A rede utilizou sensores óticos, medidor de condutividade elétrica, imagem aérea ainda de uso não muito disseminado entre os agricultores do Brasil, os quais estão explorados pelos capítulos desse livro. Porém, ainda há muitas lacunas tecnológicas a serem preenchidas. É comum organizar e descrever a AP como um sistema controlados e este conceitualmente é apresentado em três etapas. O início determinado pela leitura, que consiste no levantamento e obtenção de dados. A segunda etapa é a de interpretação dos dados para planejamento das operações de campo. A terceira como a de atuação ou de execução do planejamento. Ao realizar essas três etapas, elas reiniciam-se em ciclo. O que difere a AP dos demais ciclos de controle convencional é a localização da atuação e dos dados, ou seja, a análise e planejamento são realizados sobre mapas. Muito comum em gestão, o ciclo também é de melhoria contínua. Se um produtor detectar variabilidade espacial causada por máquinas e ele aprimorar o seu uso, o próximo ciclo pode ser o de melhorar o uso de fertilizantes e assim por diante. Identificar a variabilidade, analisar a causa é fundamental nesse processo. Nem sempre, como já mencionado anteriormente, a gestão da variabilidade traz retorno econômico, porém, traz subsídios para melhorar o entendimento da lavoura.

Os conhecimentos agronômicos mais apurados como, por exemplo, as interações com os tipos de solos e de concentração de matéria orgânica com agroquímicos tornam-se muito mais úteis, pois os dados são tratados localmente. Contudo, as recomendações de insumos, que no passado foram construídas considerando a média, devem ainda sofrer revisões. Ao acompanhar esses trabalhos, é importante que o leitor esteja atento em qual aspecto esse se refere. A Figura 2 não pretende ser completa, mas está suficientemente detalhada para que se perceba que há um número elevado de elementos que ainda não estão adequadamente tratados pela AP. Molin (2004) lista causas da variabilidade e grau de dificuldade para a sua intervenção e conclui que muitas das prováveis causas são do tipo que não permitem intervenções e sim exigem a convivência.
Convivência pode ser também entendida como compreensão das características da variabilidade e aproveitar o melhor que ela pode oferecer dentro das limitações e das potencialidades.

O processo de leitura tem avançado constantemente e, como já citado, há sensores e equipamentos disponíveis no mercado. Entretanto, os agroquímicos, apesar de cuidados e critérios, ainda não se tem aplicado de acordo com a intensidade de infestação local devido aos métodos e processos de detecção localizada de populações ou densidade de pragas não estarem comercialmente estabelecidos. Irrigação à taxa variada tem avançado consideravelmente e sensores de umidade do solo sem fio são encontrados no mercado, mas ainda não é um processo largamente adotado. Sistemas de captação e tratamento de imagens têm atraído muita atenção, métodos empíricos têm dominado o seu uso, porém, deverá ainda apresentar contribuições mais significativas.

O processo de análise e interpretação tem sido apoiado por ferramentas de SIG (Sistema de Informação Geográfica) e de geoestatística. Os SIG são parte importante para leitura de arquivos e as indústrias de máquinas buscam fornecer suporte e apoio a interpretação dos dados. Além dos SIG comerciais, há livres. Não houve consenso entre os membros da rede por um SIG a ser recomendado, mas talvez o mais utilizado seja o QGIS (http://qgisbrasil.org/), mantido por uma comunidade de voluntários, e Vesper (http://sydney.edu.au/agriculture/pal/software/vesper.shtml), como farramenta de análise por existir experiência de

Figura 2. Ciclo da AP em três etapas.
uso na Embrapa. O Vesper, desenvolvido por um grupo da Universidade de Sydney, é uma ferramenta que apoia análises geoestatísticas.

Apesar de haver um formato de arquivo consagrado, ainda há dificuldades na troca de arquivos entre diferentes SIG. A ISO-11783, que trata de comunicação entre tratores e implementos de diferentes fabricantes, apresenta um formato XML (Extensible Markup Language), na tentativa de compatibilizar mapas entre diferentes fabricantes de máquinas, porém ainda não é adotado pela maioria dos softwares SIG que não foram desenvolvidos intes especificamente para serem utilizados na agricultura. A geoestatística, utilizada pela primeira vez em AP, em 1999, estão incorporados como funções de apoio na maioria dos SIG. Uma das principais contribuições da geoestatística é a análise que fornece a base matemática para conferir consistência dos dados coletados no campo (VIEIRA, 2000; OLIVER, 2009). A análise fornece parâmetros que assegura a dependência espacial dos dados, ou seja, se a interpolação entre os dados é válida. A interpolação mais utilizada em AP é a Krigagem. A esse sistema ainda deve se integrar um outro, a de suporte a decisão com informações de mercado. Projetos como o da União Europeia (NIKKILÄ; SEILONEN; KOSKINEN, 2010; SØRENSEN et al., 2010) têm trazido importantes contribuições nesse tema.

5. Contexto histórico da academia e seus eventos

O evento internacional que ocorre a cada dois anos e que pode ser considerado o mais importante no tema Agricultura de Precisão é a Conferência Internacional em Agricultura de Precisão (International Conference on Precision Agriculture – ICPA), tanto do ponto de vista histórico como na abrangência. Reúne cerca de 500 participantes de quase 40 países. Em 2014, ocorrerá a décima segunda edição. Intercalado a esse evento ocorre a ECPA (European Conference on Precision Agriculture) na Europa e a ACPA (Asian Conference on Precision Agriculture), na Ásia. No Brasil, o ConBAP é o evento mais tradicional e expressivo. O evento brasileiro iniciou como Simpósio sobre Agricultura de Precisão, em 1996, na USP/ESALQ. Esses eventos, por serem organizados por acadêmicos, reúnem apresentações dos últimos resultados da pesquisa (Universidades e instituições de pesquisa), além de tentar incluir a comunidade empresarial e comercial para apresentar ao mercado os produtos e serviços mais atuais, ou seja, com certo critério pode ser extraído tanto o estado da arte como o da técnica.

Atualmente, pode-se dizer que a referência dos acadêmicos em Agricultura de Precisão é a Sociedade Internacional de Agricultura de Precisão (International Society of Precision Agriculture – ISPA), por ser responsável por organizar os eventos mais representativos e por ter um número significativo de membros das mais diversas instituições pelo mundo. A sociedade foi criada em 2010, durante a Conferência Internacional em Agricultura de Precisão e é constituída por personalidades acadêmicas relevantes da história recente da AP. No corpo de editores da revista "Precision Agriculture", publicada pela Springer americana estão também presentes essa Sociedade, isto é, com cientistas renomados no tema e membros conselheiros atuantes. Apesar de haver um veículo científico específico em Agricultura de Precisão e as publicações de eventos abordarem os diversos assuntos envolvidos pelo tema, devido ao assunto ser formado por diversos elos da cadeia de conhecimento os artigos científicos estão dispersos em várias revistas científicas. Atualmente há um número significativo de trabalhos publicados com termos "Precision Agriculture" e "Precision Farming" ao buscar em bases de dados científicos. O número ao mesmo tempo em que mostra a maturidade no avanço do conhecimento, viabiliza aos acadêmicos obterem farto material para iniciar no tema e alcançar qualidade internacional.

6. Cursos e extensões no País

Na Argentina, a INTA (Instituto Nacional de Tecnología Agropecuaria – Argentina) realiza anualmente eventos direcionados aos usuários de Agricultura de Precisão, entre produtores e prestadores de serviço. É ministrado um curso e paralelamente ocorre uma feira de máquinas. É denominado "Curso internacional de Agricultura y Ganadería de Precisión". Em 2013 ocorreu a
décima segunda edição. O evento reúne cerca de 2.500 participantes, fazendo dele evento um dos mais assistidos no tema. Em 2011 e 2013, a prefeitura do município de Não-Me-Toque, Sindicato Rural, o Sistema Farsul, a Universidade Federal de Santa Maria e a Cotrijal (Cooperativa Agropecuária e Industrial desse município), realizaram evento denominado APSul América cuja programação assemelha-se ao da Argentina, com a proposta de ser do mesmo porte.

No Brasil, a Agricultura de Precisão está presente na grade curricular como disciplina optativa, com rara exceção em muitos cursos de graduação, como de Agronomia, Engenharia Agrícola e Engenharia de Biossistemas. Têm surgido também recentemente cursos específicos, como o Curso Técnico em Agricultura de Precisão do Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Campus Panambi, RS, e Cursos de graduação tecnológica - Me...
houve um esforço em divulgar a AP. O que se tem percebido é que a forma de entendimento tem sido distinta. Enquanto a grande maioria entende que a AP é uma agricultura realizada por sistemas automatizados, a gestão das variabilidades espaciais dos atributos da lavoura não tem sido atendida adequadamente. É como se a atenção estivesse sobre um despertador e não se atentasse sobre as horas a serem programadas. Ou seja, é como se o objetivo fim que é aumentar o retorno econômico e ambiental, por meio da gestão da variabilidade estivesse no segundo plano, enquanto que as ferramentas estão no primeiro plano. Na realidade, a AP é uma cadeia de conhecimentos. Sem um elo, toda a cadeia pode ser comprometida.

Uma das iniciativas muito comum e, entendida por muitos no País como o primeiro passo para a adoção da AP foi a aquisição de máquinas e equipamentos. Apesar de comum, é um procedimento de risco. Nas propriedades que iniciaram dessa forma é possível deparar com máquinas em campo cujas funções de mapeamento estão desligadas. Os motivos são variados. Muitos creditam à dificuldade na operação desses equipamentos. Porém, o mais preocupante é o desconhecimento da importância em compreender a variabilidade espacial da propriedade pelo gestor. Ou seja, há aquisição de equipamentos sem que haja uma reflexão ou análise do seu potencial de retorno econômico, no caso específico da propriedade onde serão utilizados, criando imagem de que a AP é demasiadamente sofisticada e complexa para a nossa agricultura.

Dentre os que obtiveram mapa de produtividade (ou de colheita), houve quem buscasse uniformizar a lavoura procurando alcançar o nível equivalente ao setor onde apresentou o máximo de produtividade. Hoje se sabe que muitos parâmetros são incontroláveis e buscar a uniformidade pode não trazer o retorno econômico almejado. Outros, mais cautelosos, buscavam auxílio para formular mapas de recomendação. Porém, não havia no mercado um profissional disponível que tivesse competência necessária para formular tal mapa. Talvez em instituições acadêmicas e de pesquisa, houvesse quem formulasse de forma experimental ou exploratória, porém não havia experiência. Atualmente entende se que, para formular mapas de aplicação, é importante o domínio de SIG, geoestatística, fundamentos sólidos de Agronomia e muita experiência de campo e, obviamente, saber identificar as causas da variabilidade. Ainda hoje as escolas de Agronomia que formam profissionais com tal domínio são raras e é necessário buscar especialização nos cursos de pós-graduação, que ainda são incipientes e em quantidade muito inferior à demanda. É muito desejável que em dez anos tal conhecimento seja comum nas disciplinas tanto no ensino técnico como no superior e cujo conteúdo esteja relacionado à agricultura.

A iniciativa mais usual de implantação de AP no País, em cultura de grãos, é por meio de prestador de serviços. A imagem de coleta de amostra por meio de quadriciclo é muito forte no mercado. A amostragem em grade de um a cinco hectares é indubitavelmente melhor do que uma amostra a cada cem hectares, porém, há de se contar com a geoestatística antes de interpolar os dados. Há atualmente, ferramentas como imagem aérea e condutividade elétrica aparente do solo que ajudam a orientar a amostragem, porém, no Brasil, tal procedimento é muito raro. Assim que se estabelecerem as primeiras metodologias mais abrangentes aplicáveis no Brasil, talvez em cinco anos a maioria das empresas de serviço passará a oferecer alternativas cientificamente mais consistentes.

O insucesso da aplicação de AP compromete gravemente a imagem das indústrias de máquinas e dos prestadores de serviços. Para a pesquisa, só haverá sentido em apresentar resultados, se esta for adotada no campo. Por outro lado, o sucesso da implantação traz, além de bons resultados, um processo agrícola mais racional, responsável e rastreável, demandante de mão de obra qualificada e, consequentemente, de desenvolvimento sustentável.

Referências

FERRAMENTAS PARA AGRICULTURA DE PRECISÃO

Fotos: C.R. Grego, A. Miele
A Pedologia e a Agricultura de Precisão

Carlos Alberto Flores*¹, José Maria Filippini Alba*²

¹Pesquisador, Recursos Naturais/Embrapa Clima Temperado
²Pesquisador, Laboratório de Planejamento Ambiental/Embrapa Clima Temperado

*E-mails: carlos.flores@embrapa.br, jose.filippini@embrapa.br

Resumo: A globalização dos mercados relacionados à agricultura e a crescente demanda por produção sustentável provocaram uma busca da sociedade por maior precisão na gestão produtiva. Isso estreita a relação entre pedologia e agricultura de precisão, pois, áreas agrícolas precisam ser detalhadas em relação à variabilidade espacial dos atributos físicos e químicos de solo e planta, de maneira a aprimorar os impactos socioeconômicos e ambientais. Na primeira parte do capítulo se descreve de forma sucinta o Sistema Brasileiro de Classificação do Solo (SiBCS), sendo abordadas as vantagens e as implicações desta tradicional forma de mapeamento. Na segunda parte do capítulo se discutem quatro propriedades de interesse neste contexto: condutividade elétrica, refletância, relevo e produtividade. A medição dessas e outras propriedades do solo foram aplicadas pela utilização de diversas técnicas, desde o século passado com graus diferenciados de sucesso, sendo que algumas delas foram implantadas rapidamente e outras dependem de inovações tecnológicas para evoluir.

Palavras-chave: Solos, Agricultura de precisão, condutividade elétrica, relevo, sensoriamento remoto, produtividade.

Pedology and Precision Agriculture

Society is looking for greater precision in the productive management due to the globalization of agricultural markets and the growing demand for sustainable production. Pedology and Precision Agriculture must work together in that sense, because the spatial variability of plant and soil attributes need to be detailed in crop areas, improving socioeconomic and environmental impacts. The first part of the chapter describes briefly the Brazilian Classification System of Soils, when the restrictions and advantages of that traditional way of mapping were discussed. The second part of the chapter considered the behavior of four soil properties: electrical conductivity, reflectance, relief and productivity. Several techniques were applied for measuring these and other properties during last century with different degrees of success. Some of them were implanted without problems but the other ones depend on technological innovations for their evolution.

Soils, Precision agriculture, electric conductivity, relief, remote sensing, productivity.
1. Introdução

Em razão da globalização dos fatores para a produção de alimentos, a sociedade está a requerer maior precisão na gestão produtiva. O cenário atual da agricultura brasileira caminha para uma produção eficiente, com proteção ao meio ambiente, onde se insera a agricultura de precisão (AP). A economia em escala global evidenciou o protagonismo do Brasil, especialmente nesta época, quando há um aumento no consumo mundial de alimentos ao mesmo tempo da necessidade de produzir energia renovável. O País possui terras, condições climáticas e tecnologia para ajudar a suprir a si e outras nações com alimento e energia renovável. Para isso, também necessita melhorar sua competitividade em pecuária, silvicultura e produtos como o trigo, milho, arroz, feijão, soja, cana de açúcar e o algodão, sem perder a perspectiva da sustentabilidade. Assim, a adoção de técnicas e tecnologias com maior precisão para o manejo adequado dos Biomas, ecossistemas e agroecossistemas pode reduzir o impacto ambiental das atividades agrícolas de maneira significativa, com o uso das terras segundo sua aptidão agrícola, com uma aplicação eficiente dos insumos utilizados. A Ciência pode contribuir decisivamente com a atividade agropecuária com medidas de ordenamento territorial pela interação entre a Pedologia e as técnicas de Agricultura de Precisão. O conhecimento dos solos brasileiros, aliado as tecnologias de precisão já disponíveis, pode ser uma ferramenta valiosa de gestão para a inovação agropecuária no Brasil.

O Brasil ocupa uma posição de destaque na realização de estudos de solos tropicais, tendo gerado grande quantidade de dados por meio de levantamentos de solos e outros estudos. Entretanto, a disponibilização destas informações tem-se mostrado pouco eficiente, devido principalmente ao grande volume, complexidade e pouca normatização dos dados, o que tem dificultado e limitado sua utilização pelos usuários (EMBRAPA, 1998).

Os conhecimentos adquiridos através dos levantamentos de solos têm contribuído significativamente para que o Brasil chegasse à condição de agricultura tropical mais competitiva do planeta. Nas próximas décadas, a ciência do solo continuará no centro de discussão para a produção de alimentos e fibras, mas também será fundamental e estratégica para manter a qualidade da água, o combate à pobreza e a produção de fontes renováveis de energia.

Mermut e Eswaran (2001) revisaram os maiores desenvolvimentos da Ciência do Solo desde a década de 60. Segundo eles, aconteceu uma mudança dramática no pensamento da sociedade em relação à utilização dos recursos naturais na década de 80, aumentando a preocupação com o equilíbrio dos ecossistemas e a conservação da qualidade ambiental, com incremento simultâneo no consumo de recursos, inclusive para os países em desenvolvimento. A Comissão Brundtland estabeleceu o conceito de sustentabilidade que foi ampliado pela Agenda 21 das Nações Unidas. Na década de 90 houve notáveis avanços nos métodos e prioridades de pesquisa na perspectiva pedológica. Enquanto os levantamentos tradicionais perderam intensidade, a necessidade por informação edáfica tornou-se mais significativa, em termos de manejo sustentável, equilíbrio dos ecossistemas e ciclos biogeoquímicos. O monitoramento e a avaliação dos recursos do solo iniciaram uma nova era, em função da qualidade da informação produzida pelas novas tecnologias de caráter inovador, como o SIG e o sensoriamento remoto. Sobre a AP destacam: “Trata-se de uma técnica de manejo do solo por sítio-específico, com amostragem intensiva, combinada com métodos geoestatísticos e de modelagem. A informatização de todos os aspectos do gerenciamento transformam-nos em uma ferramenta valiosa de gestão para a inovação agropecuária no Brasil”. Sem dúvidas a pedologia é parte integrante dos conhecimentos necessários para avançar no contexto de AP. Os atributos do solo devem ser considerados conforme sua variabilidade espacial nas respectivas unidades, em escala detalhada, isto é, superior a 1:5.000 (McBRATNEY; MENDONÇA SANTOS; MINASMY, 2003), ou seja, feições de 50 metros no terreno são expressas como um centímetro no mapa. Assim, o presente capítulo inclui na primeira parte uma síntese do Sistema Brasileiro de Classificação do Solo (SIBCS) e do processo de mapeamento de solos, sendo avaliadas vantagens e restrições. Na segunda parte discute-se o comportamento de quatro propriedades do solo consideradas de extrema importância no contexto de AP, com base nas referências disponíveis: Relevo, Conductividade elétrica, Reflectância e Produtividade.
2. O Sistema Brasileiro de Classificação de Solos (SiBCS)

O Sistema Brasileiro de Classificação de Solos (SiBCS) é um sistema de classificação utilizada em geologia e agronomia. Foi criado a partir de um sistema americano, e apresenta uma dinâmica de revisões e aperfeiçoamentos sistemáticos sob a coordenação da Empresa Brasileira de Pesquisa Agropecuária. O SiBCS é constituído por seis níveis categóricos, quais quais são : Ordem, Subordem, Grande Grupo, Subgrupo, Grandes Grupos e Subgrupos. A identificação de um nível categórico inferior depende dos níveis superiores a que pertence. Por exemplo, o nome completo de uma Subordem inicia-se pelo nome da Ordem e assim sucessivamente para os demais níveis categóricos (SANTOS et al., 2006). A classificação de um solo segundo o SiBCS é feita partindo de uma amostragem à campo através de um Perfil (LEMOS; SANTOS, 1996). Denomina-se perfil de solo de solo (Figura 1) a seção vertical através do solo que engloba a sucessão de horizontes, acrescida do material subjacente pouco ou nada transformado pelos processos pedogenéticos e pelo manto superficial de resíduos orgânicos.

Diferentemente da Classificação Americana, a "Soil Taxonomy" (SOIL..., 1999) que se baseou em milhares de séries de solos já mapeadas e registradas, o SiBCS está sendo elaborado de forma descendente, isto é, considerando primeiro a população de poucas classes de solos, nas categorias mais superiores (ordens e subordens), as quais foram paulatinamente subdivididas e enquadradas nas categorias mais inferiores grandes grupos e subgrupos.

A adequada classificação de um solo permite estabelecer correlações com sua gênese e evolução, assim como com fatores ambientais e econômicos relativos a sua ocupação, manejo, aptidão agrícola, entre outros (OLIVEIRA et al., 1999). As relações solo-paisagem permitem associar atributos topográficos e tipos de solos, tornando-se úteis na predição de ocorrência dos tipos de solos nas paisagens, auxiliando assim no entendimento das variabilidades existentes. A classificação de um solo é dependente de uma série de fatores químicos, físicos, morfológicos, mineralógicos e topográficos. O entendimento da relação entre estas características auxilia no conhecimento da paisagem e no mapeamento. Desta forma, o objetivo deste trabalho foi verificar a correlação entre classes de solos com informações de geologia, topografia e atributos do solo. Para tanto, foi montado em banco de dados com as informações de análises de solo, curvas de nível e geologia. Estas informações foram cruzadas para verificar a contribuição de cada uma no mapa de solos. Os dados de relevo foram obtidos a partir de um modelo digital do terreno e os de geologia e solo de mapas já existentes da área. Concluiu-se que existe alta correlação entre atributos e classes de solo com a geologia da área. Isto sugere que é possível utilizar dados geológicos para delimitação inicial de classes de solos quando a geologia for o fator de formação com maior importância na diferenciação dos solos numa dada região (GENÜ; DEMATTÊ; NANNI, 2011).

Como forma de ilustrar o SiBCS, se apresentam imagens de dois perfis contrastantes de solos, um Latossolo típico com significativa profundidade e um Neossolo Litólico originado de basalto com diaclace horizontal (Figura 2).
3. Sobre o mapeamento de solos

Chagas et al. (2004) destacam que os mapas tradicionais e suas versões digitalizadas, independentemente de suas escalas, não fornecem toda a informação requerida pelos usuários, já que a maioria dos dados coletados durante os levantamentos de solos não pode ser mostrada nos mapas ou não consta nas legendas (VAN ENGELEN, 1999). Assim, para facilitar a disponibilização da informação, são utilizados sistemas automatizados que possibilitam a entrada, armazenamento, processamento e saída destas informações, permitindo aos usuários explorarem, de maneira mais rápida e segura, as informações requeridas para os diversos fins. Os sistemas de informação de solos são relativamente recentes e buscam descrever os solos em seu ambiente natural. Estes podem ser descritivos e apresentar dados quantitativos com dimensões espaciais (unidades de mapas), ou dados pontuais, que descrevem e quantificam propriedades específicas de um perfil de solo em determinado local e tempo na superfície da terra (BAUMGARDNER, 1999). Diante da necessidade de informações para o desenvolvimento de estudos que envolvem a localização, qualidade e quantificação de propriedades de solos, seus processos e suas interações com outros recursos naturais (ERNSTROM; LYTLE, 1993), organismos internacionais e países têm desenvolvido sistemas de informações de solos. Dentre estes, destacam-se: o Mapa Digital de Solos do Mundo (FOOD..., 1996), o SOTER - The World Soils and Terrain Database (VAN ENGELEN; WEN, 1995), O CANSIS – Canadian Soil Information System (MacDONALD; KLOOSTERMAN, 1984) e o NASIS – National Soil Information System (SOIL..., 1991). O mapa de solos do mundo da FAO (FOOD..., 1996), na escala de 1:5.000.000, é o único banco global de dados de solos existente. Ao longo dos anos 80s e 90s, muitas tentativas foram feitas para digitalizar este mapa, existindo, atualmente, disponíveis para consulta várias versões em diferentes formatos (vetor e raster). Este mapa contém informações sobre a composição das unidades de mapeamento, em termos de tipo de solo, textura da camada superficial e classe de declividade do solo dominante, além da eventual presença de fases, tais como: caráter salino, sódico, petrocálcico, entre outros (NACHTERGALE, 1996). O projeto SOTER nasceu da necessidade de atualização e expansão do banco de dados de solos usado pelo Mapa de Solos do mundo da FAO e representa o primeiro esforço para compilar um conjunto de dados globais na escala de 1:1.000.000. O conceito geral do SOTER se baseia no mapeamento de áreas de terra (unidades SOTER), as quais se apresentam distintas quanto aos padrões da paisagem, litologia, forma da superfície, declividade, material de origem e solos. Embora tenha sido inicialmente desenhado para o uso na escala de 1:1.000.000, o método é aplicável a escalas maiores junto com o desenvolvimento de bancos de dados nacionais. Um primeiro teste já foi realizado com os dados do mapa de solos do estado de São Paulo na escala de 1:500.000. Dentre as aplicações do SOTER está à possibilidade de avaliação do risco de erosão, potencial agrícola das terras, condição de salinidade e degradação das terras (VAN ENGELEN, 1999). O Sistema de Informação de Solos do Canadá (CANSIS), desde 1972, tem dado suporte às atividades da agência de pesquisa canadense (Agriculture and Agri-Food Canada - AAFC). O CANSIS foi desenvolvido para manipular dados de solo, clima, uso da terra, rendimento das culturas e dados geográficos, sendo os dados de solos parte integrante do National Soil Database (NSDB), cujo sistema e procedimentos de SIG foram implementados no aplicativo Arc/Info (ESRI,1994). O NSDB é um conjunto de arquivos que contém dados de solo, paisagem e clima para todas as regiões do Canadá. As informações sobre as características e distribuição dos solos são
apresentadas em três níveis de detalhe: o mapa de solos na escala de 1:5.000.000; as paisagens de solos na escala de 1:1.000.000; e levantamentos de solos detalhados, em escalas que variam de 1:20.000 a 1:250.000 (COOTE; MacDONALD, 1999). O Departamento de Agricultura dos Estados Unidos, pelos levantamentos de solos, tem fornecido, desde 1886, informações de solos para um número variado de usuários. No fim dos anos 60s e início dos anos 70s, os cientistas da National Cooperative Soil Survey (NCSS) reconheceram a necessidade e o potencial de automação da grande quantidade de informações gerais nos levantamentos de solos que estavam sendo executados. Desta maneira, foi desenvolvido o National Soil Information System (NASIS), para facilitar e melhorar a aquisição, manejo e distribuição destas informações. Semelhantemente ao sistema canadense, o NCSS desenvolve e mantém seis conjuntos de dados, que são o registro de caracterização de solos (SCR), registro de unidades de mapeamento (MUR), registro das unidades taxonômicas (TUR), banco de dados geográficos de levantamento de solos (SSURGO), banco de dados geográficos estadual (STATSGO) e banco de dados geográficos nacional (NATSGO). Cada um destes conjuntos foi desenvolvido para uma proposta ou necessidade específica (LYTLE, 1993, 1999). Cabe ressaltar que nenhum dos sistemas mencionados utiliza gerenciadores de banco de dados estendidos, capazes de tratar dados espaciais. Desta forma, todos utilizam um aplicativo de sistema de informação geográfica, predominantemente segundo o modelo vetorial, para o armazenamento dos dados geométricos (localização e extensão de objetos representados por pontos, linhas ou superfícies, e topologia) e para o armazenamento dos dados não espaciais, há um predomínio do emprego de aplicativos de sistemas de gerenciamento de banco relacional de dados comercialmente disponíveis (VAN ENGELEN; WEN, 1995; MacDONALD; KLOOSTERMAN, 1984; SOIL..., 1991).

4. Influência do relevo nas propriedades do solo

O uso da geomorfologia com as unidades de vertentes e curvatura do terreno são fundamentais para os estudos de gênese, levantamento e classificação de solos, assim como, para a obtenção de informações de estimativas de erosão, estabelecimento de zonas de manejo, planejamento e uso do solo. O relevo influencia a variabilidade da textura, uma vez que condiciona o tempo de exposição dos materiais à ação do intemperismo e pode ser dividida em topo, meia encosta e encosta inferior (FLORES et al., 2012).

Sua ação está associada ao clima e à dinâmica da água, tanto no contexto superficial como subterrâneo. A ação sobre o clima do solo se dá diretamente, através da incidência diferenciada da radiação solar, segundo a inclinação e a posição das vertentes (Figura 3), e do decréscimo da temperatura com o aumento da altitude, e indiretamente, sobre os seres vivos, especialmente os tipos de vegetação natural, que são dependentes das condições climáticas locais.

O relevo regula os movimentos da água ao longo da vertente, tanto na superfície como no interior do solo, agindo sobre o regime hídrico e, consequentemente, sobre os fenômenos de percolação interna e ações correlatas – lixiviação de solutos, transporte de partículas coloidais em suspensão no meio líquido – e ainda naqueles fenômenos em que a presença da água é imprescindível – hidrólise, hidratação, dissolução. Quanto mais íngreme for o terreno, menor a possibilidade de infiltração da água no solo e, consequentemente, do fluxo interno dela, e maior a quantidade de água que escoa na superfície (enxurrada) e a energia cinética produzida, potencializando o processo erosivo. Por isso, solos situados em relevo íngreme geralmente são menos profundos e mais secos que aqueles situados em declive menos acentuado.

A concavidade ou convexidade da vertente modifica o poder erosivo das enxurradas e influencia a direção do movimento da água no interior do solo. Em igualdade de condições climáticas e de cobertura vegetal, os solos nas posições côncavas, devido à convergência dos fluxos de água, são mais úmidos do que os das posições convexas.

Nas partes baixas de áreas com relevo mais suave, além da água de precipitação pluvial que incide sobre ela diretamente, há contribuição tanto da água proveniente das enxurradas das áreas mais altas, como da que se movimenta lateralmente e internamente no solo das vertentes contíguas a elas. Na avaliação da maior ou menor facilidade de infiltração da água no solo de uma vertente é necessário levar em conta, além da forma da vertente, seu comprimento, a rugosidade e a cobertura vegetal do terreno, além dos fatores intrínsecos do solo.

Buol, Hole e McCraken (1973) relacionam à influência do relevo os seguintes atributos do solo: 1) profundidade das camadas de solo; 2) espessura e conteúdo de matéria orgânica do horizonte superficial; 3) umidade relativa do perfil; 4) cor do perfil; 5) grau de diferenciação dos horizontes; 6) reação do solo; 7) conteúdo de sais solúveis; 8) espécie e grau de desenvolvimento de horizontes adensados (“pan”); 9) temperatura e 10) caráter do material inicial. Vários autores constataram a influência do relevo em AP, conforme escala detalhada e com objetivos diferentes, para monitoramento da movimentação de oliveiras em função de erosão (RAMOS et al., 2007), para planejamento regional da produção em pomerzes de citros (WU et al., 2009) e para agricultura irrigada por pivô central (EL NAHRYA; ALI; EL BAROUDY, 2011).

5. A relação entre a reflectância e as propriedades do solo

Se consideraram aplicações com sensoriamento remoto orbital ou aéreo e também espectrorradiometria (FILIPPINI ALBA et al., 2007), onde a reflectância da radiação eletromagnética é a principal propriedade do solo a ser medida. No entanto, o termo “remoto” refere à ausência de contato com o objeto medido e não ao grau de afastamento.

Liaghat e Balasundram (2010) indicaram que devido ao seu caráter inovador, a AP deveria incluir três assuntos principais nos seus protocolos: (1) Reunir informações sobre variabilidade espacial; (2) Discutir métodos de processamento de dados de maneira a avaliar o significado da variabilidade; e, (3) Implementar mudanças no gerenciamento dos insumos. Segundo os autores, no século XX houve forte pressão para aplicar manejo uniforme em grandes áreas agrícolas, por isso, as bases de dados em AP incluem informações das culturas, como estágio de crescimento, diagnóstico sanitário e requerimento de nutrientes; propriedades físicas e químicas do solo; dados climáticos diários e sazonais; condições de drenagem superficial e subsuperficial; disponibilidade de água e potencial para irrigação. O sensoriamento remoto é uma técnica que apresenta várias vantagens exclusivas (JENSEN, 1996): (i) coleta de dados não destrutiva; (ii) cobertura de vastas áreas geográficas contrastando com observações isoladas pontuais; (iii) disponibilidade em locais acidentados, de difícil acesso ou virgens; (iv) ajuste de erros por meio da avaliação de séries históricas de imagens; (v) caráter multidisciplinar da informação produzida. Imagens hiperespectrais e multiespectrais tem sido utilizadas como forma de apoio a operações de mapeamento de estresse vegetal, aplicação de fertilizantes e pesticidas, manejo de irrigação e monitoramento do conteúdo de nutrientes para grãos e diversas frutas.

Ge, Thomasson e Sui (2011) consideram ambas técnicas complementares de certa forma, pois o sensoriamento remoto convencional cobre extensas áreas com baixa resolução espectral e a espectrorradiometria, envolve informação espectral detalhada, utilizando em geral, uma malha regular e incluindo erros como consequência do processo de interpolação. A cor foi a primeira propriedade utilizada para diferenciar solos, inclusive tentativas com fotos preto e branco nos anos 30 e retomada depois da II guerra mundial já com fotos coloridas, fase estendida até as décadas de 60 e 70 com as primeiras imagens orbitais com os sensores MSS e TM da série Landsat. Foram compilados 36 trabalhos no período 1986 – 2007 considerando a relação de sensoriamento remoto com diversos atributos do solo (textura, teor de nutrientes, condutividade elétrica e capacidade...
de troca catiônica). Sete trabalhos trataram sobre sensoriamento remoto orbital e seis o aéreo, sendo 22 trabalhos sobre espectro-radiometria em laboratório e quatro à campo, com pequena sobreposição de técnicas, como constatam os números. O sensor multispectral foi utilizado em 13 situações e hiperespectral em 23 casos, com domínio de uso do intervalo do infravermelho próximo e em grau algo menor o visível. As técnicas de processamento de dados mais utilizadas incluem componentes principais e regressão.

Os autores acima indicam que os solos possuem diferentes componentes químicos e minerais, com assinatura espectral diferenciada, intensa para alguns componentes, muito fraca para outros. No intervalo 1,4 a 1,9 micrometros há uma sobreposição de picos de diferentes componentes, dificultando a interpretação. Os solos agrícolas são geralmente compactados por equipamentos de aração, colheita ou irrigação, afetando o teor de umidade e a condição de agregação, influenciando assim na resposta espectral do solo. Por outro lado a resolução espectral afeta a qualidade da informação levantada. Assim, sensores multiespectrais são pouco utilizados para caracterizar as propriedades do solo, pois as mudanças se confundem com variações de umidade ou rugosidade. Sensores hiperespectrais tem sido pouco utilizados em AP, possivelmente por considerar métodos matemáticos de aplicação em mineralogia, sendo que os espectros de solos são bem mais complexos.

6. A condutividade elétrica aparente do solo (CE)

McBratney, Mendonça Santos e Minasmy (2003) destacam que vários equipamentos de condutividade elétrica tem sido utilizados para mapeamento detalhado do solo em AP, entre eles o EM38 que trabalha com indução eletromagnética, o Veris 3100 que utiliza discos rolantes metálicos ou similares. Essa propriedade está relacionada à mineralogia do solo, ao teor de sais, ao conteúdo de umidade e à textura, existindo numerosos estudos que procuraram estabelecer modelos de regressão com a umidade, a espessura do perfil de solo e o teor de argila.

Sudduth et al. (2005) mediram a CE de 12 áreas em seis estados dos USA, com médias de temperatura de 18 a 22 ºC, médias de precipitações de 576 a 1026 mm, área de 14 a 65 hectares, considerando os equipamentos mencionados acima (EM38 e Veris 3100). Os solos estudados possuem diferenças em termos de textura, material de origem e mineralogia. A textura superficial mudou de acordo com o estado variando de barroso, silte-barroso, barroso a argiloso e silte-barroso a silte-argilosa-barroso, com maior dispersão no nível subsuperficial, variando de barro-arenosa a argilosa. Encontraram-se diferenças e semelhanças na EC medida com os dois sensores. O coeficiente de correlação da CE do EM38 com a do CE profunda (Veris) variou de 0,74 a 0,95 e no caso da CE profunda versus a CE rasa (ambas no Veris) o coeficiente de correlação foi 0,47 a 0,94. Os piores valores de correlação foram para a CE do EM38 com a CE rasa, oscilando entre 0,27 e 0,92. As maiores diferenças se encontraram nos solos de Missouri por suas características próprias (argilopan). A correlação da CE com o conteúdo de argila e com a capacidade de troca catiônica foi a mais intensa e persistente nas áreas e tipos de CE medidas. As correlações com umidade do solo, teor de silte ou areia e Carbono orgânico foram inferiores e variáveis nas áreas estudadas. No interior de um estado o perfil médio de teor de argila e a capacidade de troca catiônica poderiam ser estimados com certa precisão pela CE do EM38, a última propriedade poderia ser avaliada por uma das CE do Veris. O modelo de regressão desses atributos em função da CE para todas as áreas estudadas foi razoável, com R² superior a 0,55.

Inamasu et al. (2011) disponibilizaram 12 aplicações em AP envolvendo CE, sendo uma descritiva de equipamento e as restantes estudos à campo. As áreas estudadas localizaram-se nas regiões Centro-Oeste (Cerrado), que predominou, Sudeste, Sul e Nordeste. Todas as aplicações apresentaram variabilidade espacial da CE mostrando zonas homogêneas alternadas com efeitos locais, sendo que, em ocasiões as primeiras foram consideradas zonas de manejo. As vezes a CE rasa foi superior à CE profunda e vice-versa, dependendo provavelmente da condição do solo no período de medição. Nos diversos estudos foram mencionadas correlações da CE com altitude, pH, teor de Ca e Mg, produtividade e umidade com coeficientes oscilando entre 0,3 e
0.7. No caso da produtividade, em dois casos a correlação foi positiva e em um foi negativa.

7. Produtividade

O mapeamento da produtividade é considerado por muitos pesquisadores como sendo uma parte essencial da agricultura de precisão (MAKEPEACE, 1996). Thylén, Jurschik e Murphy (1997) consideraram que o mapa de produtividade é um dos métodos mais corretos para estimar a heterogeneidade de uma lavoura. Um mapa de produtividade evidencia regiões com alta e baixa produtividade, mas não explica a causa de tal variação, que pode ser devido a doenças, a deficiências, a desequilíbrios químicos ou estresse hídrico e se a causa específica não é determinada, nenhuma resposta ao gerenciamento pode ser obtida (LARK; STAFFORD, 1997).

A demanda por nutrientes pelas culturas depende de vários fatores, dentre eles, da cultura e suas variedades, o potencial de rendimento e qualidade dos grãos, da distribuição de chuvas e do potencial produtivo do solo. Os principais atributos do solo que determinam seu potencial produtivo são aqueles responsáveis por manter a água no solo e fornecer nutrientes. Dentre eles estão, a textura, estrutura, agregação e sua estabilidade, relação macro e microporosidade, grau de compactação do solo e densidade. Os atributos físicos do solo muitas vezes são utilizados de forma reduzida na definição de zonas de manejo. Alguns atributos, como a densidade do solo poderia ser incorporada no plano de manejo, pois impedimentos físicos para o crescimento radicular, mesmo em áreas onde a fertilidade química é alta, fazem com que o potencial produtivo do solo seja reduzido, bem como potencial da cultura. Atributos como: estrutura, consistência, agregação, profundidade efetiva, sequência de horizontes são estudados quando da execução dos levantamentos de solos.

Segundo Zhang, Yamasaki e Kimura (2002), são seis os fatores de variabilidade que afetam a produção agrícola:

- Variabilidade da produção: distribuição histórica e atual da produtividade.
- Variabilidade do campo: altitude, declive, aspecto da paisagem, terraço, proximidade à bordadura e a rios e lagos.
- Variabilidade do solo: fertilidade do solo (N, P, K, Ca, Mg, C, Fe, Mn, Zn e Cu), mudanças nos atributos de fertilidade do solo resultantes da aplicação de adubos orgânicos (ex. adubo verde, esterco etc), propriedades físicas do solo (textura, densidade, teor de umidade e condutividade elétrica), propriedades químicas (pH, carbono orgânico, CTC) e profundidade do solo.
- Variabilidade da cultura: densidade de plantio, altura da planta, estresse nutricional, estresse hídrico, propriedades biofísicas da planta (ex. índice de área foliar e biomassa), conteúdo de clorofila na folha e qualidade do grão.
- Variabilidade de fatores anômalos: infestação de plantas daninhas, ataque de pragas, presença de nematóides, geadas e granizo.
- Variabilidade no manejo: taxa de semeadura, rotação de culturas, aplicação de fertilizantes e pesticidas.

Amado e Santi (2011) analisaram a agricultura do sul do Brasil com ênfase na aplicação de AP na região do planalto (latossolos). A variabilidade e fertilidade do solo, assim como mapas de produtividade em várias lavouras de cultivo de grãos foram discutidas. O conteúdo e a capacidade de tamponamento dos nutrientes do solo, a infiltração da água e sua disponibilidade para as plantas são os fatores limitantes da produtividade. Nas zonas erodidas e marginais houve limitações produtivas pela compactação do solo, perda de matéria orgânica, redução de infiltração da água e capacidade de retenção.

8. Considerações finais

O estudo da variabilidade espacial de propriedades do solo tem grande importância para aumentar a eficiência de uso de fertilizantes e outros insumos nas lavouras. A variabilidade das características do solo está relacionada com suas características intrínsecas, ou seja, com os fatores de formação do solo, e com o efeito do manejo do solo (DOBERMANN; GEORGE, 1994). Diversos estudos sobre características químicas e físicas do solo demonstram a variabilidade ou dependência espacial destas características (SCHLINDWEIN; ANGHINONI, 2000; OLIVEIRA et al., 1999; SOUZA et al., 1998). A variabilidade de nutrientes...
A prática da agricultura de precisão foi primeiramente iniciada com o propósito de manejo de nutrientes, fundamentada unicamente num esquema de amostragem de solo em malha. Como este era um procedimento que teve muitos resultados de sucesso quando usado em parcelas experimentais, avaliou-se que o mesmo seria muito promissor também quando utilizado em grandes áreas. Acreditava-se que este procedimento seria capaz de identificar todas as causas das variabilidades dos rendimentos de um campo cultivado. Uma malha de um hectare por amostra foi definido para a maioria das aplicações e a partir dessas amostragens os mapas de fertilidade e de recomendações eram construídos. Entretanto a maioria dos agricultores ficou desapontada, porque a variabilidade nos rendimentos de seus campos de produção não desapareceu (SCHEPERS; SCHLEMMER; FERGUSON, 2000). Estudos geoestatísticos a esse respeito mostraram que os mapas resultantes apresentavam distorções mais devidas ao local de coleta da amostra (centro ou interseção da malha) e ao tamanho da malha de amostragem (SCHEPERS; SHANAHAN; LUCHIARI JUNIOR, 2000) do que devido ao método de interpolação empregado, seja ele krigagem, inverso do quadrado da distância ou outro. Adicionalmente, outro problema que emergiu foi referente aos custos envolvidos nos esquemas das amostragens e das análises de solo e que começou a ser questionado pelos agricultores, quanto à sua viabilidade prática e econômica. Destes questionamentos novas direções começaram a ser buscadas. Varvel, Schlemmer e Schepers (1999) mostraram que a imagem aérea de um solo descoberto apresentava um mesmo padrão de distribuição de matéria orgânica e de nutrientes do que os mapas resultantes de um esquema intensivo de amostragem em malha fina. A partir deste estudo um grande número de produtores e provedores de serviço começou a considerar o uso de imagens aéreas para orientar os locais de amostragens e diminuir custos de coletas e análises. Novas abordagens, como zonas homogêneas de manejo, mostraram-se promissoras para indicar os locais nos quais as amostragens deveriam ser feitas. Luchiari et al. (2000), conceitualmente zonas de manejo como sendo áreas do terreno de igual produção potencial, eficiência do uso de insumos e risco de impacto ambiental. Estes últimos autores utilizaram mapas de colheita, mapas de condutividade elétrica do solo, mapas de classificação de solos e imagens aéreas para delinear zonas homogêneas de manejo e para direcionar as amostragens de solo. Shanahan et al. (2000) usaram procedimento similar para analisar o efeito de diferentes densidades de plantio em função das características do terreno e seus efeitos nos rendimentos do milho.

Figura 4. Zona de contato entre Argissolo Bruno Acinzentado (esquerda) e Neossolo Litólico (direita). Foto: Carlos A. Flores.
A demanda por nutrientes pelas culturas depende de vários fatores, dentre eles, da cultura e suas variedades, do potencial de rendimento e qualidade dos grãos, da distribuição de chuvas e do potencial produtivo do solo. Os principais atributos do solo que determinam seu potencial produtivo são aqueles responsáveis por manter a água no solo e fornecer nutrientes. Dentre eles estão, a textura, estrutura, agregação e sua estabilidade, relação macro e microporosidade, grau de compactação do solo e densidade.

A Pedologia tem muito a contribuir com a AP, no entanto novos métodos de mapeamento em escala superior a 1:5.000 devem ser sistematizados. Como se apresenta no texto “Sobre o mapeamento dos solos”, os projetos de levantamento são em geral em escala regional ou menor, o que representa escasso detalhamento sob a perspectiva da AP; são caros e com objetivos diversos. O mapeamento digital de solos está em franca evolução (McBRATNEY; MENDONÇA SANTOS; MINASMY, 2003) e disponibiliza procedimentos que permitem aprimorar os mapas existentes ou até criar novos, considerando as limitações de escala improdutiva em termos de AP.

Em relação às quatro propriedades do solo analisadas, a produtividade depende da disponibilidade de água e nutrientes, como também da condição climática (exceto no caso irrigado), que possui variação sazonal e assim, controla a resposta dos solos ano a ano. Trata-se sem dúvida, de uma das principais propriedades do solo a ser avaliadas em relação a sua variabilidade espacial. Inamasu et al. (2011) destacam: “O mapeamento da CE do solo é uma estratégia que pode ser considerada como a mais utilizada em AP para auxiliar na identificação da variabilidade do solo e orientação inteligente para amostragem, devido ao custo e praticidade operacional. A topografia, principalmente as áreas côncavas e convexas, por ser indicadora do tipo de solo, causa de acumulo ou lixiviação de água e nutrientes, assim como pela capacidade de definir a vulnerabilidade em termos de erosão, é também uma potencial indicadora de variabilidade do solo a baixo custo”. No entanto, os estudos consultados sobre CE demonstram que o método ainda não foi padronizado e há dependência com o tipo de solo e a condição climática regional, que varia em cada estação e ano a ano; o que explicaria as respostas diferenciadas para solos e regiões distintas (Sudduth et al., 2005; INAMASU et al., 2011). No caso da reflectância do solo, os estudos que consideram a cor foram substituídos pelo espectroradiometria com sensores hiperespectrais, com uso do intervalo infravermelho integrado ao visível, destacando-se a complexidade dos espectros relacionados aos solos pela resposta diferenciada dos diversos componentes (GE; THOMASSON; SUI, 2011). No caso de sensoriamento remoto aéreo ou orbital, o custo ou a dificuldade de sobreposição de condições meteorológicas adequadas, com resolução espacial/espectral detalhada das imagens e tempo de revisita curto para as plataformas satelitais, continuam a restringir a utilização para agricultura.

Referências

FERRAMENTAS PARA AGRICULTURA DE PRECISÃO | 45

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. The digitized soil map of the world including derived soil properties. Rome, 1996. CD-ROM.

Condutividade elétrica aparente do solo

Ladislau Marcelino Rabello¹, Alberto Carlos de Campos Bernardi², Ricardo Yassushi Inamasu⁴

¹,²Pesquisador, Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, SP, Brasil
³Pesquisador Embrapa Pecuária Sudeste, Rod. Washington Luiz, km 234, Fazenda Canchim, São Carlos, SP, Brasil

E-mail: ladislau.rabello@embrapa.br

Resumo: A condutividade elétrica aparente do solo (ECa) originou-se na medida da salinidade do solo, problema muito pertinente em zonas áridas associadas com lavouras de agricultura irrigadas e com áreas com lençóis freáticos de baixa profundidade. Sabemos que a ECa do solo é muito influenciada por uma vasta combinação de propriedades físico-químicas do solo, tal como: sais solúveis; mineralogia e conteúdo de argila; quantidade de água presente no solo; densidade volumétrica; matéria orgânica e temperatura do solo. A maior aplicação da condutividade elétrica aparente do solo se da em escala de campo no mapeamento da variabilidade espacial de muitas propriedades edáficas, p.ex. matéria orgânica, umidade, etc. e também na determinação de uma grande variedade de propriedades antropogênicas, tal como: fração de lixiviação; padrões de irrigação e drenagem; padrões de compactação devido a maquinários. Aparentemente a ECa do solo é uma ferramenta rápida, confiável e fácil que outras técnicas, mas nem sempre correlacionadas com o rendimento das culturas. Por isso, a medida de ECa está entre as mais frequentes ferramentas usada em pesquisa na agricultura de precisão para a caracterização espaço-temporal das propriedades edáficas e antropogênicas que influenciam a produtividade da cultura. O objetivo desse trabalho é levar ao conhecimento da técnica de ECa, sistemas de medida de condutividade elétrica desenvolvidos e resultados dos trabalhos utilizando esse método em campos experimentais brasileiros no decorrer do andamento do projeto de agricultura de precisão da Embrapa.

Palavras-chave: condutividade, elétrica, aparente, solo, equipamento, mapas, agricultura de precisão.

Soil Electric Conductivity Aparent

The apparent soil electrical conductivity (ECa) originated in the measurement of soil salinity; very pertinent issue in arid areas associated with agricultural crops and irrigated areas with shallow groundwater. We know that ECa soil is greatly influenced by a wide combination of physico-chemical properties of the soil, such as soluble salts, and clay content, mineralogy, amount of water present in the soil, bulk density, organic matter and soil temperature. The largest application of apparent soil electrical conductivity is in the range of field mapping of the spatial variability of many soil properties, eg organic matter, moisture, etc., and also in the determination of a wide variety of anthropogenic properties such as leaching fraction, irrigation and drainage patterns; compression standards due to machinery. Apparently ECa soil is a tool fast, reliable and easy than other techniques, but not always correlated with crop yields. Therefore, the measurement of ECa is among the most common tools used in research in precision agriculture to characterize the spatio-temporal and anthropogenic soil properties that influence crop yield. The aim of this work and to inform the technical ECa systems, electrical conductivity measurements developed and results of studies using this method in experimental fields Brazilians during the progress of the project precision agriculture Embrapa.

Conductivity, electric, aparent, soil, system, maps, Precision Farmer.
1. Introdução

Durante as últimas décadas, a agricultura global tem dado grande salto quanto ao item de produção, para suprir as necessidades da crescente população mundial. Porém sofre grande pressão para melhorar a qualidades das sementes e usarem menos pesticidas e sistema de irrigação.

No esforço de alimentar a população mundial, as atividades agrícolas têm causado grandes impactos ao meio ambiente, tais como o uso abusivo de fertilizantes e pesticidas, degradação do solo e qualidade da água. Desde os anos noventa práticas errôneas na produção agrícola contribuíram para uma degradação de 38%, correspondendo a 1,5 bilhões de hectares em todo o planeta, estima-se, que desde desta década, 5,5 milhões de hectares são perdidos anualmente (WORLD..., 1998).

Em termos globais a agricultura irrigada torna-se uma essencial contribuição para produção total de alimentos. No mundo 15% das terras usadas para plantio são irrigadas, estima-se que de 10% a 15% da água para agricultura irrigada é utilizada de maneira errada, resultando em encharcamento e salinização (ALEXANDRATOS, 1995).

Fora um grande avanço em algum ponto tecnológico para o aumento da produção agrícola em larga escala, a agricultura sustentável atualmente é vista como o mais viável recurso para demanda de alimento para a população mundial. Seu conceito baseia-se num delicado balanço entre maximizar a produção e manter a estabilidade econômica minimizando a utilização dos recursos naturais finitos e diminuindo os impactos ambientais nocivos pela utilização de agroquímicos poluentes.

O grande desafio da agricultura sustentável é de manter a produtividade agrícola em consonância com o crescimento populacional, para isto a agricultura de precisão é uma importante ferramenta a ser utilizada.

Convencionalmente as culturas são tratadas de forma homogênea, ignorando as inerentes variações entre solo e da cultura. Desde os anos 70, com o trabalho de Nielson e colaboradores, já demonstravam uma variabilidade espacial das propriedades do solo (NIELSON; BIGGAR; ERH, 1973).

A introdução de equipamentos de monitoramento de campo e do GPS, facilitaram o estudo e documentação da variabilidade espacial da cultura e das propriedades do solo em escala de campo.

A variabilidade espacial em culturas é o resultado de uma complexa interação de fatores, tais como, biológico (micróbios, vermes etc.), edáfico (salinidade, matéria orgânica, nutrientes, etc.), antrópico (atividades humanas, compactação do solo devido a máquinas agrícolas), topográfico (relevo, elevação) e climático (umidade relativa, temperatura, etc.).

O manejo de uma cultura em sitio-específico objetiva a orientar o manejo do solo, pragas e na cultura de acordo com a sua variação espacial dentro do campo (LARSON; ROBERT, 1991).

A agricultura de precisão adotou rapidamente tecnologias eletrônicas e de informação para facilitar os estudos da cultura dentro de sua variabilidade espacial. Primeiro em meados dos anos 80 os equipamentos eram levados a campo, depois nos anos 90 surgem novas tecnologias como o GPS (sistema de posicionamento global) e de sistemas de informações geográficas (GIS) (VAN SCHILFGAARDE, 1999).

Atualmente a agricultura de precisão adota técnicas mais sofisticadas de sistemas GPS, sistemas de monitoramento de campo e sistemas de aplicações a taxas variadas de produtos agroquímicos combinados e adaptadas com sistemas GIS e sensoriamento remoto (indução eletromagnética, fotografia aérea, imagens de satélites, etc.) ou então o uso de tecnologias de medidas rápidas de propriedades do solo, tal como resistividade elétrica e TDR (time domain reflectometry) (PLANT, 2001).

Para gerenciar a variabilidade dentro de uma cultura, devem ser especificadas regiões, georreferenciadas, que exibem comportamento semelhante em se tratando de uma característica específica (VAN UFFELEN; VERHAGEN; BOUMA, 1997).
Mapas de colheitas fornecem informações dos processos físicos, químicos e biológicos sob certas condições climáticas, informando básicas condições de implementação do manejo em sitio-especifico da cultura indicando onde aplicar os insumos ou correções necessárias, baseadas nos padrões espaciais de produtividade da cultura (LONG, 1998).

Porém os mapas de colheitas sozinhos, não são suficientes para fornecer informações para distinguir entre as diversas fontes de variabilidade e não dão orientações claras sobre a influência da variabilidade do clima, pragas, doenças e propriedades físico-químicas do solo dentro de uma cultura em um determinado ano.

Bullock e Bullock (2000), em seu trabalho demonstram a importância das medidas das variações das propriedades físicas e químicas do solo em agricultura de precisão. A medição da condutividade elétrica aparente do solo (EC) é uma tecnologia que se tornou a uma ferramenta valiosa para identificar as características físico-químicas do solo que influenciam os padrões de rendimento das culturas e para estabelecer a variação espacial dessas propriedades do solo (CORWIN et al., 2003).

A agricultura de precisão não requer apenas a informação espacial para determinar onde e como aplicar uma ação, tal como, o momento de fertilizar, o momento de aplicar pesticidas ou o momento de irrigação, mas também requer informações temporais para saber quando aplicar.

Neste documento abordaremos um pouco sobre a teoria básica da medida de condutividade elétrica, alguns tópicos sobre as técnicas de medida de condutividade elétrica aparente (indução eletromagnética, resistividade elétrica) e resultados de alguns trabalhos realizados no decorrer do projeto de agricultura de precisão MP1-Agricultura de Precisão.

2. Material e Métodos

2.1. Princípio da medida de condutividade elétrica aparente

A medida de condutividade elétrica aparente consiste em usar amostra de forma e dimensões conhecidas (quadrada, cilíndrica, etc.). A resistência elétrica é então calculada pela seguinte equação:

\[R = \frac{\rho}{\frac{L}{A}} \]

Eq. 01

Onde:

- \(R \) = resistência elétrica [Ohms, \(\Omega \)];
- \(\rho \) = resistividade elétrica [Ohms.centímetros, \(\Omega.cm \)];
- \(L \) = comprimento da amostra [centímetros, cm];
- \(A \) = área de secção transversal da amostra [centímetros quadrados, \(cm^2 \)].

Para amostras de formas e dimensões não definidas, utiliza-se o método conhecido como sistema de quatro pontos (SMTIS, 1958), muito utilizado em geofísica. Consiste em utilizar quatro eletrodos de metal alinhados sequencialmente com espaçamentos conhecidos, Figura 1.

Figura 1. Sistema quatro pontos.
A corrente elétrica I (Ampére) é injetada nos eletrodos externos e a tensão V (Volts) é lida nos dois eletrodos centrais. A resistividade é então calculada com a seguinte equação:

\[
\rho = \frac{2\pi \left(\frac{V}{I} \right)}{\left(\frac{1}{S_1} + \frac{1}{S_2} - \frac{1}{S_1 + S_2} \right)^{-1}} \quad \text{eq. 02}
\]

Em um caso específico: \(S_1 = S_2 = S_3 \), temos:

\[
\rho = \frac{2\pi S \left(\frac{V}{I} \right)}{\left(\frac{1}{S} \right)^{-1}} \quad \text{eq. 03}
\]

A condutividade elétrica, \(\sigma \), é definida como o inverso da resistividade elétrica, assim temos:

\[
\sigma = \frac{1}{\rho} \quad \text{eq. 04}
\]

2.2. Descrição de equipamentos de medida de condutividade elétrica

A utilização de equipamentos nacionais para a medida de condutividade elétrica aparente é um problema devido a estes serem importados, que dificulta a realização de medidas em solos brasileiros uma vez que estes equipamentos foram projetados para realizar as medidas em seu país de origem, calibrados com a cultura que mais usariam como exemplo, a cultura de milho no meio oeste estadounidense.

Os equipamentos utilizados na medida de condutividade elétrica aparente do solo nesse projeto baseiam-se nas técnicas de contato, sistema quatro pontos e indução eletromagnética e por fim o desenvolvimento de um sistema nacional para medida de ECa, adaptado as necessidades de uso do projeto mp1-Agricultura de Precisão.

2.2.1. Sistema de quatro pontos:

Esse sistema compreende uma estrutura metálica composta de seis discos de cortes, servindo como eletrôdos de medidas. Essa estrutura é engatada a um veículo de arraste (trator, caminhonetes, etc.) para a medida contínua de ECa, composto também por uma unidade eletrônica para coleta e armazenamento de dados de condutividade elétrica junto com uma entrada para sistema de georreferenciamento por satélite, GPS - Global Position System.

O sistema em si é fechado e calibrado segundo o fabricante, não deixando o usuário fazer adaptações que permitam a sua utilização além daquela que foi projetado.

O fato de o sistema usar seis eletrodos e usar o método de medida de quatro pontos se deve a fazer a medida em duas profundidades diferentes praticamente em tempo igual, ou seja, dois sistemas de quatro pontos em um só, utilizando a mesma fonte de corrente, Figura 1, para os dois sistemas.

Esse sistema é produzido e fabricado pela empresa Veris Technology, Nebraska USA (VERIS..., 2012), ilustrado na Figura 2.

2.2.2. Indução eletromagnética:

O sistema baseia-se na medida de condutividade elétrica do solo pela indução eletromagnética devido a passagem de corrente elétrica em uma bobina elétrica, esse sinal induz uma corrente elétrica na amostra de solo que se deseja medir, com a passagem da corrente elétrica na amostra, essa induz uma onda eletromagnética que é recebida por outra bobina elétrica no equipamento, o sinal então devido a essa corrente induzida na amostra nos da à correspondente medida de condutividade elétrica do solo.

Equipamento também importado e dedicado não deixando o usuário adaptar as outras condições que projetado. Fabricado o Canadá pela empresa Geonics Limited, utilizado em sua origem para aplicações militares na detecção de minas explosivas.

Foto: Veris® Technologies (http://www.veristech.com/)
Na Figura 3 é ilustrado o sistema de medida de condutividade elétrica aparente por indução eletromagnética.

2.2.3. Sistema protótipo desenvolvido

Conforme descrito anterior e descrição dos equipamentos usados para medida de ECa, o sistema são embarcados não permitindo ajustes e calibração por parte do usuário, dificultando em certos aspectos a continuidade do projeto MP1-Agricultura de Precisão.

O equipamento mais usado foi o de quatro pontos, V3100, mas esse em certas culturas não tem como realizar a medida devido ao seu tamanho e flexibilidade de ajustes entre eletrodos, assim houve a necessidade de projetar e desenvolver um sistema baseado no método de medida de quatro pontos, que proporcionasse aos usuários essa flexibilidade de ajustes na distância de eletrodos, podendo medir diferentes profundidades de acordo com o limite de medida do equipamento e que possibilitassem a leitura de ECa em regiões não atendidas pelo sistema V3100 e nacionalização e domínio da tecnologia.

A Figura 4 ilustra o diagrama de bloco do sistema desenvolvido, esse, utiliza como processador central o PIC18F258 de fabricação Microchip Technology (http://www.microchip.com). O sistema foi projetado para leitura de dois sistema de medida de quatro pontos, composto de dois voltímetros, um de ganho unitário e outro de ganho três para medidas mais profundas, uma fonte de tensão alternada de 159Hz, para a medida de corrente elétrica, três filtros de sinal para cada canal de leitura, três conversores de sinal alternado para contínuo, mostrador de LCD (light cristal diodes) de 32 caracteres para visualização dos sinais de condutividade e informações de controles, teclado de quatro funções de comunicação usuário e maquina, porta serial padrão RS232 para comunicação e transferência de dados armazenados e sentenças NEMA para GPS e memória flash para armazenamento de dados coletados de capacidade 64Kbytes. Na Figura 5 é ilustrado o sistema projeto.

![Figura 3. sistema medida de condutividade elétrica por indução eletromagnética, EM38-MK2](Foto: L.M. Rabello)

![Figura 4. Diagrama de bloco Sistema protótipo de mapeamento de condutividade elétrica.](Foto: L.M. Rabello)

![Figura 5. Sistema protótipo de medida de condutividade elétrica.](Foto: L.M. Rabello)
3. Resultados e Discussão

A utilização do método de condutividade elétrica aparente do solo, através dos equipamentos acima mencionados, como ferramenta de uso na agricultura de precisão proporcionou aos pesquisadores e membros da equipe composta no projeto MP1-Agricultura de Precisão um método rápido, eficaz e pouco dispendioso no levantamento de dados para a sequência de seus trabalhos.

Com a prévia medida da ECa nos trabalhos, possibilitou aos pesquisadores uma rápida visualização da variabilidade espacial da região de interesse, dividindo-as em regiões de estudos.

Uma sequência de trabalhos foi realizada com a metodologia de medida de condutividade elétrica aparente no início dos trabalhos do projeto MP1-Agricultura de Precisão como em Oliveira, Bernardi, Rabello, 2011, cujo trabalho é de validar um modelo para a quantificação semiautomática da variabilidade espacial do solo, para adotar um índice de oportunidade para a adoção da tecnologia, onde conclui que o modelo mostrou ser robusto, apresentando consistência de resultados e flexibilidade de aplicação. Com base no conhecimento agronômico de campo foi possível sugerir que os índices acima de média histórica correspondem ao potencial de adoção existente nos talhões.

Luciari Junior et al. (2011), em seu trabalho para definição de zonas de manejo utilizam a condutividade elétrica, por indução eletromagnética, para definir zonas de manejo de acordo com outros parâmetros que se é utilizado nos trabalhos. Onde especifica que o mapa de condutividade elétrica revelou padrões similares aos mapas de reflectância e de zonas de manejo.

Resende e Vilela (2011); Vilela et al. (2011), fazem uma avaliação geral do uso de agricultura de precisão em culturas anuais, onde enfatiza o uso de ferramentas de caracterização da variabilidade das áreas em estudo utilizando sensor de condutividade elétrica do solo, modelo digital de elevação do terreno e imagens aéreas, subsidiando o diagnóstico de fatores condicionantes de variações de produtividade nos talhões de estudo.

Oliveira, Franchini, Debiasi, 2011, fazem um estudo da variabilidade espacial da produtividade da soja, milho-soja e da condutividade elétrica do solo para um específico tipo de solo, Latossolo Bruno, onde concluem que a ECa e a produtividade da soja apresentaram dependência espacial e foram mapeadas. A produtividade da soja foi significativamente e inversamente correlacionada com a ECa, terminando em que a ECa é um parâmetro útil na definição de zonas de manejo diferenciadas dentro de uma lavoura.

Brandão et al. (2011), estudam a correlação da ECa com o pH em solos no cerrados de Goiás, onde avaliam a variabilidade espacial e geração de mapas de ECa, para correlacionar os valores...

Figura 6. a) Mapa de condutividade elétrica do solo e b) mapa de zonas homogêneas de manejo.

Figura 7. mapas condutividade elétrica e da produtividade da soja.
de ECa e pH do solo, no qual indicam que há boa similaridade entre os valores de ECa e pH, concluindo que a ECa pode ser utilizada para caracterizar a variabilidade e como bom estimador do pH e acidez potencial do solo no Cerrado.

Oliveira, Benites, 2011, fazem um estudo sobre a variabilidade do solo como indicador da oportunidade da agricultura de precisão em sistema de plantio direto, tendo como objetivo caracterizar a variabilidade espacial por técnicas quantitativas na avaliação do potencial das informações no apoio às decisões de um sistema produtivo. Neste trabalho Oliveira ressalta a condutividade elétrica do solo como uma ferramenta importante na interpretação da variação espacial do talhão e no suporte a esquemas otimizados de amostragem do solo.

Grego et al. (2011), fazem um estudo geoestatístico da condutividade elétrica e a altitude de um solo cultivado com cana-de-açúcar, tendo como objetivo verificar a variabilidade espacial da condutividade elétrica do solo e da declividade do solo sob um sistema de plantio direto, concluindo que a variabilidade espacial encontrada nos resultados de condutividade elétrica correspondem as diferenças de altitude sendo úteis para diagnosticar características do solo e da planta que variam conforme a topografia do terreno, Figura 8.

Perez et al. (2011), fazem um estudo sobre variabilidade espaço-temporal em sistemas de integração lavoura-pecuária onde correlaciona uma determinada praga com a condutividade elétrica, onde conclui um padrão de reinfestação associado às áreas de maior condutividade elétrica.

Salton et al. (2011), estudaram a condutividade elétrica para correlacionar com alguns atributos físicos e químicos de um latossolo com histórico de 15 anos de manejo onde verificou que a condutividade elétrica pode auxiliar na delimitação das zonas de manejo e áreas homogêneas quando submetidas ao mesmo sistema de manejo.

Bernardi et al. (2011), no estudo da variabilidade espacial de propriedades do solo em pastagem manejadas intensivamente com o objetivo de conhecer a variabilidade espacial do solo para um uso racional de insumos, tal como a aplicações a taxa variável de calcário e fertilizante. Tiveram problemas correlacionados ao local devido a ser uma área de pastagem havia muita incidência de touceiras de capim, o que dificultava o uso de sistema de medida de condutividade elétrica importado, usando neste caso o sistema desenvolvido no projeto, indicando que a área em estudo apresentava-se muito homogênea quanto às propriedades do solo.

Rabello L. M. e colaboradores fazem um trabalho detalhado sobre os métodos de condutividade elétrica, equipamentos desenvolvidos e adaptações de sistemas importados a outros tipos de implementos agrícolas tal como subsoladores e semeadoras, bem como descrevem o desenvolvimento de um sistema nacionalizado para uso geral na medida

Figura 8. Mapas de isolinhas: a) condutividade elétrica 0-30 cm; b)condutividade elétrica 0-90 cm e c) cota altimétrica (m).
de condutividade elétrica, (RABELLO, 2009; RABELLO; INAMASU; BERNARDI, 2010; RABELLO et al., 2008; INAMASU, 2007)

4. Conclusões

O uso da condutividade elétrica aparente do solo tem demonstrado como uma importante ferramenta para os trabalhos de agricultura de precisão, sua facilidade, simplicidade e praticidade leva a economia de tempo e custo na realização das tomadas de decisões das áreas de manejo e de variabilidade espacial das áreas de estudos. Mas a CEa sozinha não responde a todas as perguntas é necessário após o mosaico de dados que ela proporciona, minerar esses dados e torná-los mais amigável ao usuário. Atualmente a CEa está na fase de mapas, necessário agora a analise de dados para diversos campos da pesquisa agropecuária como descrito nos trabalhos acima citados e depois a correlação desses dados para os pesquisadores na correta tomada de decisão na aplicação de insumos, manejo adequado e automatização dos processos agrícolas na melhoria das condições ambientais e de demanda por alimentos.

Agradecimentos

Os autores agradecem a todos os membros da equipe, muitos são os nomes que impossível de editá-los nesse espaço, que de forma direta ou indireta participaram assiduamente na realização desses trabalhos, A medida de CEa, por simples que seja, demanda tempo e dedicação em campos experimentais sob condições climáticas as vezes nem tão desejáveis dos seus usuários. Agradecimentos a coordenação do projeto MP1-Agricultura de Precisão que tornou possível o domínio e desenvolvimento de tecnologia de condutividade elétrica.

Referências

Sensoriamento Remoto: conceitos básicos e aplicações na Agricultura de Precisão

Luciano Shozo Shiratsuchi*1, Ziany Neiva Brandão*2, Luiz Eduardo Vicente*3, Daniel de Castro Victoria*4, Jorge Ricardo Ducati*5, Ronaldo Pereira de Oliveira*6, Marina de Fátima Vilela*7

*1PhD. em Agronomia: Ciência do Solo, Embrapa Agrossilvipastoril
*2DSc. em Recursos Naturais: Sistema Água-Solo-Planta-Atmosfera, Embrapa Algodão
*3DSc. em Geografia, Embrapa Monitoramento por Satelite
*4DSc. em Ciências Físicas, Universidade Federal do Rio Grande do Sul
*5PhD. em Ciências Físicas, Universidade Federal do Rio Grande do Sul
*6PhD. em Agricultura de Precisão, Embrapa Solos
*7DSc. em Sensoriamento Remoto, Embrapa Cerrados

E-mails: luciano.shiratsuchi@embrapa.br, ziany.brandao@embrapa.br, luiz.vicente@embrapa.br, daniel.victoria@embrapa.br, ducati@if.ufrgs.br, ronaldo.oliveira@embrapa.br, marina.vilela@embrapa.br

**Projeto financiado pela Embrapa enquadrado no Macroprograma 1 - Grandes Desafios Nacionais

Resumo: A agricultura de precisão (AP) oferece uma infinidade de benefícios potenciais em rentabilidade, produtividade, sustentabilidade, qualidade da cultura, proteção ambiental, qualidade de vida, segurança alimentar e desenvolvimento econômico rural. A AP utiliza abordagens científicas e modernas, combinadas com os conhecimentos tradicionais e tecnologias de informação para uma produção agrícola inteligente. Nesse sentido, as técnicas de sensoriamento remoto, onde as informações da lavoura são obtidas de forma não-destrutiva, rápida e por vezes à distância, têm se tornado de fundamental importância na obtenção e tratamento dos dados de campo. Técnicas de sensoriamento remoto (SR) desempenham um papel importante no campo em diagnósticos como a estimativa da produtividade, avaliação nutricional, detecção de pragas e doenças, previsão do tempo e avaliação da necessidade hídrica das plantas obtidas em sitio específico. Assim, o objetivo deste trabalho foi apresentar aspectos teóricos e as principais técnicas de SR utilizadas atualmente nas lavouras de alta produtividade.

Palavras-chave: efeito da refletância, sensores, índices de vegetação, monitoramento de culturas

Remote Sensing: Basic concepts and applications in Precision Agriculture

Precision Agriculture (PA) offers a myriad of potential benefits in terms of profitability, crop yield, sustainability, quality, environmental protection, quality of life, food security and rural economic development. The AP uses modern and scientific approaches, combined with traditional knowledge and information technologies for an intelligent agricultural production. In this sense, the remote sensing techniques, which the crop information are obtained in a non-destructive, very quick and sometimes at a distance, have become very important to obtaining and processing of field data. Remote sensing (RS) play an important role in the field, especially in diagnostics as yield estimate, nutritional assessment, detection of pests and diseases, weather forecast and assessment of plants water requirement in site-specific. Thus, the objective of this work was to present the theoretical aspects and the main SR techniques currently used in farms of high productivity.

reflectance effects, sensors, vegetation indices, crop monitoring
1. Introdução

O sensoriamento remoto (SR) se caracteriza pela obtenção de informações de um objeto sem existir um contacto físico com o mesmo, e muitas vezes à longas distâncias. As primeiras medições por SR foram realizadas através de câmeras acopladas em aeronaves, balões, pipas, foguetes e até passaros. Atualmente, imagens de sensores remotos podem ser obtidas a partir de diversas plataformas, como satélites, aeronaves, veículos aéreos não tripulados (VANTs), máquinas agrícolas autopropelidas, etc.

Várias aplicações podem ser abordadas através de SR, dentre elas, se destacam: (a) a estimativa da biomassa e produtividade da cultura; (b) o monitoramento de estresse hídrico e do vigor nas plantas e (c) a avaliação do estádio fenológico (BRANDÃO, 2009).

Uma das primeiras aplicações dos dados obtidos remotamente tem sido a detecção de diferenças na refletância, relacionadas à densidade da cobertura vegetal. A radiometria espectral é uma das mais importantes áreas do SR, podendo ser efetivada por meio de medidas realizadas em laboratório ou em campo. Ela identifica a intensidade com que cada material, seja um tipo de solo, de rocha ou de vegetação, reflete a radiação eletromagnética em diferentes comprimentos de onda do espectro (BRANDÃO et al., 2008). Assim, dados da refletância têm sido associados às características das plantas como o índice da área foliar, a biomassa ou a fração radiativa interceptada fotosinteticamente. Na agricultura, as propriedades da refletância em cada faixa do espectro eletromagnético podem ser melhor avaliadas através de combinações matemáticas de diferentes bandas espectrais (ATZBERGER, 2013). Essas transformações são medidas da atividade da vegetação utilizam em especial as faixas do visível e infravermelho próximo (NIR - Near Infrared) e são denominados de índices de vegetação (IVs).

Para entender como os IVs são criados, é preciso uma melhor compreensão da resposta espectral da vegetação. Na Figura 1a. pode ser observado o comportamento da refletância para a vegetação verde saudável, sendo fundamentalmente determinado pela clorofila, que reflete em todo o espectro visível, mas tem seu ápice na faixa da luz verde (500-600 nm), e cuja absorção é máxima nas faixas espectrais da luz azul (400-500 nm) e da luz vermelha (600-700 nm) (BRANDÃO et al., 2008). As clorofilas a e b regulam o comportamento espectral da vegetação de maneira mais significativa em comparação com outros pigmentos (Figura 1b). No NIR

![Figura 1.](image)
(750-1300 nm), dependendo do tipo de planta, a radiação solar é refletida numa proporção de 30 % a 80 % dos raios incidentes.

Nos comprimentos de ondas acima de 1300 nm, o conteúdo de água das folhas influencia a interação com a radiação. A água no tecido foliar absorve especialmente nas faixas em torno de 1450 nm e 1950 nm, sendo comprimentos de onda úteis à determinação do conteúdo hídrico das folhas (PEÑUELAS et al., 1997).

2. Índices de vegetação no monitoramento de culturas

Inúmeros IV já foram desenvolvidos para diferentes finalidades. Pesquisadores no mundo inteiro usam as características de absorção associadas com constituintes bioquímicos para avaliar as culturas em estudo. Assim, diferentes índices são utilizados na agricultura e são otimizados para avaliar um processo de interesse (BRANDÃO, 2009). Por exemplo, alguns índices espectrais foram propostos para capturar os processos fotoquímicos associados com a atividade da fotossíntese tal como o uso da eficiência da luz (e) ou estimar o conteúdo de pigmentação da folha (clorofila) (DAUGHTRY et al., 2000; BRITO et al., 2011), enquanto que outros foram projetados para obter o índice de área foliar (IAF).

A escolha do comprimento de onda mais adequado está relacionada às características que se deseja avaliar. Algumas vezes pode surgir o efeito de confusão, pois a refletância do dossel no NIR é fortemente dependente das propriedades estruturais (por exemplo, IAF), enquanto no visível é sensível as propriedades bioquímicas (por exemplo, clorofila) (ZARCO-TEJADA et al., 2001). Para reduzir esse efeito, muitos estudos recentes demonstraram que a quantidade de clorofila da folha pode ser estimada através da combinação de diferentes índices espectrais. Assim, os IVs podem ser divididos em índices sensíveis à concentração do pigmento (clorofila) e índices estruturais, que podem ou não ser imunes à influência das propriedades óticas do solo (HABOUDANE et al., 2004; BRANDÃO, 2009).

A Tabela 1 apresenta alguns dos índices de vegetação mais utilizados. Tucker (1979) estudou diferentes combinações lineares das bandas do verde, vermelho e NIR para monitorar propriedades como a biomassa, conteúdo de água na folha e conteúdo de clorofila. Ele validou o NDVI (Normalized Difference Vegetation Index) desenvolvido por Rouse et al. (1973), que é um IV estrutural, muito utilizado para monitoramento agrícola, por apresentar forte correlação linear com o crescimento das culturas. Por outro lado, a razão simples entre o NIR e o canal vermelho fornece uma alta correlação com o desenvolvimento das plantas e com seus estágios de crescimento, sendo esse um dos primeiros IV estudados (BIRTH; McVey, 1968).

O SAVI (Soil-Adjusted Vegetation Index) (Huete, 1988), foi criado visando amenizar o efeito de solo e se baseia no princípio de que a curva de vegetação tende a aproximar-se da curva de solo para baixas densidades de vegetação, passando por uma mistura de respostas espectrais para densidades médias e quase nenhuma influência do solo para densidades altas de vegetação. O SAVI consiste na própria fórmula do NDVI, acrescida de uma constante L, que varia de 0 a 1, dependendo do grau da maior ou menor cobertura do solo, respectivamente. Seguindo o mesmo princípio vieram duas modificações do SAVI: o TSAVI (Transformed SAVI) (BARET; GUYOT; MAJOR, 1989), o MSAVI (Modified SAVI) (Qi et al., 1994) e o OSAVI (Optimized SAVI) (Rondeaux et al., 1996).

Outros índices bastante utilizados são os que se propõem a reduzir os efeitos atmosféricos com a utilização da faixa do azul do espectro eletromagnético (B - Blue), como os IVs SARVI e EVI (Tabela 1).

Estimativas de biomassa de áreas florestadas através de SR podem ser realizadas mediante a utilização de dados coletados em campo, aeronave ou dados orbitais. Usando qualquer método, o interesse é sempre a obtenção das relações para o índice de área foliar (IAF) e biomassa. O IAF é um importante parâmetro biofísico da vegetação, sendo definido como a área foliar total projetada por unidade de área de terreno (m² /m²) (DAUGHTRY et al., 1992).

Sua importância deve-se à relação com a biomassa vegetal e por caracterizar a arquitetura do dossel, fornecendo informações importantes sobre o vigor da cobertura vegetada e justificando a diversidade de estudos em SR envolvendo estimativas deste parâmetro. Estas estimativas permitem uma avaliação das condições fisionômicas e fisiológicas dos
Tabela 1. Índices de vegetação comumente utilizados no monitoramento de culturas.

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Índice</th>
<th>Referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>Características Estruturais</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR (Simple Ratio)</td>
<td>$SR = \frac{R_{\text{NIR}}}{R_{\text{R}}}$</td>
<td>Birth e McVey (1968)</td>
</tr>
<tr>
<td>NDVI (Normalized Difference Vegetation Index)</td>
<td>$NDVI = \frac{(R_{\text{NIR}} - R_{\text{R}})}{(R_{\text{NIR}} + R_{\text{R}})}$</td>
<td>Rouse et al. (1974)</td>
</tr>
<tr>
<td>GRVI (Green-Red Vegetation Index)</td>
<td>$GRVI = \frac{(R_{\text{G}} - R_{\text{R}})}{(R_{\text{G}} + R_{\text{R}})}$</td>
<td>Tucker (1979)</td>
</tr>
<tr>
<td>SAVI (Soil Adjusted Difference Vegetation Index)</td>
<td>$SAVI = (I + L)\frac{(R_{\text{NIR}} - R_{\text{R}})}{(R_{\text{NIR}} + R_{\text{R}} + L)}$</td>
<td>Huete (1988)</td>
</tr>
<tr>
<td>SARVI (Soil and Atmospherically Resistant Vegetation Index)</td>
<td>$SARVI = \frac{(I + L)\left[\frac{(R_{\text{NIR}} - (R_{\text{G}} - \gamma(R_{\text{R}} - R_{\text{G}})))}{L + R_{\text{NIR}} + (R_{\text{R}} - \gamma(R_{\text{R}} - R_{\text{G}}))}\right]}{L_{\text{NIR}}}$</td>
<td>Kaufman e Tanre (1992)</td>
</tr>
<tr>
<td>MSAVI (Modified SAVI)</td>
<td>$MSAVI = \frac{I}{2}\left[2R_{\text{NIR}} + I - \sqrt{(2R_{\text{NIR}} + I)^2 - 8(R_{\text{NIR}} - R_{\text{R}})}\right]$</td>
<td>Qi et al., 1994</td>
</tr>
<tr>
<td>RDVI (Renormalized Difference Vegetation Index)</td>
<td>$RDVI = \sqrt{\frac{R_{\text{NIR}} - R_{\text{R}}}{R_{\text{NIR}} + R_{\text{R}}}}$</td>
<td>Roujean e Breon (1995)</td>
</tr>
<tr>
<td>EVI (Enhanced Vegetation Index)</td>
<td>$EVI = 2,5 \frac{(R_{\text{NIR}} - R_{\text{R}})}{(I + R_{\text{NIR}} + 6R_{\text{R}} - 7.5R_{\text{G}})}$</td>
<td>Huete et al. (1997)</td>
</tr>
<tr>
<td>OSAVI (Optimized SAVI)</td>
<td>$OSAVI = (I + 0.16)\frac{(R_{\text{NIR}} - R_{\text{R}})}{(R_{\text{NIR}} + R_{\text{R}} + 0.16)}$</td>
<td>Rondeaux et al., 1996</td>
</tr>
<tr>
<td>MSR (Modified SR)</td>
<td>$MSR = \left[\frac{(R_{\text{NIR}} / R_{\text{R}}) - I}{\sqrt{(R_{\text{NIR}} / R_{\text{R}})}}\right]$</td>
<td></td>
</tr>
<tr>
<td>Propriedades Bioquímicas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIPI (Structural Insensitive Pigment Index)</td>
<td>$SIPI = \frac{(R_{\text{NIR}} - R_{\text{B}})}{(R_{\text{NIR}} + R_{\text{R}})}$</td>
<td>Peñuelas et al., 1995</td>
</tr>
<tr>
<td>GARI (Green Atmospherically Resistant Vegetation Index)</td>
<td>$GARI = \frac{R_{\text{NIR}} - \gamma(R_{\text{R}} - R_{\text{G}})}{R_{\text{NIR}} + (R_{\text{R}} - \gamma(R_{\text{R}} - R_{\text{G}}))}$</td>
<td>Gitelson et al., 1996</td>
</tr>
<tr>
<td>TVI (Triangular Vegetation Index)</td>
<td>$TVI = \frac{I}{2}\left[120(R_{\text{NIR}} - R_{\text{G}}) - 200(R_{\text{R}} - R_{\text{G}})\right]$</td>
<td>Broge e Leblanc (2001)</td>
</tr>
<tr>
<td>GCI (Green Chlorophyll Index)</td>
<td>$GCI = \frac{R_{\text{NIR}}}{R_{\text{G}}} - I$</td>
<td>Gitelson et al., 2003</td>
</tr>
<tr>
<td>MCARI1 (First Modified Chlorophyll Absorption Ratio Index)</td>
<td>$MCARI1 = 1,2\left[2,5(R_{\text{NIR}} - R_{\text{G}}) - I,3(R_{\text{NIR}} - R_{\text{G}})\right]$</td>
<td>Haboudane et al. (2004)</td>
</tr>
<tr>
<td>MCARI2 (Second Modified Chlorophyll Absorption Ratio Index)</td>
<td>$MCARI2 = 1,2\left[2,5(R_{\text{NIR}} - R_{\text{G}}) - I,3(R_{\text{NIR}} - R_{\text{G}})\right]\sqrt{2(R_{\text{NIR}} + I)^2 - 0,5 - 6(R_{\text{NIR}} - 5R_{\text{R}})}$</td>
<td>Haboudane et al. (2004)</td>
</tr>
</tbody>
</table>
dosséis e análises quantitativa e qualitativa das trocas energia/matéria ocorridas nos mesmos (HABOUDANE et al., 2004).

O uso de dados orbitais constitui-se em um método indireto e não destrutivo para estimativa do IAF. De maneira geral é esperado que quanto maior o IAF, menor o valor de radiação espectral referente às regiões do visível (380 a 720 nm) e do infravermelho médio (1300 a 3000 nm), devido à maior disponibilidade de pigmentos fotossintetizantes absorvendo Radiação Eletromagnética (REM) incidente e quantidade de água, respectivamente, e maior valor na região do infravermelho próximo, devido ao múltiplo espalhamento entre folhas.

Em SR, os sensores utilizados podem ser divididos em duas categorias: passivos ou ativos. Sensores passivos registram a energia eletromagnética refletida ou emitida pelo alvo, como a radiação solar refletida ou radiação termal emitida. São exemplos de sensores passivos os sensores multiespectrais a bordo de diversos satélites como o Operational Land Imager (OLI) a bordo do satélite Landsat 8 e a Moderate Resolution Imaging Spectroradiometer (MODIS), a bordo dos satélites TERRA e AQUA. Já os sensores ativos proporcionam fonte própria de energia eletromagnética, como os radares, sonares, sensores ativos de dossel (como o Crop Circle e Greenseeker) e LiDAR. Este último sistema (LiDAR - Light Detection and Ranging) dispara pulsos de laser sobre o terreno e identifica os respectivos retornos, tornando possível saber com precisão as coordenadas X, Y e Z de pontos no terreno. Isso permite gerar “nuvens de pontos” (Figura 2), que podem ser utilizados para levantamentos topográficos (ZANARDI et al., 2013) e estudos de biomassa em florestas plantadas (SILVA et al., 2013) e manejo de florestas nativas (ARAUJO et al., 2013).

Imagens de sensores remotos apresentam diferentes resoluções: espacial, espectral, temporal e radiométrica. A resolução espacial diz respeito à dimensão do terreno que é representada pelo menor elemento em uma imagem, o pixel. Estão disponíveis imagens em que o pixel representa áreas de 1 km² ou maiores (baixa resolução espacial), as quais podem ser aplicadas para estudos de grandes regiões como avaliação da temperatura do oceano, condições atmosféricas globais etc. Também é possível obter imagens com resolução espacial na ordem de centímetros, a partir de plataformas aerotransportadas ou de sensores orbitais de alta resolução. A partir da Figura 3 é possível compreender o efeito da resolução espacial nas imagens de sensores remotos.

A resolução espectral diz respeito ao número e ao tamanho dos intervalos de comprimento de onda (bandas) do espectro eletromagnético mensurado. De acordo com a faixa do espectro, os alvos na superfície terrestre respondem de maneira distinta, o que confere diferentes aplicações para cada uma das bandas dos sensores multiespectrais.

Sensores multiespectrais possuem bandas em diferentes faixas do espectro eletromagnético, cobrindo a faixa do visível, infravermelho próximo, médio e termal (Tabela 2). Também existem sensores com um número elevado de bandas contíguas, capazes de coletar informações do espectro eletromagnético de maneira contínua, os sensores hiperespectrais.

A resolução temporal diz respeito ao intervalo de tempo necessário para a obtenção de imagens de um mesmo local. Plataformas orbitais como o
Landsat ou o Satélite Sino-Brasileiro de Recursos Terrestres (CBERS) possuem tempo de revisita de 16 e 26 dias, respectivamente. Outros sensores com menor resolução espacial, como o MODIS ou AVHRR (Advanced Very High Resolution Radiometer) são capazes de obter imagens diariamente (EMBRAPA, 2009). Também estão disponíveis sistemas baseados em uma constelação de satélites, que permitem aliar alta resolução espacial com alta resolução temporal.

A resolução radiométrica diz respeito à forma e a precisão de como a radiação eletromagnética medida pelo sensor remoto. O sensor multispectral (MSS) do satélite Landsat 1 quantificava a radiação eletromagnética recebida em 64 níveis ou seja, uma resolução radiométrica de 6 bits (6 bits → 2^6 = 64). O sensor OLI, a bordo do satélite Landsat 8 apresenta resolução espacial de 12 bits, resultando em imagens com 4096 níveis de cinza, um aumento significativo diante de seu antecessor, Landsat-7, com resolução de 8 bits (256 níveis de cinza).

Dentre os diversos sistemas de imagemamento existentes, os satélites da série Landsat merecem um destaque especial. O programa Landsat lançou seu primeiro satélite no início dos anos 1970 (Landsat 1 entrou em operação em 1972) e desde então vem gerando imagens da superfície terrestres, sendo que a partir do satélite Landsat 4 foram introduzidos os sensores TM, com 30 metros de resolução espacial. Em abril de 2008 todo o acervo das imagens Landsat foi disponibilizado ao público.

3. Aplicações do Sensoriamento Remoto

Imagens e produtos de SR possuem diversas aplicações nos mais variados campos. Dados

| Tabela 2. Bandas espectrais do sensor Operational Land Imager (OLI) e Thermal Infrared Sensor (TIRS) a bordo do satélite Landsat 8. |
|---------------------------------|-----------------|------------------|-----------------|
| Banda | Comprimento de onda (µm) | Resolução espacial (m) | Aplicações |
| 1 - Aerosol e costal | 0,43 a 0,45 | 30 | Estudos em áreas costeiras e de aerossóis na atmosfera |
| 2 - Azul | 0,45 a 0,51 | 30 | Mapeamento de águas costeiras |
| | | | Diferenciação entre solo e vegetação |
| | | | Diferenciação entre vegetação coníferas e decidua |
| 3 - Verde | 0,53 a 0,59 | 30 | Reflectância de vegetação verde sadia |
| 4 - Vermelho | 0,64 a 0,67 | 30 | Absorção de clorofila |
| | | | Diferenciação de espécies vegetais |
| 5 - Infravermelho próximo (NIR)| 0,85 a 0,88 | 30 | Levantamento de biomassa |
| | | | Delineamento de corpos d'água |
| 6 - Infravermelho de ondas curtas (SWIR1) | 1,57 a 1,65 | 30 | Medidas de umidade da vegetação |
| | | | Diferenciação entre nuvens e neve |
| 7 - Infravermelho de ondas curtas (SWIR2) | 2,11 a 2,29 | 30 | Mapeamento hidrotermal |
| 8 - Pancromática | 0,50 a 0,68 | 15 | Fusão de imagens para obtenção de maior resolução espacial |
| 9 - Cirrus | 1,36 a 1,38 | 30 | Detecção de nuvens do tipo cirrus |
| 10 - Infravermelho termal (TIRS) 1 | 10,60 a 11,19 | 100 | Temperatura da superfície |
| 11 - Infravermelho termal (TIRS) 2 | 11,50 a 12,51 | 100 | Temperatura da superfície |

*Bandas 10 e 11, do sensor TIRS, são obtidas com resolução espacial de 100 metros e reamostradas para 30 metros no produto final. FONTE: adaptado de Perguntas frequentes sobre as missões Landsat (UNITED..., 2013) e Tutorial de Geoprocessamento SPRING (http://www.dpi.inpe.br/spring/portugues/tutorial/introducao_sen.html)
Figura 3. Região de agropecuária no Município de Luiz Eduardo Magalhães (BA), com imagens de baixa (A e D), média (B e E) e alta (C e F) resolução espacial no ano de 2011. A e D, imagem do satélite Terra/Modis (“Moderate Resolution Imaging Spectroradiometer”) MOD9Q1h13v10 de agosto de 2011, bandas 2 e 3, com resolução espacial de 250 m; B e E, imagem do satélite Landsat 5 (“Land remote sensing satellite”) TM220/068 de novembro de 2011, bandas 5, 4 e 3, com resolução espacial de 30 m; e C e F, imagem do satélite GeoEye 1 de outubro de 2011, bandas verde, vermelho e infravermelho fusionadas com a banda pancromática, com resolução espacial abaixo de 2 m. (Fonte: BATISTELLA; BOLFE, 2012).
de sensores com baixa resolução espacial são utilizados para avaliar a temperatura dos oceanos em escala global, sendo muito utilizados em estudos climáticos, de eventos como El Niño, e modelos de previsão meteorológica e do clima. Outras aplicações incluem estudos para fins de planejamento urbano, analisando a expansão e a ocupação das terras. Para tais, normalmente são utilizadas imagens com maior resolução espacial, dependendo do tema a ser estudado. Avaliações da expansão da área urbanizada podem ser realizadas utilizando imagens com 30 m de resolução espacial (HUPP; FORTESS, 2013). Já imagens com maior resolução podem ser utilizadas para a quantificação da urbanização viária (ALVAREZ; GALLO, 2012) e sua relação com a temperatura da superfície (GALLO; ALVAREZ; GARCON, 2013); planejamento de sistemas de mobilidade urbana (SCHMITT et al., 2013) além de outras aplicações diversas.

O SR é muito utilizado em aplicações relativas a estudos de uso e cobertura das terras e de características da vegetação. Neste campo são realizados diversos estudos e aplicações, como a avaliação das alterações no uso e cobertura das terras em diversos locais (QUARTAROLI et al., 2006; RODRIGUES et al., 2012; BATISTELLA et al., 2002 dentre outros), a avaliação de parâmetros biofísicos e de evapotranspiração da vegetação (ANDRADE et al., 2009, 2012; FACCIO et al., 2012) e estudos da abrangência de áreas agrícolas e de sua dinâmica temporal (Figura 4) (JOHANN et al., 2012; VICTORIA et al., 2012; VICENTE et al., 2012).

Sendo assim, as imagens de sensores remotos apresentam diferentes características que fazem com que sejam úteis às mais variadas aplicações, desde estudos globais, programas de monitoramento contínuo em grandes áreas, até estudos pontuais em escalas detalhadas como o ambiente urbano ou a agricultura de precisão (AP).

Nos últimos anos, a produção agrícola tem passado por grandes mudanças. O gerenciamento dos modulos de producao em fazendas atualmente não é mais baseado em aplicações uniformes de insumos nas culturas, pois os elevados custos de produção desafiam essas estratégias. Baseado nisso é que o conceito de AP se adequa, pois considerando a variabilidade espacial do meio agrícola, a AP pode reduzir os custos de produção e aumentar a produtividade, fazendo-se o uso muitas vezes de automação e alta tecnologia voltadas à produção agrícola (McKINNON et al., 2001; BRANDÃO et al., 2008).

Dados obtidos por sensoriamento remoto (SR) têm sido utilizados como ferramenta auxiliar nessa nova estratégia de gerenciamento que considera a variabilidade espacial dos fatores que interferem na produtividade das culturas. A utilização de SR na AP vem facilitar o diagnóstico espacializado para subsidiar tomadas de decisao no manejo agrícola. No suporte a gestão operacional no manejo por sitio específico pode-se resaltar o delineamento e a classificação das zonas de manejo (ZM) dentro do talhão (McBRATNEY et al., 2005), estas sendo definidas como áreas contíguas e associadas a uma classe de manejo específico (TAYLOR; McBRATNEY; WHEELAN, 2007). Questionadas para regiões de grande variabilidade temporal (SCHEPERS et al., 2005) as ZM encontram respaldo nos dados de SR.

O conteúdo de N nas plantas pode ser avaliado através de métodos indiretos. Um dos métodos mais simples consiste na observação do vigor da coloração verde das plantas e, por conseguinte, na verificação da ocorrência de clorose ou amarelecimento das folhas, que indica a falta de N (BRANDÃO et al., 2008). Com base neste conhecimento, pode-se utilizar dados de sensores remotos em níveis de campo, aéreo e orbital para avaliar e estimar o conteúdo de N nas plantas. Sabe-se que a diminuição da concentração dos pigmentos clorofilados, ocasionada pela carência em N, interfere na refletância espectral na região do espectro visível. Brandão (2009), num estudo para diferentes doses de nitrogênio no algodoeiro irrigado (0 Kg ha$^{-1}$; 90 Kg ha$^{-1}$; 180 Kg ha$^{-1}$ e 270 Kg ha$^{-1}$), percebeu significativo aumento no infravermelho com o incremento de nitrogênio (Figura 5). Ainda nesse trabalho foi observado a saturação do NDVI para maiores valores do IAF, efeito reduzido quando utilizado o TVI, que apresentou correlações com o IAF superiores a 0,8 para todas as épocas de avaliação. Em um estudo que avaliou cultivos de trigo submetidos a diferentes concentrações de N (0 Kg ha$^{-1}$; 70 Kg ha$^{-1}$; 170 Kg ha$^{-1}$ e 221 Kg ha$^{-1}$), observaram que os maiores valores de refletância no espectro visível se relacionavam com os tratamentos submetidos...
a menores taxas de adubação nitrogenada e que a adição de N implica na diminuição da refletância espectral no visível e no aumento da refletância espectral entre 700 e 1300 nm.

Observado incremento no NDVI acompanhando o aumento da absorção de N, tendo esse IV atingido seu valor máximo de 0,76, na época de pleno florescimento do algodoeiro. Zarco-Tejada et al. (2005), também observaram que as melhores épocas para predição da produtividade e biomassa são no início da floração e no pleno florescimento, tendo encontrado que os índices relacionados às características estruturais da planta, como o NDVI, RDVI e MTVI1 podem predizer melhor o IAF e a produção de biomassa, enquanto que outros IVs como o MSAVI e o MTVI2 mostraram baixo desempenho.

Variações de NDVI são de grande utilidade na linha de trabalho considerando sensores aéreos para o delineamento e a classificação de ZM na vitivinicultura de precisão e no cultivo de grãos. A caracterização das ZM requer a análise espaço-temporal com dados de múltiplos sensores, sendo o SR uma fonte básica de dados gerados por diferentes tipos de sensores e IVs disponíveis. A integração destes dados tem considerado, tais variações a fatores de solo na extensão dos vinhedos. De fato, imagens de sensores como ASTER e Hyperion cobrem um domínio espectral entre 0,55 nm e 2,5 nm, sendo portanto sensíveis à toda gama de fatores importantes na descrição espectral da reflectância de vegetais. Acresce a isto o fato de que tais sensores, com resolução espacial correspondente a 900 m² por pixel, são adequados a estudos de pequenas áreas, levando em conta que um vinhedo, por exemplo, tem tipicamente um área de alguns hectares (2 a 5 ha), sendo coberto por algumas dezenas de pixeis. É possível, então, mapear variações de vigor, com resolução espacial razoável, mesmo em áreas de um hectare.

Variações de NDVI são de grande utilidade na linha de trabalho considerando sensores aéreos para o delineamento e a classificação de ZM na vitivinicultura de precisão e no cultivo de grãos. A caracterização das ZM requer a análise espaço-temporal com dados de múltiplos sensores, sendo o SR uma fonte básica de dados gerados por diferentes tipos de sensores e IVs disponíveis. A integração destes dados tem considerado,
prioritariamente, métodos estatísticos clássicos para a classificação de imagens com base no valor do NDVI, por pixel, aplicado ao delineamento das ZM (SHATAR; McBRATNEY, 2001). Em adição ao NDVI, aplicações de outros IVs vem sendo investigadas com dados de sensores aéreos; em recente casos de estudo, considerando-se também a segmentação de imagens com base em objetos.

O uso de IVs alternativos indicou um grande potencial de aplicação em diferentes regiões agroclimáticas, na Austrália e na Espanha. Entre eles, o PPR (Plant Pigment Ratio) na determinação das variações de proteína nas culturas de grãos (WANG et al., 2004), e o PCD (Plant Cell Density) aplicado na vitivinicultura como indicador da qualidade das bagas (PONS et al., 2013) e do estresse hídrico (GIRON; BELLVERT, 2012). As imagens aéreas utilizadas são obtidas em aproximadamente 2.000 m de altitude, em quatro faixas espectrais distintas; sendo: azul (450-510 nm), verde (530-550 nm), vermelho (630-690 nm) e infravermelho próximo (750-900 nm). O PPR é determinado pela razão das fixas do verde sobre o azul relacionadas com a pigmentação foliar, onde uma maior pigmentação absorvendo mais energia indica um alto valor de PPR (METTERNICH, 2003). Já as aplicações do índice PCD consideram que vinhas vigorosas e saudáveis tendem a responder com uma forte reflectância na faixa do infravermelho próximo (PROFFIT et al., 2006).

Dentro do conceito de visão computacional (BLASCHKE; STROBL, 2001), a segmentação de imagens com base em objetos representa uma nova técnica promissora no delineamento de ZM (PEDROSO et al., 2010; OLIVEIRA; WHELAN; McBRATNEY, 2013), onde objetos são compostos a partir de pixels vizinhos diretamente associados as unidades de paisagem. WANG (2008) sugere que estes métodos conciliam a extração de características do espaço visível (resoluções espacial e físico (topologia espacial e temporal). Este conjunto de métodos, denominado de GEOBIA (Geographic Object-Based Image Analysis) caracteriza uma subdisciplina da ciência da geoinformação voltada para a segmentação de imagens e a geração de informações compatíveis com análises vectoriais (HAY; CASTILLA, 2008). Estes algoritmos são compostos de duas etapas comuns: a identificação das descontinuidades na imagem; e a delineamento de regiões visualmente homogêneas e espacialmente contíguas (Figura 6). Em AP, estes algoritmos foram aplicados na robótica de campo (GARCÍA-PÉREZ et al., 2001) e, mais recentemente, em abordagens morfológicas no delineamento de ZM (ROUDIER et al., 2008; OLIVEIRA; WHELAN; McBRATNEY, 2013).

Técnicas de SR foram validadas e tem grande aplicabilidade na área agrícola dentro do conceito de AP, porém o custo e a falta de pessoal treinado ainda limita o uso por parte dos usuários. Uma grande limitação do SR através de sensores passivos orbitais são as nuvens, atmosfera e revisita do imageamento em tempo hábil para a tomada de decisão no manejo agrícola. Nebulosidade se torna crítica principalmente para culturas de verão por que o estágio fenológico da cultura que deve ser imageada geralmente coincide com a época de grande pluviosidade e nebulosidade. Neste cenário onde diversas técnicas validadas para sensores remotos já estão disponíveis os VANTS e os sensores ativos de dossel ou active crop canopy sensors (ACS) tem uma grande importância para viabilizar a aplicação destas técnicas no manejo agronômico sitio-específico de culturas agrícolas em nível de talhão.

Os ACS vêm sendo considerados por alguns como sensores remotos proximais, quando acoplados em máquinas agrícolas autopropelidas (Figura 7). A grande vantagem dos ACS é que eles são ativos e sua luz modulada não é influenciada pela luz do sol, podendo ser utilizados a qualquer hora (noite ou dia). Estes sensores emulam a refletância do dossel em certos comprimentos de onda selecionados para diferenciar o conteúdo de clorofila e indiretamente a condição nutricional da planta em relação ao nitrogênio (N) (SHIRATSUCHI, 2011).

Utilizando estes sensores é possível o diagnóstico de N da planta e aplicação de fertilizantes nitrogenados em taxas variáveis em tempo real, aplicando o insumo somente onde necessário e na mesma operação, sem necessidade de um mapeamento prévio. Ou seja, o sensor embarcado diagnostica o status de N da planta através dos IV e através de algoritmos específicos como os desenvolvidos por Solari et al. (2008); Dellinger, Schmidt e Beegle et al.(2008) e
produzindo 110 kg.ha\(^{-1}\) a mais de milho, reduzindo o uso de N em 16 kgN.ha\(^{-1}\) (SCHARF et al., 2011). Considerando os preços crescentes dos fertilizantes e a redução do uso de insumos e diminuição do impacto ambiental, espera-se uma grande adoção deste tipo de tecnologia em empreendimentos agrícolas.

Existem inúmeras pesquisas sendo realizadas no intuito de se gerar fórmulas ou algoritmos para traduzirem dados de SR com o uso de VANTs e ACS em doses de insumos, como N, herbicidas, inseticidas, etc (HOLLAND; SCHEPERS, 2010, 2012; SHIRATSUCHI et al., 2011a). Até mesmo a utilização de ACS embarcados em VANTs já estão sendo utilizados como uma forma de mapeamento do status de N em milho (Figura 8).

Estudos sobre o comportamento de diversos IV para determinação de pigmentos foram realizados (LEMAIRE; FRANCOIS; DUFRENE, 2004), porém poucos trabalhos levaram em consideração ACS para cálculo de IVs e interferência do teor de água na determinação de doses de N como o realizado por SHIRATSUCHI et al. (2011a). Este cenário demonstra que um vasto campo de estudos dentro do SR vem sendo aberto e possui ainda grandes desafios principalmente em regiões tropicais, onde a limitação na aquisição de imagens, sistema de produção em plantio direto, custo de equipamentos e pessoal qualificado imperam na adoção destas tecnologias.

Agradecimentos

À Rede de Agricultura de Precisão da Empresa Brasileira de Pesquisa Agropecuária, (EMBRAPA) e parceiros financiadores deste projeto.

Referências

Geoestatística aplicada a Agricultura de Precisão

Célia Regina Grego*1, Ronaldo Pereira de Oliveira*2, Sidney Rosa Vieira*3

1Pesquisadora, Embrapa Monitoramento por Satélite, Av. Soldado Passarinho, 303, Campinas, SP
2Pesquisador, Embrapa Solos, Rua Jardim Botânico, 1024, Jardim Botânico, Rio de Janeiro, RJ
3Pesquisador Colaborador, Instituto Agronômico, Centro de Solos e Recursos Ambientais, Av. Barão de Itapura, 1481, Campinas, SP

*E-mails: celia.grego@embrapa.br, ronaldo.oliveira@embrapa.br, sidney@iac.sp.gov.br

Resumo: A agricultura de precisão se baseia na aplicação de tecnologias de maneira localizada de acordo com a variabilidade espacial, a qual a geoestatística está diretamente relacionada. Geoestatística é uma ferramenta que utiliza o conceito de variáveis regionalizadas na avaliação de variabilidade espacial por meio da extração e organização espacial dos dados disponíveis de acordo com a semelhança entre pontos vizinhos georreferenciados. Não se limita apenas em obter um modelo de dependência espacial, pretende também estimar valores nos locais não amostrados. O objetivo do capítulo é apresentar os conceitos básicos da ferramenta geoestatística e como ela pode ser aplicada em agricultura de precisão. Para tanto procurou-se abordar a conceituação da geoestatística; as particularidades de obtenção de dados em agricultura de precisão; a importância dos semivariogramas e de seus ajustes; a interpolação de dados por krigagem e a geração de mapas. Em agricultura de precisão, faz-se necessário a geração de mapas relacionados aos sistemas de produção agrícola, permitindo a identificação de zonas homogêneas e, consequentemente, a aplicação de insumos e manejos localizados, auxiliando a tomada de decisão por parte do produtor. Contudo, a obtenção de mapas precisos da variabilidade espacial dos fatores envolvidos só é possível utilizando ferramentas como a geoestatística. Dessa forma, a geoestatística auxilia fortemente nas decisões estratégicas e complexas em relação ao gerenciamento do sistema de produção agrícola e consequentemente nos seus efeitos ambientais, contribuindo para o desenvolvimento sustentável em agricultura de precisão.

Palavras-chave: mapas precisos, variabilidade espacial, georreferenciamento, manejo localizado

Geostatistics applied to precision agriculture

Precision agriculture uses site-specific technologies according to the spatial variability. Spatial variability is directly related to geostatistics, a tool which uses the concept of regionalized variables for the assessment of spatial variability by means of extracting and organizing the available data spatially according to the similarity between georeferred neighboring points with the intention of obtaining a spatial-dependence model and of estimating values at points which have not been sampled. In this chapter, we aim to present the basic concepts of geostatistics and how this tool may be applied to precision agriculture. Our topics consider: the concept of geostatistics; the singularities of obtaining data in precision agriculture; the importance of semivariograms and their model fittings; data interpolation using kriging; and the production of maps. Precision agriculture demands the generation of maps related to agricultural production systems, enabling the identification of homogeneously manageable zones and, therefore, the localized use of inputs and land management, aiding farmers in their decision making. Obtaining precise maps on the spatial variability of relevant factors is mostly possible using tools such as geostatistics. Thus, geostatistics strongly aids in the making of strategic, complex decisions regarding the management of agricultural systems and consequently their environmental impacts, therefore contributing to a sustainable development in precision agriculture.

precise maps, spatial variability, georeferencing, site-specific management
1. Introdução

Os fundamentos da agricultura de precisão se baseiam na aplicação de tecnologias de maneira localizada de acordo com a variabilidade espacial.

A ferramenta de análise geoestatística se constitui na maneira mais correta que se tem conhecimento para analisar a variabilidade espacial (VIEIRA, 2000). Há necessidade absoluta de conhecimento adequado da variabilidade espacial das características do ambiente agrícola, sem o qual existe o risco de aplicações inapropriadas dos resultados. Entre as aplicações da geoestatística voltadas para prover informações em suporte da agricultura estão a caracterização e a modelagem espacial e temporal, das quais resultam a produção de mapas precisos para bases de informação da área de produção (McBRATNEY et al., 2005).

Directamente relacionada com a geoestatística a agricultura de precisão utiliza novas tecnologias desenvolvidas para o monitoramento intenso do campo. Isso envolve a adoção de diferentes sensores voltados para captação de dados que permitem quantificar os principais fatores de produção com alta precisão espacial (WHELAN, 1998). Apesar dos procedimentos da análise geoestatística não diferirem conceitualmente nos procedimentos para aplicações de diversos fins, na Agricultura de Precisão a disponibilidade de dados em alta resolução espacial e temporal viabiliza não só uma maior robustez nos resultados, como também o entendimento integrado e dinâmico das correlações espaciais e temporais entre os diferentes fatores.

Segundo Molin (2012) para se praticar adequadamente agricultura de precisão é necessário aceitar o fato e assumir o desafio de que a variabilidade espacial das lavouras é algo mais complexo do que mapear e intervir em P, K, Ca e Mg ou seja, podem existir muitos outros fatores que podem influenciar na variabilidade espacial de colheitas.

Desta maneira, através da geoestatística avalia-se a dependência espacial e a utiliza para interpolar valores para locais não medidos, e com isto se produz informações para construir mapas continuos a partir da amostragem discretizada e para estruturar amostragens em função da variabilidade espacial. Em agricultura de precisão, a possibilidade de gerar mapas relacionados a produtividade agrícola utilizando a geoestatística, constitui um avanço no manejo localizado, segundo Tisseyre e MacBratney (2007), dos sistemas de produção agrícolas e uma maior precisão na tomada de decisão.

Este capítulo tem como objetivo apresentar de forma básica o que é Geoestatística e como ela pode ser usada adequadamente na agricultura de precisão. Para isso são abordados temas para aplicação de geoestatística quanto: a conceituação da geoestatística; as particularidades de obtenção de dados em agricultura de precisão; a importância dos semivariogramas e de seus ajustes; a interpolação de dados por krigagem e a geração de mapas.

2. A Geoestatística

A geoestatística surgiu na África do Sul, quando Krige (1951) trabalhando com dados de concentração de ouro, verificou que para encontrar sentido nas variâncias em estudo era preciso levar em conta as distâncias entre as amostras, e assim surgiu o conceito da geoestatística ou teoria das variáveis regionalizadas, que leva em consideração a localização geográfica e a dependência espacial. Em mineração há locais com maior e menor concentração dos minerais. Matheron (1965) colocou esta ideia em termos matemáticos e desenvolveu a geoestatística. Geoestatística é um ramo da estatística que utiliza conceito de variáveis regionalizadas na avaliação de variabilidade espacial. Não se limita apenas em obter um modelo de dependência espacial, pretende também estimar valores de pontos nos locais onde não foram coletados (SRIVASTAVA, 1996; GOovaERTS, 1997). Destaca-se os passos de cálculo da semivariância, construção ajuste do semivariograma e a interpolação por krigagem.

Com a geoestatística pode-se estimar o valor de uma dada propriedade para um local onde não foi medida, utilizando uma função de correlação espacial entre os dados sem viés e com variância mínima (VIEIRA, 2000). Para estimar esses valores, comumente se usa o método de interpolação por krigagem, cujo nome foi dado em homenagem a Daniel G. Krige. Krigagem consiste em ponderar os vizinhos mais próximos do ponto a ser estimado, obedecendo os critérios de não
tendenciosidade, que significa que em média a diferença entre valores estimados e observados para o mesmo ponto dever ser nula e ter mínima variância, ou seja, que os estimadores possuam a menor variância dentre todos os estimadores não tendenciosos.

Fazendo uma comparação entre a estatística clássica e a geoestatística, podemos dizer que a primeira necessita da normalidade e independência espacial entre os dados enquanto que a geoestatística requer a auto-correlação a espacial. A estatística clássica assume que os pontos de observação são independentes, o que, na maioria dos casos, não acontece nos estudos envolvendo as ciências da terra (Srivastava, 1996).

3. Obtenção de dados em agricultura de precisão

Na agricultura de precisão novas tendências na análise de dados prioritizam o desenvolvimento de modelos que levam em consideração a variabilidade espacial, evitando assim os efeitos de suavização geralmente resultantes dos procedimentos de interpolação.

Um ponto positivo a ser observado nesta abordagem é que os modelos de geração de mapas baseiam-se na ideia de analisar e dimensionar a variação dos fatores de produção utilizando os valores observados, desta forma, combinados com a evolução e a proliferação de sensores (Oliveira, 2009). Com a utilização dos sensores, é possível gerar informações em tempo real, de forma complementar às tecnologias de campo que visam a automação da aplicação de insumos por taxas variadas (“on the go”).

Consequentemente, algoritmos utilizando parâmetros de dependência espacial para o suporte à decisão agronômica contemplam meios de facilitar uma interpretação integrada dos dados, onde as informações geradas a partir de dados de múltiplos sensores podem ser sintetizadas por índices numéricos de referencia, simplificando o acesso e o entendimento das causas e implicações da variabilidade espaço-temporal de forma a maximizar os benefícios econômicos, ambientais e sociais obtidos na gestão do agronegócio (McCown; Brennan; Parton, 2006).

Oportunamente, estas questões dependem também de um conhecimento agronômico incremental na geração de novos métodos de análise. Isto porque, a disponibilidade de uma massiva quantidade de observações das diferentes variáveis de produção possibilita uma visão mais detalhada das relações espaciais e temporais dos processos agronômicos, demandando uma revisão de conceitos agronômicos desenvolvidos a partir de observações discretizadas por grades amostrais que são, muitas vezes, mais esparsas do que a escala de variação inerente ao atributo sendo observado.

Um fator primordial para aplicação da geoestatística que a agricultura de precisão contempla é a obtenção de dados com as correspondentes coordenadas geográficas. Os dados georreferenciados podem ser obtidos por meio de coleta in loco, mapas temáticos, imagens de satélite ou fotografias aéreas.

Deve-se analisar e planejar o número de coletas de dados, principalmente através do custo/benefício, pois um grande número de pontos amostrais aumenta o custo da operação e pode inviabilizar a implantação do processo (Bolfe; Gomes, 2005). Apesar disso as amostragens devem ser suficientemente próximas para conseguir caracterizar as possíveis manchas de variabilidade, sendo assim, dados auxiliares, informações históricas da área podem ajudar a determinar este número adequado de amostras, segundo Vieira, Xavier e Grego (2008). Se houverem imagens de satélite ou fotografias aéreas com as quais se possa identificar regiões com diferentes níveis de verde, é possível direcionar as amostragens, concentrando-se nas regiões
onde exista maior variabilidade e diminuindo-se a densidade nos locais mais uniformes.

Em adição aos sensores remotos, orbitais e suborbitais, já amplamente difundidos em suas aplicações, novos sensores proximais podem também gerar uma grande quantidade de observações em alta resolução espacial. Estes normalmente realizam medições por contato direto com o solo e a planta, ou em distâncias de até 3 metros em relação ao terreno, dependendo do tipo de sensor. A frequência de leitura é sincronizada com a atualização de coordenadas do GPS (a cada segundo), tendo consequentemente, o número total de observações por área como função da velocidade de operação dos implementos agrícolas. Desta forma, viabilizando uma leitura quase continua dos dados observados e promovendo uma alta densidade amostral, ou seja, em alta resolução espacial. A maior disponibilidade de dados observados favorece a representatividade da autocorrelação espacial dos atributos de produção em diferentes escalas.

Os tipos de sensores proximais mais utilizados e as diferentes tecnologias utilizadas para viabilizar estes sensores são:

a) sensores de posicionamento de campo que permitem a localização precisa dentro do talhão (latitude e longitude) e a medição de valores altimétricos que possibilitam o cálculo de atributos topográficos (e.g. declividade, aspecto, tamanho da pendente, área de contribuição e índice de encharcamento). São os sensores de posicionamento como GPS, DGPS e RTK;

b) sensores de produtividade que permitem quantificar parâmetros da produção em função da área colhida (e.g. massa, umidade, conteúdo de açúcar, óleo e proteínas). São os sensores de produtividade por fluxo ou por impacto;

c) sensores das propriedades de solo que quantificam atributos como o conteúdo de matéria orgânica, pH, capacidade de troca catiónica, textura, umidade, nutrientes e contaminações. Incluem equipamentos como espectrômetros de infravermelho, condutivímetros elétricos por contato (Veris - Figura 1a) ou indução eletromagnética (EMI) e penetrômetros eletrônicos;

d) sensores de cultivo que indicam o grau de desenvolvimento das plantas (e.g teor de nitrogênio e clorofilômetros). São os sensores ópticos de cultivo por infravermelho, laser e radares. Destaca-se na Figura 1b o sensor óptico ativo terrestre Crop Circle, que trabalha com dois comprimentos de onda sendo possível calcular o índice de vegetação por diferença normalizada (NDVI) e o índice de clorofila.

Como resultado da disponibilidade de dados em alta resolução pode-se observar uma maior precisão nos cálculos, sendo que o próprio mapa com os valores amostrados indica onde deve ocorrer a estrutura de dependência espacial, apresentando os locais de maiores e menores valores. Neste sentido, pode-se facilmente constatar que as observações coletadas pelos sensores na agricultura de precisão atendem aos

Figura 1. Sensores de coleta de dados em Agricultura de precisão: a) sensor de condutividade elétrica (Veris); b) sensor de índice de vegetação (Crop Circle). Foto a: Célia Grego. Foto b: Cristina Aparecida G. Rodrigues.
Agricul tur
A
de precisão: resultados de um novo olh
A
A

MEDEIROS, 1996) e que podem ser trabalhados com ferramentas da geoestatística (VIEIRA; NIELSEN; BIGGAR, 1981). Os SIGs realizam funções de análises espaciais baseados nos atributos das entidades gráficas armazenadas na base de dados e a partir de módulos específicos, geram um conjunto de dados estimados utilizando-se dos pontos amostrados de coleta da informação, em que as coordenadas geográficas ou locais representaram a posição dos pontos.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>CE (30 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>299562</td>
<td>7505209</td>
<td>2.05</td>
</tr>
<tr>
<td>299565</td>
<td>7505210</td>
<td>1.85</td>
</tr>
<tr>
<td>299568</td>
<td>7505210</td>
<td>2.1</td>
</tr>
<tr>
<td>299571</td>
<td>7505211</td>
<td>3.8</td>
</tr>
<tr>
<td>299574</td>
<td>7505211</td>
<td>3.02</td>
</tr>
<tr>
<td>299577</td>
<td>7505212</td>
<td>3.15</td>
</tr>
<tr>
<td>299580</td>
<td>7505213</td>
<td>2.25</td>
</tr>
<tr>
<td>299595</td>
<td>7505214</td>
<td>1.4</td>
</tr>
<tr>
<td>299599</td>
<td>7505214</td>
<td>1.45</td>
</tr>
<tr>
<td>299601</td>
<td>7505214</td>
<td>1.3</td>
</tr>
<tr>
<td>299605</td>
<td>7505214</td>
<td>1.4</td>
</tr>
<tr>
<td>299608</td>
<td>7505215</td>
<td>1.25</td>
</tr>
<tr>
<td>299611</td>
<td>7505214</td>
<td>0.95</td>
</tr>
<tr>
<td>299614</td>
<td>7505215</td>
<td>1.25</td>
</tr>
<tr>
<td>299617</td>
<td>7505215</td>
<td>1.3</td>
</tr>
<tr>
<td>299620</td>
<td>7505216</td>
<td>1.7</td>
</tr>
<tr>
<td>299668</td>
<td>7505210</td>
<td>2.65</td>
</tr>
<tr>
<td>299665</td>
<td>7505210</td>
<td>2.35</td>
</tr>
<tr>
<td>299663</td>
<td>7505210</td>
<td>2.75</td>
</tr>
<tr>
<td>299667</td>
<td>7505210</td>
<td>2.7</td>
</tr>
<tr>
<td>299653</td>
<td>7505210</td>
<td>1.95</td>
</tr>
<tr>
<td>299650</td>
<td>7505209</td>
<td>2</td>
</tr>
<tr>
<td>299646</td>
<td>7505209</td>
<td>2.05</td>
</tr>
<tr>
<td>299642</td>
<td>7505209</td>
<td>2.45</td>
</tr>
</tbody>
</table>

Figura 2. Exemplo de dados de condutividade elétrica do solo obtidos por sensor de indução elétrica: a) planilha de dados e estatística descritiva; b) Mapa de classes dos valores medidos.

Figura 3. Exemplo de um semivariograma com seus parâmetros Co (efeito pepita), C1 (variância estrutural) e a (alcance).

requisitos mínimos para a análise geoestatística, como no exemplo da Figura 2.

A análise exploratória dos dados antes de serem submetidos à análise geoestatística, é de suma importância e tem o objetivo de identificar previamente os dados discrepantes, a normalidade de distribuição de frequência e a variação nos dados. Muitas vezes os valores discrepantes ocorrem por problemas de erro de amostragem, mau contato do sensor utilizado para a medida, análise laboratorial ou simplesmente erro de digitação. O exemplo da análise da estatística descritiva dos dados de condutividade elétrica do solo pode ser conferido na Figura 2.

Em agricultura de precisão também são utilizados dados oriundos dos Sistemas de Informações Geográficas (SIG) que são conjuntos manuais ou computacionais de procedimentos desenvolvidos para trabalhar com dados referenciados por coordenadas geográficas ou espaciais (STAR; ESTES, 1990). Os SIGs consistem em sistemas de suporte à decisão, integrando dados referenciados espacialmente em um ambiente de respostas a problemas (CÂMARA; MEDEIROS, 1996) e que podem ser trabalhados com ferramentas da geoestatística (VIEIRA; NIELSEN; BIGGAR, 1981). Os SIGs realizam funções de análises espaciais baseados nos atributos das entidades gráficas armazenadas na base de dados e a partir de módulos específicos, geram um conjunto de dados estimados utilizando-se dos pontos amostrados de coleta da informação, em que as coordenadas geográficas ou locais representaram a posição dos pontos.
A importância do semivariograma está na identificação da variabilidade espacial.

A hipótese básica sob a qual a geoestatística se baseia é que dados vizinhos são mais parecidos que dados distantes. O semivariograma é um “medidor” do grau de semelhança entre vizinhos. Ele pode ser estimado pela Equação 1:

$$\gamma^*(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} [Z(x_i) - Z(x_i + h)]^2$$ \hspace{1cm} \text{Eq. 1}$$

onde $N(h)$ é o número de pares de valores medidos $Z(x_i), Z(x_i+h)$, separados por um vetor h. Para que a variável avaliada tenha dependência espacial é necessário que o semivariograma seja crescente com a distância. Além disso, é exigido que a hipótese intrínseca seja válida ou seja, que o semivariograma, após ter um aumento com a distância, se estabilize no valor da variância dos dados. A maneira como o semivariograma cresce com a distância até o alcance é que define o comportamento espacial da variável estudada (VIEIRA, 2000).

Os parâmetros C_0, C_1 e a são, respectivamente, o efeito pepita, a variação estrutural e o alcance e são usados para ajustar o modelo ao semivariograma. Gráfico do semivariograma é uma série de pontos discretos para a qual, uma função contínua deve ser ajustada. Ajuste de modelo ao semivariograma é um dos aspectos mais importantes das aplicações da geoestatística porque os cálculos de geoestatística dependem do valor do modelo do semivariograma para cada distância especificada. Ajuste por métodos automáticos, embora possa ser usado, não é o mais adequado. Alguns coeficientes, como o coeficiente de correlação, a raiz quadrada do erro médio (RMSE) e o índice de Akaike (IAC) podem auxiliar na validação do modelo escolhido e dos parâmetros para o ajuste do semivariograma. Segundo Vieira et al. (2000), uma poderosa ferramenta de validação é o método “jack-knifing” que calcula os parâmetros do erro absoluto e reduzido da estimativa, tornando-a valiosa. Além disso indica qual a vizinhança ideal para a estimativa.

McBratney e Webster (1986) indicam que os modelos mais adequados para os mais variados tipos de situações, na maioria dos casos, serão esférico, exponencial ou gaussiano. A Figura 4 mostra o comportamento destes três modelos. O que recomendam Vieira, Carvalho e Paz Gonzalez (2010) é que o usuário escolha um destes três modelos segundo o comportamento de seus semivariogramas para pequenas distâncias (menor do que o alcance), faça o ajuste usando algum método de otimização dos parâmetros C_0, C_1 e a, e submeta este modelo ao processo da validação pelo “jack-knifing”. Este método, embora trabalhoso, irá eliminar qualquer possibilidade de ajuste inadequado porque os resultados estarão dentro de alguns padrões estatísticos.

Nota-se na Figura 4 que os comportamentos destes três modelos antes do alcance são totalmente distintos.

O modelo gaussiano definido pela Equação 2, é o que representa os processos mais contínuos que se tem conhecimento, tem um crescimento bastante lento no início e tem um ponto de inflexão antes do alcance. Os dados mais comuns de ocorrência de modelo gaussiano são cotas topográficas.

$$\gamma(h) = C_0 + C_1 \left[1 - \exp \left(-3 \left(\frac{h}{a}\right)^2\right)\right]$$ \hspace{1cm} \text{Eq. 2}$$

$0 < h < d$

onde C_0, C_1 e a são os parâmetros de ajuste, h a distância e $\gamma(h)$ o valor da semivariância para o modelo de ajuste

O modelo exponencial é o que representa processos que tem a maior perda de semelhança com a distância. Dados de precipitação pluviométrica normalmente são ajustados por este modelo. Atinge o patamar exponencialmente, por isso possui apenas uma estrutura onde d é a máxima distância na qual o semivariograma é definido (Equação 3).

$$\gamma(h) = C_0 + C_1 \left[1 - \exp \left(-3 \left(\frac{h}{a}\right)\right)\right]$$ \hspace{1cm} \text{Eq. 3}$$

$0 < h < d$
O modelo esférico cresce aproximadamente entre o gaussiano e o exponencial e é o modelo que mais ocorre. Possui duas estruturas, uma com a distância entre zero e o alcance e outra maior do que o alcance, onde atinge o patamar. O modelo esférico é linear até aproximadamente 1/3 do alcance (Equação 4).

\[
\gamma(h) = C_0 + C_1 \left[\frac{3}{2} \left(\frac{h}{a} \right) - \frac{1}{2} \left(\frac{h}{a} \right)^3 \right]
\]

\(0 < h < a\) \hspace{1cm} \text{Eq. 4}

\[
\gamma(h) = C_0 + C_1 \hspace{1cm} h > a
\]

Após o ajuste do semivariograma e a obtenção dos parâmetros de ajuste Zimback (2001) estabeleceu uma relação entre o patamar e o efeito pepita em que indica o Grau de Dependência (GD) espacial (se fraco <25%, moderado >25% até 75%, forte > 75%) pode ser calculado seguindo a Equação 5:

\[
GD(\%) = \frac{C_1 \cdot 100}{(C_0 + C_1)} \hspace{1cm} \text{Eq. 5}
\]

Em agricultura de precisão, o grau de intensidade da variabilidade espacial pode ser relacionado com a viabilidade estratégica e operacional do manejo da produção por manejo localizado (PRINGLE et al., 2003). Neste sentido, a utilização de parâmetros obtidos durante o ajuste dos semivariogramas serve como componente no desenvolvimento de modelos simplificados que possam indicar quantitativamente a oportunidade de adoção da agricultura de precisão como função da variabilidade espacial das variáveis que orientam o manejo da produção (PRINGLE et al., 2003). Outro resultado relevante no uso do semivariograma ajustado com alta densidade de dados baseia-se nas funções de covariância que mais comumente melhor ajustaram os semivariogramas para fins de mensuração da estrutura de variação espacial das variáveis de produção. Este fato reforça a adoção desta tecnologia, em detrimento das práticas usualmente propostas pelos prestadores de serviço de agricultura de precisão.

4. A interpolação dos dados em geoestatística

A krigagem é um estimador geoestatístico e esta denominação foi realizada por Matheron em homenagem aos trabalhos pioneiros de Daniel Krige na década de 50 (SOARES, 2006).

O objetivo da interpolação por krigagem é estimar valores para qualquer local e a estimativa será uma combinação linear de valores medidos. Havendo comprovadamente dependência espacial para a variável em estudo, por meio do ajuste de semivariograma, pode-se interpolar valores em qualquer posição no campo de estudo, sem tendência, na média não deve super nem sub estimar valores, e com variância mínima, ou seja a incerteza na estimativa tem que ser mínima.

Figura 5. Análise geoestatística para dados de produção de cana-de-açúcar: a) Ajuste do semivariograma esférico com os parâmetros efeito pepita, variância estrutural e alcance; b)Mapa de isolinhas após interpolação de dados por krigagem ordinária.
Na figura 5 são mostrados exemplos de ajuste de semivariograma e a contrução do mapa para dados de produção de cana-de-açúcar.

Segundo Vieira (2000), existem interpoladores que não consideram a dependência espacial, como inverso do quadrado da distância, média móvel ponderada e outros que interpolam por meio de ajuste por polinômios bidimensionais. Entretanto, estes interpoladores não consideram a estrutura da variação espacial dos valores medidos revelado pelo semivariograma, e portanto não determinam com exatidão a variação dos dados interpolados.

Na krigagem os pesos dados às amostras vizinhas são determinados a partir da análise espacial, baseada no semivariograma experimental. Ou seja, através da krigagem é possível calcular um valor de uma dada propriedade para cada centro da célula de uma malha tridimensional, valor este condicionado aos dados existentes e a uma função de correlação espacial entre estes dados.

Segundo Soares (2006) o algoritmo mais usual de krigagem é a krigagem ordinária, onde não há necessidade de se conhecer o valor da média, isto é, o valor da média é constante mas desconhecida. Já na krigagem simples, há necessidade de se conhecer o valor da média, ou seja ela é conhecida.

Após a interpolação por krigagem, os resultados são submetidos a espacialização resultando em mapas de isolinhas, geralmente em ambientes de sistema de informação geográfica, onde outras bases podem ser visualizadas e agrupadas (imagem de satélite e mapas de relevo, hidrografia, entre outras), como feito para o plano de amostragem de solo em área de vinhedo por Valladares et al. (2009). No exemplo da Figura 6 pode-se visualizar uma sobreposição de mapas para uma mesma área, onde o mapa base foi gerado a partir de dados espacializados de cotas topográficas (m) e o sobreposto, de condutividade elétrica do solo obtida com o sensor Veris (0-30 cm). Verifica-se que houve uma correlação entre eles, sendo que na parte de menor cota foi também o local onde houve menor condutividade elétrica do solo.

A interpretação dos mapas precisos derivados da interpolação de dados por krigagem permite ao interessado identificar as regiões no campo onde o fenômeno estudado é mais uniforme do que em outras. Dessa forma, a utilização das tecnologias como a Geostatística permite amparar tecnicamente decisões estratégicas e complexas em relação ao sistema de manejo adotado, seus efeitos ambientais e na produtividade das diferentes culturas. Essa é a contribuição da geostatística para o desenvolvimento de uma produção agrícola sustentável em agricultura de precisão.

![Figura 6. Mapas sobrepostos obtidos por dados espacializados de krigagem ordinária. Mapa base de cotas topográficas (m) e o sobreposto de condutividade elétrica do solo (0-30 cm)](image.png)
5. Considerações finais

Em agricultura de precisão, a possibilidade de gerar mapas relacionados aos sistemas de produção agrícola, tem permitido a identificação de zonas homogêneas e consequentemente a aplicação de insumos e manejo localizados, auxiliando a tomada de decisão por parte do produtor. Contudo, isto só é possível considerando a variabilidade espacial dos fatores envolvidos e a geoestatística é sabidamente uma ótima ferramenta para este fim.

A técnica de geoestatística requer amostragens suficientemente próximas para conseguir caracterizar as possíveis manchas de variabilidade, o que pode inviabilizar a implementação do processo devido ao alto custo para aquisição deste grande número de dados sem um efetivo planejamento. Por isso, antes de se decidir obter os dados a campo deve-se buscar informações que possam direcionar para o adequado número de amostras, tais como buscando os dados auxiliares como os obtidos por sensores, uma realidade em agricultura de precisão, as informações históricas da área e as imagens de satélite ou fotografias aéreas com as quais se possa identificar previamente regiões com menor e maior variação a determinada característica de interesse. Assim, é possível realizar uma amostragem inteligente, concentrando nas regiões onde exista maior variação e diminuindo-se a densidade nos locais mais uniformes.

Por fim, a análise geoestatística fornecerá resultados na forma de mapas precisos com base na dependência espacial identificada nos processos da análise. Dessa forma, a geoestatística auxilia fortemente nas decisões estratégicas e complexas em relação ao gerenciamento do sistema de produção agrícola e consequentemente nos seus efeitos ambientais, contribuindo para o desenvolvimento sustentável em agricultura de precisão.

Referências

MOLIN, J. P. Agricultura de precisão no Brasil: estado atual e perspectivas. In: CONGRESSO BRASILEIRO DE SOJA, 6., 2012, Cuiabá. Anais...

Modelagem SIG em agricultura de precisão: conceitos, revisão e aplicações

José Maria Filippini Alba*1

1Pesquisador, Laboratório de Planejamento Ambiental, Embrapa Clima Temperado
*E-mail: jose.filippini@embrapa.br

Resumo: Vários autores reconhecem a importância dos Sistemas de Informação Geográfica (SIG) para a Agricultura de Precisão (AP). No entanto, as referências consultadas demonstram que essa ferramenta ainda não é utilizada no seu máximo potencial. As limitações relacionam-se à forma preferencial de interpretação das informações em agricultura, à ausência de bases de dados consistentes em AP ou à carência de modelos de integração. Há forte direcionamento para a análise da variabilidade espacial via métodos geoestatísticos e interpolação por krigagem, mas prefere-se a integração pontual, considerando métodos multivariados e não por fusão de camadas de informação no SIG (modelagem SIG). Vários autores mencionam o conceito de “SIG específico para AP” (FIS) como ferramenta flexível para manuseio de dados, simples e barata. De maneira a expor o potencial da técnica, apresentam-se exemplos de aplicações de modelagem SIG por meio de fusão de dados considerando-se as lógicas booleana e fuzzy. Os mesmos parecem adequados para ajuste da relação fertilidade e produtividade, porém outras aplicações podem ser desenvolvidas, dependendo da base de dados disponível. Considera-se que aplicações em SIG no contexto da AP poderão aumentar expressivamente, em quantidade e qualidade, num futuro próximo.

Palavras-chave: Agricultura de precisão, AP, Geotecnologias, Geoprocessamento, SIG, Sistemas de informação geográfica.

GIS Modeling in Precision Agriculture: concepts, review and applications

Several authors recognize the importance of Geographic Information Systems (GIS) for Precision Agriculture (PA). However, the consulted references demonstrate that the tool is not used with full potential. Limitations are related to the preferred way of interpreting the information in agriculture, to the absence of consistent databases or due to the lack of integration models. Spatial variability of data is usually processed by geostatistic and kriging, but integration is performed point to point, considering multivariate methods, and not by fusion of information layers in GIS (GIS modeling). Several authors mentioned the concept of “Specific GIS for PA” (FIS) as a flexible tool for data handling, simple and inexpensive. Thus, examples of applications by modeling with GIS are exposed considering boolean logic and fuzzy logic. The examples seem appropriate to adjust the ratio between productivity and fertility, but other applications can be developed, depending on the available database. GIS applications will increase significantly in the PA context in the near future, since a quantitative and quality perspective.

Precision Agriculture, PA, Geotechnologies, Geoprocessing, GIS, Geographic information system.
1. Conceituando sobre Sistemas de Informação Geográfica e Agricultura de Precisão

O sistema de posicionamento orientado por satélites (SPOS) do USA, o “Global positioning satellite” (GPS), possui uma estreita relação com os Sistemas de Informação Geográfica (SIG) e com a Agricultura de Precisão (AP), que foi incrementada na década de 90 (GOSWAMI; SAXENA; BAIRAGI, 2012; BERRY, 2013). Os SPOS usam receptores apoiados por satélites, que monitoram a Terra, de maneira contínua, permitindo a localização espacial de um ponto na superfície terrestre de forma precisa. Bonham-Carter (1994) define os sistemas de informação geográfica (SIG) como "sistemas computacionais que gerenciam dados espaciais", isto é, dados georreferenciados, dados vinculados a um sistema de coordenadas geográficas.

Para Inamasu et al. (2011) a AP define-se como "a postura gerencial que considera a variabilidade espacial da lavoura para maximizar o retorno econômico e minimizar os prejuízos ambientais". Procedimentos, aplicativos e equipamentos relacionados a SIG, SPOS, banco de dados e sistemas de sensoriamento remoto são geotecnologias. Paralelamente, o SIG está relacionado ao gerenciamento de informações, à análise da variabilidade espacial e a aplicações diversas (Agronomia, Engenharia, meio ambiente, etc.), por isso vários autores o consideram como uma das fases principais do processo de AP (ZHANG; WANG; WANG, 2002; GOSWAMI; SAXENA; BAIRAGI, 2012; BERRY, 2013; BRAMLEY; QUABBA, 2013).

Em um SIG, o mundo real é estruturado segundo níveis de informação digitais (modelo numérico), ajustados a um sistema único de coordenadas, permitindo sua integração por meio de algoritmos lógicos, estatísticos e matemáticos. O processo pode ser comparado com o de sobreposição de mapas em material transparente, para visualização simultânea, como era realizado antigamente. A vantagem do sistema digital é a facilidade de modificar os níveis de informação ou integrar vários deles, de maneira a produzir novas modelagens e simulações, isto é, produzir novas informações, de onde surge a expressão "modelagem SIG".

O sensoriamento remoto trata de medições à distância, ou seja, sem contato físico entre o alvo e o sensor, envolvendo o estudo da interação da radiação eletromagnética com os objetos terrestres. O processamento digital de imagens (CROSTA, 1993) envolve aplicativos que processam arquivos do tipo raster, ou seja, definidos segundo formato de matriz (malha regular), como imagens orbitais. Algumas das funções dos aplicativos de processamento digital também são utilizadas por SIGs. Por outro lado, um SIG representa o ambiente ideal para gerenciar e integrar qualquer tipo de informação relacionada com geoprocessamento, inclusive imagens orbitais, no entanto o sistema é menos eficiente no processamento digital delas (JENSEN, 1996).

Sintetizando os conceitos de Filippini-Alba, Berny e Costa (2009), as principais funções de um SIG são: (1) banco de dados geográfico; (2) procedimentos de interpolação, que incluem a Teoria das Variáveis Regionalizadas, também conhecida como Geoestatística (MATHERON, 1963); (3) funções de extração por condição, por seleção ou por recorte (janela), proximidade (buffers) e integração (união, dissolução, intersecção...); (4) métodos de classificação. As funções (1) e (2) representam o início de todo projeto de SIG como é exposto por Shiratsuchi, Sano e Bezerra (2005) como suporte a ações em AP, e inclui o levantamento de dados a campo, via SPOS. Modelagens complexas podem ser obtidas incorporando-se as funções de tipo (3) e (4), como apresentado, em escala regional, por Filippini-Alba e Souza Filho (2010) para avaliação ambiental, e por Filippini-Alba et al. (2010) no zoneamento edafoclimático de espécies florestais.

A análise da variabilidade espacial e o processamento digital de imagens, procedimentos extremamente importantes no contexto de geoprocessamento e SIG, são em geral executados de maneira mais eficiente por aplicativos específicos e não serão considerados, pois foram discutidos em outros capítulos do presente livro. Por isso, iniciou-se com um marco conceitual sobre geotecnologias e AP, sendo na sequência exposta uma revisão do tema para o período 1998-2013, finalizando-se com aplicações específicas de modelagem SIG em escala de lavoura, de caráter didático. Métodos de inteligência artificial
como as redes neurais (ASSAD; SANO, 1998) e o “Self-organizing maps” (SILVA et al., 2010), com potencial para interpretação e simulação de dados em AP, foram aplicados de forma genérica, focando estudos em escala regional, por isso não foram incluídos nesta revisão.

2. Revisão sobre SIG em AP

Zhang et al. (1999) inseriram o conceito de “field-level GIS” (FIS), que teria funcionalidades semelhantes às de um SIG comercial, porém mais específicas para AP, com menor custo e maior simplicidade. Os FIS são diferentes em quatro tipos de funções: (1) para integrar dados espaciais segundo escalas e resoluções diferentes; (2) para isolar, dividir ou integrar regiões de maneira que a análise seja simplificada no ambiente multifatorial; (3) para analisar padrões espaciais em coordenadas cartesianas ou polares (pivô-central); (4) para integrar dados de sensoriamento remoto no contexto da análise.

Conforme Earl, Thomas e Blackmore (2000), historicamente, a coleta de dados do solo e das culturas para fins de gestão tem estado na escala de lavoura, levando a volumes de dados bastante modestos para o armazenamento e processamento. A adoção de métodos de agricultura de precisão, no entanto, necessariamente envolve a coleta extensiva de dados espaciais ou necessita de estratégias de amostragem com o consequente aumento do volume de dados para serem armazenados e processados. Dependendo do método de coleta de dados escolhido, este aumento pode ser dramático, e em consequência nenhum registro, tratamento ou armazenamento poderá ser feito sem meios digitais. Os autores concluem que o aumento da disponibilidade de soluções para posicionamento na lavoura, monitoramento da condição das culturas e das propriedades do solo e controle de operações de campo é um aumento necessário, mas não suficiente para o sucesso do estabelecimento da agricultura de precisão. Os dados e fluxos de informação são fundamentais para uma gestão moderna de operações de campo. Estes dados e informações surgem da diversidade de equipamentos e máquinas direcionadas para o meio rural e exigem diferentes qualidades de interpretação. Notável neste contexto é o aumento da disponibilidade de dados temporários, durante o período de desenvolvimento da cultura, que complementam os dados de produtividade. Embora o aumento de escala e complexidade dos dados e fluxos de informação seja evidente a partir dessa discussão, os dados e informações levantados são de natureza digital, e, portanto, ligados através de posicionamento espacial e tempo de aquisição. Desta forma, não é surpreendente que a tecnologia emergente de SIG esteja fornecendo a base necessária para a integração desses dados dispersos e fontes de informação para definir as decisões gerenciais. Isso sugere que o SIG possa vir a ser cada vez mais central para AP, especialmente em termos do desenvolvimento da orientação automatizada de operações de campo. Este último, finalmente, exige a plena integração de posicionamento, sistemas de controle e de detecção para permitir a orientação das máquinas e o controle das operações de campo. À luz dos recentes desenvolvimentos em tecnologia da informação, esta sinergia entre gestão e orientação agora parece possível.

Zhu et al. (2008) efetuaram simulações e modelagem SIG para fertilização com N em diversas culturas, no período 1991 - 2000 na província de Jiangsu, China. Concluíram que o manejo do N pode ser melhor descrito em escala regional por integração de modelos matemáticos por meio de SIG, permitindo a tomada de decisão para zoneamento da necessidade de N do solo e manejo agrícola do insumo em escala de província.

Avellar et al. (2002) trabalharam com produção de milho e soja por irrigação com pivô central em Sete Lagoas, MG. As zonas de manejo foram definidas por modelagem SIG considerando-se as variáveis: condutividade elétrica, fertilidade do solo com os teores de K, P e matéria orgânica (MO) e produtividade em 2000 e 2001, que foram integradas por modelagem FuzMe (classificador por k-médias).

Kai et al. (2003) consideram o SIG comercial complexo de usar, caro e sem especificidade para AP. Na China a AP está atrasada, mas foi desenvolvido um SIG para gerenciamento da agricultura em escala macro, diferente do considerado pelos autores, em escala local (Farmland GIS). Considerou-se uma área experimental de 130 hectares, com temperatura média anual de 15,5 °C, precipitações de 1.072 mm
e 2.224 horas de sol, solos neutros e aptidão para várias culturas. Foi criada uma base de dados geográfica com mapas administrativos distritais, de uso/ocupação da terra, fatores ambientais, localização, amostragem, produção, distribuição de nutrientes e manejo das culturas, sendo também incluídos atributos de clima, solos, macro e micronutrientes e planta (doenças, pesticidas, etc.), que orientaram a elaboração dos mapas de fertilidade. Gao-di et al. (2003) apresentaram trabalho semelhante considerando a cultura de arroz na China.

Para Santos et al. (2003), a AP prevê o aproveitamento da estrutura da variação espacial dos elementos do meio físico, condicionantes da produtividade agrícola, para avançar na racionalização da aplicação de insumos e abrandamento de eventuais impactos ambientais advindos de dosagem excessiva. Integraram dados de produtividade (1999/2000 e 2000/2001) por levantamento de 16 mil pontos via sensor mecânico, com o microzoneamento para a cultura de milho conforme método multivariado que considerou a lógica “fuzzy” para agrupar dados de solos. Foram trabalhadas 11 variáveis físicas do solo sendo avaliados os resultados com duas, três e quatro classes. As variáveis argila, silte e areia muito grossa foram as mais significativas segundo análise discriminante. Concluíram que: (1) a integração metodológica utilizada para separar zonas de manejo mostrou-se adequada para o reconhecimento de padrões de agrupamento nas propriedades do solo; (2) o delineamento de zonas de manejo é dinâmico, podendo ser influenciado pelo manejo anual do milho, pelas variáveis utilizadas para a segmentação e pelo regime microclimático; (3) para o milho, a mudança na direção das linhas de plantio pode alterar o número e a localização das zonas de manejo.

Satti e Jacobs (2004) desenvolveram um SIG baseado na modelagem de recursos hídricos para agricultura e gestão rural, integrando um simulador do consumo de água por culturas agrícolas (citros, batatas, samambaias e pastagens), considerando uma base de dados geográficos, incluindo dados de solos, climáticos e de uso da terra, nos condados de Alachua e Volusia, Flórida, USA. O sistema facilita a quantificação da água de irrigação para o planejamento regional em escala de fazenda permitindo avaliar estatisticamente as condições “normais” e de seca. Além disso, fornece estimativas de retirada diária de água em escala regional, necessárias para a entrada em modelos hidrológicos superficiais e/ou subterrâneos. O estudo demonstra a capacidade do sistema para caracterizar as necessidades de irrigação nas fazendas da Flórida com base em solos espacialmente heterogêneos e dados climáticos conforme modelo aglomerado. Os resultados mostram que, embora a inclusão da heterogeneidade do solo seja importante para captar as necessidades de água em fazendas individuais, as demandas regionais de água são adequadamente capturadas, simplesmente usando-se o solo predominante de cada fazenda.

Bramley e Hamilton (2004) compararam resultados de produtividade de uva para vinho em três vinhedos da Austrália (Coonawarra, Sunraysia e Clare), no período 1999-2003, com tamanho de 7,3; 4,5 e 3,6 hectares respectivamente. A integração dos dados para diferentes anos foi feita pela soma de mapas binários considerando valor nulo quando a produtividade não superou a média ou valor um, nos casos que a média foi ultrapassada. Em 1999 o vinhedo de Coonawarra foi dividido em zonas de manejo, com a correspondente coleta de uva e produção de vinhos em lotes. Os vinhos foram analisados, apresentando características sensoriais e químicas diferenciadas. Concluiu-se que existe uma relação de certa forma antagônica entre produtividade e qualidade, que muda ano a ano.

Em aplicação envolvendo GPS de dois canais com precisão centimétrica, Ramos et al. (2007) monitoraram a movimentação das oliveiras devido à erosão, em um olival na Andaluzia, Espanha. Observaram-se três características: (1) posição exata das plantas in situ durante um ano; (2) modelo digital de elevação; e (3) modelo de declividade. As plantas apresentaram pouco deslocamento variando de 2 cm até 6 cm na horizontal e também deslocamento vertical. As medidas de 3D com alta precisão permitiram gerar um modelo digital de elevação preciso e a correspondente declividade, sendo relacionadas essas informações. Assim o manejo do olival poderá ser modificado para minimizar o problema de erosão.

Conforme Wu et al. (2009) vários fatores afetam o crescimento e qualidade dos citros...
(propriedades do solo, topografia, clima e manejo), muitas delas relacionadas à localização do pomar, que pode ser registrada e analisada. Além disso, a competição no mercado internacional está forçando mudanças na produção chinesa de citros. Desta forma, para aperfeiçoar a produção, devem ser conhecidas as variáveis relevantes no contexto geográfico, para uma dada condição ambiental, de acordo com a tecnologia disponível. Investigações sobre variedades de citros e aplicações foram desenvolvidas na década passada, porém a informação não foi completamente analisada. Conhece-se pouco sobre as condições de crescimento e distribuição de pomes de citros em escala regional em Chongqing, China. Assim, desenvolveu-se um SIG para monitorar as condições de desenvolvimento dos citros envolvendo posição geográfica e atributos do solo na mencionada região e se identificou o potencial de cultivo de citros em escala regional. Foram estudados 50 pomes com área acima de 12 hectares, 80% irrigados por fluxo e o resto por gotejamento. Foram gerados mapas temáticos relacionados ao modelo digital de elevação, hidrografia, rede viária, solo (pH, MO, fertilizantes, etc.), clima e uso da terra. Avaliou-se a posição dos pomes, 80% com altitude de 200-400m e 57% com declividade inferior aos 15°. A sobreposição dos dados de clima de 30 anos, pH e MO permitiu determinar a área ótima para desenvolvimento de citros, que resultou em aproximadamente um terço do território avaliado.

Fountas et al. (2009) destacaram que a AP gera grande quantidade de informação, pois existem várias tecnologias para coletar e manusear informações em escala de lavoura. A Universidade de Copenhagen, Dinamarca, criou um sistema multiusuários para atender as várias propriedades que trabalham com AP, incluindo quatro granjas onde se desenvolvem as atividades experimentais em parcelas, considerando informações digitais de limites, topografia, cadastro oficial, amostragem de campo e medidas com sensores (EM-38). A pesquisa ilustra a metodologia e os benefícios de elaborar um sistema completo de análise, desenvolvimento e gerenciamento da informação rural. A metodologia dos "sistemas soft" revelou problemas, oportunidades e requerimentos de usuários. A metodologia dos "sistemas hard" deu suporte à estrutura lógica dos dados e a informação de fluxo. O sistema manuseia simultaneamente os dados como ensaios ou como sitos específicos, imitando parcelas. Um SIG comercial foi utilizado por meio de computadores de mão, que permitem planejamento, entrada de dados, acesso e documentação dos ensaios e operações experimentais, para os especialistas e usuários de campo. A principal restrição que limita o potencial do sistema foi a relutância dos pesquisadores para compartilhar e carregar os dados dos ensaios em função das normas de segurança e hierarquias de acesso.

Parfitt (2009) realizou análise aprimorada da variabilidade espacial em lavoura de arroz sistematizada localizada em Capão do Leão, RS, mas não utilizou métodos de integração com modelagem SIG ou análise multivariada.

Uma amostra mais significativa do que vem sendo realizado no Brasil em relação a SIG em AP pode ser extraída dos anais do Congresso Brasileiro de Agricultura de Precisão (CONGRESSO..., 2010, 2012), assim como de Inamasu et al. (2011). Em geral, os dados foram georreferenciados via SPOS, e organizados em SIG usando-se as funções de banco de dados. A análise espacial é realizada de maneira predominantemente por métodos geoestatísticos, sendo gerados os respectivos mapas em softwares específicos ou em ambiente SIG. A integração de dados é realizada de forma pontual, considerando métodos multivariados com uso da krigagem para interpolação e interpretação visual. Luchiari et al. (apud INAMASU et al., 2011, p. 60-64) definiram zonas de manejo para grãos em área irrigada por pivô central, por sobreposição de bandas coloridas extraídas de foto aérea. Bognola et al. (apud INAMASU et al., 2011, p. 227-231) usaram análise em componentes principais em SIG para avaliar zona segundo o Índice de sitio, ou seja, a altura dominante aos 15 anos, em plantio florestal no município de Rio Negrinho, SC.

Amado e Santi (2011) analisaram a agricultura do sul do Brasil com ênfase na aplicação de AP na região do planalto (latossolos). A variabilidade e fertilidade do solo, assim como mapas de produtividade em várias lavouras de cultivo de grãos, foram apresentadas e discutidas. Os dados foram expostos segundo mapas interpolados considerando também a variabilidade temporal. O conteúdo e a capacidade de tamponamento
dos nutrientes do solo, a infiltração da água e sua disponibilidade para as plantas são os fatores limitantes da produtividade. O uso da malha regular resultou útil para determinar teores críticos de nutrientes. Em geral, a aplicação segundo taxa variável de fertilizantes e calcário permitiu reduzir a quantidade de insumos utilizados em relação aos métodos convencionais. A análise dos mapas de produtividade sugeriu que nas zonas erodidas e marginais houve limitações produtivas pela compactação do solo, perda de MO, redução de infiltração da água e capacidade de retenção.

El Nahrya, Ali e El Baroudy (2011) trabalharam em área experimental irrigada com pivô central no Egito, cultivada com milho e composta por mais de 90 unidades de raio aproximado de 400 m. Uma dessas unidades foi monitorada em 2008-2009, com malha regular de amostragem de solos com 68 pontos (MO, N, P, K, CaCO₃, Fe, Mn, Cu, Zn, CE e pH) e determinada a produtividade por meio do índice de vegetação (NDVI) e a evapotranspiração, por meio de imagens temáticas Landsat. O SIG colaborou no gerenciamento da informação e na definição das zonas de manejo. Para a unidade referência, onde foi aplicada AP, 84% do comportamento foi explicado por três zonas de manejo, que se discriminaram como área baixa, onde houve acúmulo de insumos e água, a área de altitude intermediária e uma terceira um pouco mais alta com problemas de erosão eólica, com produtividade de 2,2; 1,9 e 1,6 toneladas/ha, respectivamente. Nesse caso, foi utilizada significativamente menor quantidade de micronutrientes e água, com rentabilidade quase 30% maior.

Rya et al. (2011) avaliaram 86 lavouras de arroz marrom na província de Kyoto, Japão em 2006-2007. O conteúdo de proteína no arroz foi comparado à resposta do NDVI (Razão entre a diferença e a soma da reflectância no infravermelho próximo e para a banda correspondente ao verde. O NDVI convencional usa a banda vermelha substituindo a do verde) - verde obtido por levantamento aéreo com o sensor ADS40. Esse sensor trabalha com quatro bandas (as três do visível mais a do infravermelho próximo) e resolução de 20 cm a 25 cm, sendo aplicada correção da refletância por placas de 16,2 m² in situ. Houve variabilidade espacial no conteúdo das proteínas, sendo gerado um modelo de regressão dessa variável em função do NDVI - verde, com ajuste da regressão de 0,392 (R²) no geral e erro de 0,255%. A integração dessas informações com dados climáticos via modelagem SIG permitiu ajustar os métodos de manejo de maneira a reduzir o conteúdo de proteínas no arroz em até 27%.

Tremblay et al. (2011) aplicaram um modelo de integração com base SIG por meio da lógica “fuzzy” em função de três variáveis: capacidade elétrica do solo, índice de suficiência de nitrogênio (razão entre o NDVI da amostra e o NDVI controle, derivado de área bem fertilizada) e elevação, resultando um mapa de requerimento de nitrogênio.

Filippini-Alba, Flores e Miele (2012) consideraram o teor de argila, de MO e a saturação de bases dos solos em um vinhedo, no Vale dos Vinhedos, Bento Gonçalves, RS, para efetuar uma modelagem SIG simulando um microzoneamento com fusão das camadas de informação. Previamente à modelagem, foi analisada a variabilidade espacial dos atributos físicos e químicos do solo, resultando predominante o modelo esférico com alcance de 129 m. A mancha com aptidão preferencial se sobrepôs com um Cambissolo Háplico, viabilizando um manejo diferenciado no contexto do vinhedo, com possível agregação de valor.

Terra (2012) analisou a variabilidade espacial dos atributos de solo e planta em um pomar de pêssego em Morro Redondo, RS, aplicando um método multivariado de integração (variáveis canônicas). Os resultados permitiram sugerir duas zonas de manejo que viabilizariam um manejo diferenciado para o pomar.

Dohmen e Reh (2013) retomaram o conceito de “SIG móvel”, associado a AP, por intermédio da utilização de instrumentos de pequeno porte pelos produtores no contexto da lavoura, como fora mencionado previamente (“FIS”, op. cit.).

Arciniegas, Janssen e Rietveld (2013) discutem os resultados de uma análise empírica da eficiência de um conjunto de ferramentas para suporte à tomada de decisão em um pôlder ocupado principalmente com pastagem na Holanda, onde se avaliou o potencial para agricultura intensiva ou extensiva e a utilização para conservação da natureza. Trata-se de uma área recuperada do...
mar com altitude de 2 m abaixo da cota zero. Foram usados mapas analógicos coloridos, um mapa digital quantitativo e um mapa digital qualitativo, que foram apresentados a um grupo de 30 acadêmicos, sendo coletados questionários, notas de observações e escores multicritério com registro em vídeo. A análise pretendia avaliar: (1) a utilidade das ferramentas; (2) a clareza do processo; (3) o impacto na decisão, com foco na qualidade da informação oferecida para o trabalho individual e colaborativo, assim como na qualidade dos mapas de uso da terra resultantes. Concluiu-se que a quantidade e qualidade da informação oferecida a cada participante (gestor) era crítica para a tomada de decisão. A ferramenta quantitativa ofereceu o panorama mais completo, mas não foi considerada a mais útil pelos participantes e não produziu os melhores resultados.

Em síntese, para construção do texto acima foram consultadas aproximadamente 30 referências, sendo considerados 8 livros ou teses e 22 artigos técnico-científicos. Metade das referências trata de gestão da informação, incluindo a função de banco de dados geográficos em SIG; a outra metade procurou a definição de zonas de manejo ou de aperfeiçoamento produtivo, envolvendo vários países e as culturas de grãos ou frutíferas. Do último grupo, mais ou menos 50%, isto é, a quarta parte do total, considerou alguma forma de integração, poucas por meio de modelagem SIG. Existe um forte direcionamento para a análise da variabilidade espacial via métodos geoestatísticos e interpolação por krigagem, mas a forma preferencial de integração é pontual, considerando-se métodos multivariados e não por fusão de camadas de informação no SIG (modelagem SIG). Vários autores mencionam o conceito de "SIG especifico para AP", denominado também FIS ou similar (ZHANG et al., 1999; FOUNTAS et al., 2009; EARL; THOMAS; BLACKMORE, 2000; KAI et al., 2003; GAO-DI et al., 2003; DOHMIEN; REH, 2013), como uma ferramenta mais flexível para manuseio de dados, simples e barata. Essa tecnologia já foi introduzida no Brasil, segundo comentado por Amado e Santi (2011) e Jorge (apud INAMASU et al., 2011, p. 51-54). Nesse sentido, mostra-se interessante o ponto de vista de Fountas et al. (2009) sobre o uso de “FIS” na lavoura, em pequena escala, porém incorporando o conceito de SIG comercial para o processamento de dados no contexto acadêmico e com maior fluxo de dados. Esses autores também destacam: “A principal restrição que limita o potencial do sistema é a relutância dos pesquisadores para compartilhar e carregar os dados dos ensaios em função das normas de segurança e as hierarquias de acesso”. Algumas aplicações mostraram avançado estágio em AP, no Brasil (SANTOS et al., 2003; AMADO; SANTI, 2011) e no exterior (BRANLEY; HAMILTON, 2004; RAMOS et al., 2007; EL NAHRYA; ALI; EL BAROUDY, 2011), porém não se utilizaram métodos de integração com fusão de dados em SIG. Isso sugere um forte potencial do método, na medida em que as bases de dados e as tecnologias associadas a AP sejam aprimoradas.

3. Exemplos de Modelagem SIG em AP

Como mencionado no fim da revisão, existem muitos trabalhos de SIG em AP para sistematização das informações, envolvendo as funções de banco de dados e interpolação, porém há uma quantidade pouco expressiva de trabalhos sobre modelagem SIG (fusão de dados). Segundo o autor, essa modalidade poderá trazer resultados significativos, principalmente quando considerados fluxos consistentes de informação. Nesta seção serão discutidos exemplos específicos considerando métodos de fusão dos dados envolvendo a lógica booleana e a lógica “fuzzy”.

A lógica booleana trabalha com mapas binários, isto é, onde somente duas condições são espacializadas, por exemplo, a ocorrência de solo sem cobertura vegetal (valor 0) e com cobertura vegetal (valor 1). Nesse sentido, Melgani e Moser (2002) destacam a complexidade de estabelecer um limiar de separação entre ambas condições. A integração das informações pode ser realizada por meio de operadores lógicos do tipo OR (união/soma) ou AND (interseção/multiplicação), como exemplificado na Tabela 1 para três variáveis. Para o operador OR são geradas quatro classes no mapa final, já o operador AND conserva a estrutura binária.
A lógica “fuzzy” abre um leque maior de possibilidades, pois as variáveis usadas podem adquirir qualquer valor entre zero e um, por exemplo, numa situação arbitrária: 0,0; 0,2; 0,4; 0,6; 0,8 e 1,0. No entanto, a atribuição de valores poderá ser também por meio uma função matemática, dependendo do interesse do usuário. A função linear estabelece uma proporcionalidade entre as variáveis (representada e “fuzzy”), já as funções logarítmica e exponencial reduzem ou destacam a influência dos valores superiores respectivamente. Na Tabela 2 se ilustra o processo de integração de variáveis segundo a lógica “fuzzy”, que é efetivado “pixel a pixel”. Da mesma forma que no exemplo anterior, o operador AND mantém a estrutura original (agora fuzzy), já o operador OR não. Por outro lado, o operador OR não anula situações em que uma única variável (mapa) é nula (primeiras linhas), isso resulta importante em algumas avaliações.

Abaixo são apresentados exemplos de aplicação de ambos os métodos de integração, considerando-se dados de uma área sistematizada, cultivada com arroz, localizada na Estação Terras Baixa da Embrapa Clima Temperado, Capão do Leão, RS (PARFIT, 2009). Os teores de K, N total, P e MO foram interpolados por krigagem considerando o modelo de semivariograma de melhor ajuste (Tabela 3).

Para a lógica booleana, o limiar foi estabelecido por observação do histograma, sendo escolhido o teor de descarte de 60-70% da população. Valores inferiores ao limiar foram anulados e valores superiores ou iguais adquiriram o

| Tabela 1. Ilustração do processo de integração de três variáveis (mapas) binárias por meio de operadores lógicos booleanos. |
|---|---|---|---|---|
| Variável 1 | Variável 2 | Variável 3 | Integração OR | Integração AND |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 2 | 0 |
| 1 | 1 | 1 | 3 | 1 |

<p>| Tabela 2. Ilustração parcial do processo de integração de três variáveis (mapas) “fuzzy” por meio de operadores lógicos. |
|---|---|---|---|---|
| Variável 1 | Variável 2 | Variável 3 | Integração OR | Integração AND |
| 0 | 0 | 0 | 0 | 0 |</p>
<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0,1</th>
<th>0,1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,2</td>
<td>0,1</td>
<td>0,2</td>
<td>0,5</td>
<td>0,004</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0,5</td>
<td>0,3</td>
<td>0,5</td>
<td>1,3</td>
<td>0,075</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0,6</td>
<td>0,7</td>
<td>0,9</td>
<td>2,2</td>
<td>0,378</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0,9</td>
<td>1</td>
<td>1</td>
<td>2,9</td>
<td>0,9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3,0</td>
<td>1</td>
</tr>
</tbody>
</table>
valor 1. A área amostrada (malha de pontos) apresenta enriquecimento em N e matéria seca e empobrecimento de K e P ao NW (Figura 1). A intersecção de áreas com teores acima do limiar (valor 1) aparece na metade SE da área de maneira predominante, sem influência do relevo a priori. Dentro da quadrícula, aproximadamente 32% da área apresenta melhor “aptidão”, sugerindo a discriminação em duas ou três zonas de manejo. Já o modelo que usa a união dos teores de K, N e P com intersecção por matéria seca gera uma maior variedade de classes para a integração, com valores de 0 a 3 (Figura 2). Observa-se que uma faixa pobre em K, cobrindo 27% da área, pode ser incorporada ao 32% de melhor “aptidão”, pois as outras variáveis ocorrem em teores elevados.

No caso da lógica “fuzzy”, as variáveis foram transformadas pela Equação 1:

\[F = \frac{x - m}{M - m} \]

Eq. 1

Sendo F o valor da variável “fuzzy”, x o valor da variável original, m seu mínimo e M o máximo.

A lógica fuzzy mostra maior detalhamento para os mapas de teor de macronutrientes e também no mapa de integração, muito embora este fosse apresentado conforme somente seis classes (Figura 3). A área ocupada pelas classes dois a seis, se uniformizada, conduz a resultados

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Variável</td>
<td>Efeito Pepita</td>
<td>Patamar</td>
<td>Alcance</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>K</td>
<td>11,7 mg dm⁻³</td>
<td>100,9 mg dm⁻³</td>
<td>66,1 m</td>
</tr>
<tr>
<td>N total</td>
<td>0,007mg ha⁻¹</td>
<td>0,0024 mg ha⁻¹</td>
<td>24,6 m</td>
</tr>
<tr>
<td>P</td>
<td>2,0 mg dm⁻³</td>
<td>10,8 mg dm⁻³</td>
<td>60,0 m</td>
</tr>
<tr>
<td>Matéria seca</td>
<td>1,3 mg ha⁻¹</td>
<td>2,1 mg ha⁻¹</td>
<td>54,5 m</td>
</tr>
</tbody>
</table>

muito semelhantes aos apresentados no exemplo anterior.

A integração dos dados, especialmente no caso da interseção e lógica fuzzy, deve ser realizada com cautela, pois os valores intermediários correspondem a diferentes combinações entre as variáveis e podem levar a resultados inesperados. Os modelos apresentados poderão ser de utilidade para o ajuste de informações de fertilidade e produtividade, assim como para outras aplicações, que deverão ser adequadas aos dados disponíveis.

4. Considerações finais

Conforme Wu et al. (2009), o SIG tem sido usado para planejamento na agricultura, inventário do uso da terra, gerenciamento dos recursos naturais e suporte à decisão. Descartando o inventário do uso da terra, os outros tópicos estão inseridos no contexto da agricultura de precisão (AP). Quem sabe por isso, grande número de autores concorda sobre a importância do SIG para AP. No entanto, as funções de integração, um dos principais tipos de funções características desses sistemas, são pouco utilizadas ainda, como se deduz da revisão de Goswami, Saxena e Bairagi (2012) ou pelo artigo de Bramley e Quabba (2013). O SIG é principalmente utilizado para elaborar os mapas interpolados, conforme métodos geostatísticos. Retomando-se os conceitos de Filippini-Alba, Berny e Costa (2009): banco de dados geográficos, interpolação, operações de extração/integração e métodos de classificação, representam as principais funções de um SIG. Aproximadamente metade dos trabalhos consultados procurou definir zonas de manejo ou de aprimoramento produtivo, considerando principalmente a função de base de dados do SIG, para sistematizar a informação e efetuando posteriormente a análise da variabilidade espacial (semivariogramas) e a produção de mapas por krigagem. As funções de extração/integração e classificação são pouco utilizadas, provavelmente, pela ausência de métodos de integração padronizados em agricultura, com a exceção dos zoneamentos, que trabalham em escala diferenciada quando comparada com aplicações em agricultura de precisão (FILIPPINI-ALBA et al., 2010). Filippini-Alba, Flores e Miele (2012) tentaram uma aproximação desses métodos, com a aplicação de critérios de zoneamento via modelagem SIG em um vinhedo localizado no Vale dos Vinhedos, Bento Gonçalves, RS. Deve-se mencionar também que poucos trabalhos usaram métodos multivariados para interpretar os dados, o que já poderia significar um avanço em termos de integração.

Uma tecnologia que poderá contribuir para o avanço da AP é o “Fieldlevel GIS” (FIS) ou “SIG móvel” (ZHANG et al. 1999; DOHMEN; REH, 2013), que utiliza microcomputadores de mão para processar níveis de informação de maneira mais flexível, simples e econômica que no caso do SIG comercial. No entanto, Fountas et al. (2009) destacam a necessidade de utilizar ainda os últimos sistemas mencionados, principalmente quando processados maiores fluxos de informação, no domínio acadêmico e de pesquisa aplicada.

A modelagem SIG dos atributos de solo e planta conforme as lógicas booleana e “fuzzy”, apresentada na seção anterior, representa uma alternativa para avaliar as necessidades de fertilização, permitindo aprimorar o uso de insumos ou o descarte de setores improdutivos. Essas aplicações envolveram as quatro principais funções do SIG conforme comentado oportunamente. Esse processo deve ser aplicado durante vários ciclos agrícolas como recomendado por alguns autores (SANTOS et al., 2003; BRAMLEY; HAMILTON, 2004; LUCHIARI, et al. apud INAMASU et al., 2011, p. 60-64).

Finalmente destacar que a modelagem SIG permite trabalhar com foco quantitativo, na perspectiva de maior produtividade ou com visão qualitativa, isto é, para agregar valor à produção diferenciada por características específicas. Para isso, basta direcionar a modelagem em um ou outro sentido.

Sem dúvidas a modelagem SIG se apresenta como ferramenta de potencial significativo para AP, sendo necessário o desenvolvimento de procedimentos padrão de integração, o aprimoramento das bases de dados existentes e das tecnologias associadas a AP.
Agradecimentos

Referências

Análise das possibilidades e tendências do uso das tecnologias da informação e comunicação em Agricultura de Precisão

Leonardo Ribeiro Queirós*,1, Ariovaldo Luchiari Junior*2, João Camargo Neto*3, Silvia Maria Fonseca Silveira Massruhā*4, Ricardo Yassushi Inamasu*5, Eduardo Antonio Speranza*6, Silvio Roberto Medeiros Evangelista*7

1Analista Dr., Embrapa Informática Agropecuária
2Pesquisador Dr., Embrapa Informática Agropecuária
3Analista Dr., Embrapa Informática Agropecuária
4Pesquisadora Dra., Embrapa Informática Agropecuária
5Pesquisador Dr., Embrapa Instrumentação Agropecuária
6Analista doutorando em Ciência da Computação, Embrapa Informática Agropecuária
7Analista Dr., Embrapa Informática Agropecuária

*E-mails: leonardo.queiros@embrapa.br, ariovaldo.luchiari@embrapa.br, joao.camargo@embrapa.br, silvia.masshura@embrapa.br, ricardo.inamasu@embrapa.br, eduardo.speranza@embrapa.br, silvio.evangelista@embrapa.br

Resumo: A Agricultura de Precisão (AP) tem em sua concepção a emergência de novas combinações agrotecnológicas baseadas no desenvolvimento e aplicação das tecnologias da informação e comunicação na agricultura. As Tecnologias da Informação e Comunicação (TIC’s) são definidas pela Agência dos Estados Unidos para Cooperação Internacional-USAID como sendo: a combinação de hardware, software e os instrumentos de produção que permitem troca, processamento e manejo da informação e do conhecimento. Então, de acordo com a USAID, as TIC’s incluem tecnologias e métodos para armazenar, manejarem e processar informação (e.g. computadores, softwares, livros, dispositivos móveis, livrarias digitais e não digitais) e para comunicar a informação (e.g. correio, correio eletrônico, rádio, televisão, telefones, celulares, pagers, internet, etc). Devido à combinação de agrotecnologias com as tecnologias da informação e da comunicação, a Agricultura de Precisão é vista atualmente como uma das formas mais eficientes e eficazes de se garantir a produção de alimentos para atender as necessidades alimentares de nove bilhões de habitantes da terra em 2050, com a garantia da qualidade do produto e dos recursos naturais bióticos e abióticos. Este capítulo analisa o estado da arte e as tendências futuras das Tecnologias da Informação e Comunicação no contexto da Agricultura de Precisão. Serão abordados os seguintes temas: Padrões para Integração de Equipamentos Agrícolas, Sistemas de Informação e na Automação de Processos e Operações Agrícolas; Computação Ubíqua e em Nuvem; Aplicações Geoespaciais; Sistemas de Suporte a Decisão; Processos Produtivos Agrícolas - Protocolos e Normas de Produção.

Palavras-chave: Agricultura de Precisão, Tecnologia da Informação e Comunicação, Computação em Nuvem e Ubíqua, ISOBUS, Sistemas de Suporte a Decisão, Protocolo de Produção.

Analysis of the Possibilities and Future Trends in the Use of Information and Communication Technologies in Precision Agriculture

Precision Agriculture (PA) has embedded in its conception news agro-technological combinations based on the use of the Information and Communication Technologies. In this chapter the USAID’s definition of information and communication technology will be used, i.e., “the combination of hardware, software, and the means of production that enable the exchange, processing, and management of information and knowledge”. ICTs thus include technologies and methods for storing, managing, and processing information (e.g., computers, software, books, mobile devices, tablets, androids, digital and non-digital libraries) and for communicating information (e.g., mail and email, radio and
television, telephones, cell phones, pagers, instant messaging, “the web,” etc.) Due the combination of agricultural, information and communication technologies, Precision Agriculture has been seen as the most effective and efficient form of agricultural production able to feed 9 billion people in 2050, while maintaining the safety and quality of the product in harmony with the biotic and non-biotic natural resources. This Chapter analyses the state-of-the art and future trends of ICT’s within the context of Precision Agriculture. The following themes will be covered: Standards for the Integration Agricultural Machinery, Information Systems and Automation of Agricultural Processes and Operations; Ubiquitous and Cloud Computing; Geo-spatial Applications; Decision Support Systems; The Role of AP and TIC’s in Attending Agricultural Production Standards, Safety and Traceability.

1. Introdução

A agricultura convencional, principalmente com a produção em larga escala, fez com que a gestão da lavoura intuitiva, que tratava as diferenças do campo, fosse dissimulada. As novas tecnologias, como GNSS e Sistemas de Informação, trouxe a viabilidade operacional para tratar essas diferenças, inovando a nossa lavoura.

A AP, por ter inserido em sua concepção a emergência de novas combinações agrotecnológicas, baseadas no desenvolvimento e na aplicação das tecnologias da informação e comunicação (TIC’s) na agricultura, com possibilidades de ganhos econômicos e benefícios ambientais, vem ganhando popularidade mundial (WOLF; WOOD 1997). Essa nova forma de produção agrícola tem atraído, desde o início de sua adoção, o interesse de formuladores de políticas públicas de pesquisa, de ensino e de desenvolvimento econômico e social; das indústrias de telecomunicações e informática; da mídia; das instituições de crédito e seguro rural; e também dos setores tradicionais do agronegócio - indústrias de insumos, máquinas e processamento –(WOLF; WOOD, 1997) (SCHEPERS; SHANAHAN; LUCHIARI JÚNIOR, 2000). Atualmente é vista como uma das formas mais eficientes e eficazes de garantir a produção de alimentos para atender as necessidades alimentares de nove bilhões de habitantes da terra em 2050.

Uma vez que a agricultura de precisão tem se beneficiado da utilização das tecnologias da informação e comunicação na agricultura, é importante lembrar que as TIC’s são definidas, pela Agência dos Estados Unidos para Cooperação Internacional - USAID, como sendo: a combinação de hardware, software e os instrumentos de produção que permitam a troca, o processamento e o manejo da informação e do conhecimento. De acordo com a USAID, as TIC’s incluem tecnologias e métodos para armazenar, manejá e processar informação (e.g. computadores, softwares, livros, PDAs, tablets, androides, livrarias digitais e não digitais) e para comunicar a informação (e.g. correio, correio eletrônico, rádio, televisão, telefones, celulares, pagers, internet, etc. Nesse contexto, as TIC’s aqui são vistas como desempenhando as seguintes funções (RUSTEN; RAMIREZ, 2003) :1 - que o conhecimento tecnológico é um componente importante para o desenvolvimento do setor agrícola; 2– que as TIC’s aceleram o desenvolvimento do setor por organizar e facilitar a organização e a transferência do conhecimento entre os atores que atuam no setor e 3 - que as organizações terão um papel fundamental na identificação de necessidades de métodos adequados de manejo e de tomada de decisões e na identificação de novas necessidades tecnológicas para que o uso das TIC’s em AP seja mais eficaz, eficiente e mais fácil de ser usado. Este capítulo analisa o estado da arte e tendências futuras das Tecnologias da Informação e Comunicação no contexto da Agricultura de Precisão. Serão abordados os seguintes temas: Padrões para Integração de Equipamentos Agropecuários, Sistemas de Informação e na Automação de Processos e Operações Agropecuários; Computação Ubíqua e em Nuvem; Aplicações Geoespaciais, Sistemas de Suporte a Decisão, Uso TIC em Processos Produtivos Agropecuários - Protocolos e Normas de Produção, Uso de Padrões para Integração de TIC em Equipamentos Agropecuários e Uso de TIC’s na Automação de Processos e Operações Agropecuários.
2. Uso de Padrões para Integração de TIC em Equipamentos Agrícolas

Nas últimas décadas, a Agricultura de Precisão tem se beneficiado com a automação de máquinas e implementos agrícolas por meio do uso de sistemas eletrônicos embarcados compostos por programas de computadores e dispositivos eletrônicos e de hardwares. No início, os fabricantes desses sistemas se preocupavam com a confiabilidade, facilidade de instalação e de uso. O problema é que pouca atenção foi dada para que esses sistemas fossem facilmente integrados com outros disponíveis produzidos por outros fabricantes (HASSALL, 2010). Dessa forma, inúmeros sistemas foram disponibilizados para o mercado com protocolos proprietários de comunicação, de forma que não havia compartilhamento de informação entre eles. Além disso, cada sistema demandava um terminal para interação do usuário operador da máquina com suas funcionalidades de controle, de forma que dentro da máquina agrícola, instrumentada com esses sistemas, existiam vários terminais e um grande emaranhado de cabos, que contribuíam para um ambiente não otimizado e complexo de interação homem-máquina.

Para suprir essa necessidade de integração dos diferentes sistemas eletrônicos embarcados, padrões de redes de comunicação têm sido desenvolvidos. Destaca-se o esforço entre diversos países, coordenado por Forças Tarefas da Europa e dos Estados Unidos, para a geração e aplicação de uma norma internacional denominada ISO 11783, também conhecida industrialmente por ISOBUS, para tratar essa falta de interoperabilidade. Ela é baseada no protocolo de comunicação digital serial "Controller Area Network" e segundo Saraiva e Cugnasca (2006) especifica uma rede serial para comunicação e controle de veículos agrícolas, como tratores e seus implementos, de modo a tornar disponível uma padronização para sistemas embarcados em máquinas e equipamentos agrícolas. Essa padronização permite o uso de apenas um terminal para reconhecer, monitorar e gerenciar automaticamente os implementos, compatíveis como o padrão ISOBUS, conectados ao trator (SOUSA et al., 2011).

Para a Agricultural Industry Electronics Foundation - AEF (AGRICULTURAL..., 2013) - uma organização internacional composta por mais de 150 empresas, associações e organizações - os fabricantes de equipamentos agrícolas em todo o mundo elegeram ISOBUS como o protocolo universal para comunicação eletrônica entre implementos, tratores e computadores. A AEF tem mantido um banco de dados acessível pela Web com os equipamentos compatíveis com o ISOBUS e funcionalidades que permitem selecionar uma combinação de equipamentos e verificar a compatibilidade entre as funções oferecidas. Segundo a Força Tarefa ISOBUS Brasil - FIT Brasil - o emprego de sistemas eletrônicos embarcados em máquinas agrícolas em consonância com essa norma tem sido restrito a produtos importados. Porém, o grupo do FIT Brasil tem buscado criar competência no País por meio de domínio das tecnologias envolvidas e divulgar o benefício do padrão (FORÇA..., 2013).

A tendência é que os sistemas eletrônicos embarcados em máquinas agrícolas estejam em consonância com essa norma e cada vez mais presentes na área agrícola.

3. Uso de Padrões em TIC para Armazenamento de Dados, Intercâmbio e Interoperabilidade entre Sistemas de Informação

A imensa quantidade de dados digitais produzidos pelo uso de tecnologias da AP está armazenada em diferentes formatos e padrões de arquivos, em diferentes sistemas de informação, sem muita atenção para a documentação mínima de informações que facilitam a recuperação e entendimento desses dados. O problema se torna mais visível quando é necessário reutilizar esses dados ou integrar diferentes sistemas de informação para uma análise mais apurada, a qual, muitas vezes, é inviabilizada pela falta de descrição do procedimento usado na coleta dos dados, falta de unidade de medida ou até mesmo impossibilidade de identificar a qual variável um conjunto de medidas está associado.

Assim como o problema de integração de equipamentos agrícolas tem sido resolvido com os esforços direcionados ao ISOBUS, é preciso caminhar na mesma direção para padronização de armazenamento de dados e arquitetura de sistemas de informação distribuídos que permitam...
a integração desses dados, de forma simples e transparente. O projeto europeu FutureFarm (http://www.futurefarm.eu/) produziu uma especificação para um sistema de informação de gestão agrícola com atenção para essas questões. Nessa especificação, todos os dados devem ser documentados e armazenados na linguagem padronizada para troca de dados agroXML e a arquitetura distribuída deve ser a arquitetura SOA (Service-Oriented Architecture) (BLACKMORE; APOSTOLIDI, 2011). Nos Estados Unidos a AgGateway, uma organização sem fins lucrativos que tem por visão ser reconhecida internacionalmente por promover o uso das TICs na Agricultura de Precisão, lançou o projeto ‘padronizando o intercâmbio de dados da AP (SPADE)’. O projeto visa atender as demandas dos produtores no sentido de tornar mais amigável o uso de equipamentos e aplicativos em AP (AGGATEWAY, 2013).

No Brasil, a Rede de Agricultura de Precisão da Embrapa - Rede AP - atenta à necessidade de adoção de padrões para armazenamento e intercâmbio de dados e informações, e de uma arquitetura orientada a serviços que permita a interoperabilidade entre sistemas, mantendo a memória, a preservação, a recuperação e o intercâmbio com qualidade dos dados produzidos pelas unidades pilotos, desenvolveu um repositório de recursos de informação (https://www.redeap.cnptia.embrapa.br) que usa o perfil de metadados ‘Perfil de Metadados Geoespaciais do Brasil’ - versão homologada em 2009 pelo Comitê de Planejamento da Infraestrutura Nacional de Dados Espaciais (CONCAR) - para catalogar os dados geoespaciais e com a arquitetura que permite a integração e interoperabilidade de aplicações. Na Figura 1a, é mostrada a estrutura banco de dados e sua integração com a camada de aplicação. Os recursos de informação digitais suporta os formatos - shapefile, raster, txt, doc, xls, jpg e pdf - e estão associados a elementos de metadados. Já a camada de aplicação é composta pela integração de ferramentas de softwares livre - banco de dados PostgreSQL, WebGIS i3Geo e o aplicativo para catalogação de dados geoespaciais GeoNetwork - e de conversores de dados dos equipamentos de sensoriamento usados pela Rede AP, com a função de realizar a interface com os usuários. Na Figura 1b, são ilustrados os elementos de metadados selecionados, customizados, criados e em uso, para a catalogação de dados geográficos e não geográficos (somente tabulares). Nesse diagrama, os elementos de metadados foram agrupados numa generalização e especialização. A generalização do diagrama representa os elementos de metadados que devem ser preenchidos, independent do tipo de dado ser tabular ou geográfico (CDG). Já a especialização expressa os elementos de metadados que devam ser preenchidos somente para o tipo CDG. Vale ressaltar que dois novos elementos foram criados dentro da Seção Identificação do ‘Perfil de Metadados Geoespaciais do Brasil’: “Observação” para contemplar qualquer observação ou necessidade de documentação que por ventura não possa ser expressa pelos demais elementos de metadados selecionados; e “Responsável pela Catalogação” para identificar o autor de documentação dos metadados. Com relação ao elemento “Observação”, a ideia é analisar a frequência de necessidade de uso desse descritor para, posteriormente, eleger ou criar novas seções ou elementos para atender às especificidades de documentação do projeto AP (QUEIROS et al., 2011). O grande avanço conseguido pelo projeto é permitir a obtenção de séries históricas espaciais e temporais de lavouras, sendo elemento chave não só para alimentar as novas necessidades de pesquisa, mas também para rastrear e comparar diferentes sistemas que adotaram a AP.

Considerando que o repositório da Rede AP e seus resultados permitiram o estabelecimento de padrões adequados para operacionalizar, armazenar, recuperar, intercambiar e interoperar os dados e informações obtidas nas unidades pilotos, de forma quantitativa e qualitativa, ele permitirá também que essa experiência seja extrapolada para o manejo de propriedades agrícolas. Esse repositório foi concebido para atender necessidades futuras de organização e tratamento de informação.

4. Computação Ubíqua

O avanço dos sistemas embarcados aliado ao custo decrescente de equipamentos digitais tem sido fecundo para realização de constantes investimentos em infraestrutura de telecomunicações em todo
Repositório de recursos de informação desenvolvido pela Embrapa

Banco de dados

Recursos de informação digital

Formatos de dados
shapefile, raster, tex, doc, xls, jpg, pdf

PostgreSQL

Unix/Linux

Aplicação

Interface Web com o banco de dados
ITGEO, GeoNetwork, aplicativo de integração

Conversores de dados dos equipamentos para o padrão da UI

Metadados para recursos do repositório

Título
Data
Resumo
Objetivo
Créditos
Responsável
Palavras-chave

Metadados especializados somente para recursos CDG

Título-de-representação-espacial
Escala
Idioma
Nomenclatura-de-codificação-de-caracteres
Categorização temática
Ambiente-de-produção
Retângulo-envolvente
Restrição-de-uso
Nível-hierárquico
Unidade
Representação-espacial-ortorial
Tipos-dos-objetos-geométricos
Identificador-do-sistema-de-referência
Descrição-do-conteúdo-da-partição-pixel
Descrição-da-imagem

Figura 1. Repositório de recursos de informação desenvolvido pela Embrapa.

mundo (BALLANTYNE; MARU; PORCARI, 2010). Equipamentos como celulares, tablets, computadores pessoais - cada vez mais presentes no dia a dia das pessoas - conectados à Internet traz uma grande oportunidade de conectividade entre a ciência, produtores e demais atores relacionados ao contexto da Agricultura. Essa conectividade é facilitada quanto mais simples, autônomos e imperceptíveis forem os sistemas embarcados e equipamentos associados. A busca por não notoriedade da presença de computadores entre humanos, por meio da simplicidade de operação e maximização do funcionamento autônomo, tem sido conhecida por computação ubíqua. Torre Neto (2009) aponta como concepção da computação ubíqua a fusão dos computadores com o ambiente, a ponto de tornarem-se invisíveis para os usuários.

As tecnologias da AP tem se beneficiado dessa conectividade, em especial conectividades por meio de redes sem fio, e da computação ubíqua, nas quais sensores, redes de sensores, atuadores e sistemas de controle podem coletar dados, processá-los, realizar atuação e encaminhar informações para um computador servidor na sede da fazenda ou diretamente para algum serviço de nuvem disponível, conforme abordado na seção ‘Computação em Nuvem’, de forma autônoma e em tempo real. Como exemplo, a tecnologia de piloto automático, amplamente difundida na AP, permite que um veículo agrícola trafegue pela lavoura sem intervenção humana - sendo a coleta de informação dos sensores do motor, direção, localização espacial entre outros e a atuação na direção realizada de forma transparente e automática. Ainda nesse exemplo, o agricultor poderia monitorar em tempo real a rota realizada por meio de um aplicativo instalado em um tablet em qualquer lugar do mundo (HEST, 2013). Esses equipamentos, por atuarem de forma transparente, auxiliam o produtor a reduzir os erros e, portanto, reduz a variabilidade espacial antrópica e natural do campo.

No Brasil, a Rede de Agricultura de Precisão da Embrapa, tem abordado o monitoramento de controle de processos na agropecuária através do uso das inovadoras tecnologias de rede de sensores sem fio e da computação ubíqua, por meio das seguintes atividades de pesquisa: (i) a irrigação espacialmente diferenciada; (ii) a pulverização de precisão; (iii) o mapeamento da fertilidade do solo; (iv) a rastreabilidade animal e vegetal e (v) as mudanças climáticas e os problemas fitossanitários (TORRE NETO, 2009).

A conectividade tem se tornado cada vez mais pervasiva e móvel e mais dispositivos estão se tornando capazes de realizar múltiplas operações (BALLANTYNE; MARU; PORCARI, 2010)
em consonância com a computação ubíqua, de forma a ser uma tendência consolidada e cada vez mais refletida nas tecnologias da AP que serão produzidas no futuro.

5. Computação em nuvem

A geração de dados, em alta resolução, contínua e, muitas vezes, em tempo real, por meio do uso de tecnologias da AP ou por grandes bancos de dados públicos, disponíveis na Internet, com informações agrícolas em macro-escala, necessárias para a gestão das principais operações de cultivo - preparo do solo, semeadura, adubação, irrigação, pulverização e colheita - tem demandingo uma crescente capacidade de armazenamento e processamento computacional que extrapola a capacidade de computadores pessoais alocados numa fazenda, trazendo à AP os desafios associados às pesquisas em Big Data. Soma-se, ainda, a necessidade do uso de procedimentos computacionais inerentes a um 'Data Center' para realizar o backup dos dados, instalação de programas de processamento, manutenção de rede cabeada ou sem fio para a transmissão, manutenção da rede elétrica, atualização de sistemas operacionais, entre outros que exigem uma dedicação integral de profissional com habilitação em TI e investimentos em hardware e software. Outra questão é que os produtores não têm recursos para manter seu próprio departamento de TI (WELTE et al. 2013).

Diante dessa realidade, muitas empresas ativas mundialmente no provimento de soluções para a AP têm oferecido serviços baseados na computação em nuvens que encapsulam toda a infraestrutura e gestão computacional de um Data Center e as oferecem como serviços disponíveis para acesso por meio da Internet (HEST, 2013) e (BALLANTYNE; MARU; PORCARI, 2010). A computação em nuvens provê serviços de acordo com três categorias distintas (KEPES, 2013): infraestrutura como serviço - servidores, rede, máquinas virtuais, armazenamento, balanceamento de carga, entre outros; plataforma como um serviço - banco de dados, ambiente de execução, servidor web, ferramentas de desenvolvimento, entre outros; e software como serviço disponibilizado para usuários finais e acessíveis pela Web - navegadores de Internet, aplicações para dispositivos móveis, sistemas embarcados em máquinas agrícolas, sistemas de suporte a decisão, e-mail, sistemas de informações geográficas, entre outros. Ballantyne, Maru e Porcari (2010) explica que já existem serviços que permitem ao usuário ter centenas ou milhares de computadores a sua disposição e ainda pagar por eles, por hora ou minuto, sem a necessidade de aquisição ou administração do hardware; a computação nas nuvens elimina a barreira de capacidade de processamento e os custos são bem menores, mesmo diante da queda de preço de hardware, uma vez que os custos de um 'Data Center' pode ser compartilhado entre vários usuários.

Como relatado por Hest (2013), algumas empresas já oferecem soluções nas nuvens, na qual equipamentos agrícolas estão conectados por rede sem fio e as informações são disponibilizadas em tempo real e acessíveis por navegadores de Internet ou por aplicativos instalados em dispositivos móveis. É possível, ainda, contar com informações processadas na nuvem por sistemas de suporte a decisão de maneira eficiente.

Trata-se de um grande atrativo a utilização de softwares sem que esses estejam instalados no computador e não ter que mantê-los ou se preocupar com infraestrutura e plataforma computacional, porém, algumas desvantagens são observadas: A falta de conectividade com a nuvem (Internet ou nuvens configuradas) pode comprometer a execução e a visualização das informações mantidas pelos sistemas associados; e o estabelecimento de uma clara política de propriedade e acesso aos dados armazenados na nuvem.

Um serviço brasileiro disponível para uso na AP não foi encontrado para avaliação de seu uso no país, porém, há softwares proprietários que se baseiam nas nuvens traduzidos para a língua portuguesa e que já estão disponíveis para uso. Com relação aos serviços de infraestrutura e plataforma existem empresas de propósitos gerais que tem oferecido serviços no país.

Uma vez que exista largura de banda suficiente para suportar a transferência de dados, e, as questões de política de propriedade e acesso aos dados armazenados estejam regulamentadas e bem asseguradas, o fornecimento e uso de serviços agrícolas nas nuvens para a AP tende a aumentar fortemente nos próximos anos.
6. Aplicações Geoespaciais

A principal hipótese para a adoção das tecnologias de Agricultura de Precisão é a existência da variabilidade espacial no campo. Dentre as várias tecnologias atualmente disponíveis para mapear esta variabilidade encontra-se o imageamento aéreo. Essa tecnologia traz embutida a característica espacial na qual cada pixel da imagem corresponde a uma amostragem espectral de uma região única no solo. Esse imageamento pode ser realizado por satélites orbitais, balões, aviões tripulados e, atualmente, pelos veículos autônomos não tripulados - VANT. Independentemente da tecnologia utilizada na obtenção das imagens, o objetivo final é correlacionar a características do objeto em estudo, no caso planta, solo e resíduo com reflectância espectral e temperaturas emitidas por esses objetos e registradas nas bandas espectrais das imagens.

Um dos primeiros estudos utilizando imageamento por satélite foi realizado com imagens do satélite Landsat 1, lançado em 23 de julho de 1972. Esse estudo teve como objetivo examinar as diferenças na vegetação no período da primavera e do verão na região das Grandes Planícies dos Estados Unidos correlacionando e quantificando as características biofísica da vegetação com as respostas espectrais. Como resultado desse estudo várias relações entre as bandas espectrais (índices) foram estudadas, sendo que o mais bem sucedido e utilizado até os dias de hoje é o NDVI (Índice de Vegetação por Diferença Normalizada). Esse índice tem sido usado em sensoriamento remoto para quantificar e monitorar o vigor das plantas, cobertura vegetal e produção de biomassa.

O estudo realizado por Moran, Inoue e Barnes (1997) descrevem as oportunidades na utilização de bandas espectrais e índices obtidos das imagens multispectrais em agricultura de precisão, tais como; utilização de imagens multispectrais adquiridas no período anterior a colheita para mapeamento de produtividade, do solo nu ou completamente coberta por vegetação para mapear variabilidade espectral e durante o crescimento da cultura, para monitorar variabilidade das condições da mesma.

Nessa linha de pesquisa outros estudos têm sido realizados utilizando estes índices obtidos das imagens multispectrais para detectar, georreferenciar e mapear regiões de variabilidade causadas por doenças, deficiência nutricional, stress hídrico que refletem diretamente no vigor da planta, causando um declínio na produção de biomassa; e para mapear níveis de nitrogênio nas plantas que correlacionam resposta espectral com elevados níveis de clorofila e altas taxas de fotossínteses. Dentre esses índices podemos destacar o de vegetação de diferença normalizada na faixa do verde (GNDVI- Green Normalized Difference Vegetation Index) (SHANAHAN et al., 2001) e o de vegetação ajustado do solo - SAVI, (HUETE, 1988; RONDEAUX; STEVEN; BARET, 1996; BARET; GUYOT; MAJOR, 1998).

Recentemente vem crescendo a utilização de imagens multiespectrais adquiridas pelos Veículos Autonomos não Tripulados - VANT - pelas instituições de pesquisas e serviços de imageamento disponíveis no mercado por companhias privadas. As vantagens da utilização dessa tecnologia são: aquisição de imagens multiespectrais com alta resolução espacial; custo de obtenção inferior a imagens de satélites ou fotos aéreas; aquisição de imagem a qualquer instante; permitir aquisição em tempo nublado por ser possível realizar voos abaixo da altura das nuvens; capacidade de execução de trabalhos repetitivos e perigosos em locais de difícil acesso.

O uso de imagens, por estar diretamente relacionado à automação dos processos e de operações agrícolas; por poder ser usado em pequenas e grandes áreas, e em culturas de alto valor agregado como horticultura, e por seu custo estar em declínio é visto como uma tendência futura em expansão. Entretanto, algumas limitações terão que ser superadas, tais como: capacitação técnica de usuários; seguro para sobrevoos; legislação de uso e quebra de paradigmas tecnológicos.

7. Sistemas de Suporte a Decisão

Ao longo dos anos a Embrapa desenvolveu diversos sistemas especialistas que visam atender a demanda de certos nichos e entidades relacionadas ao negócio agrícola. Dentre eles é possível destacar os sistemas para: monitoramento...
agrometeorológico (www.agritempo.gov.br); diagnose virtual de doenças de plantas (http://www.diagnose.cnptia.embrapa.br); previsão de safra de soja; recomendação para adubação; e o WebAgritec.

O WebAgritec é um sistema computacional de acesso e utilização via Web (http://www.agritempo.cnptia.embrapa.br/) que agrega e torna disponíveis informações geradas pela pesquisa e permitem ao usuário planejar e conduzir a cultura plantada com as melhores práticas e material genético disponível. Sua finalidade é auxiliar os profissionais ligados ao setor agropecuário na tomada de decisões, para tanto, o sistema conta com 7 módulos (Zoneamento, Cultivar, Adubação, Previsão, Monitoramento, Diagnóstico, Videoteca), que orientam o Usuário desde o planejamento até a condução da cultura. Esses 7 módulos permitem uma visão geral do sistema produtivo.

Embora o resultado final alcançado, nesse primeiro protótipo do WebAgritec, tenha sido satisfatório, tanto do ponto de vista de arquitetura como da aplicação, novas tecnologias de computação móvel são avanços que devem ser contemplados em ações futuras no escopo da Agricultura de Precisão. Tendo em vista que as tecnologias da AP geram uma vasta gama de informações que estão dispersas e não estão sendo diretamente utilizadas no suporte à tomada de decisões do setor produtivo agrícola. Diante desse cenário, fica evidente a necessidade do desenvolvimento de infraestruturas que agreguem o conhecimento tecnológico e tácito gerado pela Agricultura de Precisão que suportem a tomada de decisão, em tempo real, e que facilitem a transferência e capacitação tecnológica, via web e dispositivos móveis, com o propósito de beneficiar os agricultores, os agentes da extensão e assistência técnica pública e privada, agências de fomento, de crédito, etc.

8. Uso de TIC’s em Processos Produtivos Agrícolas - Protocolos e Normas de Produção

A Agricultura de Precisão utiliza GPS (Sistema de posicionamento global), GIS (Sistema de informações geográficas), instrumentos e sensores para medidas ou detecção de parâmetros ou de alvos de interesse no agroecossistema (solo, planta, insetos, doenças, etc.), de mapas de colheita, de métodos quantitativos e da mecatrónica. O uso desses conceitos e instrumentos permitem:

i) utilizar mapas de colheita e variabilidades no solo e no clima, para diagnosticar as causas das variabilidades, espacial e temporal, quer sejam natural ou induzidas pelo homem, e analisar seus efeitos nas produtividades, ii) aplicar localizadamente os insumos em quantidades variáveis e em tempos específicos quer por taxa variada ou por zonas de manejo, e iii) controlar o manejo das culturas para que os níveis de produtividade pré-estabelecidos sejam atingidos, iv) monitorar para que as práticas agrícolas estejam em harmonia com o meio ambiente e v) certificar-se de que os produtos obtidos sejam seguros.

Quando as tecnologias da Agricultura de Precisão são combinadas com as TIC’s, é possível de se obter, armazenar e processar informações que permitam ações de comando e controle da forma de produção. Assim, é possível atender, analisar, monitorar e rastrear a conformidade da produção com os requisitos de vários protocolos e normas, tais como: da Produção Integrada e da Produção Orgânica, do Ministério da Agricultura, da Pecuária e Abastecimento, do GLOBALG.A.P. da Europa, das Produções Étnicas, do Contrato de Produção de Alimentos Funcionais, entre outros.

Entretanto, o uso dessa forma de produção no Brasil não tem sido tão intenso. Furlaneto e Manzano (2010) citam o sucesso do uso de técnicas da agricultura na produção integrada e no processo de rastreabilidade do pêssego.

Em relação ao futuro, o uso de tecnologias e processos da agricultura de precisão para atender protocolos de certificação e rastreabilidade da produção é, ainda, uma incerteza crítica. Entretanto, o repositório concebido na Rede AP, pode transformar numa tendência consolidada com incremento do seu uso, por facilitar a organização e armazenamento de informações requeridas nas análises de conformidade constantes nos protocolos e normas de produção. Consequentemente permitirá que os produtores conquistem novos mercados com garantia de melhores preços, devido à certificação da qualidade, segurança e origem dos produtos.
9. Uso de TIC’s na Automação de Processos e Operações Agrícolas

A integração entre aquisição de dados obtidos por sensores ou por coletas georreferenciadas, TIC’s, sistemas de suporte a decisão e de navegação são requisitos para o processo de automação agrícola. Para aplicação desse processo, é necessário que dados e informações obtidas por redes de sensores sem fio ou que dados espaciais e temporais dos agro-ecossistemas sejam tratados por padrões de representação e comunicação (agroXML, ISOBUS entre outros) entre sistemas numa arquitetura computacional distribuída como o SOA. Devido à vasta quantidade de dados e informações obtidas, o processamento e análise em infraestruturas de alto desempenho computacional como a computação em nuvens, grid, processamento paralelo entre outros, é necessário para o desenvolvimento de um sistema de informação de gestão agrícola automatizado que seja robusto e confiável.

A Figura 2 exemplifica o sistema de produção e os processos que nele ocorrem. Informações georreferenciadas dos atributos do solo (características físicas, químicas e biológicas) são coletadas, transmitidas e analisadas para que sejam estabelecidas as capacidades produtivas de áreas do terreno; em função dessa análise informações são transmitidas às máquinas e aos equipamentos para a aplicação automatizada de corretivos e fertilizantes em taxas variáveis. Em seguida ocorre a operação de semeadura/ou plantio (mudas) automatizada com a utilização de plantas adequadas às diferentes capacidades produtivas do terreno, i.e., para explorar a máxima capacidade produtiva do solo. Posteriormente ocorrem as operações de manejo da cultura. Os estresses bióticos (patógenos, insetos e plantas daninhas) e abióticos (deficiências hídricas e nutricionais) podem ser determinados e georreferenciados pela utilização de sensores remotos (por satélite, avião, Vant). Todas essas informações são armazenadas e transmitidas numa linguagem padrão de intercâmbio, e.g. AgroXML, para uma central para serem processadas (computação em nuvens, grid, paralela entre outros) e analisadas por um sistema específico de decisão, que encaminhará as decisões, em conformidade com o padrão ISOBUS.

Figura 2. Ilustração das fases do sistema de produção e os processos que nele ocorrem.
para as máquinas equipadas com sistema de direção automática e equipamentos, que realizarão as operações de aplicação georreferenciadas em taxas variáveis de insumos (água, fertilizantes, defensivos, agentes de controle biológico, etc). O ciclo é iniciado novamente após a colheita, com a utilização de sensores de produtividade e/ou de qualidade (conteúdo de proteína, óleo ou outro parâmetro) cujos dados são enviados à central de processamento para a obtenção de mapas.

No mundo esses sistemas são utilizados para pequenas áreas de produção, como no Japão, Estados Unidos e na Europa. No Brasil são aplicados partes desse processo, como o piloto automático para operações de plantio.

Saliente-se que o repositório desenvolvido pela Rede AP terá um papel importante na organização do conhecimento científico e tecnológico que facilitará a coleta, transmissão, processamento e análise de dados para tomada de decisão e automação de operações agrícolas, visto que foi construído para atender requisitos de intercâmbio e interoperabilidade entre máquinas, equipamentos agrícolas e sistemas embarcados utilizados nos processos de automação.

Uma vez que a automação é uma tendência consolidada com evolução e expansão de seu uso, a Embrapa está criando um portfólio para definir necessidades de pesquisa e de inovação para consolidar, em bases científicas, os processos de automação agrícola.

10. Conectando Ciência e Tecnologia com a Extensão Rural, Agentes dos Setores Produtivos e Formuladores de Políticas Públicas

Bongiovanni e Lowenberg-Deboer (2001) definem AP como sendo: ‘o monitoramento e controle eletrônico aplicado a coleta e ao processamento de uma base de dados e de informações para suporte a decisão na alocação espacial e temporal de insumos’. Portanto, baseados nessa definição e em tópicos citados em Ballantyne, Maru e Porcari (2010), faremos considerações sobre tendências futuras e quanto as formas de geração, transferência e uso das inovações tecnológicas. Será considerada a evolução das TIC’s e das tecnologias de AP nos diversos setores envolvidos nas cadeias produtivas. Os avanços no desenvolvimento de hardware, software, formas de conectividade, volume de informações coletadas, processadas e disponibilizadas já estão transformando os métodos de promover inovações. O processo linear da transferência das tecnologias e conhecimentos originados da pesquisa para os produtores através da extensão, já vem sendo operacionalizado num processo de transferência em redes de conhecimentos e de informações.

As tendências futuras que indicam uma evolução e crescimento do uso das TIC’s, nos temas de Computação Ubíqua e em Nuvens, Aplicações Geoespaciais, Sistemas de Suporte a Decisão, Processos e Equipamentos Agrícolas, Padronização de Dados e Automação já estão permitindo o acesso às informações e aos conhecimentos originados de fontes pluralísticas com diferentes formatos que estão sendo utilizados pelos usuários (GAKURU; WINTERS; STEPMAN, 2009; GANDHI et al., 2009). Isto significa que, não somente o conhecimento gerado pelas instituições de pesquisas vem sendo utilizado, mas também o conhecimento tácito obtido por produtores, provedores de serviço e extensionistas está sendo utilizado nas inovações. A grande maioria das inovações já está sendo transferida de modo ubíquo, ou seja, o usuário está acessando um volume enorme de informações e tendo que ter alguma forma de filtragem, para selecionar as tecnologias e conhecimentos mais relevantes para sua situação.

Considerando as mudanças ocorridas na sociedade, devido aos impactos das novas Tecnologias de Informação e de Comunicação, exigem da Embrapa novos procedimentos. A forma como foi concebido e desenvolvido o repositório da Rede AP, permitirá a organização das informações e dos conhecimentos existentes e será um instrumento efetivo e eficaz de transferência tecnológica, contribuindo para acelerar o desenvolvimento do processo de disseminação e adoção das tecnologias da Agricultura de Precisão.

Em função do quadro atual e das tendências futuras os formuladores de políticas públicas devem considerar o valor das TIC’s no desenvolvimento do setor agrícola, políticas que propiciem o acompanhamento da dinâmica da...
evolução das TIC’s como a participação contínua em programas de treinamento, capacitação dos pesquisadores, extensionistas, produtores e outros atores. Ações dessa natureza contribuirão para uso pleno de suas capacidades de gerar, transferir, compartilhar dados, informações e conhecimentos, para o efetivo desenvolvimento do setor agrícola. Também é esperado que ocorram mudanças culturais para que assim culminem em transformações em direção a novos padrões tecnológicos de produção.

Agradecimentos

Agradecemos à Rede AP pelo apoio e oportunidade para a redação desse capítulo.

Referências

Use of Unmanned Aerial Vehicles (UAV) in Precision Agriculture

Interest in Unmanned Aerial Vehicles (UAVs), called drones, is growing worldwide, and in special in Brazil, and several efforts is underway to integrate UAV operations routinely and safely into precision agriculture. Currently, UAV operations are confined to special-use airspace or are limited in their access, for safety reasons, by a restrictive authorization process of ANAC. This chapter provides a context of Brazil UAV developments, describes current initiatives, and frames and assesses the issues associated with the integration of UAVs in precision agriculture. Reviewed are issues related to potential applications in agriculture, kinds of sensors and aircrafts, limitations of each one and results of use. The intent in describing the issues and proposing recommendations is not to suggest a conclusive set of issues nor to provide a prescriptive direction, because the area is in full development, but rather to stimulate discussion, build consensus, and promote strategic planning among the organizations having a stake in the emergence of UAVs into precision agriculture.

UAV, drone, aerial monitoring, images, precision agriculture.
1. Introdução

O desenvolvimento dos veículos aéreos não tripulados (VANTs) surgiu como uma importante opção na agricultura de precisão. Sua aplicação na área agrícola e em missões de reconhecimento vem sendo favorecida e facilitada pelo atual estágio de desenvolvimento tecnológico, principalmente pela redução do custo e do tamanho dos equipamentos e pela necessidade de otimização da produção.

O termo “Veículo Aéreo Não Tripulado” é mundialmente reconhecido e inclui uma grande gama de aeronaves que são autônomas, semiautônomas ou remotamente operadas. Segundo a ABA - (Associação Brasileira de Aeromodelismo), a definição para Veículo Aéreo Não Tripulado (VANT) é: “um veículo capaz de voar na atmosfera, fora do efeito de solo, que foi projetado ou modificado para não receber um piloto humano e que é operado por controle remoto ou autônomo”. O Sistema Aéreo Não Tripulado (SANT) significa o conjunto de veículos aéreos não tripulados, seus controles de voo e seu sistema de operação, isto é, a união de todas as atividades que estão interligadas no plano de voo (Rasi, 2008).

Apesar dos avanços no século passado, os VANTs ainda são considerados por muitos como estando em sua fase embrionária. As tecnologias que estão sendo empregadas em VANTs hoje estão evoluindo rapidamente e se apresentam com grande promessa. Os sistemas autônomos estão se tornando mais sofisticados e confiáveis. VANTs, em virtude da sua capacidade para assumir as missões de alto risco e seu potencial para operações de baixo custo em relação à aeronave tripulada, tem se tornado uma proposta ideal para o desenvolvimento de novas tecnologias. Pesquisas em áreas tais como novos materiais, células de combustível, software adaptativo; memórias; comunicações e laser poderão remodelar o mercado de novas aplicações.

Em especial, neste momento, existem vários desafios e perspectivas e para a agricultura destacando-se o monitoramento de recursos naturais, meio ambiente, atmosfera, imagemamento hiperspectral, observações de rios e lagos, bem como o imageamento de práticas agrícolas e uso do solo (JORGE et al., 1999; JORGE, 2001; JORGE, 2003; EISENBEISS, 2004). Herwitz et al. (2004) realizaram um mapeamento de 1500 ha de plantações de café no Havai, obtendo imagens multispectrais coloridas de alta resolução com um VANT.

No Brasil, os primeiros relatos de VANT’s ocorreram na década de 80, quando o Centro Tecnológico Aeroespacial (CTA) desenvolveu o projeto Acauã. Este tinha fins militares especificamente e ficou desativado depois sendo, somente em 2007, reativado por uma iniciativa do governo de incentivo ao desenvolvimento de VANT no Brasil. Na área civil, também na década de 80, se destaca o projeto Helix, um VANT de asa móvel que foi desativado nos anos seguintes por falta de mercado e incentivo do governo. Mais tarde, o Cenpra desenvolveu o projeto do dirigível AURORA (Autonomous Unmanned Remote Monitoring Robotic Airship) (Medeiros, 2007), que serviu para capacitar a equipe de desenvolvimento. Dentre as aplicações civis, principalmente focado na agricultura surgiu o
projeto ARARA (Aeronave de Reconhecimento Assistida por Radio e Autônoma) (Jorge, 2001). Seu principal objetivo foi a substituição de aeronaves convencionais utilizadas na obtenção de fotografias aéreas, para monitoramento de áreas agrícolas e áreas sujeitas a problemas ambientais, por VANT’s de pequeno porte que realizam missões pré-estabelecidas pelos usuários. De 1999 a 2005 foi feito um grande esforço no desenvolvimento da aeronave de asa fixa deste projeto patenteada pela Embrapa (JORG, 2004), chegando a uma operação completamente autônoma em 2006 (TRINDADE JUNIOR; JORG; AGUIAR, 2004; Jorge et al. 2004).

A AGX Tecnologia Ltda., São Carlos, criada em 2002, utiliza a tecnologia ARARA para fins comerciais no Brasil, utilizando uma nova versão do VANT, totalmente construída em fibra de vidro e alumínio aeronáutico. Com 2,3 m de comprimento e 3,2m de envergadura e equipado com motor a gasolina de 40 cm³ e 4,8 cv.

De acordo com Medeiros (2007), as pesquisas nessa área, no Brasil, ainda são muito recentes e os principais trabalhos com VANT’s têm no escopo as aplicações civis, como vigilância policial de áreas urbanas e de fronteira, inspeções de linhas de transmissão de energia, monitoramento, atividades de áreas agrícolas, acompanhamento de safras, controle de pragas e de queimada.

A Embrapa investiu no desenvolvimento de outra plataforma e outra aeronave que fosse capaz de operar nas condições de campo adversas, que são áreas agrícolas, porém, com bom desempenho e baixo risco. Inspirados pelo exemplo da Yamaha, que iniciou o desenvolvimento do helicóptero RMx (OZDEMIR, 2005) muito flexível e preciso durante a pulverização para controle de pragas em culturas de arroz, soja e trigo, a Embrapa iniciou a busca de uma solução por uma plataforma similar, desenvolvendo em conjunto com a Rotomotion uma nova solução para aplicações agrícolas. Além da aeronave, estão sendo desenvolvidos softwares e sistemas de captura de imagens adequados para as diferentes aplicações agrícolas.

Também no Brasil outras iniciativas criadas em universidades, se tornaram empresas que começam a atender o mercado com diferentes tipos de VANT, como, por exemplo, empresa Flight Solutions, a XMobots, a Airship, a Skydrones, dentre outras. Além das iniciativas destas empresas, com a facilidade de componentes disponíveis via internete, mais de 2000 sistemas já foram montados e se encontram em operação no Brasil.

2. Componentes de um VANT

Além da aeronave, o VANT é composto de uma estação de controle em solo, o (Ground Control Station) GCS através da qual é possível planejar a missão a ser executada e acompanhar todo o trabalho realizado remotamente. Em geral possibilita visualizar o mapa do local a ser monitorado, com a referência da posição do VANT.

O VANT possui também um (Sistema de Posicionamento Global) GPS acoplado, assim como, uma unidade de navegação inercial. O veículo não aceita comandos de movimento diretamente ligados pelo GPS, devido a grande margem de erro deste, recorrendo a uma unidade de navegação inercial (IMU) garantindo uma melhor precisão da posição. A navegação inercial é utilizada por foguetes, submarinos, navios também para determinar coordenadas.

Uma unidade de navegação inercial nada mais é que um sistema de navegação que integra as acelerações em Norte/Sul, Leste/este por meio de sensores inerciais, determinando a posição. Segue abaixo listada algumas vantagens da navegação inercial:

• Não necessita de informação exterior;
• Não requer emissões ou recepções de sinais;
• Imune a interferências.

O piloto automático ou Autonomous Flight Control System (AFCS) é um pacote integrado normalmente fornecido pelo fabricante. O AFCS recebe o controle da estação de solo (GCS) através da telemetria de controle do sistema que atua de forma autônoma. Em geral consiste de 5 componentes:

• Unidade Inercial (IMU) 3 eixos, em geral com 6 graus de liberdade;
• Magnetômetro de 3 eixos;
• GPS;
• Sistema de radio com interface de servo e safety pilot;
• Computador de voo.

Na Figura 1 podem ser vistos exemplos de CGS. Inclusive algumas já disponíveis para dispositivos móveis como celulares.
Segundo Neris (2001), os VANTs têm como componente principal um sistema de controle capaz de manter a aeronave estabilizada e de executar manobras que a conduza através de uma rota e missão selecionada. Atualmente o desenvolvimento de sistemas de controle de voo para esse tipo de aeronave está sendo favorecido e facilitado pelo grande desenvolvimento tecnológico verificado nos últimos anos e principalmente pela redução dos custos dos componentes eletrônicos. Isto permite que um grande número de empresas possam construir VANTs com sistemas de controle, para comercialização. Existem sistemas disponíveis gratuitamente na internete, como o Ardupilot, que pode ser configurado por qualquer pessoa e funciona perfeitamente.

3. Tipos de VANT

De acordo com Medeiros (2007), “os veículos Aéreos Não Tripulados (VANT) são pequenas aeronaves, sem qualquer tipo de contato físico direto, capazes de executar diversas tarefas, tais como monitoramento, reconhecimento tático, vigilância e mapeamento entre outras”. Porém, os VANTs têm limitação em termos de capacidade de carga a bordo e condições climáticas. Se equipados com equipamentos de transmissão de dados, são capazes de transmitir, em tempo real os dados recolhidos. Sendo assim, as aeronaves não tripuladas têm sido projetadas para vários tipos de missão, mas o relato que se tem é que a origem desses veículos está ligada à área militar, como alvos aéreos manobráveis, reconhecimento tático, guerra eletrônica, entre outras. Os misseis antinavios, bombas guiadas propulsadas ou planadas também são classificadas como aeronaves não tripuladas.

Na Figura 2 podem ser observadas as áreas de coberturas dos VANTs comparadas com as de satélites e aeronaves tripuladas. Em geral, apesar da cobertura ser menor, se ganha em flexibilidade de uso, tornando muito útil para a agricultura.

De uma forma geral os VANTs são classificados segundo sua categoria funcional como alvos, sistemas de reconhecimento ou monitoramento, combate, logística e de P&D.

Na Figura 3 pode ser visualizado a diferença de resolução que se consegue com os VANTs comparada com satélites convencionais.

A escolha da altitude de voo é feita visando evitar obstáculos, em geral de até 80 metros, e garantindo que o ângulo de distorção mínimo. A escolha de um voo mais alto possibilita menos voos, uma vez que se cobre mais área voando mais alto. O voo mais alto é recomendado em terrenos com muitas variações de relevo.

Figura 1. Exemplos de GCS (Fonte: Telas capturadas das interfaces utilizadas na Embrapa por Lúcio André de Castro Jorge).

Figura 2. Comparação de VANT com sistemas aéreos e satélites. (Fonte: Lúcio André de Castro Jorge).
Quanto ao alcance e altitude os VANTs são classificados como:

- **De mão**, com 600m altitude e alcance 2km;
- **Curto alcance**, com 1500m de altitude e 10km de alcance;
- **OTAN**, de 3000m de altitude e alcance até 50km;
- **Tático**, de 5500m de altitude e alcance de 160km;
- **MALE** (altura média, alcance longo), até 9000m de altitude e alcance de 200km;
- **HALE** (altura alta, alcance longo), acima de 9100m e altitude e alcance indefinidos;
- **HIPERSÔNICO**, 15200m de altitude e alcance acima de 200km;
- **ORBITAL** em baixa órbita;
- **CIS**, transporte lua-terra.

O veículo aéreo não tripulado do tipo multirotor é uma plataforma aérea com sofisticada eletrônica embarcada que permite transportar diferentes sistemas de captura de imagens. Sua instrumentação avionica e sistemas de controle permitem voos com alta estabilidade com reduzido tempo de treinamento operacional. Seu tamanho compacto, facilidade de operação, segurança e custo operacional reduzido, tornam esta classe de VANTs a mais interessante para operação em mercados que tem as seguintes necessidades:

- tempo curto de operação;
- pouca ou nenhuma equipe de apoio;
- pouca ou nenhuma infraestrutura de terra;
- facilidade de transporte;
- distância e áreas de cobertura de pequeno a médio tamanho (ou duração);
- voo assistido por GPS ou totalmente autônomo seguindo dados pré-programados;
- necessidade de imagens com resolução superior às imagens de satélite;
- necessidade de acessar pontos difíceis.

Os multirotores oferecem um conjunto de vantagens tecnológicas que otimizam sua performance, tais como: Estabilização autônoma das atitudes em voo da plataforma obtido pelo...
acionamento direto de quatro ou mais hélices e sistema de controle embarcado; Pouso e decolagem vertical (vtol) permitindo uso em espaço restrito, necessitando apenas 1m² de área; Possibilidade de programação de voo estacionário ou avanço em alta velocidade até pontos pré-determinados (coordenadas geográficas), por computador; Comando de retorno autônomo para a base operacional; Baixo peso da plataforma e alto potencial de carregamento (sensores e câmeras embarcados); Possibilidade de uso de câmeras especiais, como infravermelho (FLIR) e de alta resolução (HD) de foto e vídeo; Estação Base (em terra) com integração de dados de voo, captura de imagem e cartografia; Alta capacidade de customização para diferentes aplicações. Alta convergência de tecnologias como: TI, robótica, nanotecnologia, materiais compostos, miniaturização de sensores e poder de processamento embarcado.

No entanto, em geral usa motores elétricos e cuja bateria não supera os 30 minutos de operação e a capacidade de carga (payload): 800g a 4Kg. Em geral possuem estabilização de atitude para câmeras e sensores.

O VANT de pequeno porte como o tipo asa delta também é uma opção interessante para a área agrícola. No entanto são também muito susceptíveis aos ventos fortes. Mas de uma forma geral é o que menos apresenta problemas de operação para usuários novos. Na Figura 5 podem ser vistos os modelos e fabricantes dos principais sistemas presentes hoje no Brasil.

Na Tabela 1 podem ser observadas as principais vantagens e desvantagens dos diferentes tipos de VANT segundo a asa, fixa ou rotativa. Os aspectos que foram citados por Medeiros (2007) foram as condições de campo (área livre para pouso e decolagem), custo (valor para o desenvolvimento do VANT), fatores climáticos (condições meteorológicas), trajetória (capacidade de manter uma rota pré-determinada) e transporte (condições de acomodamento para o transporte).

4. Sensores

O uso de VANT em agricultura de precisão tem focado no uso de sensores baseados na espectroscopia de reflectância, ou seja, em medidas da reflexão da radiação eletromagnética (REM) após interação com diferentes superfícies em diferentes comprimentos de onda, oriundas do chamado espectro refletido, mais especificamente abrangendo a região do visível (Visible – VIS – 0.4-0.7 µm), Infravermelho próximo (Near Infrared – NIR - 0.7-1.3 µm) e Infravermelho de ondas curtas (Short Wave Infrared – SWIR - 1.3-2.5 µm). Cada comprimento de onda da REM possui um comportamento particular em relação à superfície dos diferentes materiais, o qual pode ser medido quantitativamente com base na razão entre energia incidente (E - irradiância) e energia refletida (L - radiação). A medida de reflectância do comportamento espectral da cultura, do solo ou água ao longo da REM é usualmente representada por um gráfico de eixo Y/reflectância vs eixo X/comprimento de onda, denominado assinatura espectral ou curva de reflectância.

O comportamento espectral é resultado direto de suas propriedades físicas e químicas, bem como da estrutura atômica dos seus átomos, expressas nos segmentos de bandas através de características da curva de reflectância, como: depressões, ombros, área, curvatura e ângulos, compondo o que chamamos de feições espectrais diagnósticas. Como indicador de estresse, os sensores se dividem em sensores que detectam a transpiração e a redução de absorção de CO₂ nas plantas ou a redução na fotossíntese. No caso de estresse hídrico, a temperatura aumenta, podendo ser detectada com câmeras térmicas ou termais. No caso de estresse nutricional pode ser observada a degradação do pigmento fotossintético.

O padrão espectral da vegetação prove uma série de padrões para identificar o estádio fisiológico e de saúde das plantas. Em comprimentos de onda na região visível do espectro eletromagnético, refletância (medida proporcional da radiação refletida por um objeto) da vegetação está relacionada com os pigmentos fotossintéticos como a clorofila a, clorofila b, xantofílias, antocianinas e carotenoides (GUYOT; GUYON; RIO, 1989; COCHRANE, 2000; CHISHOLM, 2001).

Nos comprimentos de onda na região do infravermelho próximo do espectro eletromagnético, a refletância da vegetação é influenciada pela estrutura interna das folhas, em particular, o tamanho, a forma e a distribuição de ar e água no interior da folha (CHUVIECO, 1996; KNOX, 1997; KUMAR, 1998). Nos comprimentos de onda da região do infravermelho, a refletância da vegetação é
Figura 5. VANTs presentes no Brasil (Fonte: Lúcio André de Castro Jorge, adaptadas de sites dos fabricantes: XMobots, Embrapa, Sensefly, Crop Circle, Somenge, S4qntoLab, CenPRA e ANDRADE, 2013).
Tabela 1. Vantagens e desvantagens dos diferentes tipos de VANTs (Adaptado de MEDEIROS, 2007).

<table>
<thead>
<tr>
<th>Tipo Aspetos</th>
<th>Vantagem</th>
<th>Desvantagem</th>
<th>Vantagem</th>
<th>Desvantagem</th>
<th>Vantagem</th>
<th>Desvantagem</th>
<th>Vantagem</th>
<th>Desvantagem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pouso e decolagem</td>
<td>Quando se usa catapulta para decolagem e paraquedas para pouso</td>
<td>Necessidade de área de pouso e decolagem</td>
<td>Em qualquer lugar pouso e decolagem</td>
<td>-</td>
<td>Em qualquer lugar decola e pouso</td>
<td>-</td>
<td>Em qualquer lugar decola</td>
<td>Necessita de área para pouso</td>
</tr>
<tr>
<td>Trajetória</td>
<td>Possui capacidade de realizar rotas longas</td>
<td>Dependendo de condições de vento para manter rota</td>
<td>Possui a capacidade de realizar rota determinada e pode pairar num ponto de interesse</td>
<td>-</td>
<td>Possui a capacidade de realizar rota determinada e pode pairar num ponto de interesse</td>
<td>-</td>
<td>-</td>
<td>Dependendo de condições de vento para seguir na rota</td>
</tr>
<tr>
<td>Condições climáticas</td>
<td>Possui um grau de tolerância maior para voar com ventos fracos</td>
<td>Possui tolerância maior para voar inclusive com ventos fortes</td>
<td>Possui tolerância maior para voar inclusive com ventos fortes</td>
<td>-</td>
<td>Possui tolerância maior para voar inclusive com ventos fortes</td>
<td>-</td>
<td>Posse baixa tolerância em condições de ventos</td>
<td></td>
</tr>
<tr>
<td>Custos</td>
<td>Possui custos de construção e manutenção relativamente baixos</td>
<td>-</td>
<td>Alto custo de aquisição e manutenção</td>
<td>Baixo custo de manutenção Médio custo de aquisição</td>
<td>-</td>
<td>-</td>
<td>Alto custo de aquisição e manutenção</td>
<td></td>
</tr>
<tr>
<td>Transporte</td>
<td>Pode ser desmontado facilitando transporte</td>
<td>-</td>
<td>Fácil transporte</td>
<td>Fácil Transporte</td>
<td>-</td>
<td>-</td>
<td>Difícil de transportar devido grande volume do reservatório de gás</td>
<td></td>
</tr>
<tr>
<td>Carga</td>
<td>Suporta uma carga considerável</td>
<td>Suporta carga Média</td>
<td>-</td>
<td>Suporta pouca carga</td>
<td>-</td>
<td>Não suporta carga considerável</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segurança</td>
<td>Permite fácil instalação de paraquedas e dispositivos de segurança</td>
<td>Possui opção de autogiro</td>
<td>Difícil instalação de paraquedas</td>
<td>-</td>
<td>Difícil instalação de paraquedas</td>
<td>-</td>
<td>Não suporta uma carga considerável</td>
<td></td>
</tr>
</tbody>
</table>
Tabela 2. Tipos de sensores embarcados e respectivas aplicações (Fonte: Lúcio André de Castro Jorge, adaptado de catálogos de sensores comerciais: Sony, FIR, Tetracam, Headwall e CropCircle).

<table>
<thead>
<tr>
<th>Aplicações</th>
<th>Sensores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Câmeras RGB: detecção falhas de plantio, desenvolvimento da cultura, formação da planta, modelo de elevação do terreno. Olho do agricultor sobre a lavoura. (Visível – VIS - 0.4-0.7 µm)</td>
<td></td>
</tr>
<tr>
<td>Câmeras Térmicas: Detecção de estresse hídrico/irrigação (Short Wave Infrared – SWIR - 1.3-2.5 µm)</td>
<td></td>
</tr>
<tr>
<td>Cameras Multiespectrais: Detecção de estresse nutricional, para determinação de índices indicadores fisiológicos, e estrutura da copa, como NDVI, EVI e outros. (Infravermelho Próximo – NIR - 0.7-1.3 µm)</td>
<td></td>
</tr>
<tr>
<td>Cameras Hiperespectrais: estão sendo desenvolvidos novos índices e métodos visualizando assinatura do espectro refletido e geração de índices espectrais combinados. Usadas para calibração de bandas multi a serem usadas. (NIR + SWIR)</td>
<td></td>
</tr>
<tr>
<td>Sensores ativos: detecção de reflectância, NDVI e outros.</td>
<td></td>
</tr>
</tbody>
</table>

determinada pela absorção de água (KAUFMAN; REMER, 1994), assim como pela presença de bioquímicos como lignina, celulose, amido, proteínas e nitrógenos (GUYOT; GUYON; RIOM, 1989; KUMAR et al., 2001). Na Figura 6 pode ser observada a reflectância de uma planta.

Em geral podemos resumir os sensores segundo suas aplicações para detecção de estresse, como pode ser visto na Tabela 2.

4.1. Visível

No espectro visível (0,4 a 0,7µm) é possível obter imagens que auxiliam o produtor a visualizar falha de plantio, alterações no dossel, variando resoluções de centímetros a metros, dependendo da altura de voo e lente utilizada. Na Figura 7 podem ser vistos alguns exemplos de imagens obtidas com VANT em altitudes que variaram de 100m a 300m. Esta é normalmente a faixa de operação de um VANT para a área agrícola sem que haja interferência no fluxo de aeronaves convencionais tripuladas.

4.4.1. Processamentos no visível

Uma vez obtidas as imagens, elas podem ser processadas individualmente com o objetivo de reconhecer falhas graves de plantio que ainda permitem por correção como, por exemplo, falhas na linha de plantio de cana-de-açúcar superiores a 50cm, conforme demonstra a imagem da Figura 8.

Alguns processamentos, como a identificação de plantas com alterações espectrais, indicando ou estádio fenológico diferente ou alteração por alguma doença ou deficiência, são realizados com as imagens no visível, como pode ser observado na Figura 9.

Muitos casos de análise das imagens de VANT, devido a resolução ser maior, invariavelmente, pode-se acompanhar o crescimento da planta no campo, permitindo assim estudos de fenotipagem. Uma exemplo de acompanhamento de germinação pode ser visto na Figura 10.

4.2. Infravermelho Próximo - NIR

As imagens no espectro visível funcionam como o “olho do agricultor” sobre a cultura. No

Figura 7. Imagens no visível típicas obtidas com VANT (Fonte: fotos obtidas por VANT por Lúcio André de Castro Jorge).
Figura 8. Falha de plantio em linhas de cana-de-açúcar (Fonte: fotos obtidas por VANT por Lúcio André de Castro Jorge).

Figura 9. Imagens de citros com identificação de plantas com alterações espectrais (Fonte: fotos obtidas por VANT por Lúcio André de Castro Jorge).

Figura 10. Avaliação de germinação e crescimento de híbridos de milho no campo (Fonte: fotos obtidas por VANT por Lúcio André de Castro Jorge).

entanto, algumas respostas de estresse nutricional, indicadores fisiológicos e estrutura do dossel são melhor verificados com imagens no infravermelho ou NIR. Na Figura 11 podem ser vistos um pivô irrigado e uma área cultivada na banda NIR (0,7 a 1,3µm).

Os sensores na faixa do Infravermelho ou NIR são usados geralmente em câmeras multiespectrais, que são câmeras alteradas trocando o filtro na região do azul, normalmente presente numa câmera no espectro visível (RGB) para a faixa do infravermelho. Assim configurando uma câmera com bandas NIR + R + G. Com estas informações é possível criar índices de vegetação próprios para avaliar o dossel, como descrito mais a frente. Na Figura 12 pode ser visto o diagrama básico de uma câmera multiespectral.

4.3. Hiperespectral

No começo da década de 90 iniciaram os sensores hiperespectrais, cujas imagens demonstraram, em poucos anos, uma vasta potencialidade de aplicações, assim como numerosas vantagens sobre os sensores multiespectrais convencionais. Se por um lado o sensor multiespectral é capaz de dividir o espectro eletromagnético em poucas bandas ou proporções espectrais (baixa resolução espectral), sensores hiperespectrais são capazes de registrar centenas de bandas contíguas através de diversas dimensões do espectro eletromagnético (alta resolução espectral), o que permite contar com uma curva detalhada do comportamento espectral de área monitorada possibilitando sua identificação e discriminação com grande precisão.

Considerada uma área de vanguarda, o sensoriamento remoto hiperespectral ou espectroscopia de imagem usando VANT tem como objetivo fundamental o uso dos mesmos princípios da espectroscopia de reflectância na coleta de dados para formação de imagens (hipercubo) com centenas de bandas estreitas e contíguas entre si (~0.02 µm) (van der Meer, 2000). Assim, cada pixel da imagem corresponde a centenas de posições ou bandas no espectro

4.4.1. Processamento no Espectro NIR

Uma das maiores aplicações de imagens na faixa do NIR é a determinação de índices de vegetação. Existem vários índices na literatura.

Figura 13. Estresse hídrico em vitinicultura com o índice NDVI (Fonte: Zarco-Tejada et al., 2012).
eletromagnético, sendo capaz de reproduzir a assinatura ou curva espectral do alvo e suas feições de absorção associadas. Na Figura 14 pode ser observada uma imagem típica hiperespectral.

Na verdade pode ser vista como um conjunto de várias imagens, uma para cada banda espectral (hipercubo).

Na aplicação à vegetação, as imagens hiperespectrais possibilitam estudos detalhados dos padrões espectrais (assinaturas espectrais) das coberturas vegetais e espécies, os quais estão altamente associados a diversas propriedades fisiológicas e estruturais da planta, assim como fatores ambientais, fenológicos e antropogênicos que influenciam sobre elas (VARSHNEY; ARORA, 2004; RESEARCH SYSTEMS, 2005).

Desta forma, as aplicações de imagens hiperespectrais na vegetação tem permitido identificar a abundância de clorofila a e b (CLEVERS, 1994; GITELSON; MERZLYAK, 1997), nitrogênios (CURRAN 1989; MATSON et al., 1994; GASTELLU – ETCHEGORRY et al., 1995; FOURTY et al., 1996; JOHNSON; BILLOW, 1996; SERRANO; PENEULAS; USTIN, 2002) carbono (USTIN et al., 2001), celulose (ZAGOLSKI et al., 1996; DAUGHTRY, 2001; DAUGHTRY; HUNT JUNIOR; MCMURTREY, 2004), lignina (GASTELLU – ETCHEGORRY et al., 1995; FOURTY et al., 1996; SERRANO; PENEULAS; USTIN; ZARCO-TEJADA; ASNER, 2002), antocianina, amido (CURRAN et al., 1992; SERRANO et al., 2000; GITELSON; MERZLYAK; CHIVKUNOVA, 2001), água (HUNT JUNIOR; ROCK, 1989; GAO, 1995; CECCATO et al., 2001; JACKSON et al., 2004) e sideroxinol – A (BLACKBURN, 1999; EBBERS et al., 1992).

Assim também, é possível identificar a presença de outros bioquímicos que exibem comportamentos espectrais claramente identificáveis e que tem contribuído para o entendimento da fotossíntese e outros processos bioquímicos, dentro eles os pigmentos de carotenoides e xantofíla (caracterizados por uma forte absorção nos comprimentos de onda azul (região visível do espectro), caroteno (caracterizados por uma forte absorção perto dos 450 nm), fitocianina (caracterizados por uma forte absorção ao redor dos 620 nm), fitoeritrina (caracterizados por forte absorção nos 550 nm) (PENUELAS; BARET; FILELLA, 1995; MERZLYAK et al., 1999; GITELSON et al., 2002).

Um grande número de estudos tem obtido êxito nas medidas dos elementos químicos com os sensores hiperespectrais aéreos e espaciais. Como exemplo, a concentração de nitrogênio foliar tem sido obtida usando imagens AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), HyMap e Hyprion (JOHNSON; HLAVKA; PETERSON, 1994; MATSON et al., 1994; LA CAPRA et al., 1996; MARTIN; ABER 1997) e a lignina, entre outros bioquímicos, tem sido quantificados usando dados AVIRIS (JOHNSON; HLAVKA; PETERSON, 1994).

Entre os atributos biofísicos que podem ser obtidos usando imagens hiperespectrais se incluem medidas foliares e cobertura de vegetal (SPANNER ET AL., 1990A, B; GONG; PU; MILLER, 1995), da fração da radiação fotosinteticamente ativa (GAMON; PENEULAS; FIELD, 1992; GAMON; SERRANO; SURFUS, 1997) e medições e relacionadas à arquitetura do dossel vegetal (ASNER; TOWNSEND, 1999).

Outras aproximações para obter propriedades biofísicas a partir da reflectância espectral incluem o emprego de modelos de radiação do dossel (USTIN; ZARCO-TEJADA; ASNER, 2001) e o uso de índices de vegetação (TREITZ; HOWARTH, 1999).

4.4.1. Processamento Hiperespectral

A imagem hiperespectral é um hipercubo de dados, geralmente da ordem de GBytes, que possui resolução suficiente para avaliar espectralmente os alvos com bastante

![Figura 14. Imagem hiperespectral típica (Fonte: www.headwall.com).](image-url)
precisão. No entanto, por se tratar de um dado multidimensional volumoso, é necessário aplicar algoritmos automáticos de detecção de padrões. As imagens hiperespectrais tem permitido desenvolver perto de 150 índices que são associados a diversas propriedades fisiológicas da vegetação (vigor, senescência, estresse hídrico), além de serem aplicados algoritmos de mineração de dados para buscar as características e assinaturas padrões sem usar aritmética com as bandas. Este tipo de processamento é o destaque nos últimos anos e ainda não estão disponíveis para usuários comuns.

Existem problemas com o uso de sensores hiperespectrais em VANTs. Por se tratar de um sensor extremamente preciso, os problemas de estabilidade e precisão de posicionamento do VANT pode ser um limitante. Em geral, as imagens hiperespectrais permitem desenvolver perto de 150 índices que são associados a diversas propriedades fisiológicas da vegetação (vigor, senescência, estresse hídrico), a maioria impossível de obter mediante imagens multiespectrais, devido ao pequeno número de bandas. Também, tem permitido a identificação de tipos específicos de coberturas e espécies vegetais, bem como pragas e doenças e áreas suscetíveis de incêndios, o que não é conseguido com o processamento de imagens multiespectrais, pois sua baixa resolução espectral impede a análise e discriminação de comprimentos de onda específicos.

Além dos índices que podem ser gerados com as imagens hiperespectrais, por apresentar um espectro completo para cada pixel da imagem, estão sendo aplicados algoritmos de mineração de dados para buscar as características e assinaturas padrões sem usar aritmética com as bandas. Este tipo de processamento é o destaque nos últimos anos e ainda não estão disponíveis para usuários comuns.

Figura 15. Detalhes de uma imagem hiper (Fonte: ZARCO-TEJADA; GONZÁLEZ-DUGO; BERNI, 2012)

Figura 16. Imagem hiperespectral de uma fazenda de citros (Fonte: Obtida por Lúcio André de Castro Jorge)
os modelos planadores são mais estáveis e apresentam melhores condições para uso destes sensores. O processamento fica extremamente prejudicado caso a imagem apresente artefatos provenientes de movimentos inadecuados dos VANTs.

Nas Figuras 15 e 16 podem ser observadas imagens típicas obtidas com sensor hiperespectral. O processamento é realizado com os espectros e a visualização é feita através de pseudocores uma vez que apresentam uma grande número de bandas.

4.4. Térmico

Na Figura 17 pode ser observada uma imagem no visível e a respectiva imagem na faixa termal. Em geral é possível mapear com pseudocores as temperaturas do dossel. Este tipo de sensor é utilizado para avaliar estresse hídrico e em conjunto com imagens hiperespectrais serve para determinar a fluorescência direta no campo. Com isto é possível mapear estresses hídricos e provocados por doenças e deficiências.

Não é realizado processamento na imagem térmica a não ser o mapeamento de pseudocor relativo às faixas de temperaturas.

4.5. Fluorescência

Uma planta, quando irradiada com luz ultravioleta (350 nm) ou mesmo outros comprimentos de onda, possuem a propriedade de emitir uma luz denominada de fluorescência. Este processo só é percebido se for realizada a inibição da fotossíntese, deixando por alguns segundos, a planta no escuro. Por este motivo é difícil obter a fluorescência diretamente no campo por sensores aéreos. No entanto, usando combinação de sensores esta é possível de ser determinada. Os efeitos de fluorescência ocorrem em tempos muito curtos e dependem das circunstâncias. A fluorescência da clorofila em hortaliças se tornou um parâmetro importante de análise em virtude de que qualquer variação na planta decorrente de doenças, pragas ou qualquer adversidade provoca alterações em seu teor. As moléculas de clorofila absorvem a energia luminosa (fótons) e alteram temporariamente as suas configurações eletrônicas. Esses pigmentos passam do estado fundamental singeito para um estado excitado singeito com tempo de vida característico da ordem de \(10^{-8}\)s. Após esse período, esta energia pode ser dissipada através de três processos:

Figura 17. Detalhes de uma imagem térmica (Fonte: ZARCO-TEJADA; GONZÁLEZ-DUGO; BERNI, 2012; GONZALEZ-DUGO et al., 2013)
5. Etapas para utilizar o VANT em agricultura de precisão

Na Figura 19 podem ser vistas as etapas básicas de utilização de VANT em agricultura de precisão.

Estas etapas de utilização de um VANT em agricultura de precisão se resumem em:
• Planejamento de voo;
• Voo com sobreposição;
• Obtenção das imagens georreferenciadas;
• Processamento das imagens;
• Geração de Mosaico;
• Análise em uma ferramenta GIS;
• Geração de relatórios.

5.1. Planejamento de Voo:

O planejamento de voo inicia com a seleção das condições do voo, ou seja, a altitude, velocidade de voo, resolução das imagens e resolução do pixel nas unidades de terreno, e, finalmente as normas e regulamentos de voo.

Para definir a altitude deve ser observado se o voo terá visada direta, ou seja, sem obstáculos entre a estação de controle e a aeronave.

Também deve ser observada qual a resolução em solo é desejada e, então, de acordo com a resolução da câmera deve ser calculada a altitude de voo. Na tabela 3 pode ser observado um exemplo de resoluções e altitude para uma câmera de 10Mpixel.

Deve haver cuidado com as características da câmera de tal forma a evitar borramentos.
Assim, a melhor estratégia é manter o tempo de exposição constante, fixar o balanço de branco e usar o formato RAW, caso exista na câmera, permitindo abertura da lente automática e foco no infinito.

O ajustes devem ser realizados antes da decolagem. O tempo de armazenamento da imagem também é maior no formato RAW, podendo afetar a taxa de sobreposição ao longo do deslocamento da aeronave.

Figura 19. Etapas de uso do VANT em agricultura de precisão (Fonte: http://www.skydrones.com.br Acesso dezembro, 2013).

Tabela 3. Exemplo de resoluções para uma imagem de 10Mpixel

<table>
<thead>
<tr>
<th>Altitude (m)</th>
<th>Resolução (cm/pixel)</th>
<th>Cobertura no solo (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3.5</td>
<td>129</td>
</tr>
<tr>
<td>122</td>
<td>4.3</td>
<td>157</td>
</tr>
<tr>
<td>140</td>
<td>5</td>
<td>180</td>
</tr>
<tr>
<td>200</td>
<td>7.1</td>
<td>257</td>
</tr>
<tr>
<td>280</td>
<td>10</td>
<td>360</td>
</tr>
<tr>
<td>420</td>
<td>15</td>
<td>540</td>
</tr>
<tr>
<td>560</td>
<td>20</td>
<td>720</td>
</tr>
</tbody>
</table>
Devido o movimento das aeronaves, os ajustes de velocidade de obturador da câmera devem ser controlados para evitar o borramento. Este vai depender da distância e da altitude programada. Uma condição razoável para se obter um borramento imperceptível é assegurar que a distância percorrida durante a tomada da foto não seja maior que metade da resolução do pixel. O pior caso ocorre quando o deslocamento é na direção do vento, incrementando a velocidade de voo.

Dada a resolução em solo que se deseja, deve-se selecionar a máxima exposição possível (1/800, 1/1000, 1/1250, 1/4000, 1/6000). Câmera com mais megapixels tendem a borrar devido o tamanho do pixel. Isto significa que selecionando lentes escuras, com muitos megapixels e altitudes de voo altas não é uma boa prática em dias nublados.

Depois de definidas as condições de voo, deve-se utilizar estes parâmetros nos planejadores de missões de cada VANT para traçar o plano de voo. Na Figura 20 pode ser visto um traçado de voo utilizando um planejador de missão gratuito disponível com a solução do ArduPilot.

5.2. Voo com sobreposição:

A altitude de voo é determinante na quantidade de imagens geradas e no tamanho do pixel sobre o terreno. O fundamental é que se voe o mais alto, mais área é coberta com menos fotos. No entanto, existe um compromisso com a resolução que se deseja obter. Pode-se calcular a área coberta no voo usando a seguinte expressão:

\[
\text{Superfície Coberta (Km}^2\) = T \times V \times W
\]

sendo:

- \(T\) (h) = tempo de voo;
- \(V\) (Km/h) = velocidade sobre o solo;
- \(W\) (km) = largura da foto no solo.

Na Figura 21 é possível observar a cobertura com voos a diferentes altitudes.

A melhor forma de decolagem para usos na área agrícola é a decolagem manual conforme demonstrado na Figura 22. Assim, não é necessário nenhum outro acessório auxiliar para decolagem e não se corre riscos de perdas com trens de pouso em estradas de terra pequenas e não planas. Exceto em casos de multirotoreis ou helicópteros que a decolagem e pouso é mais simples.

Considerando também a experiência e obtenção de imagens com qualidade para agricultura de precisão, a sobreposição mínima lateral recomendada é de 40%. Esta é suficiente em caso que se necessite menos precisão nos mosaicos. No entanto, o recomendado é 60% também para a sobreposição lateral. Assim, se obtém mais qualidade em terrenos com variações de inclinação.
5.3. Obtenção de Imagens Georreferenciadas:

Se a sobreposição linear em uma direção é dada por N%, a distância média entre um ponto na imagem nesta direção é de (100-N)%. De fato, para largura ou comprimento da foto tem-se \(\frac{1}{(100-N)\%} \) pontos comuns por unidade de distância.

Se a sobreposição é uniforme, em 2D, tem-se \(\left(\frac{1}{(100-N)\%} \right)^2 \) pontos comuns por unidade de área.

Considerando \(N \) para sobreposição lateral e \(M \) para sobreposição da direção de voo, a densidade média de fotos em um dado ponto no mosaico pode ser calculada por \(\frac{1}{(100-N)\%,(100-M)\%} \).

A densidade deve ser observada de tal forma a se obter a quantidade necessária para a determinação do modelo de elevação do terreno ideal.

Em geral, as câmeras usam o formato EXIF JPG com mínima compressão para evitar perdas de qualidade. A obtenção da foto com sobreposições típicas de 60% devem ser garantidas pela velocidade de voo e altitude desejada. Na imagem da Figura 23 pode ser visto o mosaico obtido com as posições da aeronave no instante do disparo. E na Figura 24 pode ser visto o número de fotos e sobreposições obtidas.

As coordenadas LAT, LONG e ALT, ou seja, latitude, longitude e altitude devem ser armazenadas diretamente com cabeçalho das fotos, em formatos padrões EXIF JPG ou GeoTIFF. Caso não se tenha como gerar automaticamente as imagens com coordenadas, deve-se utilizar softwares que juntam o log de voo com as coordenadas com as imagens obtidas. Esta
5.4. Processamento das Imagens:
O processamento pode ser realizado foto a foto, conforme já descrito, para posterior geração do mosaico, mas em geral é realizado no mosaico já pronto.

5.5. Geração de Mosaicos:
Um mosaico de imagens consiste em unir grande quantidade de imagens em uma nova imagem (CHON; KIM; LIN, 2010). Dentre as várias aplicações com mosaicos de imagens, destacam-se os mosaicos que são construídos a partir de imagens de satélite (HELMER; RUEFENACHT, 2005; BIELSKI; GRAZZINI; SOILLE, 2007; KERSCHNER, 2001; SOILLE, 2006) e aqueles que usam imagens aéreas (WANG et al., 2008; DU et al., 2008; LALIBERTE et al., 2010; CHON; KIM; LIN, 2010; PAN et al., 2009; LÓPEZ et al., 2011).

Figura 23. Posições da aeronave a cada disparo da câmera numa área de citros (Fonte: Lúcio André de Castro Jorge).

Figura 24. Densidade de fotos e sobreposições para geração do mosaico. A parte central apresenta maior sobreposição e melhor qualidade de mosaico final (Fonte: Lúcio André de Castro Jorge).
Na obtenção de imagens aéreas é possível ao usuário a escolha da resolução mais adequada ao terreno, e da geometria de visualização/ iluminação, por meio do ajuste da altura e direção do voo em relação ao sol, minimizando o tempo para medições de áreas (Barnsley et al., 1997).

Os mosaicos aéreos agrícolas permitem direcionar vistorias de campo durante o ciclo do cultivo ou em datas posteriores à colheita, fornecendo um diagnóstico preciso da área de cultivo (Leboeuf, 2000). A partir daí, podem ser elaborados os mapas de recomendações: descompactação, fertilidade e aplicação de insumos em taxa variável, auxiliando nas tomadas de decisões. A eficiência da tomada de decisão está ligada à obtenção mais rápida e precisa de informações e também auxilia no controle de pragas, doenças e queimadas (Wulder et al., 2004; Lelong et al., 2008). A necessidade de precisão das informações justifica o uso de imagens de alta resolução, e a necessidade da obtenção rápida das informações justifica o uso de processamento paralelo para reduzir o custo computacional ocasionado pela construção de mosaicos de alta resolução.

As imagens aéreas, durante o seu processo de aquisição, frequentemente apresentam distorções que são causadas por alterações espaciais (translação, escala e rotação) e também por alterações radiométricas (brilho e cor), devido a variações de altitude e orientação do avião; consequentemente há necessidade das imagens serem retificadas (Roy; Meunier; Cox, 1997) antes do início do processo de construção de mosaicos.

As imagens retificadas são então utilizadas para a construção do mosaico, que une essas imagens, gerando uma nova imagem. Durante o processo de união das imagens, elas precisam passar por alguns ajustes geométricos, para que possam se encaixar adequadamente. No entanto, esses ajustes ocasionam uma distorção, que é acumulada ao longo do processo, necessitando de uma correção, que no trabalho de Brown e Lowe (2007) é realizada no final do processo.

Os trabalhos de DiVerdi et al. (2009), Liang et al. (2009), Kaynig et al. (2010), Liu et al. (2011), Zhong et al. (2012) e Gui et al. (2012) mostram exemplos de construção de mosaicos de imagens utilizando algoritmos que trabalham com metodologias de descritores de características nas próprias imagens.

Uma vez obtidas as fotos geregenciadas, estas possuem em seu cabeçalho as coordenadas de posicionamento global, GPS, que são utilizadas para geração do mosaico.

Existem softwares comerciais que já realizam o mosaicamento automático, como por exemplo...

Figura 25. Mosaicamento de imagens do VANT com o software PhotScan (Fonte: Lúcio André de Castro Jorge).
o Pixel4D e o PhotoScan. Em ambos, é necessário que cada foto seja georreferenciada. Existem poucos passos a serem executados e por este motivo tem sido mais usados nos VANTs.

Na Figura 25 pode ser observado um mosaico feito numa área de citros, com as respectivas posições das fotos durante a aquisição. Este mosaico foi obtido com baixa resolução apenas para demonstrar o uso do software PhotoScan.

5.6. Análise em uma ferramenta GIS;

Uma vez obtidas as imagens ou mosaicos, estes podem ser utilizados nos sistemas de informação geográfica (SIG) para fazer correlações com outros mapas obtidos.

O uso do VANT torna mais fácil alimentar os SIGs com mais frequência, podendo ter uma resolução temporal muito interessante para as etapas da agricultura de precisão.

São várias as análises e dependem dos objetivos. De uma forma geral, é bastante usada para definição de zonas de manejo da propriedade.

5.7. Geração de relatórios.

A geração de relatórios podem ser realizadas de forma customizada em cada caso. Em geral, sistemas integrados com GIS já definem mapas de aplicações em taxa variada baseados nos diferentes mapas e cruzamentos realizados no GIS.

6. Conclusões

O uso de VANTs em agricultura de precisão tem sido cada vez maior, uma vez que a tecnologia está se tornando mais acessível, com preços acessíveis, com maior confiabilidade e com sensores cada vez mais precisos.

Todo o sensoriamento remoto que se faz com satélites e aviões tripulados estão disponíveis nos VANTs. Os sistemas estão cada vez mais fáceis de operar e tornando-se viáveis para uso no campo.

Apesar disso, neste momento a ANAC, responsável pela autorização de uso deste tipo de aeronaves, tem mantido grupos discutindo regulamentações de tipos e formas de uso de VANT que em breve devem se tornar disponíveis e padronizar o uso. É necessário que seja homologado o VANT pela ANAC e que sejam obtidas as autorizações de voo junto a ANAC e ANATEL para que esteja em plena concordância com as regras vigentes. Além disso, a cada operação deve ser feita a notificação de voo.

Ainda existem muitos relatos de quedas de VANTs por diferentes motivos, sendo os principais a falta de manutenção, seguir procedimentos de operação e falhas de operação por parte do operador. A falha do sistema, em geral, não tem sido causa de quedas, uma vez que existem dispositivos de segurança como paracaidas, pouso pré-programado etc. O grande problema tem sido a manutenção inadequada e condições de operação. É no campo, estas condições são mais críticas ainda, considerando a robustez do campo.

Assim, deve-se lembrar sempre que o VANT ainda não há domínio como uma operação com um trator. Exige procedimentos e cuidados. Mas deve certamente figurar nos próximos tempos como uma das ferramentas mais úteis na agricultura de precisão.

Referências

Kumar, I. Modeling forest resources using geographical information systems and hyperspectral remote sensing. 1998. 246 f. Tese (Doutorado)-University of New South Wales, Sydney, 1998.

NERIS, L. O. Um piloto automático para as aeronaves do projeto ARARA. 2001. 102 f. Dissertação (Mestrado em Ciências da Computação)-Universidade de São Paulo, São Carlos.

RASIL, J. R. Desenvolvimento de um veículo aéreo não tripulado para aplicação em pulverização agrícola. 2008. 70 f. Dissertação (Mestrado em Engenharia Rural)-Universidade Federal de Pelotas, Pelotas.

Agricultura, precisão e manejo de plantas invasoras na cultura do milho

Paulo E. Cruvinel¹, Décio Karam², José Marcos Garrido Beraldo³

¹Pesquisador, Doutor Embrapa Instrumentação – Rua XV de Novembro 1452, CEP 13560-970 São Carlos, SP
²Pesquisador, Doutor, Embrapa Milho e Sorgo - Km 65 Rodovia MG 424, CP 151, CEP 35701-970 - Sete Lagoas, MG
³Pesquisador, Pós Doutorado, Embrapa Instrumentação – Rua XV de Novembro 1452, CEP 13560-970 São Carlos, SP, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Matão, Rua José Bonifácio, nº 1176, Centro, CEP 15990-040 - Matão, SP

E-mails: paulo.cruvinel@embrapa.br, decio.karam@embrapa.br, jmgberaldo@ifsp.edu.br

Resumo: O rendimento de uma cultura de milho pode variar dependendo das espécies de plantas invasoras envolvidas, como também do seu percentual de ocupação por área, período de competição, estágio de desenvolvimento da cultura e das condições edafo-climáticas. Na cultura do milho a aplicação de herbicida de forma localizada e em taxa variável pode ser diferencial, minimizando os impactos econômicos e ambientais, bem como promovendo ganhos de competitividade. Este Capítulo apresenta o desenvolvimento de um método baseado em visão computacional para a construção de mapas de aplicação de herbicida em taxa variável dedicado a plantas invasoras de folhas largas e estreitas da cultura do milho.

Palavras-chave: planta invasora, produção de milho, variabilidade espacial, tomada de decisão, visão computacional.

Agriculture, Precision and Weed Management in Maize Cropping Systems

Abstract: The yield of a crop of corn may vary depending on the weed species involved, as well as the number of plants per area, competition period, stage of culture development, and due to soil and climatic conditions. The management of herbicides in such culture can be based on the weed localization and with variable rate. Using such procedure the producer may find benefits to minimize the economic and environmental impacts, as well as to increase competitiveness. This Chapter presents a method based on computer vision to allow the construction of maps for herbicide application, which are based on the geometric information of the weed leaves, broad or narrow leaves format, present in the field.

Keywords: spatial variability, weed, corn production, decision making, computer vision.
1. Introdução

A Empresa Brasileira de Pesquisa Agropecuária (Embrapa), ciente dos desafios da geração de novas tecnologias para o agronegócio brasileiro vem, desde os anos 90, desenvolvendo pesquisas na área de Agricultura de Precisão (AP) envolvendo parceiros de Universidades, Cooperativas e da iniciativa privada. Neste contexto, o seu atual projeto em AP foi estabelecido em rede de pesquisa no âmbito do Macro-Programa 1 do Sistema Embrapa de Gestão (SEG) visando inovar e adaptar técnicas de manejo para ganhos de competitividade e sustentabilidade de sistemas produtivos.

Este Capítulo trata destes métodos que auxiliam o tomador de decisão em ganho de produtividade e sustentabilidade na cultura do milho com base no manejo fundamentado em AP para minimização das externalidades negativas decorrentes da presença de plantas invasoras nas áreas de cultivo, o qual é parte dos resultados obtidos junto aos trabalhos de pesquisa desenvolvidos na rede de pesquisa em AP (Projeto MP1 código 01.09.01.002.00.00) liderada pela Embrapa.

O milho é um conhecido cereal, cultivado em grande parte do mundo. Devido às suas qualidades nutricionais tem sido principalmente utilizado na alimentação humana e na produção de ração animal (KARAM; MELHORANÇA; OLIVEIRA, 2006). Também, em algumas partes do planeta para a produção de combustíveis.

No Brasil, o milho já era cultivado pelos índios antes da chegada dos portugueses. Sobretudo os índios guaranis tinham no cereal o principal ingrediente de sua dieta. Com a chegada dos portugueses, há pouco mais de 500 anos, o consumo aumentou e novos produtos à base de milho incorporaram-se aos hábitos alimentares dos brasileiros. Dados de 2012 apontam os estados de Mato Grosso, Paraná e Goiás como sendo os estados líderes na sua produção e cerca de 5% de sua produção se destina ao consumo humano (COMPANHIA..., 2013). A maior parte de sua produção é utilizada na alimentação animal bovina, suína, de aves e peixes. No País, a cultura do milho é uma das principais atividades produtivas, destacando-se no cenário estratégico mundial como um dos fundamentais segmentos a serem explorados. Nos Estados Unidos, que é o maior produtor mundial, o uso do milho na alimentação humana direta é relativamente pequeno. Seu uso industrial não se restringe à indústria alimentícia. É largamente utilizado na produção de outros produtos para diversos fins e na produção de óleos e de etanol.

O aumento do consumo humano de milho tem sido visto como uma tendência que traz novas oportunidades para o empresário rural, sendo, entretanto, um diferencial competitivo a qualidade de seu sistema de produção. A Figura 1 ilustra a relação entre produção e consumo de milho no planeta. A média de produtividade do milho deve duplicar nos próximos anos e grande desafio se impõe à sua produtividade e manutenção da sustentabilidade dos sistemas de produção. Por outro lado, o incremento da produtividade do milho é consequência do maior uso de tecnologia na lavoura, como também do plantio direto, da correção e da fertilização adequada do solo, do manejo de plantas invasoras e pragas, como também da adoção de sementes geneticamente modificadas. A segurança alimentar e a segurança energética do planeta encontram cada vez mais um maior grau de importância, vez que a população mundial tem crescido exponencialmente. De acordo com projeções do Banco Mundial, o mundo terá uma população de 8,5 bilhões em 2025, 33% superior à atual. Este crescimento populacional, reforçado pela urbanização e elevação da renda nos países emergentes, terá como importante consequência o aumento da demanda mundial por alimentos e por energia. Inserido neste contexto, o milho continuará a ser um dos principais produtos da agricultura. A Figura 2 ilustra projeções para as demandas de cereais e carnes em % para o horizonte de 2020. Além disso, tem sido observado o envelhecimento da população e uma expressiva migração para os ambientes urbanos (Figura 3), mudança nos hábitos de consumo e reflexos no atendimento à demanda por alimentos.

Neste horizonte de realidades, os desafios de futuro para a cultura do milho ganham importância e apontam para um aumento da...
complexidade do processo de produção trazido pelo acirramento das mudanças climáticas e aparecimento de resistência de plantas invasoras a herbicidas, bem como em termos do atendimento às expectativas da produção mundial. Neste contexto, o principal desafio em escala global consiste em traçar um modelo de sustentabilidade que harmonize a produção econômica, o equilíbrio ambiental e a responsabilidade social.

Na cultura do milho, as plantas invasoras são responsáveis por aproximadamente um terço das perdas estimadas em função dos fatores bióticos (YAMADA; SPTIPP, 2006). Isso ocorre principalmente devido às suas características de agressividade, envolvendo a competição por espaço, luz, água e nutrientes. Também, soma-se a estes aspectos a longevidade e dispersão de sementes de plantas invasoras, o rápido desenvolvimento inicial, bem como o efeito alelopático (Define-se alelopatia como a interferência positiva ou negativa de compostos do metabolismo secundário produzidos por uma planta e lançados no ambiente. O conhecimento dos efeitos alelopáticos e dos mecanismos de ação de várias substâncias são importantes para entender as interações entre plantas, tanto nos ecossistemas naturais como nos agrícolas).

Para a cultura do milho, a maximização do potencial produtivo depende não somente de se utilizar de forma eficiente as recomendações fitossanitárias para a cultura, mas também e principalmente de que as medidas sejam aplicadas no momento adequado.

Com relação ao manejo de plantas invasoras na cultura do milho, o período crítico de prevenção de interferência inicia-se por volta de 15 a 20 dias após a emergência e vai até 40 a 45 dias após a emergência. Este período é normalmente observado para as condições de cultivo de verão, onde, em função da agressividade das plantas invasoras é necessário o controle contínuo durante todo o período crítico de prevenção da interferência. O início do período crítico de prevenção de interferência acarretará reduções na produtividade, a qual será maior quanto maior for o atraso para o início do controle.

Embora os investimentos em tecnologia, como mecanização, transporte, armazenamento, melhoramento genético e manejo cultural tenham promovido ganhos expressivos em produtividade na cultura do milho, alguns fatores continuam desafiando as estratégias de proteção do potencial produtivo das áreas plantadas requerendo o pensar de novas estratégias para a composição de novas soluções que possam minimizar as perdas de produção.

2. Visão Computacional aplicada no controle de plantas invasoras

A visão computacional também tem sido utilizada na agricultura. Como uma das técnicas avançadas e modernas ela tem auxiliado nos processos de tomada de decisão, inclusive no

![Figura 1. Projeção da relação entre produção e consumo de milho no período de 2005 a 2014 no planeta (Fonte: INSTITUTO... , 2007).](image-url)
auxílio aos processos de aplicação de agrotóxicos e controle de pragas agrícolas, incluindo as plantas invasoras. A literatura da área traz uma série de trabalhos que utilizam a visão computacional baseada na segmentação de imagens e análise de imagens e estimativa de número de plantas em tempo real sob condições naturais de iluminação. Durante a pesquisa desenvolvida pelos autores, um sensor, viável economicamente, para detecção de cores foi utilizado, com o intuito de capturar as três componentes do modelo de cor RGB (Red, Green, Blue), fornecendo assim mais informações para

Figura 2. Incremento da demanda global (%) por cereais e carnes no horizonte temporal de 2020 (Fonte: INTERNATIONAL..., 2001).

chamados de pixels (GONZALEZ; WOODS, 1992)].

Em 1998, Steward, Tian e colaboradores apresentaram o desenvolvimento de um algoritmo de segmentação para plantações de soja com base em análise de imagens e estimativa do número de plantas em tempo real sob condições naturais de iluminação. Nesse trabalho os autores também compararam essas estimativas com a contagem manual de plantas invasoras. Durante a pesquisa desenvolvida pelos autores, um sensor, viável economicamente, para detecção de cores foi utilizado, com o intuito de capturar as três componentes do modelo de cor RGB (Red, Green, Blue), fornecendo assim mais informações para

138 | AGRICULTURA DE PRECISÃO: RESULTADOS DE UM NOVO OLHAR
realização de segmentação (STEWARD; TIAN, 1998; TIAN; REID; HUMMEL, 1999).

Em 1999, Cruvinel e colaboradores apresentaram uma técnica baseada em processamento de imagem, que viabilizou a medição automática do tamanho de gotas e do volume de herbicida aplicada. O método desenvolvido foi baseado em análise da correlação de padrões de gotas com as gotas reais no domínio de frequência. Os resultados mostraram ganho no tempo de processamento da informação e na segurança da obtenção dos resultados (CRUVINEL et al., 1999).

Em 2000, Lamb e Brown qualificaram o sensoriamento remoto como uma técnica promissora para identificação e mapeamento de plantas invasoras em plantações de soja (LAMB; BROWN, 2000). Segundo esses autores, os quais também utilizaram imagens aéreas de alta resolução, o uso de sensoriamento remoto não apresentou as limitações que encontraram com as imagens aéreas, as quais apresentaram limitações incluindo a ausência de capacidade quantitativa na aquisição de dados, alto custo e viabilidade do processamento fotográfico no infravermelho e a exigência de digitalização manual a fim de incorporar imagens fotográficas em um pacote de sistema de informação geográfica (SIG). Esses autores chegaram à conclusão que o sensoriamento remoto quando aplicado durante os estágios iniciais de crescimento da cultura é de grande valia, vez que encontra maior taxa de sucesso na detecção de plantas invasoras.

Pérez e colaboradores cuidaram do desenvolvimento da captura de imagens próximas ao solo e técnicas de processamento de imagem para detectar plantas invasoras em plantações de cereais sob condições de campo. Os métodos propostos usam a informação de cor para separar o fundo da vegetação e técnicas de análise de imagens de forma a diferenciar plantas invasoras da cultura (PÉREZ et al., 2000). Segundo os autores a determinação da posição da fila na colheita auxiliou na redução do número de objetos a serem reconhecidos. Para a classificação foram utilizadas a regra de Bayes e o método dos k-vizinhas mais próximos, tendo sido considerada todas as combinações possíveis na avaliação do algoritmo.

Hemming e Rath utilizaram a análise digital de imagem para o desenvolvimento de um sistema de identificação de plantas invasoras em campo. Os autores consideraram características morfológicas e outras com respeito à cor. Além disso, o atributo cor foi usado com sucesso no processo de segmentação entre plantas e solo. Formas e características relacionadas às cores foram calculadas para cada objeto. Essas características foram utilizadas para construir uma função de classificação de grupos de plantas. O sistema de classificação foi baseado em lógica fuzzy e uma função de adesão simplificada para cada classe formada (HEMMING; RATH, 2001).

Alves e colaboradores selecionaram e avaliaram nove parâmetros texturais de matriz de co-ocorrência (Matriz de co-ocorrência é um dos métodos de processamento de imagens utilizado para caracterizar texturas. Ele descreve uma imagem, ou uma região de interesse na imagem, em termos da relação entre os valores dos pixels com os valores dos pixels vizinhos) de imagens digitais monocromáticas de plantas invasoras emergentes de folhas largas e estreitas, as quais foram adquiridas após 25 dias de emergência. Dos parâmetros testados cinco apresentaram bons resultados na separação das plantas em duas classes, sendo eles o momento angular, o valor médio, o momento da diferença inversa, a entropia e a medida de correlação (ALVES et al., 2002).

Granitto e colaboradores exploraram a facilidade da implementação de um sistema computacional de identificação automática de sementes de plantas daninhas a partir de imagens coloridas e imagens em níveis de cinza. Foram utilizadas técnicas tradicionais de processamento de imagem para obtenção de características de tamanho, forma, cor e textura das sementes. Para a realização dos testes e do desenvolvimento do projeto foi utilizada uma base de dados contendo da ordem de 10.000 imagens de sementes de 236 diferentes espécies de plantas daninhas. Os autores consideraram o uso de um classificador de Bayes e uma rede neural artificial para a identificação das sementes (GRANITTO; VERDES; CECCATTO, 2003). Esses autores apresentaram ótimos resultados com aplicação do método que desenvolveram quando comparados com abordagens mais sofisticadas baseadas em redes neurais.

Brown e Noble afirmaram que a detecção e a identificação automática de plantas invasoras...
Em 2007, Søgaard e Lund conduziram experimentos baseados no conceito de aplicação de precisão de herbicida em linha de semente, executado sobre condições internas controladas (SØGAARD, 2005; SØGAARD; LUND, 2007). Esse conceito combinou as definições de reconhecimento de planta, de dosagem mínima e de robótica autônoma. Assim, enquanto um sistema de visão de máquina reconheceu os objetos que deveriam ser pulverizados, um sistema de micro-dosagem lançou pequena dose nas plantas que foram detectadas, bem como um veículo autônomo cuidou da navegação. Para o reconhecimento das plantas, foi realizado um processo de limiarização nas imagens adquiridas pela intensidade de níveis de cinza e sua caracterização realizada por descritores. Resultados mostraram que a pulverização pode ser aplicada com precisão milimétrica e a taxa de aplicação de herbicida pode ser reduzida em duas ordens de grandeza, quando comparada às recomendações convencionais.

Haq e colaboradores desenvolveram e testaram um sistema de visão de máquina que realiza a detecção de plantas invasoras em ambiente de campo. As imagens para os testes e desenvolvimento do sistema foram obtidas em plantações sob condições naturais de iluminação e foram extensivamente estudadas (HAQ et al., 2007). Para classificação das plantas invasoras, esses autores desenvolveram um classificador baseado na transformada de Radon, onde a imagem gerada na etapa de pré-processamento foi utilizada como ponto de partida para a classificação. Segundo os autores a análise dos resultados mostrou precisão superior a 93,5% de reconhecimento em um banco de dados de 200 amostras de imagem, onde 100 amostras eram de plantas invasoras de folha larga e 100 de plantas invasoras de folhas estreitas da cultura da soja.

Um estudo conduzido por Karimi e colaboradores avaliou a utilização de um método baseado em visão computacional e inteligência artificial como uma ferramenta para classificar imagens hiper-espectrais retiradas de áreas de cultivo de cereais (KARIMI et al., 2006). A classificação foi executada em relação à taxa de aplicação de nitrogênio e práticas de manejo de plantas invasoras. A precisão da classificação foi comparada com modelos obtidos de uma rede neural artificial com base na utilização dos mesmos dados para o seu treinamento. O experimento de campo consistiu de três taxas de aplicação de nitrogênio e quatro estratégias de gerenciamento de plantas invasoras. Segundo os autores a utilização da tecnologia que integrou visão computacional e inteligência artificial mostrou-se adequada e auxiliou na tomada de decisão para o manejo baseado em agricultura de precisão.

Em 2008 Santos e Cruvinel apresentaram um sistema de descritores de padrões de plantas invasoras de folhas largas e folhas estreitas, em sistemas de produção agrícola, utilizando técnicas de processamento de imagem (SANTOS; CRUVINEL, 2008). Esses autores utilizaram descritores geométricos. Os resultados obtidos em laboratório mostraram uma taxa de acerto de 80% para plantas invasoras de folhas largas e 78% para plantas invasoras de folhas estreitas, independentemente de seus estágios de desenvolvimento.
3. Avanços no uso da visão computacional e da variabilidade para a aplicação de herbicida taxa variável: Estudos de Casos

Nos últimos anos a pesquisa em visão computacional aplicada tem crescido de maneira significativa e no Brasil, mesmo sendo um país emergente a realidade não é diferente. Esta área se caracteriza principalmente pela utilização de imagens digitais associadas às técnicas de reconhecimento de padrões. Além disso, o estudo de métodos cognitivos, processos biológicos, processos físicos e estatísticos têm gerado soluções para problemas importantes em diversas áreas de atuação, incluindo agricultura.

Neste contexto, avanços no preparo de técnicas instrumentais para o manejo de plantas invasoras da cultura do milho foram obtidos no âmbito da Rede de Agricultura de Precisão da Embrapa, tendo sido considerada a arquitetura apresentada na Figura 4 para identificação de plantas invasoras de folhas largas e estreitas e a geração de mapas de recomendação para aplicação taxa variada de herbicidas.

Para as etapas de aquisição de imagens de campo, bem como para o pré-processamento técnicas de filtragem e limiarização foram utilizadas. Utilizou-se também para a determinação da textura das imagens modelos de descrição estatística no domínio espacial com descrição híbrida, ou seja, combinando as abordagens estatísticas e sintáticas. Esta técnica expõe a textura de forma adequada para o reconhecimento de padrões das folhas das plantas invasoras integrando-se ao modelo físico estabelecido com base em suas características geométricas. O resultado decorrente do uso desta técnica pode ser apresentado como um vetor de propriedades que representam um ponto em um espaço multidimensional. Adicionalmente, para a obtenção dos mapas de textura a partir das imagens foram utilizados cálculos de momentos invariantes.

O processamento baseado em análise de textura possibilita extrair características de uma imagem, as quais fornecem informações com relação à sua superfície como, por exemplo, sua rugosidade, homogeneidade ou mesmo identificação de formas e objetos.

Segundo Vieira o campo de pesquisa em textura tem concentrado esforços para desenvolver métodos computacionais que recuperem características de imagens e interpretem seu conteúdo a partir das suas propriedades (VIEIRA, 2013).

Devido à subjetividade do termo textura, várias definições permanecem na literatura dependendo da perspectiva e enfoque da aplicação, sendo por este motivo um campo de fronteira no uso...
As tonalidades dos pixels e a estrutura que a compõe. A tonalidade descreve as propriedades de intensidade de um pixel na primitiva, enquanto a estrutura se refere à relação espacial entre as primitivas (SONKA; HLAVAC; BOYLE, 1998). A análise por textura viabiliza descrever a informação visual de uma imagem, ou de suas regiões que são estatisticamente homogêneas. Quatro diferentes caminhos podem ser utilizados para se descrever uma determinada textura. Neste contexto encontram-se os métodos estatísticos, que calculam diferentes propriedades da textura e que são adequados quando a primitiva utilizada possui tamanho comparável ao dos pixels, os métodos sintáticos, que são adequados quando as propriedades das primitivas de textura podem facilmente ser determinadas, os métodos híbridos, que consideram tanto os métodos estatísticos como os métodos sintáticos e os métodos espectrais, que tem base em propriedades do espectro de Fourier (Espectro de Fourier: A Transformada de Fourier (FT) é uma ferramenta largamente empregada em processamento de sinais, processamento de sons e em processamento de imagens. Denominada assim em homenagem ao físico francês Jean Baptiste Joseph Fourier (1768-1830), a FT decompõe um sinal em suas componentes elementares seno e
Ferramentas para agricultura de precisão

Uma imagem de textura é normalmente dividida em pequenos quadros de sub-imagem não sobrepostos, se o tamanho da sub-imagem for \(M \times M \). A escala de cinza de seus pixels pode ser interpretada como um vetor de dimensão \(M^2 \) e a imagem representada por um conjunto de vetores. Aplicando a transformada de Fourier, Hadamard, ou outra transformação discreta de imagem nesses vetores, são obtidas novas coordenadas em relação à freqüência espacial da imagem original, que podem ser usadas para a sua descrição (ROSENFELD, 1976).

As ocorrências de níveis configurações de níveis de cinza podem ser descritas por matrizes de freqüências relativas, chamadas de matrizes de co-ocorrência, apresentando quão freqüente é o aparecimento de dois pixels com determinados tons de cinza com uma determinada distância e direção angular. As matrizes são simétricas ao defini-las da seguinte forma:

\[
P_{a,b}^{0-d}(r,s) = \begin{cases}
0, & k \neq l \\
\rho_{a,b}^{0-d}(a,b), & k = l
\end{cases}
\]

onde \(k \) é um valor de pixel de uma sub-imagem.

O segundo momento estatístico, a variação, fornece uma medida de contraste de intensidade, usado para determinar a suavidade relativa.

\[
Var(z) = \rho_2(z)
\]

O desvio padrão também é utilizado, pois seus valores tendem a ser mais intuitivos em alguns casos. O terceiro momento é uma medida da assimetria do histograma:

\[
\rho_3(z) = \frac{1}{L-1} \sum_{i=0}^{L-1} (z_i - \beta)^3 p(z_i)
\]

O quarto momento mede quão plano é o histograma, o quinto e os demais momentos mais elevados não se relacionam de forma direta com o formato do histograma, mas fornecem medidas adicionais sobre a textura. As medidas calculadas apenas pelo histograma não possuem informações sobre as posições relativas entre pixels, sendo que para descrever uma textura de forma adequada é importante considerar tanto as intensidades quanto a distribuição espacial dos pixels, por isso é importante incorporar a análises de textura não apenas a distribuição de intensidades, mas também as posições relativas dos pixels contidos na imagem digital sob análise.

Cosseno. A FT aplicada a uma imagem no domínio espacial gera uma informação no domínio da frequência, em que cada ponto, definido por um vetor do tipo \((k \cdot \text{cosseno}, k \cdot \text{seno}) \), representa uma dada frequência contida no domínio espacial da imagem. O Espectro de Fourier é um gráfico que apresenta as amplitudes em função das frequências de um sinal para descrever padrões globais de textura.

Neste contexto a textura das imagens analisadas foi obtida tomando o uso dos momentos estatísticos do histograma de intensidade de toda a imagem por estudo ou região. O momento \(\rho_t(z) \) em torno da média pode ser formalizado como:

\[
\rho_t(z) = \sum_{i=0}^{L-1} (z_i - \beta)^t p(z_i)
\]

onde \(z \) é uma variável aleatória que denota intensidade, \(p(z_i) \) é o histograma correspondente a \(z_i, i = 0, 1, 2 ... L-1 \), onde \(L \) é o número de níveis distinto de intensidades, \(\beta \) é o valor médio de \(z \) (intensidade média):

\[
\beta = \sum_{i=0}^{L-1} z_i p(z_i)
\]

O segundo momento estatístico, a variação, fornece uma medida de contraste de intensidade, usado para determinar a suavidade relativa.

\[
Var(z) = \rho_2(z)
\]

O desvio padrão também é utilizado, pois seus valores tendem a ser mais intuitivos em alguns casos. O terceiro momento é uma medida da assimetria do histograma:

\[
\rho_3(z) = \left(\sum_{i=0}^{L-1} (z_i - \beta)^3 p(z_i) \right)^{\frac{1}{3}}
\]

O quarto momento mede quão plano é o histograma, o quinto e os demais momentos mais elevados não se relacionam de forma direta com o formato do histograma, mas fornecem medidas adicionais sobre a textura.
onde em uma imagem de tamanho $M \times N$, $P_{ab}(a,b)$ é a matriz de frequências relativas com dois pixels com escala de cinza a, b separados por uma distância d na direção θ, sendo θ referente ao conjunto de cardinalidade e $D = (M,N)(M,N)$.

Tendo as informações sobre a textura contidas nas matrizes de co-ocorrência é possível derivá-la para se obter características de textura. Uma das propriedades do método das matrizes de co-ocorrência é a capacidade de descrever a relação espacial entre os pixels tonais e as transformações mono tónicas de escala de cinza. Por outro lado, o método não considera as formas das primitivas e por isso não é recomendado quando as primitivas são de grande escala. Apesar do método das matrizes de co-ocorrência fornecer bons resultados com relacionados à textura, o método é computacionalmente custoso e deve ser utilizado com certo cuidado e em função da aplicação.

A abordagem pela frequência de borda é uma descrição realizada a partir da frequência do aparecimento de bordas na textura. Bordas podem ser identificadas como micro bordas ou macro bordas, utilizando máscaras operadoras de bordas pequenas e grandes respectivamente (DAVIS; MITCHE, 1980). A operação mais simples que serve para este propósito é a do cálculo do operador de Robert, mas virtualmente qualquer outro detector de borda pode ser usado.

Por outro lado, modelos de descrição sintáticas baseiam-se na ideia de que texturas consistem de primitivas localizadas em relações quase regulares. Uma das mais eficientes formas de descrever a estrutura da relação entre primitivas é a utilização de uma gramática que represente uma regra para a sua construção a partir de primitivas, aplicando regras de transformação a um limitado conjunto de símbolos. Os símbolos representam os tipos de primitivas e as regras de transformações representam a relação espacial entre primitivas.

A descrição sintática pode descrever texturas reais, desde que regras variáveis sejam incorporadas nas gramáticas de descrição. Gramáticas não determinísticas ou estocásticas devem ser usadas (FU, 1974).

A abordagem híbrida de descrição de textura distingue texturas que possuem baixa relação espacial das que possuem alta relação espacial regular (CONNERS; HARLOW, 1980). A parte sintática das texturas que possuem baixa relação espacial divide uma imagem em regiões com base em propriedades tonais (por exemplo, regiões com escala de cinza constante) que podem ser consideradas primitivas de textura. O próximo traz como contextualização a construção de histogramas dos tamanhos e formas de todas as primitivas de textura contidas na imagem. Se a imagem pode ser segmentada em dois conjuntos de regiões de texturas homogêneas, o histograma é bi-modal e cada primitiva é tipicamente de um padrão de textura, que pode ser utilizado para segmentação.

Se o histograma inicial não possui picos significantes, uma segmentação completa não poderá ser alcançada. A segmentação baseada em histograma pode ser repetida para cada região de textura homogênea prévia. Se cada região de textura consiste em mais de um tipo de primitivo, o método não pode ser usado e a relação espacial entre as primitivas precisa ser recalculada (HARALICK, 1979). A descrição de texturas por primitivas com alta relação espacial regular baseia-se na relação espacial das primitivas e interações bi-direcionais entre primitivas parecem ter grande parte da informação. A primitiva de textura mais simples é um pixel e sua propriedade de escala de cinza, enquanto o conjunto máximo de pixels com escala de cinza constante é a primitiva de textura mais complexa (WANG; ROSENFELD, 1981). Assim, primitivas podem ser descrita pelo seu tamanho, alongamento, orientação, escala de cinza média, momentos invariantes, entre outros.

A descrição de textura inclui a relação espacial entre primitivas baseado na distância e na relação de adjacência. O uso de primitivas mais complexas retorna mais informações sobre a textura. Por outro lado, todas as propriedades de primitivas simples ficam imediatamente disponíveis sem a necessidade de envolver cálculos extensivos de suas propriedades.

O momento bidimensional padrão é uma função projetada em $f(x,y)$, representando uma imagem através de uma função polinomial. Pode-se definir o momento bidimensional de ordem $(p+q)$ de uma imagem digital $f(x,y)$ de tamanho $M \times N$ como:

$$m_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^p y^q f(x,y)$$ Eq. (6)
Ferramentas para agricultura de precisão

Os momentos bidimensionais podem não ser invariantes a transformações como translação ou rotação, sendo que esses atributos podem ser obtidos através do cálculo do momento central. O momento central correspondente de ordem \((p+q)\) é definido como:

\[
\mu_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (x-x')^p (y-y')^q f(x,y) \quad \text{Eq. (7)}
\]

onde \(p, q \in \mathbb{Z}\) e

\[
\bar{x} = \frac{m_{10}}{m_{00}} \quad \bar{y} = \frac{m_{01}}{m_{00}} \quad \text{Eq. (8)}
\]

onde \((\bar{x}, \bar{y})\) representa o centroide da imagem \(f(x,y)\).

Apesar do momento central ser invariante a translações ou rotações ele não é invariante a mudança de escala. A invariancia á escala pode ser obtida pelo cálculo dos momentos centrais normalizados que são chamados de \(\eta_{pq}\) sendo definidos por:

\[
\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^\gamma} \quad \text{Eq. (9)}
\]

onde

\[
\gamma = \left(\frac{p+q}{2}\right) + 1 \quad \text{Eq. (10)}
\]

para \((p+q) = 2, 3, ..., n\)

Logo, com base no uso do momento central e recorrendo aos sete momentos invariantes de Hu que são invariantes sob qualquer transformação linear que a imagem possa sofrer (HU, 1962), pode-se considerar:

\[
\Phi_1 = \eta_{20} + \eta_{02} \quad \text{Eq. (11)}
\]

\[
\Phi_2 = (\eta_{20} - \eta_{02})^2 + 4\eta_{11} \quad \text{Eq. (12)}
\]

\[
\Phi_3 = (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \quad \text{Eq. (13)}
\]

\[
\Phi_4 = (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \quad \text{Eq. (14)}
\]

\[
\Phi_5 = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})
\]

\[
[\eta_{30} + \eta_{12}]^2 - 3(\eta_{21} + \eta_{03})^2 + 3(\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03}) \quad \text{Eq. (15)}
\]

\[
\Phi_6 = (\eta_{20} + \eta_{02})(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2 + 4\eta_{11}
\]

\[
(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03}) \quad \text{Eq. (16)}
\]

\[
\Phi_7 = [3(\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})]
\]

\[
[(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \quad \text{Eq. (17)}
\]

Foram consideradas para validação do método quatro plantas invasoras da cultura do milho, tanto de folhas largas como de folhas estreitas, conforme ilustra a Figura 5, bem como se procurou utilizar a ordem do momento que melhor viesse a ser adequada à aplicação.

As folhas destas quatro espécies de plantas invasoras têm características diferentes, como pode ser observado abaixo:

Leiteira (Euphorbia heterophylla L.): suas folhas ocorrem ao longo do caule, com gemas nas axilas (Axila: região angular formada entre um órgão, ou parte vegetal, e o eixo em que se insere a espécie, entre uma folha e o eixo caulinar, na qual germinam brotam gemas que dão origem a novos ramos, folhas ou flores). São glabras, medindo de 4 a 10 cm de comprimento. As folhas inferiores são alternadas e lanceoladas, enquanto as superiores são opostas ou verticiladas. Abaixo das inflorescências há maior concentração de folhas;

Picão-preto (Bidens pilosa): folhas pecioladas, opostas no caule e ramos, de formato ovalado ou lanceolado; coloração verde, podendo ter tonalidades violáceas; podem ocorrer folhas simples ou compostas, com até 8 cm de comprimento por 4 cm de largura; folhas com margens serradas, com ou sem a presença de pêlos;

Capim-colchão (Digitaria sanguinalis Scop.): Folhas com até 15 cm de comprimento e 12 mm de largura, as lâminas são planas, com margens lisas; podem apresentar pêlos em sua extensão. A
Agricultura de precisão: resultados de um novo olhar

de mapa de recomendação para a aplicação de herbicida em taxa variável. Utilizou-se assim, como método de reconhecimento das plantas invasoras técnicas de visão computacional e algoritmos de processamento de imagens. A etapa do processamento que subtrai componentes da imagem de entrada permite extrair das mesmas, informações que não são oriundas das plantas invasoras (informações de fundo, como palha, milho e solo).

A partir das imagens que contenham apenas plantas invasoras é a planta invasora selecionada para reconhecimento com base na utilização de descritores computacionais e método de análise baseado na textura e nas características geométricas dos objetos a serem identificados. O mapa de textura é calculado com janelamento de 30x30 pixels. As medidas estatísticas foram realizadas considerando a matriz de co-ocorrência e o contraste das imagens.

As imagens foram adquiridas em um campo experimental com 38 ha. de área da Embrapa Milho e Sorgo (Rodovia MG 424 km 45 - Sete Lagoas, MG, Brasil), dividido em 41 parcelas espaçadas de 100,0×100,0m e com área de 12m².
Ferramentas para a agricultura de precisão

Descritor, folhas largas =

\[
\begin{pmatrix}
g_{11} - r_{11} & g_{12} - r_{12} & \cdots & g_{1n} - r_{1n} \\
g_{21} - r_{21} & g_{22} - r_{22} & \cdots & g_{2n} - r_{2n} \\
\vdots & \vdots & & \vdots \\
g_{m1} - r_{m1} & g_{m2} - r_{m2} & \cdots & g_{mn} - r_{mn}
\end{pmatrix}
\]

filtro de mediana, limiarização, mapa de textura

\[\sum_{n=0}^{X_{G-1}} \left(\sum_{i} \sum_{j} p(i, j), se |i-j| = n \right)\]

elongação \[\left(\frac{\text{largura}}{\text{comprimento}} \right) \]

corrupção de bordas \[\left(\frac{\text{Área do contorno dilatado}}{3} \right) \]

corrupção de sobreposição \[\left(\frac{x_1 + y_1 + x_2 + y_2 + x_3 + y_3}{3} \right) \]

Eq. (18)
em que: \(g_{ij}\) é a intensidade da componente G da imagem de entrada na coordenada \((i,j)\); \(r_{ij}\) é a intensidade da componente R da imagem de entrada na coordenada \((i,j)\); filtro de mediana é relativo ao valor retornado após aplicação de filtragem que elimina ruído de baixa frequência; limiarização é relativo ao valor retornado após aplicação de operação de limiar para retirada de informações que não são inerentes às folhas de plantas (neste caso todas as plantas invasora ou não que aparecem na imagem); mapa de textura é relativo ao mapa de textura que é gerado pela operação de contraste para geração de matriz de co-ocorrência; elongação é relativo ao descritor geométrico para caracterização de folhas largas; correção de bordas é um fator que viabiliza corrigir a operação de fechamento de bordas; correção de sobreposição é um fator que viabiliza corrigir o efeito e sobreposição de folhas, considerado as situações de 30% \((x_1, y_1)\), 60% \((x_2, y_2)\) e 90% \((x_3, y_3)\) de sobreposição.

(4,0 x 3,0m). Para a aquisição das imagens foi utilizada uma câmera digital da marca Canon, modelo PowerShot Pro 1, com 180 pixels/polegadas de resolução, a qual apresenta tamanho de imagens de 600x600 pixels no espectro visível e um quadro de madeira medindo 0,5 x 0,5m como elemento de escala para a caracterização de dimensões das plantas e quadro de captação (Figura 6).

A base do método de reconhecimento dos padrões de plantas largas e estreitas utiliza a análise de mapas de textura, a qual é um atributo espacial com origem na sensação visual causada pelas variações tonais existentes em uma determinada região de uma imagem. Neste contexto, foi a análise de textura utilizada para a segmentação sobre os atributos espaciais da imagem no seu processamento.

Ainda como parte do método foi utilizado a abordagem do contraste, com a extração de janelas pertencentes à uma determinada classe, com o processamento das imagens através de uma janela móvel, viabilizando a confecção de mapas de texturas das imagens coletadas. Os descritores para folhas largas e folhas estreitas foram estabelecidos na forma:

Figura 6. Exemplo de uma imagem adquirida com a câmera digital da marca Canon, modelo PowerShot Pro 1, com 180 pixels/polegadas de resolução (600x600 pixels) contendo um quadro de madeira medindo 0,5x0,5m como elemento de escala para a caracterização de dimensões das plantas e quadro de captação.

Foto: P. E. Cruvinel
Agricultura de precisão: resultados de um novo olhar

Intel Core P8600 3,50 GHz, 4,0 GB de memória RAM e sistema operacional Windows 8. O uso de pré-processamento auxiliou na eliminação das informações de fundo (palha e solo) das imagens obtidas em experimentos de campo. Para este processamento as componentes R, G e B (Red, Green, Blue) das imagens foram utilizadas.

Desta forma, imagens de situações reais foram obtidas a partir de recortes matemáticos nas imagens digitais de áreas de produção de milho, contendo solo, palha, folhas da cultura do milho, folhas de plantas invasoras (Figura 7).

A Figura 8 ilustra um exemplo de resultado obtido com aplicação da operação de subtração (G – R): A teoria de percepção cromática pelo olho humano baseia-se em hipótese formulada por Young em 1801. O espectro visível pode ser visto como um conjunto de três classes, com diferentes máximos de sensibilidade situados em torno do vermelho (R- Red), do verde (G- Green) e do azul (B- Blue). Desta forma, todas as sensações de cor percebidas pelo olho humano são na verdade combinações das intensidades dos estímulos recebidos. Estas três cores são denominadas cores primárias aditivas, pois é possível obter qualquer outra cor a partir de uma combinação aditiva de uma ou mais delas, em diferentes proporções, como também é possível subtrai-las.

Para efeito de padronização a Comissão Internacional de Iluminação (Commission Internationale de l’Eclairage) atribuiu, em 1931, os seguintes comprimentos de onda a estas cores primárias: azul = 435,8 nm, verde = 546,1 nm, vermelho = 700 nm. As combinações de cores consideradas até o momento pressupõem a emissão de radiações coloridas situadas dentro do espectro deluz visível, as quais combinadas aditivamente produzem um efeito final correspondente à soma ou subtração dos efeitos individuais. A mistura das cores primárias, duas a duas, produz as chamadas cores secundárias, como é o caso da operação (G-R) das componentes (G-R), como parte das operações da etapa de pré-processamento.

Adicionalmente, o uso de um filtro de mediana (Filtro de mediana: As técnicas de filtragem são vistas como transformações da imagem pixel a pixel, que não dependem apenas do nível de cinza de um determinado pixel, mas também do valor dos níveis de cinza dos pixels vizinhos. Mediana é uma medida estatística, que caracteriza uma

<table>
<thead>
<tr>
<th>Descritor: folhas estreitas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_{11} - r_{11}) (g_{12} - r_{12}) ... (g_{1n} - r_{1n})</td>
</tr>
<tr>
<td>(g_{21} - r_{21}) (g_{22} - r_{22}) ... (g_{2n} - r_{2n})</td>
</tr>
<tr>
<td>(g_{31} - r_{31}) (g_{32} - r_{32}) ... (g_{3n} - r_{3n})</td>
</tr>
<tr>
<td>(g_{41} - r_{41}) (g_{42} - r_{42}) ... (g_{4n} - r_{4n})</td>
</tr>
</tbody>
</table>

Em que: \(g_{ij} \) é a intensidade da componente G da imagem de entrada na coordenada \((i,j)\); \(r_{ij} \) é a intensidade da componente R da imagem de entrada na coordenada \((i,j)\); filtro de mediana é relativo ao valor retornado após aplicação de filtragem que elimina ruído de baixa frequência; limiarização é relativo ao valor retornado após aplicação de operação de limiar para retirada de informações que não são inerentes às folhas de plantas (neste caso todas as plantas invasora ou não que aparecem na imagem); mapa de textura é relativo ao mapa de textura que é gerado pela operação de contraste para geração de matriz de co-ocorrência; solidez é relativo ao descritor geométrico para caracterização de folhas estreitas; correção de bordas é um fator que viabiliza corrigir a operação de fechamento de bordas; correção de sobreposição é um fator que viabiliza corrigir o efeito de sobreposição de folhas, considerando as situações de 30% \((x_1,y_1)\), 60% \((x_2,y_2)\) e 90% \((x_3,y_3)\) de sobreposição.

O sistema para auxílio à decisão foi desenvolvido em plataforma Builder C++ 5.0 da Borland, sendo executado em um processador...
promoveu a suavização com a eliminação de ruidos de baixa frequência (Figura 9). Assim, logo após a aplicação da filtragem de baixas frequências houve a aplicação da operação de limiarização (Operação de limiarização: Matematicamente, a operação de limiarização pode ser descrita como uma técnica de processamento de imagens na qual uma imagem de entrada f(x, y) de N níveis de cinza
produz à saída uma imagem \(g(x, y) \), chamada de imagem limiarizada, cujo o número de níveis de cinza é menor que \(N \) com o estabelecimento de um nível de limiar adequado para a preparação das etapas subsequentes de reconhecimento de plantas (Figura 10).

Para a validação do processo de identificação ou rotulações de região foi necessário utilizar um conjunto de imagens binárias, as quais foram obtidas com a aplicação de uma segunda limiarização contendo apenas dois limiares, ou seja, tonalidade de cor preta (0) para definição do fundo da imagem e tonalidade de cor branca (255) para definição das folhas. Para esta operação foi utilizada a limiarização baseada em Otsu (Figura 11). Em seguida houve a identificação das regiões, cujo resultado final representa o número total de regiões presentes em uma imagem pré-processada e uma matriz de números inteiros, do mesmo tamanho da imagem sob análise, contendo os rótulos de cada região.

A partir desse ponto do processamento entra em ação uma etapa de adequação de tons específicos das folhas que estão localizadas nas regiões. O resultado fornecido nessa etapa é uma imagem com fundo preto e regiões (ou folhas) definidas com tons de cinza em intervalos que compreendem os valores de 0 a 51 (Figura 12).

No desenvolvimento do método, percebeu-se que a identificação de regiões adotando-se vizinhança de 8 pixels apresentou um melhor resultado. Logo, a vizinhança de 8 pixels foi adotada como um padrão a ser seguido.

A Figura 13 e a Figura 14 ilustram conjunto de imagens usadas para o cálculo dos mapas de textura obtidos em função da espécie de planta invasora. A Figura 15 ilustra a padrões para que definida para a textura foi estabelecida em relação ao objeto de análise, ou seja, plantas invasoras que foram seleccionadas como classes presente na imagem classificada.

Figura 9. Exemplo de resultado da aplicação do filtro de mediana de tamanho 3x3 (operação de convolução no domínio espacial) aplicado na imagem resultante da operação da subtração das componentes (G-R), onde houve suavização com a eliminação de ruídos de baixa frequência, como parte das operações da etapa de pré-processamento em segmentos de imagem obtida em campo experimental.

Figura 10. Exemplo de resultado com aplicação da operação de limiarização como preparação das etapas subsequentes para o reconhecimento de plantas invasoras.

Figura 11. Exemplo de resultado obtido com a aplicação da limiarização de Otsu para a obtenção de imagens binárias como parte das operações da etapa de pré-processamento em segmentos de imagem obtida em campo experimental.
Figura 12. Exemplo de imagem resultante da aplicação de tons de cinza nas regiões encontradas na imagem binária (a) resultado com vizinhança (vizinhança de 4 e 8 pixels): Algumas das mais importantes operações com imagens dependem não apenas do valor observado em uma coordenada em especial, mas também dos valores observados em uma região próxima dessa coordenada. Toma-se, portanto, importante definir com precisão o conceito de proximidade. Dada a natureza discreta dos pixels de uma imagem há várias maneiras de se definir a vizinhança de uma dada posição (x,y) que, por definição, não inclui a própria coordenada. Um caso extremo é o da vizinhança vazia e no outro extremo, cada coordenada pode ter como vizinhos todos os outros pontos. Neste contexto é com uma utilização dos quatro vizinhos (vizinhança de 4 pixels) mais próximos, ou ainda dos oito vizinhos mais próximos (vizinhança de 8 pixels) de 4 pixels; (b) resultado com vizinhança de 8 pixels, como parte das operações da etapa de pré-processamento em segmentos de imagem obtida em campo experimental.

A Figura 16 apresenta a informação de borda obtida para folhas largas com operador laplaciano, as bordas dilatadas com algoritmo para dilatação para o fechamento dos objetos convexos da imagem, a imagem limiarizada obtida no pré-processamento e a nova imagem limiarizada, retirando a informação das bordas dilatadas da imagem limiarizada original. A Figura 17 apresenta a informação de borda obtida para folhas estreitas com operador laplaciano, as bordas dilatadas com algoritmo para dilatação para o fechamento dos objetos convexos da imagem, a imagem limiarizada obtida no pré-processamento e a nova imagem limiarizada, retirando a informação das bordas dilatadas da imagem limiarizada original.

A Figura 18 e a Figura 19 ilustram resultados obtidos considerando a avaliação de equivalência entre visão especialista e visão computacional. O mapeamento para os quadros amostrados e a área de ocupação de plantas invasoras de folhas largas e estreitas foi realizado com base no sistema descrito, o qual possibilitou observar a variabilidade na ocupação e a derivação para um mapa de recomendação para aplicação de herbicida em taxa variável.

Para estes estudos de caso foi utilizada análise de textura baseada no segundo e quarto momento de Hu para a segmentação de folhas largas e estreitas respectivamente sobre os atributos espaciais da imagem no seu processamento. Foi utilizada a abordagem do contraste, com a extração de janelas pertencentes a uma determinada classe. Da análise do contraste foi obtida a matriz de co-ocorrência dos níveis de cinza. Através do cálculo do valor desses atributos em diversas imagens, constatou-se que existem relações entre eles. A granularidade
As infestações das plantas invasoras normalmente não ocorrem de modo uniforme nas áreas agrícolas e com o uso das técnicas do processamento de imagens sua variabilidade espacial e localização puderam ser determinadas. Desta forma, a variabilidade espacial e a densidade de plantas invasoras puderam ser associadas a mapas de infestação, os quais poderão ser utilizados como referência no controle da aplicação dos herbicidas. Os resultados mostraram uma taxa de acerto em ambiente de campo da ordem de 84% para folhas largas e 80% para folhas estreitas. Assim, após a identificação do percentual de ocupação em cada quadro ou imagem considerada foi possível organizar o mosaico geral, contendo os quadros analisada para a área considerada com ocupação de plantas invasoras de folhas
largas e estreitas que ocorreram na mesma área considerada (Figura 20 (a) e (b) respectivamente).

Uma vez realizado o mapeamento da taxa de ocupação de plantas invasoras de folhas largas e estreitas tornou-se possível à consolidação da informação para a recomendação de aplicação de herbicida em taxa variável, específico para esta modalidade de planta invasora considerada.

Figura 17. Imagens do processo de formação das regiões das folhas estreitas: (a) imagem das bordas das folhas; (b) imagem das bordas dilatadas e erodidas; (c) imagem limiarizada para ilustrar as regiões das folhas presentes na imagem; (d) imagem resultante da subtração das bordas (b), da imagem das regiões (c).

Figura 18. Avaliação de equivalência entre reconhecimento de folha larga considerando visão especialista e visão computacional.
Figura 19. Avaliação de equivalência entre reconhecimento de folha estreita considerando visão especialista e visão computacional.

Figura 20. Exemplo de mapeamento da taxa de ocupação de plantas invasoras de folhas largas (a) e estreitas (b) em uma parcela de 12m² (4 × 3 m), com site de informação de ocupação amostrado em uma área de 0,5 × 0,5 m.
4. Conclusões

O Brasil para ampliar a competitividade do seu agronegócio do milho, bem como para assegurar o desenvolvimento sustentável desejado, busca estruturar seu processo tecnológico para a garantia da entrega do produto, o qual é significativamente sensível às plantas invasoras e suas características de agressividade, envolvendo a competição por espaço, luz, água e nutrientes. A metodologia apresentada mostrou ser viável o uso das informações morfológicas das espécies de plantas invasoras, onde foram relatados dois estudos de casos, sendo um deles relacionado à planta invasora de folhas largas Leiteira (Euphorbia heterophylla L.) e o outro à planta invasora de folhas estreitas Capim-colchão (Digitaria sanguinalis Scop.), considerando seus reconhecimentos e suas variabilidades espaciais com uso de visão computacional para manejo baseado em técnicas de AP. A metodologia desenvolvida com base no uso de análise de momentos invariantes demonstrou ser possível considerar aplicação de herbicidas em função de suas assinaturas geométricas e seu percentual de área de ocupação. A informação morfológica das plantas invasoras foi associada às informações da variabilidade espacial das culturas, o que pode ser também aplicado para outras espécies de interesse a partir da definição de suas assinaturas geométricas, resultando em uma nova técnica para o manejo localizado com aplicação taxa variada dos agrotóxicos.

Agradecimentos

Os autores agradecem a Embrapa no âmbito da Rede em Agricultura de Precisão (Macro Programa I), bem como ao Dr. João de Mendonça, coordenador do Projeto Componente 01.09.01.002.01 e à Capes, Processo: Edital conjunto Capes-Embrapa No. 001/2011.

Referências

Agricultura de precisão: resultados de um novo olhar

SANTOS, A. P. O.; CRUVINEL, P. E. Desenvolvimento de um modelo de descritores de imagens para reconhecimento de padrões de plantas invasoras (folhas largas e folhas estreitas). In: ENCONTRO DE MODELAGEM COMPUTACIONAL, 2008, Volta Redonda. Anais... CD-ROM.

Uso de mosaico de imagens aéreas como ferramenta de auxílio ao diagnóstico de diversas culturas**

André de Souza Tarallo¹, Alan Kazuo Hiraga², German Andres Gaviria Martinez³, Maria Stela Veludo de Paiva⁴, Lúcio André de Castro Jorge⁵, Hermes Senger⁶

¹Pos-graduando, Eng. Elétrica - USP. Av. Trabalhador Sao-carlense, 400, 13566-590, São Carlos - SP
²Pos-graduando, Computação - UFSCar. Rod. Washington Luis, Km 235, caixa postal 676, 13565-905, São Carlos - SP
³Pos-graduando, Eng. Mecânica - USP. Av. Trabalhador Sao-carlense, 400, 13566-590, São Carlos - SP
⁴Professora, Eng. Elétrica - USP. Av. Trabalhador Sao-carlense, 400, 13566-590, São Carlos - SP
⁵Pesquisador, Embrapa Instrumentação (CNPDAI), Rua XV de Novembro, 1452, 13560-970 São Carlos - SP
⁶Professor, Computação - UFSCar. Rod. Washington Luis, Km 235, caixa postal 676, 13565-905, São Carlos - SP

*E-mails: andre.tarallo@gmail.com, alanhiraga@hotmail.com, 4ndres.gaviria@gmail.com, mstela@sc.usp.br, lucio.jorge@embrapa.br, senger.hermes@gmail.com

**Parte da tese de doutorado do primeiro autor

Resumo: Na agricultura, a eficiência no processo de tomada de decisão para controle de pragas, doenças ou queimadas está relacionada com a obtenção mais rápida e precisa de informações. Na construção de mosaicos de imagens de diversas culturas, a precisão cartográfica também é exigida, sendo também um fator a ser considerado. Devido a estas necessidades, este artigo teve por objetivo desenvolver um software para construir automaticamente mosaicos, usando imagens sequenciais aéreas agrícolas de alta resolução (baseado na Transformada SIFT), que exige alto custo computacional. Para minimizar este alto custo computacional, foi utilizado processamento paralelo (OpenMP). Os mosaicos gerados no software desenvolvido também foram gerados em dois outros softwares de licença gratuita para comparação da distorção/precisão, usando as coordenadas do Google Earth como referência de comparação; os testes de distorção evidenciaram que o software deste trabalho possui menor distorção. O uso de processamento paralelo reduziu em 50% o tempo para construir os mosaicos de imagens, comparados com o processamento sequencial. Dessa maneira, é possível concluir que o software desenvolvido pode ser utilizado como uma ferramenta de auxílio ao diagnóstico de diversas culturas.

Palavras-chave: alta resolução, imagens aéreas agrícolas, mosaico automático, openmp, transformada sift

Using aerial images mosaic as a tool support to the various crops diagnosis

In agriculture, the efficiency in the process of decision making for pest, disease or fire control is related to the obtaining faster and more accurate information. In building mosaics of images of diverse cultures, the cartographic accuracy is also required, and is also a factor to be considered. Due to these requirements, this article aims to develop software to build mosaics automatically, using high resolution agricultural sequential aerial images. (Based on SIFT transform) that requires high computational cost. To minimize this high computational cost, we used parallel processing (OpenMP). The mosaics generated on software developed were also generated in two other software of license free for comparison of distortion/accuracy, using the coordinates of Google Earth as reference for comparison; distortion tests showed that the software of this work has less distortion. The use of parallel processing reduce by 50% the time to build mosaics of images compared to sequential processing. Thus, we conclude that the developed software can be used as a tool to aid the diagnosis of various cultures.

high resolution, agricultural aerial images, automatic mosaic, openmp, sift transform
1. Introdução

Um mosaico de imagens consiste em unir grande quantidade de imagens em uma nova imagem (CHON; KIM; LIN, 2000). Dentre as várias aplicações com mosaicos de imagens, destacam-se os mosaicos que são construídos a partir de imagens aéreas (LALIBERTE et al., 2010). Na agricultura, imagens aéreas de alta resolução são utilizadas para gerar mosaicos de imagens, com o objetivo de controlar extensas áreas de culturas, pastagens e florestas no que diz respeito ao controle de pragas, doenças e queimadas (WULDER et al., 2004).

Os mosaicos aéreos agrícolas permitem direcionar visitas de campo durante o ciclo do cultivo ou em datas posteriores à colheita, fornecendo um diagnóstico preciso da área de cultivo (LEBOEUF, 2000). A partir daí, podem ser elaborados os mapas de recomendações: descompactação, fertilidade e aplicação de insumos em taxa variável, auxiliando nas tomadas de decisões. A eficiência da tomada de decisão está ligada à obtenção mais rápida e precisa de informações e também auxilia no controle de pragas, doenças e queimadas (WULDER et al., 2004) (LELONG et al., 2008). Na obtenção de imagens aéreas é possível ao usuário a escolha da resolução mais adequada ao terreno, e da geometria de visualização/iluminação, por meio do ajuste da altura e direção do voo em relação ao solo, minimizando o tempo para medições de áreas.

As imagens aéreas, durante o seu processo de aquisição, frequentemente apresentam distorções que são causadas por alterações espaciais (translação, escala e rotação) e também por alterações radiométricas (brilho e cor), devido a variações de altitude e orientação do avião; consequentemente há necessidade das imagens serem retificadas (ROY; MEUNIER; COX, 1997) antes do início do processo de construção de mosaicos. As imagens retificadas são então utilizadas para a construção do mosaico, que une essas imagens, gerando uma nova imagem.

A construção de mosaicos de imagens envolve a identificação de pontos característicos em cada uma das imagens e a correspondência dos pontos característicos entre as imagens (image matching). Algoritmos que trabalham com descritores de características podem ser utilizados para esse fim. Os trabalhos de (LIANG; DEMENTHON, 2009); (ZHONG; ZENG; XIE, 2012) mostram exemplos de construção de mosaicos de imagens a partir de descritores de características. Neste artigo foi adotada a Transformada SIFT (Scale Invariant Feature Transform), proposta por (LOWE, 2004). Alguns dos fatores que permitiram que a Transformada SIFT ganhasse popularidade deve-se ao fato da mesma agregar características que a torna invariante a transformações de rotação, translação, escala e alterações inerentes às condições de iluminação do ambiente.

A escolha desta transformada baseou-se nos resultados apresentados no artigo de (JUAN; GWUN, 2009) que a comparam com outras metodologias e concluem que a SIFT é superior na extração de características, embora possa apresentar um tempo de processamento mais lento em relação às demais metodologias.

Muitos dos trabalhos e softwares encontrados na literatura são capazes de gerar mosaicos somente com imagens de baixa resolução, gerando distorções e imprecisão. Por este motivo, neste artigo é descrita uma metodologia para a construção automática de mosaicos de imagens aéreas agrícolas sequenciais de alta resolução, que é baseada em descritores e inclui algoritmos desenvolvidos para minimizar as distorções do processo de construção de mosaicos bem como o tempo de execução para gerar mosaicos de alta resolução, resultando numa ferramenta rápida e de fácil utilização para o usuário.

Os trabalhos de (ZHONG; ZENG; XIE, 2012); (KAYNIG et al., 2010); (LIU et al., 2011) mostram exemplos de construção de mosaicos de imagens utilizando algoritmos que utilizam as metodologias dos descritores de características mencionados anteriormente.

2. Material e Métodos

As imagens que compõem a base de imagens deste artigo contêm áreas de pastagens, lavouras e áreas urbanas, obtidas com o auxílio de um avião tripulado de pequeno porte, contendo uma câmera acoplada a um suporte externo. As imagens possuem 8 megapixels, com dimensão de 2336 x 3504 pixels, requerendo em média um arquivo de 4MB.

A partir das imagens adquiridas foi criada a base de imagens, que contém 100 imagens divididas em 10 grupos de 20 imagens. A partir dessa base foi criada outra base, cujas imagens foram redimensionadas para 533 x 800 pixels para ser utilizada nos testes de distorção. A Figura 1 mostra
um par de imagens sequencial, sendo possível observar a região de sobreposição entre as imagens.

De acordo com a Figura 2, o processo se inicia fazendo retificação geométrica nas imagens de entrada para minimizar possíveis distorções de translação, rotação e escala que podem ocorrer na fase de aquisição das imagens. Após, são extraídas as características do par de imagens pela Transformada SIFT e são criados os respectivos descritores (128 descritores para cada ponto chave). Os descritores são utilizados para fazer a correspondência das características do par de imagens em questão, de acordo com (LOWE, 2004). Em seguida, é aplicado o algoritmo RANSAC que estima a matriz homográfica (ajuste entre as imagens a serem unidas), sendo também responsável por eliminar falsas correspondências (outliers). Após cálculo da matriz homográfica, podem surgir riscos pretos na imagem. Devido a isso, é aplicada a interpolação dos ‘quatro vizinhos mais próximos’, somente nos riscos verticais pretos, para a sua eliminação. Com a estimação da matriz homográfica, a região de sobreposição entre as imagens é calculada e as mesmas podem então ser unidas.

Algumas vezes, na união das imagens, pode surgir um efeito denominado “Ghost”, que são sombras geradas na região de sobreposição. Para isto, é aplicado o algoritmo Blend Feathering que faz uma mistura de cor dos pixels para minimizar este espectro de corte na RS.

Após estas etapas, um par de imagens foi unido e este processo é repetido até que todas as imagens de um respectivo grupo sejam unidas. A Figura 3 mostra um exemplo de um mosaico contendo 10 imagens.

Para paralelizar o algoritmo descrito anteriormente, foi identificada a etapa mais custosa computacionalmente, utilizando a ferramenta de Profiling Gnu Gprof (GRAHAM; KESSLER; McKUSICK, 2004). Esta etapa foi identificada como sendo a Transformada SIFT, e comprovada de acordo com o trabalho de (FENG; YURONG; ZHANG, 2008).

Utilizando o padrão OpenMP de programação paralela, foram paralelizadas as etapas de cálculo do espaço escala e representação do descritor da Transformada SIFT, resultando na paralelização de 75% do código sequencial. Com isso, o tempo de construção dos mosaicos foi reduzido pela metade, comparado com a programação sequencial.

3. Resultados e Discussão

Para validar a metodologia proposta, foram realizados testes comparativos dos tempos de execução (em segundos) do código sequencial (n=1) e paralelo para gerar cada um dos mosaicos. Foi utilizado um notebook Dell Vostro 3560 (i7 3612QM de 3a geração - 2.1GHz - 8 threads - 6MB de Cache e 8GB de RAM DDR3 1600MHz) para a geração dos resultados.

A análise do tempo de execução do código paralelo foi realizada utilizando n=2, n=4 e n=8 threads (núcleos) e os resultados são apresentados na Tabela 1, sendo possível observar os tempos de execução para cada grupo de imagens da base de imagens. Também é possível observar o tempo médio de execução para cada grupo de imagens.

Os resultados apresentados evidenciam uma alteração significativa no tempo de execução à

Figura 1. Exemplo de um par de imagens sequencial.
Figura 2. Diagrama da metodologia de construção de mosaicos.

Tabela 1. Tempo de execução da metodologia sequencial e paralela.

<table>
<thead>
<tr>
<th></th>
<th>n = 1(s)</th>
<th>n = 2(s)</th>
<th>n = 4(s)</th>
<th>n = 8(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>grupo1</td>
<td>2891</td>
<td>2068</td>
<td>1405</td>
<td>1200</td>
</tr>
<tr>
<td>grupo2</td>
<td>2832</td>
<td>2248</td>
<td>1478</td>
<td>1225</td>
</tr>
<tr>
<td>grupo3</td>
<td>2975</td>
<td>2055</td>
<td>1461</td>
<td>1253</td>
</tr>
<tr>
<td>grupo4</td>
<td>2811</td>
<td>2022</td>
<td>1444</td>
<td>1275</td>
</tr>
<tr>
<td>grupo5</td>
<td>2912</td>
<td>1957</td>
<td>1429</td>
<td>1130</td>
</tr>
<tr>
<td>grupo6</td>
<td>2873</td>
<td>1980</td>
<td>1413</td>
<td>1106</td>
</tr>
<tr>
<td>grupo7</td>
<td>2848</td>
<td>2048</td>
<td>1410</td>
<td>1107</td>
</tr>
<tr>
<td>grupo8</td>
<td>2859</td>
<td>2097</td>
<td>1416</td>
<td>1158</td>
</tr>
<tr>
<td>grupo9</td>
<td>2985</td>
<td>1978</td>
<td>1565</td>
<td>1170</td>
</tr>
<tr>
<td>grupo10</td>
<td>2975</td>
<td>2159</td>
<td>1415</td>
<td>1246</td>
</tr>
<tr>
<td>média</td>
<td>2896,1 (48 min)</td>
<td>2061,2 (34 min)</td>
<td>1443,6 (24 min)</td>
<td>1187 (19 min)</td>
</tr>
</tbody>
</table>
medida que se aumenta a quantidade de threads. Comparando-se os resultados da Tabela 1 para n=1 e n=4, o tempo se reduz quase pela metade. Os resultados obtidos com n=4 e n=8 apresentam uma diferença mais significativa em relação ao mononúcleo do que n=2. No entanto, nota-se que quando se altera a quantidade de threads de n=4 para n=8, a redução do tempo de processamento é pouco significativa.

Como mencionado na Introdução, na construção dos mosaicos ao se unir imagens são geradas distorções. Para avaliar a distorção gerada com a metodologia desenvolvida, cada mosaico foi comparado com a sua respectiva localização no Google Earth, utilizado como referência. Para isto, foram feitas 3 marcações (A,B,C) facilmente identificáveis, tanto no mosaico quanto no Google Earth (Figura 4).

Figura 3. Exemplo de mosaico construído a partir de 10 imagens.

Figura 4. Exemplo de região usada nos experimentos.

Tabela 2. Resultados de distorção em comparação com o Google Earth.

<table>
<thead>
<tr>
<th>Grupos de Imagens</th>
<th>Metodologia Desenvolvida</th>
<th>EQM Autostitch</th>
<th>PTGui</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo1</td>
<td>0,052</td>
<td>0,153</td>
<td>0,070</td>
</tr>
<tr>
<td>Grupo2</td>
<td>0,331</td>
<td>0,369</td>
<td>0,379</td>
</tr>
<tr>
<td>Grupo3</td>
<td>0,022</td>
<td>0,069</td>
<td>0,043</td>
</tr>
<tr>
<td>Grupo4</td>
<td>0,287</td>
<td>0,272</td>
<td>0,322</td>
</tr>
<tr>
<td>Grupo5</td>
<td>0,053</td>
<td>0,132</td>
<td>0,093</td>
</tr>
<tr>
<td>Grupo6</td>
<td>0,073</td>
<td>0,294</td>
<td>0,380</td>
</tr>
<tr>
<td>Grupo7</td>
<td>0,026</td>
<td>0,052</td>
<td>0,031</td>
</tr>
<tr>
<td>Grupo8</td>
<td>0,041</td>
<td>0,054</td>
<td>0,332</td>
</tr>
<tr>
<td>Grupo9</td>
<td>0,088</td>
<td>0,066</td>
<td>0,110</td>
</tr>
<tr>
<td>Grupo10</td>
<td>0,074</td>
<td>0,048</td>
<td>0,103</td>
</tr>
</tbody>
</table>
A interligação dos pontos \(A(x,y), B(x,y) \)
e \(C(x,y) \) da Figura 4 formam um triângulo (Figura 5), podendo-se calcular os segmentos
de reta formados entre os vértices. As distâncias
entre os segmentos de reta são calculadas a partir
da equação 1.

Figura 5. Segmentos de reta AB, BC e AC.

Figura 6. Exemplo de mosaicos gerados e comparação com o Google Earth.
$$D = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2} \quad \text{Eq. 1}$$

Com os valores dos segmentos de reta é possível calcular proporções (AB/BC, BC/AC, AB/AC) e fazer uma comparação em relação aos valores obtidos pelo Google Earth e determinar o Erro Quadrático Médio (EQM), utilizado como indicador de distorção.

Os valores das marcações feitas no Google Earth são baseadas em coordenadas GPS de latitude e longitude (GPS - Global Positioning System). As coordenadas GPS foram convertidas para o padrão UTM (Universal Transverse Mercator), para que os cálculos de proporções pudessem ser realizados.

Para avaliar a metodologia desenvolvida em relação a softwares similares já existentes, foram gerados os respectivos mosaicos por dois softwares de licença gratuita (Figura 6): AutoStitch (http://www.cs.bath.ac.uk/brown/autostitch/autostitch.html) e PTGui (http://www.ptgui.com). Em seguida foi aplicada a mesma metodologia de avaliação de distorção nos mosaicos gerados por estes softwares. Os valores de EQM foram comparados com os da metodologia desenvolvida e com os do Google Earth.

Os valores das marcações (Figura 4) feitas no mosaico da metodologia desenvolvida, no AutoStitch e no PTGui são baseados nas coordenadas da própria imagem (x,y). Os valores de EQM determinados para avaliar a distorção para cada um dos 10 mosaicos gerados utilizando a base de imagens redimensionada são apresentados na Tabela 2. Os valores em negrito na Tabela 2 evidenciam os melhores resultados para a Metodologia Desenvolvida e para o AutoStitch. Fazendo-se uma avaliação visual da Figura 6 observa-se que o PTGui diferencia-se dos mosaicos da metodologia desenvolvida e do AutoStitch por apresentar uma acentuada distorção, evidenciando que este software não trata o problema da distorção nas junções.

4. Conclusões

De acordo com a Tabela 1, é possível verificar que o tempo para construção dos mosaicos é influenciado pela quantidade de threads utilizada. Quando se usa n=4 threads, o tempo médio é 50% menor, comparado com o processamento sequencial (n=1); e quando se usa n=8 threads o tempo médio é 60% menor, levando-se a

concluir que a diferença do tempo médio para n=4 e n=8 threads é de apenas 10%, não havendo, portanto, uma redução de tempo significativa para o uso de n=8 threads. Com relação à metodologia apresentada para a redução do tempo de processamento houve a preocupação de se utilizar um padrão de programação paralelo que fosse prático e funcional para o usuário final da área agrícola.

Quanto à avaliação da distorção apresentada na Tabela 2, é possível concluir que dos 10 grupos de imagens, 07 apresentaram menor valor de EQM para a metodologia desenvolvida e 03 para o AutoStitch. É possível também concluir que o PTGui distorce mais as imagens em relação aos dois outros programas, provavelmente não tratando questões de retificação de imagens, podendo-se verificar visualmente no mosaico por ele gerado (Figura 6), que não trata adequadamente as distorções nas junções.

A metodologia desenvolvida para a geração de mosaicos procurou tratar de forma adequada a etapa de retificação de imagens e das distorções nas junções, conduzindo a melhores resultados, conforme apresentado.

Com relação à metodologia apresentada para a redução do tempo de processamento houve a preocupação de se utilizar um padrão de programação paralelo que fosse prático e funcional para o usuário final da área agrícola.

Agradecimentos

Os autores agradecem o apoio financeiro e institucional cedido pelo projeto MCT/FINEP/CT-AGRO - Agricultura de Precisão 01/2008 - FIPAI/CNPQDA - ISOBUS2.

Referências

Modelo conceitual para sistema de coleta e comunicação automática de dados para máquina e implemento automatizado e para robô agrícola móvel**

Rafael Vieira de Sousa¹, Wellington Carlos Lopes², Rubens Andre Tabile³, Arthur José Vieira Porto⁴, Ricardo Yassushi Inamasu⁵

¹Professor Dr. FZEA/USP, Av. Duque de Caxias Norte, 225 - Pirassununga, SP
²Pós-graduando, EESC/USP. Av. Trabalhador São-carlense, 400 - São Carlos, SP
³Professor Dr. FZEA/USP, Av. Duque de Caxias Norte, 225 - Pirassununga, SP
⁴Professor Titular, EESC/USP. Av. Trabalhador São-carlense, 400 - São Carlos, SP
⁵Pesquisador, Embrapa Instrumentação. Rua XV de Novembro, 1452 - São Carlos, SP

*E-mails: rafael.sousa@usp.br, wlopes@gmail.com, tabile@usp.br, wlopes@gmail.com, ricardo.inamasu@embrapa.br
**FINEP/CT-AGRO MAPA 01/2008

Resumo: As tecnologias atuais de automação e robótica aplicadas à processos agropecuários carecem de padrões para aquisição e comunicação eletrônica de dados e padrões para integração das informações geradas para a gestão eficiente do agronegócio. No sentido de suprir tal carência, o trabalho tem como objetivo a proposta de um sistema automático de coleta e comunicação de dados e de um modelo da arquitetura de integração com um sistema gestão agrícola. Foi construído um sistema de aquisição eletrônico baseado na ISO11783 para mapeamento de variáveis agronômica, que é empregado para viabilizar o mapeamento de condutividade elétrica do solo e de índice de vegetação. A criação do modelo envolveu a identificação dos requisitos de sistemas embarcados ISO11783 compatíveis, dos elementos mecatrônicos de robôs agrícolas, dos requisitos funcionais e dos fluxos das informações em processos agrícolas modernos. Gerou-se um protótipo do sistema de aquisição automática de dados e o modelo conceitual da arquitetura de integração contendo: a especificação do escopo e dos limites da informação; a identificação dos conteúdos e dos padrões dos dados gerados e comunicados; e a definição dos componentes da interface entre os sistema automatizados embarcados e um sistema de gestão agrícola. Esse modelo pode orientar o desenvolvimento do módulo de um sistema de gestão agrícola com serviços para aquisição e análise da variabilidade agrícola e para recomendação em operações agrícolas.

Palavras-chave: aquisição eletrônica de dados, mapeamento automático, ISO11783, sistema de gestão agrícola

Conceptual model for automatic data collection and communication systems for agricultural automated machinery and mobile robot

The recent technologies of automation and robotics applied to agricultural processes require standards for electronic data acquisition and communication and standards for the integration of generated information for the efficient management of the agribusiness. In order to overcome this reality, the work aims the proposal of an automatic data collection and communication system and a model for the integration architecture with a farm management system. It was constructed an electronic acquisition system based on ISO11783 for mapping agronomic variables, which is used to enable the mapping of the soil electrical conductivity and the vegetation index. The conception of the model involved the identification of the requirements of ISO11783 compatible embedded systems, the mechatronic elements of agricultural robots and the functional requirements and flow
of information in modern agricultural processes. It was generated a prototype of an automatic data acquisition system and the conceptual model of the integration architecture that comprises: the specification of the scope and boundaries of the information, the identification of the contents and standards for the communicated data and the definition of the interface components between the embedded system and the management system. This model can guide the development of a service module of a farm management system for the acquisition and analysis of the agricultural variability and the recommendation in agricultural operations.

automatic mapping, electronic data acquisition, farm management system, ISO11783

1. Introdução

Atualmente o desenvolvimento e a aplicação de tecnologia no setor agrícola tornou-se um dos elementos fundamentais para inserção ou manutenção da competitividade comercial no mercado globalizado de países com vocação agrícola. O baixo nível de aplicação de tecnologia conduz à baixa eficiência e à baixa produtividade dos processos agrícolas e pode colocar o país em uma posição de inferioridade nas relações comerciais internacionais, principalmente no caso do Brasil que tem ainda um grande potencial para o desenvolvimento da Agroindústria e do Agronegócio (FOOD..., 2013).

Uma das tendências atuais para superação das carências apontadas é a aplicação de sistemas de automação inteligentes em áreas como, por exemplo, máquinas e implementos agrícolas, irrigação, criadouros, processamento, armazenamento e transporte de produtos agrícolas, construções rurais e ambiência. A pesquisa e o desenvolvimento de inovação nessas áreas geraram tecnologias disponíveis no mercado que foram concebidas para aquisição, armazenamento e transmissão de uma grande quantidade de dados que podem ser eletronicamente adquiridos na lavoura ou em sistemas agroindustriais. Em especial para máquinas e implementos agrícolas, sensores, controladores e atuadores são implementados usando padrões de comunicação para troca quantidades expressivas de informação, dos quais destacam as tecnologias sem fio para telemetria (TUIJL; OS; HENTEN, 2008) e o padrão de comunicação eletrônica para equipamentos agrícolas ISO11783 - ISOBUS (INAMASU et. al., 2011; PEETS et al., 2012; INTERNATIONAL..., 2013).

Além das tecnologias descritas, frutos de pesquisas e de inovações desenvolvidas nas últimas duas décadas, atualmente outro importante foco de pesquisa dessa área tem sido a busca por sistemas inteligentes que tornam viável a aplicação de Robôs Agrícolas Móveis (RAM’s). Nos últimos anos, trabalhos de pesquisa como os apresentados por Slaughter, Giles e Downey (2008), Cariou et al. (2009), Dong, Heinemann e Kasper (2011), Bakker et al. (2011) e Cheein et al. (2011) têm gerado soluções viáveis para o desenvolvimento de sistemas inteligentes de automação e de sistemas robóticos que possibilitam operações mais precisas para reduzir custos e minimizar o impacto ambiental de tarefas agrícolas. Porém, a capacidade de aquisição, armazenamento e processamento de dados dos sistemas de um robô demandam tecnologias de informação e comunicação muito bem estruturados e capazes de operar dados, em volume e diversidade, superiores aos das máquinas e implementos agrícolas convencionais.

Nesse contexto, as informações geradas pelos sistemas agrícolas automatizados ou por robôs demandam sistemas de informação específicos para a agricultura para dar suporte à interpretação da enorme quantidade de dados coletados e auxiliar na compreensão das causas da variabilidade para proposição estratégicas sólidas para a gestão de sistemas agropecuários e agroindustriais. Nesse sentido, tecnologias de informação e comunicação (TIC) têm sido pesquisadas para viabilizar a integração e o processamento de informações e fornecer suporte tomada de decisão para melhorar as estratégias de manejo da lavoura, para contribuir com a gestão do agronegócio, para viabilizar a regulamentação governamental e para padronizar-os processos que viabilizam a rastreabilidade e a certificação de produtos agropecuários (STEINBERGER; ROTHMUND; AUERNHAMMER, 2009; SØRENSEN et al., 2010).
A indústria de manufatura possui soluções bem estabelecidas baseadas em sistemas de informações gerenciais (Management Information System - MIS) que são parte integrante do sistema de planejamento de recursos e gestão global de empresas (Enterprise Resource Planning - ERP) (KARNOUSKOS; COLOMBO, 2011). Entretanto, o desenvolvimento e a aplicação de conceitos e de metodologias similares no setor agrícola ainda apresentam grandes desafios, principalmente devido à diversidade e à variabilidade dos processos agrícolas (SØRENSEN et al., 2010). O projeto, o desenvolvimento e a implantação de um FMIS (Farm Management Information System - FMIS: Sistemas de Informação de Gestão Agrícola) para processos de produção agrícola deve contemplar várias entradas de dados, originadas de diferentes equipamentos em diferentes formatos, incluindo formatos que atendam a norma ISO11783. Além disso, principalmente no contexto da Agricultura de Precisão (AP), é necessário oferecer suporte ao gerenciamento de informações geográficas e capacidade de processamento de modelos biológicos, capazes de relacionar parâmetros descritivos com informações de solo, atributos biológicos dos cultivos e parâmetros climatológicos (NIKKILÄ; SEILONEN; KOSKINEN, 2010; SØRENSEN et al., 2010).

Assim, há espaço para melhoria das tecnologias para máquinas e implementos agrícolas aplicadas para aquisição de dados e para operações em campo como a aquisição insumos, principalmente para sistemas de interpretação e manipulação de quantidades massivas e diversas de dados coletados que auxiliem na compreensão das causas da variabilidade. Nesse sentido, este trabalho busca através do mapeamento de processos agrícolas e dos respectivos fluxos de informações propor uma arquitetura para um sistema automático de coleta e comunicação de dados de máquinas agrícolas automatizadas (trator e implemento automatizado ou robô agrícola móvel).

As etapas “a” e “d” foram realizadas a partir da pesquisa de trabalhos publicados, do estudo sistemas de aquisição e comunicação de dados e do estudo da norma ISO11783. As etapas “b” e “c” foram realizadas da mesma forma, porém incluíram levantamentos em campo através de visitas técnicas a cooperativas e unidades produtoras, em especial para execução da etapa “c”.

Na etapa “b” observou-se que os principais dispositivos especiais utilizados no estágio de percepção para guiagem e navegação de robôs agrícolas móveis são: câmeras; receptor GNSS (Global Navigation Satellite Systems); varredor Laser (Scanner Laser); e sistema inercial (INS - Inertial Navigation System: Sistema de Navegação Inercial).

A definição do FMIS na etapa “f” foi realizada a partir da pesquisa de trabalhos publicados e das informações obtidas nas etapas de “a” à “d”. A modelagem proposta na etapa “g” foi realizada a partir da sistematização de informações e da estruturação de um modelo que atende-se todos os requisitos e características dos fluxos de informação de cada sub-sistema.

Para a especificação e projeto da I-ECU utilizou-se as informações obtidas nos levantamentos e especificações das etapas “a” à “d”.

2. Material e Métodos

Para atingir o objetivo da construção de um sistema de instrumentação agrícola automatizado e da definição dos elementos para sua integração com um FMIS, o trabalho de pesquisa e desenvolvimento foi dividido nas seguintes etapas principais:

- a) pesquisa dos elementos mínimos para projeto de sistemas embarcados ISO11783 compostáveis;
- b) estudo e definição dos requisitos mínimos de sistemas mecatrônicos de robôs agrícolas móveis;
- c) levantamento dos requisitos funcionais de processos comuns das práticas de AP;
- d) levantamento das mensagens definidas na norma ISO11783 que atendem os requisitos identificados em “b” e “c”;
- e) especificação e projeto de unidade eletrônica de controle universal para implemento agrícola (I-ECU - Implement Electronic Control Unit);
- f) definição de requisitos interface FMIS aplicado às práticas de AP;
- g) modelagem conceitual de integração de informações para sistemas de coleta e comunicação automática de dados de máquinas agrícolas automatizadas (trator e implemento automatizado ou robô agrícola móvel).

As etapas “f” e “g” foram realizadas a partir da pesquisa de trabalhos publicados, do estudo sistemas de aquisição e comunicação de dados e do estudo da norma ISO11783. As etapas “b” e “c” foram realizadas da mesma forma, porém incluíram levantamentos em campo através de visitas técnicas a cooperativas e unidades produtoras, em especial para execução da etapa “g”.

Na fase “g” realizou-se que os principais dispositivos especiais utilizados no estágio de percepção para guiagem e navegação de robôs agrícolas móveis são: câmeras; receptor GNSS (Global Navigation Satellite Systems); varredor Laser (Scanner Laser); e sistema inercial (INS - Inertial Navigation System: Sistema de Navegação Inercial).

A definição do FMIS na fase “f” foi realizada a partir da pesquisa de trabalhos publicados e das informações obtidas nas etapas de “a” à “d”.

A modelagem proposta na fase “g” foi realizada a partir da sistematização de informações e da estruturação de um modelo que atende-se todos os requisitos e características dos fluxos de informação de cada sub-sistema.

Para a especificação e projeto da I-ECU utilizou-se as informações obtidas nos levantamentos e especificações das etapas “a” à “d”.

As especificações preliminares da I-ECU orientou a aquisição do conjunto de desenvolvimento de software e de hardware i.MX28 EVK da empresa Freescale, que foi utilizado para familiarização com o processador escolhido e para definir o conjunto apropriado firmware-hardware através de implementação de testes.

A especificação da I-ECU também foi embasada em características de software e de hardware típicos de sistemas embarcados para automação com destaque para: quantidade e tipos de entradas e saídas para sensores e atuadores; quantidade e tipos de interfaces de comunicação; capacidade de processamento; necessidades do sistema operacional; capacidade de armazenamento de dados; fonte de alimentação e requisitos de consumo de energia; e características físicas do ambiente de operação (ex. temperatura, umidade, vibração e ruídos eletromagnéticos). Considerando as características citadas, os levantamentos e especificações das etapas de "a" à "d" e os resultados dos testes com o conjunto i.MX28 EVK definiu-se um esquema básico para o circuito eletrônico da I-ECU ilustrado na Figura 1.

Como ilustrado na Figura 1, o circuito eletrônico da I-ECU baseia-se no processador i.MX287 da empresa Freescale (tecnologia ARM - Advanced RISC Machine) que está conectado a quatro tipos de memórias diferentes: memória tipo NAND (4 Gb) utilizada para armazenar o sistema operacional embarcado e o firmware das aplicações ISO11783 compiladas; memória DDR2 SDRAM (64 MB x 16) para armazenamento de dados temporários para operações realizadas pelo processador; memória EEPROM SPI (256 kb) com interface de comunicação padrão SPI (Serial Peripheral Interface) para armazenamento de quantidade restrita de dados; e conector (SLOT) para cartão de memória SD/MMC, que pode ser inserido e removido para armazenamento e transferência de quantidade massiva de dados, inclusive para o carregamento do sistema operacional e de aplicações ISO11783.

O hardware da I-ECU ilustrado na Figura 1 contempla as seguintes interfaces de comunicação: porta Ethernet, porta USB e porta RS232 para comunicação com dispositivos eletrônicos especiais que utilizam dados e parâmetros mais elaborados (maior banda) como aqueles utilizados em robôs móveis (ex. câmeras, scanner laser, sistema inerciais e receptores GNSS); porta RS232 para interface com computador pessoal para gravação e depuração do firmware; e portas CAN (Controller Area Network) para viabilizar implementação física de rede ISO11783 (camada física). O hardware da I-ECU também contém entradas e saídas para sensores e atuadores com padrões comuns.
Inicialmente utilizou-se o Sensor de Condutividade Elétrica do Solo (S_{CE}) e o Sensor de Índice de Vegetação (S_{CV}) para implementações e experimentos iniciais. Os sensores comerciais empregados foram: sensor de condutividade elétrica do solo desenvolvido pela Embrapa Instrumentação de São Carlos (RABELLO et al., 2011); sensor ativo Crop Circle ASC 470 da empresa Holland Scientific (HOLLAND..., 2013) que emite, capta e analisa o espectro de luz refletida em comprimentos de onda específicos pela planta, gerando índices relacionados com o seu estado nutricional.

A Figura 2 mostra os diagramas esquemáticos com simbologia definida na Norma ISA-S5 da (ISA: International Society of Automation - Sociedade Internacional de Automação) propostos para os sistemas de coleta e comunicação automática de dados de condutividade elétrica e de índice de vegetação. Na Figura 2 observa-se que a I-ECU comunica-se através do barramento ISO11783 com o Terminal Virtual (VT - Terminal Virtual), com o Controlador de Tarefas (TC - Task Controller) e com a Unidade Eletrônica de Controle do Trator (TECU - Tractor Electronic Control Unit). A I-ECU conectada à rede ISO11783 é qualificada como Mestre do Grupo (Working Set Master), sendo responsável por interconectar todos os dispositivos do implemento e demais ECU (s - Electronic Control Units - Unidades Eletrônicas de Controle) relacionadas com a aplicação agrícola com o VT através de um arquivo padrão denominado Object Pool trafegado na rede.

Confrontando os requisitos mínimos de sistemas mecatrônicos de robôs agrícolas móveis e os requisitos funcionais de processos comuns das práticas de AP com as mensagens definidas na norma ISO11783 determina-se o grupo de mensagens explicitados na Tabela 2, que contém parâmetros a serem comunicados através do TC entre um sistema automatizado de um conjunto trator-implemento ou de um robô móvel e um FMIS. Para que as tarefas possam ser realizadas, os sistemas ISO11783 compatíveis enviam

3. Resultados e Discussão

Os sensores utilizados no sistema automático de aquisição possuem dispositivo controlador de registro e conversão de dados (CTR) que dispõem de porta para transferência de dados baseada no padrão RS232C. O CTR de condutividade elétrica foi integrado à I-ECU através de sua porta RS232C, porém o CTR de índice de vegetação foi integrado à I-ECU através de interface CAN tendo em vista a aplicação de mais de um sensor na mesma operação de mapeamento em campo (rede CAN permite diversos nós conectado à I-ECU).

<table>
<thead>
<tr>
<th>Ferramenta de Software</th>
<th>Fabricante / Fornecedor</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANoe</td>
<td>Vector Informatik</td>
<td>Ferramenta de software para desenvolvimento, teste e análise de projetos de redes e dispositivos CAN (Controller Area Network).</td>
</tr>
<tr>
<td>Eclipse</td>
<td>Eclipse Foundation</td>
<td>Ambiente integrado de desenvolvimento de software (IDE - Integrated Development Environment).</td>
</tr>
<tr>
<td>GCC C++</td>
<td>Free Software Foundation</td>
<td>Compilador do conjunto GCC (GNU Compiler Collection) para compilação de programas em linguagem C++.</td>
</tr>
<tr>
<td>ISOAgLib</td>
<td>OSB</td>
<td>Biblioteca em C++ com funções que implementam protocolos da ISO11783.</td>
</tr>
<tr>
<td>Linux Ubuntu</td>
<td>Ubuntu</td>
<td>Distribuição aberta do sistema Linux para computadores pessoais.</td>
</tr>
<tr>
<td>LTIB</td>
<td>Freescale</td>
<td>Ambiente de software para customização de sistema operacional Linux com características próprias para sistemas embarcados.</td>
</tr>
<tr>
<td>VT-Designer</td>
<td>OSB</td>
<td>Ambiente de software para criação de telas para Terminais Virtuais.</td>
</tr>
</tbody>
</table>
Agricultura de precisão: resultados de um novo olhar

Mensagens para comunicação entre um FMIS e o TC. A Figura 3 mostra o modelo conceitual para a arquitetura de integração entre um sistema embarcado automatizado baseado na norma ISO11783 e o FMIS através de um terminal de acesso implantado em computador pessoal.

Os dados referentes a processos agrícolas seguindo o fluxo ilustrado na Figura 3 podem ser transferidos para o conjunto máquina-implemento ou para um robô móvel utilizando identificadores próprios para mensagens de dados de processo específicos no Dicionário de Dados (base de dados denominado ISO 11783-11 e disponível em http://dictionary.isobus.net/isobus). As mensagens descritas na Tabela 2 podem ser utilizadas para a transmissão de dados medidos ou comandos para um ou

Tabela 2. Grupo de mensagens com informações comunicadas entre um sistema automatizado embarcado e um FMIS

<table>
<thead>
<tr>
<th>Tipo de Serviço</th>
<th>Documento da Norma</th>
<th>Parâmetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operação trator-implemento</td>
<td>ISO11783-7</td>
<td>Navegação, tomada de potência, engates traseiro e dianteiro, supervisão e controle processos, comando de atuadores do implemento e leitura sensores do implemento.</td>
</tr>
<tr>
<td>Dados automotivos</td>
<td>ISO11783-8</td>
<td>Motor, transmissão, freios, caixa de marcha e sistema de combustível</td>
</tr>
<tr>
<td>Operação trator</td>
<td>ISO11783-9</td>
<td>Sistema hidráulico do implemento, tomada de potência, gerenciamento de potência e navegação (velocidade e distância baseado nas rodas e solo).</td>
</tr>
<tr>
<td>Diagnóstico de sistemas</td>
<td>ISO11783-12</td>
<td>Protocolos para diagnóstico e identificação de ECUs, versão de softwares e certificação.</td>
</tr>
</tbody>
</table>

As características de seus dispositivos para o TC utilizando o arquivo denominado Device Description Object Pool (DDOP). Esse arquivo trocado entre o TC e ECUs contém também informações de processo.

A norma ISO11783 não estabelece um meio específico para a transferência de dados entre a máquina agrícola em campo e um FMIS. Entretanto estabelece no documento ISO 11783-10 uma padronização baseada na linguagem de marcação XML (Extensible Markup Language) que permite a criação de documentos com dados organizados hierarquicamente, tais como textos, banco de dados ou desenhos vetoriais. São definidos no documento ISO 11783-10 formatos de dados, parâmetros necessários para o controle de processos agrícolas e formatos de mensagens para comunicação entre um FMIS e o TC. A Figura 3 mostra o modelo conceitual para a arquitetura de integração entre um sistema embarcado automatizado baseado na norma ISO11783 e o FMIS através de um terminal de acesso implantado em computador pessoal.

Os dados referentes a processos agrícolas seguindo o fluxo ilustrado na Figura 3 podem ser transferidos para o conjunto máquina-implemento ou para um robô móvel utilizando identificadores próprios para mensagens de dados de processo especificados no Dicionário de Dados (base de dados denominado ISO 11783-11 e disponível em http://dictionary.isobus.net/isobus). As mensagens descritas na Tabela 2 podem ser utilizadas para a transmissão de dados medidos ou comandos para um ou
mais controladores associado a ECU, sendo que a identidade dos dados é determinada por uma entrada do Dicionário de Dados. O FMIS possui um elemento de conversão e comunicação de dados para acesso a serviços providos pelo FMIS. Entre as funcionalidades do FMIS está incluso o acesso a bancos de dados geográficos e agrícolas que armazena as informações referentes a aquisição automática dos dados colocados na Tabela 2.

4. Conclusões

O sistema de aquisição e a arquitetura de integração viabilizam a coleta automática de dados e a geração de informação para um sistema de gestão, assim como são definidas especificações para desenvolvimento de um módulo para um sistema de gestão agrícola com serviços para aquisição e análise da variabilidade agrícola e para recomendação em operações agrícolas. O protótipo do sistema de aquisição de dados para máquinas agrícolas (trator-implemento ou robô móvel) contempla a arquitetura do sistema eletrônico e a topologia para conexão de instrumento de medição de condutividade elétrica do solo e medida do índice de vegetação. Associado ao protótipo é desenvolvido e proposto o modelo conceitual da arquitetura de integração desse sistema com um FMIS, que contém: a especificação do escopo e dos limites da informação; a identificação dos conteúdos e dos padrões dos dados gerados e comunicados; e a definição dos componentes da interface entre os sistemas automatizados embarcados e um sistema de gestão agrícola. Embora o sistema de aquisição tenha sido testado com instrumentos de medição de condutividade elétrica do solo e medida do índice de vegetação, a topologia de conexão e a arquitetura proposta permitem o emprego de outros instrumentos para medida de outras variáveis agronômicas, de dados operacionais da máquina agrícola e de dados de processo.

Referências

Sistematização do índice de oportunidade na adoção da agricultura de precisão para diferentes sistemas produtivos

¹Pesquisador, Embrapa Solos
² Pesquisadora, Embrapa Algodão
³ Pesquisador, Embrapa Pecuária Sudeste
⁴ Pesquisador, Embrapa Pecuária Sul
⁵ Pesquisador, Embrapa Soja
⁶ Pesquisador, Embrapa Trigo
⁷ Pesquisador, Embrapa Uva e Vinho
⁸ Pesquisador, Embrapa Semiárido
⁹ Pesquisador, Embrapa Clima Temperado
¹⁰ Pesquisador, Embrapa Agrossilvipastoril

*E-mail: ronaldo.oliveira@embrapa.br; ziany.brandao@embrapa.br; alberto.bernardi@embrapa.br; naylor.perez@embrapa.br; julio.franchini@embrapa.br; vinicius.benites@embrapa.br; anderson.santi@embrapa.br; luciano.gebler@embrapa.br; luis.basso@embrapa.br; jose.filippini@embrapa.br; liciano.shiratsuchi@embrapa.br.

Resumo: A caracterização da variação espacial da produção é demanda na adoção da agricultura de precisão. Algumas abordagens buscam estabelecer métricas em apoio a uma gestão eficiente do manejo por sítio-específico. Entre as métricas parametrizadas segundo o ajuste do semi-variograma, o índice de oportunidade de adoção quantifica a variação espacial em função da viabilidade operacional das tecnologias disponíveis. Proposto com base em sistemas de produção de grãos australianos, o modelo foi aplicado no Brasil como ação transversal aos experimentos da Rede de Agricultura de Precisão da Embrapa. O principal objetivo foi avaliar o potencial de uso do índice aplicado a diferentes sistemas produtivos sob condições comuns de monitoramento no Brasil. Este trabalho conclui a fase de sistematização do índice; adaptando o protocolo de aplicação do método; e complementa resultados preliminares do modelo aplicado a dados de condutividade elétrica aparente do solo. Resultados finalísticos consideram conjuntos de dados obtidos por diferentes tecnologias de monitoramento em dez unidades de pesquisa. Valores absolutos e correlações resultantes da sistematização indicam a aplicabilidade do modelo, validam a estabilidade numérica dos resultados e sugerem calibrações específicas do comprimento operacional para os diferentes sistemas de produção.

Palavras-chave: suporte a decisão, índice de oportunidade, variação espacial, sítio-específico

An index to assess the opportunity for precision agriculture applied to different cropping systems

Abstract: Quantitative characterization of the spatial variation in crop yield has first been applied in Brazil using the opportunity index for the adoption of precision agriculture. The study is part of a joint research project, named Brazilian Precision Agriculture Research Network, aiming at establishing methods and protocols for the adoption of PA technology. The model uses semi-variogram parameters to quantify the magnitude and the spatial structure of variation. This work complements preliminary index results from four to ten research-plots, concluding a stepwise process to adapt the method of application to different production systems and sensor technologies. Results from available technologies have fit typical index values previously observed in Australia, suggesting model suitability to Brazilian conditions, numerical stability in response, and the potential for model calibration to different management practices.

Keywords: decision support, opportunity index, spatial variability, site-specific
1. Introdução

A modelagem quantitativa da variação espacial é uma das demandas no desenvolvimento de ferramentas de apoio às etapas de adoção da agricultura de precisão (AP). A carência por sistemas de suporte a decisão que sejam efetivamente integrados à gestão do sistema de produção não é nova (McCOWN, 2002), mas persiste como fator limitante na adoção da tecnologia (MATTHEWS et al., 2008). A caracterização e a quantificação da variação espacial dos fatores de produção são etapas componentes de um processo cíclico de adoção das tecnologias da AP (STAFFORD, 2000). Estas etapas permitem estabelecer métricas, indicadores e limiares aplicados na gestão estratégica e operacional do sistema de manejo. A modelagem numérica visa facilitar o entendimento agronômico das causas da variação na produção, indicando impedimentos ao ganho de produtividade.

Contribuições semi-quantitativas aplicam a geoestatística na caracterização da estrutura de autocorrelação espacial das variáveis, parametrizando o semi-variograma (ZIMBACK, 2001) ou estimando semi-variogramas médios e proporcionais (McBRATNEY; PRINGLE, 1999). Outra abordagem com base na análise variográfica que quantifica a viabilidade operacional do investimento na AP é o índice de oportunidade na adoção da agricultura de precisão (Oi). Proposto preliminarmente em Pringle et al. (2003), este índice é função da variabilidade da produção (Yi) e do retorno ambiental associado (E), expressa como: Oi = f(Yi, E).

A variabilidade espacial é quantificada com valores de ajuste do semi-variograma segundo componentes de magnitude e de estrutura espacial da variação, sendo a estrutura espacial um limitante da viabilidade de manejo por sitio-específico (PRINGLE et al., 2003). O Oi foi adaptado a processos de decisão estratégica e operacional; apesar de permanecer sem uma proposta metodológica que considere a valoração ambiental na adoção da AP. Uma vez sistematizado, espera-se que valores médios possam indicar limiares na tomada de decisão, indicando ações mais eficientes em nível de talhão, ou priorizando áreas aptas em nível de propriedade. Investigações associadas consideraram: a trafegabilidade de máquinas segundo a morfologia matemática do terreno (TISSEYRE; McBRATNEY, 2007); dados de condutividade elétrica aparente (CEa) do solo e índices de vegetação (IVs) (DE OLIVEIRA; WHELAN, 2008); e valores de NDVI na colheita seletiva em vitivinicultura (MONSÓ; ARNÓ; MARTINEZ-CASASNOVAS, 2013).

Este trabalho conclui a fase de sistematização do Oi no Brasil como uma das ações transversais aos experimentos da Rede de Agricultura de Precisão da Embrapa (Rede AP). O objetivo foi avaliar o potencial de uso do modelo proposto em Oliveira (2009) para diferentes sistemas produtivos (i.e. culturas anuais e perenes) e, de forma geral, validar a robustez matemática do algoritmo aplicado a dados de sensores de CEa do solo, produtividade e imagens orbitais (i.e. satélite) obtidos nas unidades piloto (UPs) da Rede AP. Resultados preliminares com dados de CEa do solo para um número limitado de UPs sugeriram: i) a viabilidade de escolha entre sensores de CEa (i.e. indução ou contato) segundo particularidades operacionais do solo coletados por grade amostral. Resultados finalísticos complementam a aplicação do método e demonstram a robustez analítica do modelo.

2. Material e Métodos

Esta etapa finalística da sistematização do Oi amplia o uso do modelo com variáveis obtidas em dez (10) UPs; conforme aplicação descrita em Oliveira et al. (2012) para dados de CEa de quatro (4) áreas. Dados compilados neste trabalho abrangem áreas nos seguintes sistemas agrícolas: i) produção de algodão situada na Fazenda Pamplona, Cristalina, GO (coordenadas 16°10’16”S; 47°37’47”O), detalhada em Brandão et al. (2013); ii) sistema de integração lavoura-pecuária (ILP), Bagé, RS (coordenadas 31°19’9.12”S; 53°59’22.2”O), com sucessão de soja e pastagem (PEREZ et al., 2011); iii) sistema de plantio direto (SPD) da Fundação Agrária de Pesquisa Agropecuária (FAPA), Guarápuava, PR (coordenadas 25°32’S; 51°30’O), com cultivo de trigo, aveia ou cevada no inverno e soja ou milho
As variáveis de entrada no cálculo do Oi são caracterizadas pelos conjuntos de dados gerados com sensores para o monitoramento intensivo por safra em cada talhão, obedecendo a viabilidade operacional dos diferentes sistemas. Os conjuntos de dados, num total de 31, foram obtidos utilizando sensores de proximidade (i.e. CEa do solo e produtividade) e sensores remotos (i.e. imagens orbitais da refletância multiespectral). As medidas de CEa do solo, num total de 21, foram realizadas por: i) rastreamento contínuo por contato, com o Veris 3100 (Veris Technologies®) nas profundidades de 30 e 90 cm; ii) rastreamento contínuo por indução eletromagnética, com o EM-38 (Geonics Ltda.) nas configurações vertical e horizontal (RABELLO, 2009); e iii) medição pontual por contato, com o protótipo descrito em Rabello et al. (2011). Dados do monitoramento da produção, num total de 4 em 3 culturas (i.e. algodão, milho e soja), foram observados nas safras 2010/2011 e 2011/2012. Dados de IVs durante o desenvolvimento do algodão (i.e. 125, 170 e 190 DAE) foram obtidos por transformações lineares (i.e. NDVI e MSAVI) da refletância do dossel monitorada pelo satélite Landsat-5 (BRANDÃO et al., 2013).

A compilação e processamento deste acervo de dados heterogêneos visa uma avaliação da robustez de resposta do modelo e da estabilidade dos valores absolutos do índice. Condições similares de heterogeneidade são observadas no acervo de dados históricos em sistemas de produção de grãos na Austrália que foi utilizado na revisão do modelo preliminar proposto para culturas anuais e perenes (PRINGLE et al., 2003). Este acervo reúne informações de associações de produtores que adotam a AP em condições agronômicas distintas; para o qual o sumário de resultados do modelo revisado em Oliveira (2009) são utilizados como termos comparativos para médias obtidas no Brasil. Para análise dos mapas em relação aos valores de Oi, as variáveis foram interpoladas por krigagem ordinária e os mapas classificados segundo uma legenda comum as distribuições de dados do mesmo sensor.

3. Resultados e Discussão

Resultados finalísticos do índice abrangem a aplicação do método para distintos sistemas de produção (i.e. culturas anuais e perenes) utilizando dados observados com três (3) tipos de tecnologias (i.e. CEa do solo; produção e índices de vegetação); demonstrando a robustez do algoritmo com valores absolutos do Oi estáveis em relação às médias típicas para as diferentes tecnologias (Tabela 1). O resultado geral do Oi, com dados de sensores de CEa do solo (S) ficou abaixo das médias australianas (Tabela 2), apesar de estável no intervalo de variação típico do Oi (i.e. entre 0 e 10); em particular na baixa correlação do componente de magnitude da variação. Entre as possíveis causas dos baixos valores no Brasil estão: i) o monitoramento de CEa com sensores por contato, em modo contínuo ou pontual, na grande maioria das áreas, em contraste a totalidade de medidas por indução na Austrália; ii) as condições de fertilidade e umidade do solo em áreas de grãos...
Tabela 1. Valores do índice de oportunidade (O_i) na adoção da agricultura de precisão e dos seus componentes da magnitude e da estrutura espacial da variação na autocorrelação das variáveis obtidas por diferentes sensores em áreas sob variados sistemas de produção das Unidades Piloto (UP) da Rede de Agricultura de Precisão da Embrapa.

<table>
<thead>
<tr>
<th>UP</th>
<th>Área (ha)</th>
<th>Talhão (ano)</th>
<th>Sensor (Var.)</th>
<th>CV_a (%)</th>
<th>M_v (m)</th>
<th>C_d (m)</th>
<th>S_v</th>
<th>O_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pastagem Tropical e Milho (silagem) Irrigated</td>
<td>8,0</td>
<td>Pivô Q4 (2010)</td>
<td>CE (20 cm)</td>
<td>18,7</td>
<td>1,3</td>
<td>18</td>
<td>0,9</td>
<td>1,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CE (40 cm)</td>
<td>27,9</td>
<td>2,0</td>
<td>243</td>
<td>12,8</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td>18,0</td>
<td>Pivô Q2-3 (2010)</td>
<td>Produção (Milho)</td>
<td>14,1</td>
<td>1,0</td>
<td>106</td>
<td>5,6</td>
<td>2,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Produção (Milho)</td>
<td>7,5</td>
<td>0,5</td>
<td>94</td>
<td>4,9</td>
<td>1,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EM38 (Horiz.)</td>
<td>69,3</td>
<td>4,9</td>
<td>78</td>
<td>4,1</td>
<td>4,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EM38 (Vert.)</td>
<td>31,7</td>
<td>2,2</td>
<td>6</td>
<td>0,8</td>
<td>1,4</td>
</tr>
<tr>
<td>Algodão</td>
<td>57,6</td>
<td>Lavoura E (2010)</td>
<td>Veris (30 cm)</td>
<td>14,4</td>
<td>1,0</td>
<td>1112</td>
<td>58,6</td>
<td>7,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Veris (90 cm)</td>
<td>18,8</td>
<td>1,3</td>
<td>736</td>
<td>38,8</td>
<td>7,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Produção (Algodão)</td>
<td>4,1</td>
<td>0,3</td>
<td>282</td>
<td>14,8</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NDVI (120)</td>
<td>0,7</td>
<td>0,1</td>
<td>1206</td>
<td>63,6</td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NDVI (170)</td>
<td>10,1</td>
<td>0,7</td>
<td>345</td>
<td>18,2</td>
<td>3,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NDVI (190)</td>
<td>33,7</td>
<td>2,4</td>
<td>256</td>
<td>13,5</td>
<td>5,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSVIAI (125)</td>
<td>3,0</td>
<td>0,2</td>
<td>577</td>
<td>30,4</td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSVIAI (135)</td>
<td>8,9</td>
<td>0,6</td>
<td>565</td>
<td>29,8</td>
<td>4,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSVIAI (190)</td>
<td>45,9</td>
<td>3,2</td>
<td>189</td>
<td>9,9</td>
<td>5,7</td>
</tr>
<tr>
<td>SPD Grãos (Guarapuava)</td>
<td>18,9</td>
<td>FAPA (2013)</td>
<td>Veris (30 cm)</td>
<td>19,3</td>
<td>1,5</td>
<td>148</td>
<td>7,8</td>
<td>3,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Veris (90 cm)</td>
<td>13,6</td>
<td>1,0</td>
<td>452</td>
<td>23,8</td>
<td>4,8</td>
</tr>
<tr>
<td>SPD Grãos (Castelândia)</td>
<td>33,0</td>
<td>T-6 (2010)</td>
<td>Veris (30 cm)</td>
<td>23,3</td>
<td>1,6</td>
<td>311</td>
<td>16,4</td>
<td>5,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Veris (90 cm)</td>
<td>20,4</td>
<td>1,4</td>
<td>95</td>
<td>5,0</td>
<td>2,7</td>
</tr>
<tr>
<td>SPD Grãos (Nao-Me-Toque)</td>
<td>43,0</td>
<td>Cotrijal (2010)</td>
<td>Veris (30 cm)</td>
<td>15,2</td>
<td>1,1</td>
<td>203</td>
<td>10,7</td>
<td>3,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Veris (90 cm)</td>
<td>17,2</td>
<td>1,2</td>
<td>127</td>
<td>6,7</td>
<td>2,8</td>
</tr>
<tr>
<td>ILP Sul (Bagé)</td>
<td>21,0</td>
<td>UR Bagé (2003)</td>
<td>Veris (30 cm)</td>
<td>70,9</td>
<td>5,0</td>
<td>149</td>
<td>7,9</td>
<td>6,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Veris (90 cm)</td>
<td>69,9</td>
<td>4,9</td>
<td>10</td>
<td>0,5</td>
<td>1,6</td>
</tr>
<tr>
<td>Arroz Irrigado</td>
<td>1,3</td>
<td>ETR (2013)</td>
<td>Veris (30 cm)</td>
<td>27,1</td>
<td>1,9</td>
<td>91</td>
<td>4,8</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Veris (90 cm)</td>
<td>141,5</td>
<td>10,0</td>
<td>42</td>
<td>2,2</td>
<td>4,7</td>
</tr>
<tr>
<td>Maçã</td>
<td>3,5</td>
<td>Massato (2012)</td>
<td>Veris (30 cm)</td>
<td>51,0</td>
<td>3,6</td>
<td>51</td>
<td>2,7</td>
<td>3,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Veris (90 cm)</td>
<td>36,4</td>
<td>2,6</td>
<td>191</td>
<td>10,1</td>
<td>5,1</td>
</tr>
<tr>
<td>Videira de Mesa</td>
<td>1,6</td>
<td>Lote 180 (2012)</td>
<td>Veris (20 cm)</td>
<td>19,0</td>
<td>1,3</td>
<td>155</td>
<td>8,2</td>
<td>3,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Veris (40 cm)</td>
<td>17,3</td>
<td>1,2</td>
<td>18</td>
<td>1,0</td>
<td>1,1</td>
</tr>
<tr>
<td>SPD Grãos (Sorriso)</td>
<td>129,8</td>
<td>S+ Anastácia (2013)</td>
<td>EM38 (Horiz.)</td>
<td>51,6</td>
<td>3,6</td>
<td>518</td>
<td>27,3</td>
<td>10,0</td>
</tr>
</tbody>
</table>

*Sensor (Var.) = Tipo de Sensor (variável monitorada); sendo: Veris (profundidade de leitura em centímetros); EM38 (modo de operação Horizontal ou Vertical); Produção (cultura).

CV_a = Coeficiente de Variação Espacial; M_v = Magnitude da Variação; C_d = Maior Distância de Correlação; S_v = Estrutura Espacial da Variação; e O_i = Índice de Oportunidade.
sob SPD, dadas práticas diferenciadas de aplicação de insumos a lanço e do curto intervalo de tempo para monitoramento entre as safras de verão e de inverno, em geral em períodos muito secos; e iii) questões na calibração dos equipamentos nos diferentes sistemas.

Valores do O_1 para dados de produção (Y) foram em geral baixos para todas as ocorrências (Tabela 1), visivelmente promovidos pelos baixos valores do coeficiente de variação espacial (CV_s) utilizado no cálculo do componente de magnitude da variação (M_s). Os valores finais ficaram abaixo dos limiares da oportunidade de adoção na Austrália (Tabela 2). Isto pode ser melhor observado para a produção de algodão, apresentando o menor M_s, mesmo que associado a uma variação da produção dentro da média de 16% prevista para a cultura (i.e. entre 2,5 e 3,0 t). Neste caso, o índice final ficou baixo (i.e. pouca oportunidade de adoção) mesmo que com uma boa estrutura espacial na variação (S_y), uma vez que a amplitude na variação da produção do algodão (i.e. 0,5 t) é pequena em relação aos valores de grãos que calibraram o modelo. Ainda para as produções de milho e soja, apresentando variações acima das médias (e.g. variação de 3,5 t na soja), observa-se a influência do CV_s nos baixos valores de O_1. Este é um fator crítico na calibração do componente de magnitude do O_1, uma vez que sua média é aplicada na normatização do M_s, devendo ser ajustado por tipo de cultura ou tecnologia de monitoramento. Entretanto o acervo de dados é limitado, uma vez que sugeridos mais de 30 monitoramentos no ajuste do CV_s médio na cultura do milho (OLIVEIRA, 2009).

Valores do O_1 com índices de vegetação (I) mantiveram-se dentro das médias (Tabela 2) e demonstram o potencial da aplicação alternativa do índice como métrica de controle temporal da variação espacial durante o desenvolvimento da cultura (Figura 1), quando observados os procedimentos de monitoramento e análise descritos em Brandão et al. (2013). Ambos os índices, NDVI e MSAVI, apresentam um aumento gradual no componente magnitude; refletindo uma maior amplitude de variação com o desenvolvimento da cultura; com simultânea redução na estrutura espacial da variação; coerente com uma menor dependência espacial causada pela maior heterogeneidade de desenvolvimento das plantas. Este exemplo mostra a possibilidade de uso do O_1 em diferentes escalas de aplicação; seja avaliando a estrutura de variação do solo para orientações no desenho amostral; acompanhando o comportamento da variação durante o desenvolvimento da cultura; ou comparando os índices por safras de um talhão na rotação de culturas, de vários talhões na priorização de áreas da propriedade, e as médias por propriedade em planos diretores locais. Mas a limitada disponibilidade de dados de produção compromete a análise mais conclusiva do desempenho do O_1. Observa-se a necessidade de um acervo temporal mínimo para viabilizar a caracterização da variabilidade. Dado o efeito temporal da variação, a experiência australiana indica um mínimo de três anos de monitoramento para um planejamento efetivo do manejo. Quando confrontados com valores de grãos na Austrália, os resultados apresentados dão fundamento ao algoritmo proposto, desta forma: difundido conceitos do modelo; explicitando procedimentos de análise; criando subsídios para a definição de um protocolo de análise no Brasil; e indicando o potencial de implementação do modelo e calibração de parâmetros operacionais de manejo.

4. Conclusões

Resultados do modelo complementam a abrangência de aplicação do método para diferentes sistemas de produção com três tipos de sensores, concluindo a sistematização do índice. A pesquisa adapta a aplicação do modelo para condições de monitoramento no Brasil. O modelo demostrou estabilidade na amplitude de variação de valores absolutos típicos do O_1 para diferentes tecnologias de monitoramento intensivo. Correlações entre os componentes magnitude e estrutura espacial sugerem a aplicabilidade do modelo em diferentes etapas do processo de adoção da AP. Valores absolutos do O_1 indicam a necessidade de calibração de variáveis operacionais específicas dos sistemas de produção (i.e. culturas anuais e perenes) para mais efetivamente refletir a oportunidade na adoção da AP.
Figura 1. Mapas da produtividade do algodão, com baixo índice de oportunidade em função da pequena amplitude de variação apesar da oportuna estrutura espacial; e dos índices de vegetação (i.e. NDVI) em diferentes estágios do desenvolvimento da cultura (i.e. 125, 170 e 190 DAE); mostrando coerência dos valores do O_i na evolução da estrutura de variação e no aumento da amplitude de valores de NDVI segundo uma legenda comum aos três monitoramentos.

Tabela 2. Distribuição de valores dos índices de oportunidade de adoção da Agricultura de Precisão parametrizados pela correlação espacial de variáveis caracterizadas por diferentes tecnologias disponíveis na Austrália e no Brasil.

<table>
<thead>
<tr>
<th>Pais</th>
<th>Variável - Índice</th>
<th>N</th>
<th>Índice de Oportunidade (O_i)</th>
<th>$r (M)$</th>
<th>$r (S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.</td>
<td>Med.</td>
<td>Max.</td>
</tr>
<tr>
<td>Austrália</td>
<td>Produção - Y_i</td>
<td>218</td>
<td>1,6</td>
<td>5,2</td>
<td>17,3</td>
</tr>
<tr>
<td></td>
<td>CE do Solo - S_i</td>
<td>42</td>
<td>2,6</td>
<td>7,7</td>
<td>18,1</td>
</tr>
<tr>
<td></td>
<td>Índice Vegetativo - I_i</td>
<td>87</td>
<td>2,0</td>
<td>3,7</td>
<td>9,0</td>
</tr>
<tr>
<td>Brasil</td>
<td>Produção - Y_i</td>
<td>4</td>
<td>1,2</td>
<td>1,8</td>
<td>2,4</td>
</tr>
<tr>
<td></td>
<td>CE do Solo - S_i</td>
<td>31</td>
<td>0,8</td>
<td>3,4</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td>Índice Vegetativo - I_i</td>
<td>6</td>
<td>1,8</td>
<td>4</td>
<td>5,7</td>
</tr>
</tbody>
</table>

Agradecimentos

Referências

Detecção de Greening dos citrus por imagens multiespectrais

Lúcio André de Castro Jorge¹, Ricardo Y. Inamasu¹

¹Embrapa Instrumentação – São Carlos, SP
E-mail: lucio.jorge@embrapa.br; ricardo.inamasu@embrapa.br

Resumo: Greening é uma doença recente que tem causado graves perdas na citricultura brasileira. O controle do vetor é aplicado uniformemente na lavoura. Aplicar em locais de maior infestação pode ser uma estratégia muito mais sustentável. O presente trabalho apresenta estudo e desenvolvimento de várias tecnologias de software e análise para mapeamento e diagnóstico precoce do greening, para buscar apoiar o tratamento espacialmente variado de agroquímico.

Palavras-chave: Citrus, Greening, imagem.

Detection of Citrus Greening for multispectral images

Abstract: Greening is a recent disease which has caused serious losses in Brazilian citrus. The vector control is applied uniformly in the fields. Apply in areas of higher infestation can be a much more sustainable strategy. This paper presents the study and development of various technologies and analysis software for mapping and early diagnosis of greening, to seek support for spatially varied treatment of agrochemical.

Keywords: Citrus, Greening, image
1. Introdução

Na década de 80, o Brasil surge como o maior produtor mundial de citros, com mais de 1 milhão de hectares de plantas cítricas em seu território.

O Estado de São Paulo destaca-se como o principal produtor do País, sendo responsável por 70% da produção de laranjas e 98% da produção de suco, segundo dados da Associação Brasileira dos Exportadores de Citricos - ABECitrus (2006).

Na fruticultura, o País ocupa a terceira colocação entre os maiores produtores mundiais, com destaque para a laranja in natura que protagonizou o maior crescimento individual do ano de 2006, com mais de 50 mil toneladas exportadas, o que representou aumento de 64% em volume e 85% em valor, comparados ao ano de 2005, (AgroBrasil, 2006).

A expressividade nos números reflete o domínio que o País mantém no setor ao longo dos anos, não apenas na produção da laranja e seus derivados, mas também na exportação desses produtos, destaque para o suco de laranja concentrado e congelado (SLCC).

Além da sua eficiência e capacidade de produção, a citricultura paulista apresenta algumas características peculiares: a) Os pomares ocupam uma área de aproximadamente 615.300 ha (FUNDECITRUS, 2008), sem grandes variações de relevo ou barreiras físicas e com extensas malhas rodoviárias, cujo trânsito de mudas, sementes, borbulhas e frutos cítricos é intenso, o que confere continuidade espacial entre os pomares. b) As plantas cítricas são perenes e, portanto, estão expostas durante todo o ano e por vários anos ao ataque de pragas e doenças, sem um período de ausência de hospedeiro. c) Os pomares apresentam uma variabilidade genética muito baixa. As laranjeiras doces (Citrus sinensis (L.) Osbeck) ‘Pêra-Rio’, ‘Natal’, ‘Valência’ e ‘Hamlin’, propagadas vegetativamente, representam 92% da citricultura e o porta-enxerto utilizado em aproximadamente 85% das árvores é o limoeiro ‘Cravo’ (C. limonia Osbeck), devido a sua rusticidade, vigor conferido à copa e, principalmente, resistência às condições de deficiência hídrica do norte e noroeste do Estado. Estas características conduzem a uma alta vulnerabilidade da cultura à ocorrência de epidemias de doenças conhecidas e de novas doenças com importantes consequências para a sustentabilidade deste agronegócio.

Estes e outros indicadores ilustram a importância desta atividade para a economia nacional e a necessidade da criação de mecanismos para que a mesma se desenvolva de forma adequada.

A ABECitrus destaca desafios para a produção paulista de citros que abrange desde a competição por terras devido a expansão da cana-de-açúcar, até o combate às pragas e doenças, como o Cancro Cítrico, a Morte Súbita dos Citros (MSC), o Greening e o CVC (Clorose Variegada dos Citros), sendo essas quatro pragas responsáveis pela redução estimada de 10% da produção média de São Paulo nos últimos anos, o que equivale a 30 milhões de caixas (ABECitrus, 2007).

Com efeito, o principal gargalo para a sustentação e desenvolvimento da atividade cítrica remete às questões fitossanitárias. Doenças como o Cancro Cítrico, a Clorose Variegada dos Citros, a Morte Súbita dos Citros e, mais recentemente, o Greening, têm causado graves perdas ao setor, com destaque à última citada que, sozinha, é responsável pelos maiores prejuízos do setor na atualidade, segundo dados do Fundecitrus (2007).

Tais problemas envolvem principalmente a erradicação e renovação dos pomares, que representam um custo bastante elevado para o pequeno e médio produtor, que, usualmente, detém menor disponibilidade de recursos e acesso a crédito.

Desse modo, a decisão de formação ou não de um novo pomar é um procedimento que envolve grande risco, não apenas pelos gastos envolvidos em tal ação (uma vez que pomares médios costumam ter em torno de 20 a 50 mil plantas), mas também pelo tempo de maturação deste investimento, que acaba se convertendo em um importante custo de transação (ZYLBERSZTAJN, 1995).

Outros problemas também são enfrentados pela citricultura paulista, como o aumento dos
custos de produção e as pragas e doenças que surgem e causam a erradicação de pomares.

No entanto, alguns desses fatores são capazes de causar sérios danos à cultura de citros que é um alvo constante dessas moléstias. Essas doenças encontram condições favoráveis ao seu desenvolvimento, como a influência climática, facilidade de disseminação e, em alguns casos, a ausência de agentes inibidores.

Tais problemas fitossanitários interferem diretamente na quantidade e na qualidade das frutas citrícas produzidas. Dependendo da intensidade do ataque sofrido por pragas ou doenças, os danos deixados na planta podem torná-la improdutiva ou levar à sua erradicação.

Segundo Maximiano (1997) faz-se importante considerar que a administração na unidade de produção agrícola não se define apenas como o processo de tomar e colocar em prática decisões sobre objetivos e utilização de recursos. Entretanto, também torna-se fundamental diagnosticar e controlar todos os fatos que possam interferir na produção, principalmente a fitossanidade.

As dificuldades encontradas pelos produtores de citros em lidar com o surgimento e manifestação de doenças os têm levado a buscar o auxílio dos centros de pesquisas especializados em citros.

No entanto, em alguns casos o procedimento para inspecionar propriedades ainda é rudimentar. O tempo gasto neste processo implica em baixa produtividade e aumento dos custos, devido à falta de controle dos operadores nas suas atividades diárias agravado pela deficiência dos mesmos na obtenção de diagnósticos precisos e precoces.

Dentre as novas doenças o Greening ou Huanglongbing (HLB) tem recebido maior preocupação.

A doença Greening, ou Huanglongbing (HLB) foi relatada nos pomares paulistas a partir de 2004. Atualmente, é a doença mais temida entre os produtores de laranja por não possuir qualquer tipo de cura ou tratamento. Ainda, a referida doença apresenta alta capacidade de disseminação e afeta todas as variedades comerciais de laranjeiras e principalmente, não há métodos de diagnóstico precoce da doença (Fundecitrus).

A Greening tem como agente causal uma bactéria que habita o floema da planta hospedeira sendo conhecida como Candidatus Liberibacter. Há três variações para esta bactéria, Candidatus Liberibacter africanus, Candidatus Liberibacter asiaticus e Candidatus Liberibacter americanus (Fundecitrus).

Os sintomas da Greening são basicamente os mesmos, independente de onde ocorre a doença e de qual variação da bactéria. As árvores afetadas têm como sintoma inicial o surgimento de um ramo ou galho, que se destaca pela cor amarela em contraste com a coloração verde das folhas dos ramos não afetados. As folhas amareladas, ou sintomáticas, apresentam coloração amarela pálida, com áreas de cor verde, formando manchas irregulares, chamadas de mosqueadas. Por ser uma doença que atinge o transporte de seiva bruta, o floema, as plantas novas ficam improdutivas e as plantas maduras reduzem sua produção até não produzirem mais.

A forma atual de controle da doença são inspeções visuais para detecção de árvores sintomáticas e aplicação maciça de inseticidas para controle do vetor. Logo que identificadas, as árvores sintomáticas são arrancadas visando diminuir a proliferação da doença. Este método, entretanto tem se mostrado bastante ineficiente. O Fundecitrus estima que as inspeções visuais tenham falhas que levam a um erro aproximado de 30 a 60%, ou seja, em torno da metade de pés sintomáticos são mantidos no campo por falhas na inspeção.

Até 2008 já foram erradicadas 3 milhões de árvores sintomáticas, implicando na perda de 5,5 milhões de caixas de laranja ao ano, o que corresponde aproximadamente a uma perda anual de 50 milhões de Reais para os produtores. Este esforço de erradicação na fase sintomática não tem resolvido o problema, pois a doença tem mostrado um crescimento exponencial no tempo nas áreas contaminadas.

Em geral, quando os primeiros sintomas são detectados visualmente, a árvore de Citros já se encontrava contaminada há meses. O período estimado de incubação da doença é de aproximadamente 6 a 36 meses. Durante este período que a planta doente assintomática, ou ainda, com sintomas pouco expressivos, permanece no pomo, se torna um propagador invisível da doença. Avaliações do Fundecitrus estimam que no campo para cada árvore sintomática existam mais duas em fase assintomática.
2. Experimentos

2.1. Instalação dos experimentos em estufa e em campo

2.2.1. Estufa

Para a 1ª etapa do projeto Greening o Grupo Fischer disponibilizou à EMBRAPA Instrumentação Agropecuária 120 mudas de Valência com o porta-enxerto Swingle, que foram plantadas no Instituto Agronômico de Campinas (IAC) na cidade de Cordeirópolis - SP. Desse total de 120 mudas, 60 delas foram inoculadas com a bactéria Candidatus Liberibacter asiaticus e durante 28 semanas foram coletadas as folhas dessas plantas e as mesmas foram analisadas aplicando as técnicas de Fluorescência Induzida por Laser (FIL) e Imagens de Fluorescência Induzida por Radiação Ultravioleta, bem como imagens no visível.

2.2.2. Campo

O experimento de campo foi realizado a partir do monitoramento na fazenda Citrícola situada no município de Gavião Peixoto, SP. Foram inspecionados dois talhões, um com baixa infestação e outro com alta infestação. Foram avaliadas plantas consideradas sadias e infectadas, sendo este último grupo subdividido em sintomáticas e assintomáticas. Foram escolhidas copas de laranjeira Valência e porta-enxerto de citrumeleiro Swingle. Neste caso, não foram submetidas as amostras de todas as plantas para análise de PCR, tendo o estado das plantas sido determinado apenas por inspeção visual realizada por funcionários da fazenda. Desse modo, não é possível ter certeza de que as plantas incluídas eram de fato sadias. É seguro assumir, contudo, que boa parte delas não havia sido infectada pela bactéria causadora do greening, pois, além de não apresentarem sintomas, foram propositadamente escolhidas em um talhão com baixa ocorrência da doença. As plantas doentes foram classificadas como tais por terem apresentado os sintomas característicos do greening. Dessa forma, o conjunto consistiu de três grupos: sadias, retiradas de árvores sem sintomas e com baixa probabilidade de contaminação; assintomáticas, sem a clorose característica, mas retiradas de árvores de áreas com alta incidência de sintomas; e sintomáticas,
que manifestaram a clorose característica do greening. Foram coletadas folhas para análise das imagens no espectro visível e infra-vermelho, bem como imagens aéreas e terrestres das árvores.

A área experimental, Figura 1, foi varrida mês a mês de fevereiro de 2011 a julho de 2012 com os sensores e acompanhadas as inspeções de campo com o sistema GeoFielder. Os mapas com as plantas identificadas com o greening e as erradicações foram mapeadas.

2.2. Banco de Dados e Interface

O Banco de Dados utilizado foi o PostgreSQL, que se trata de uma ferramenta de código aberto, e que possui uma vasta comunidade de usuários. Entre outros motivos, a escolha deste SGBD foi influenciada pela sua extensão PostGIS, que permite o armazenamento de dados geográficos de forma facilitada, sendo que o próprio banco de dados já possui uma vasta gama de funções geográficas que pode ser aplicadas diretamente nos dados armazenados, evitando a necessidade de implementação dessas funções pelo programador.

Foram utilizadas tabelas no banco de dados contendo os seguintes dados medidos:
- FIL: medidas de fluorescência induzida por laser;
- PCR Quantitativo: análise de DNA quantitativa da bactéria;
- PCR Qualitativo: análise qualitativa de DNA da bactéria;

As imagens armazenadas em HDs externos e acessadas via banco por referência foram:
- Imagens de Fluorescência com Lupa;
- Imagens de Fluorescência sem Lupa;
- Imagens no espectro Visível;
- Imagens Multiespectrais;
- Além disso, os dados climáticos vindos da estação meteorológica.

Um exemplo do modelo atual do banco de dados pode ser visto pelo diagrama modelado da Figura 2. E na Figura 3 uma tela do software Greening desenvolvido para acesso e manipulação no banco de dados.

2.3. Processamento e Modelagem:

Durante a primeira fase do projeto foram armazenados no Banco de Dados PostgreSQL os espectros obtidos por meio do emprego da técnica de Fluorescência Induzida por Laser (FIL) e as imagens obtidas por meio da aplicação da técnica Imagem de Fluorescência Induzida por Laser, apenas para o experimento em estufa.

O experimento de campo foi conduzido e para a análise de dados e extração de características relevantes que identificassem o Greening foram utilizados os algoritmos de mineração de dados e classificadores gerados no experimento controlado em estufa.

Para a construção desses classificadores foi desenvolvida uma interface utilizando a IDE (Integrated Development Environment) do netbeans usando a linguagem JAVA, a interface

Figura 1. Área experimental de alta incidência de greeing, com talhão gerado no 13GEO usando interface do GoogleEarth.
Figura 2. Diagrama MER do Banco de Dados
permitiu a execução dos algoritmos presentes na API (Application Programming Interface) do toolbox WEKA.

Os algoritmos utilizados no desenvolvimento do projeto foram:

- Seleção de características baseadas na correlação (Correlation-based Feature Selection - CFS) de características e busca gulosa (GreedyStepwise). O algoritmo CFS utilizado para seleção de características avalia o valor de um subconjunto de características, considerando a habilidade preditiva de cada característica permitindo certo grau de redundância entre estas, o algoritmo Greedy Stepwise faz uma busca gulosa nos subconjuntos de cada espaço de atributos;

- Componentes Principais (PCA) e Ranker. O algoritmo PCA é utilizado para seleção de características, transformando os dados para um novo espaço de atributos segundo a maior variância dos dados; o algoritmo Ranker conjuntamente com a PCA para realizar a busca de componentes principais mais relevantes;

- Os algoritmos: o C4.5 e o Multi Layer Perceptron (MLP) foram estudados para a construção do classificador. O algoritmo C4.5 é baseado em uma árvore de decisão cuja a estrutura expressa os dados de maneira rápida e eficiente. O algoritmo MLP é baseado em uma rede neural do tipo MultiLayer Perceptron com algoritmo backpropagation.

Durante a validação dos algoritmos, nos dados do experimento de estufa, a classificação das imagens de fluorescência a detecção aconteceu com precisão a partir do quinto mês, ainda na fase assintomática da doença. Os resultados obtidos a partir desse mês apresentaram acertos superiores a 65%. Esses resultados com cada um dos métodos podem ser observados na Figura 4.
Para a classificação utilizando os espectros de fluorescência a detecção aconteceu logo no primeiro mês. Os resultados obtidos em sua maioria foram superiores a 75%. A visualização desses resultados pode ser observada na Figura 5.

Ao realizar a classificação com os dados da fluorescência e as imagens de fluorescência foram obtidos resultados superiores a 70%. Na Figura 6 observa-se os gráficos com os resultados dessa classificação.

Dessa forma, o trabalho desenvolvido apresentou um resultado inédito de classificador aplicado numa área de extrema importância. Atualmente as inspeções visuais conseguem obter valores inferiores aos percentuais supracitados, abaixo de 50%. Também, esse trabalho tem servido de referência para geração de um sistema classificador com base em imagens de fluorescência e fluorescência induzida por Laser (FIL) para aplicação direta no campo.

No experimento de campo, foram obtidas imagens de reflectância, nas regiões do infravermelho próximo. Em virtude das respostas das plantas se encontram na faixa dos 620nm, foi priorizada a reflectância e a irradiação destas faixas. As medidas de imagens de fluorescência são inviáveis em campo, na forma que está disponível, porém por algoritmos classificadores serviram para calibrar o sistema com relação à reflectância para análise direta no campo. Ao lado das imagens também foram validadas com medidas do espectroradiômetro ASD portátil que opera de 300nm a 2500nm com resolução espectral de 7nm por banda. Este instrumento foi adquirido pelo projeto em Rede de Agricultura de Precisão.

Foram desenvolvidas duas ferramentas de análise multifractal denominadas de BFractal e

![Figura 5. Gráfico com classificações corretas a partir dos espectros FIL.](image1)

![Figura 6. Gráfico com classificações corretas a partir dos espectros FIL.](image2)
A ferramenta BFractal foi desenvolvida inicialmente para a linguagem C#, e utilizando o o método Box-Counting. Posteriormente foi gerado o sistema utilizando funções Wavelets discretas. Uma vez entendido o funcionamento com esta transformada discreta, foi realizada a geração de mapas de alerta.

A análise multiresolução consiste na análise do sinal por meio da utilização de diferentes frequências e diferentes resoluções. Dada uma determinada resolução o sinal é aproximado e as flutuações no sinal abaixo da escala definida são ignoradas. Quando a resolução é aumentada, os detalhes mais finos são adicionados à descrição do sinal, proporcionando desta forma uma melhor aproximação do sinal.

Este método é utilizado para se obter uma boa resolução temporal e uma pobre resolução em frequência para as altas frequências, e uma boa resolução em frequência e uma pobre resolução temporal para as baixas frequências. Este método é adequado quando o sinal a ser analisado possui componentes de alta frequência para curtas durações e componentes de baixa frequência para longas durações.

Os mapas com os resultados da análise multifractal para identificação de greening no campo, marcados em vermelho, com as planas erradicadas, marcadas em branco e com as plantas ainda saudáveis marcadas como verde podem ser visualizados na Figura 8. Estes resultados foram verificados com inspeções em campo posteriormente.
Figura 8. Mapas de alerta com detecção de Greening durante os meses do experimento de campo
3. Conclusões

O projeto permitiu o estudo e desenvolvimento de várias tecnologias de software e análise para mapeamento e diagnóstico precoce do greening e que pode ser aplicado a outras doenças. A experiência com o experimento em estufa foi muito positiva e serviu para direcionar melhor a pesquisa e corrigir os erros no experimento de campo.

Também, a escolha das ferramentas GVSIG e I3GEO facilitou o desenvolvimento das ferramentas de visualização dos mapas de alerta ou propagação do Greening, tornando viável o uso durante o experimento de campo.

Referências

AGRICULTURA DE PRECISÃO PARA CULTURAS ANUAIS

Fotos: A.V. Resende, A.C.C. Bernardi, Z.N. Brandão, SXC, acervo/arquivo
Aplicações da agricultura de precisão em sistemas de produção de grãos no Brasil

Álvaro Vilela de Resende1, Sandro Manuel Carmelino Hurtado2, Marina de Fátima Vilela3, Edemar Joaquim Corazza4, Luciano Shozo Shiratsuchi5

1Pesquisador, Embrapa Milho e Sorgo, CP 285, CEP 35.701-970, Sete Lagoas-MG
2Eng. Agrônomo, Pós-Doutorando IAC, Bolsista FAPESP, Av. Barão de Itapura, 1481, CP 28, CEP 13.012-970, Campinas-SP
3Pesquisadora, Embrapa Cerrados, CP 08223, CEP 73.310-970, Planaltina-DF
4Pesquisador, Embrapa Informação Tecnológica, Parque Estação Biológica - PqEB - Av. W3 Norte, CP 040315, CEP 70770-901, Brasília-DF
5Pesquisador, Embrapa Agrossilvipastoril, Rodovia MT 222, km 2, CEP 78550-970, Sinop, MT

*E-mails: alvaro.resende@embrapa.br, sandroelbat@gmail.com, marina.vilela@embrapa.br, edemar.corazza@embrapa.br, luciano.shiratsuchi@embrapa.br

Resumo: Os esforços em se adotar técnicas de Agricultura de Precisão (AP) para aprimorar o gerenciamento das propriedades brasileiras produtoras de grãos vêm evoluindo significativamente nos últimos anos. A principal frente de utilização da AP permanece vinculada ao manejo da variabilidade espacial da fertilidade do solo, mediante amostragens georreferenciadas e aplicação de corretivos e fertilizantes a taxa variável. Todavia, a prática tem mostrado que essa abordagem precisa ser aperfeiçoada e adotada corretamente. Nesse sentido, procedimentos complementares que utilizem outras interfaces da AP podem aumentar a segurança na tomada de decisão de manejo da adubação. A perspectiva ideal aponta para uma adoção mais ampla do ferramental disponível buscando agregar informações acerca do sistema de produção como um todo, de modo a se trabalhar no planejamento para maior sustentabilidade em longo prazo. Nessa perspectiva, há que se integrar cada vez mais as tecnologias de automação agrícola, eletrônica embarcada, sensores e sensoriamento remoto, monitoramento espacializado de colheita e de rentabilidade, amostragens direcionadas, além do treinamento de pessoal das fazendas, da assistência técnica compromissada e da formação de massa crítica em pesquisa e educação em AP.

Palavras-chave: variabilidade espacial, manejo sitio-específico, avanço tecnológico, geoprocessamento, tecnologia agrícola, amostragem de solo

Precision agriculture applications for grain crops production systems in Brazil

Abstract: Adoption efforts of Precision Agriculture (PA) techniques to improve the management of grain-based farms in Brazil have increased significantly in recent years. The main approach of the PA usage remains linked to the management of spatial variability of soil fertility through georeferenced sampling and variable rate application of limestone and fertilizers. However experience has shown that this approach needs to be improved and correctly used. In this sense, complementary procedures using other PA interfaces can increase certainty in decision making for nutrient management. The ideal perspective includes a broader adoption of the available tools, seeking to add information about the production system as a whole, aiming long-term sustainability. In this perspective, it is necessary to increase the integration of agricultural automation technologies, embedded electronics, sensors and remote sensing, spatial yield monitoring and profitability, directed sampling, as well as the training of farm staff, a committed technical assistance, and the formation of critical mass in PA research and education.

Keywords: spatial variability, site-specific management, technology advances, geoprocessing, agricultural technology, soil sampling
1. Introdução

Diversas aplicações relativas ao uso de GPS, equipamentos, dispositivos e programas computacionais voltados à obtenção e processamento de dados georreferenciados têm sido associadas à prática da Agricultura de Precisão (AP) em lavouras de grãos no Brasil. Grande parte do interesse do agricultor nesse tema está vinculada à ideia de que as máquinas agrícolas dotadas de acessórios modernos têm mais autonomia e melhor desempenho operacional no campo, aumentando o rendimento do trabalho na propriedade. Assim, a disseminação de práticas agrícolas baseadas em georreferenciamento tem ocorrido principalmente entre os agricultores que cultivam grãos em larga escala, enquanto a maioria dos produtores de pequeno porte ainda não vislumbra possibilidades de usufruir benefícios com a AP.

De qualquer modo, têm se tornado mais comum, no meio produtivo, as referências ao uso de informações espacializadas para melhorar o manejo das plantações. Na prática, os agricultores passaram a atentar para as variações de produtividade nas áreas de cultivo e buscam meios para melhorar o seu desempenho, visando maior rentabilidade.

Dentre as tecnologias ou operações agrícolas referidas como agricultura de precisão, destacam-se a utilização de sistemas de guia do maquinário por satélite e de implementos dotados de monitores e controladores automáticos de fluxo nos aplicadores. Esses dispositivos facilitam sobremaneira a operação e conferem maior eficiência de tráfego e de aplicação de insumos, embora não constituam, por si só, formas de manejo sítio-específico. A principal abordagem sítio-específica praticada no País é, sem dúvida, a tentativa de se definir unidades de manejo para tratamento diferenciado da fertilidade do solo. Um grande número de empresas fabricantes de equipamentos, prestadores de serviços e de consultoria agronômica tem seu foco de atuação voltado para a realização de amostragens georreferenciadas de solo, mapeamento da fertilidade e geração de mapas para aplicação de corretivos e fertilizantes em taxa variável. Contudo, essa estratégia ainda apresenta limitações técnicas que motivam preocupações acerca de sua eficácia agronômica, sendo necessários esforços no sentido de se definir procedimentos de campo e de escritório para integração de informações que possam garantir maior confiabilidade.

Outras formas de obtenção de informações espacializadas para o manejo sítio-específico das lavouras ainda não expressam ampla aceitação e adoção pelos agricultores, seja por serem de implementação mais laboriosa, ou pela maior exigência em processamento de dados, ou mesmo pela falta de atratividade comercial, o que restringe o interesse por parte dos prestadores de serviço em AP. É o caso do sensoriamento remoto, do monitoramento espacializado da produtividade e do registro georreferenciado do histórico dos talhões.

Neste capítulo são apresentadas as principais possibilidades atuais de aplicação da agricultura de precisão em sistemas de produção de grãos no Brasil. Enfatizam-se uma análise crítica da prática de amostragem georreferenciada de solo e aplicação de nutrientes em taxa variável, bem como, alguns meios para torná-la mais criteriosa. São também comentados os avanços da pesquisa brasileira e os gargalos a serem superados para que se ampliem os benefícios da AP no País, incluindo a qualificação de pessoal e valorização do trabalho no campo, além da maior sustentabilidade econômica e ambiental da atividade agrícola.

2. Sistemas de guia e automação agrícola

Algumas aplicações do ferramental de AP têm resultado em benefícios ao agricultor, ao solo e ao ambiente em geral. Algumas dessas aplicações são úteis e atrativas aos agricultores e, por vezes, são utilizadas de forma isolada, sem o propósito claro de estabelecimento da AP no gerenciamento da propriedade. Sistemas de automação de máquinas e equipamentos (ex: sistemas de guia por satélite, piloto automático, mecanismos de regulagem e controladores de fluxo de sementes, fertilizantes e defensivos) e de coleta de dados (ex: sensores de desempenho de aplicadores de insumos, sensores de medição e registro das variáveis meteorológicas) não são propriamente dispositivos de agricultura de precisão, pois, por si só não permitem o manejo sítio-específico das
Agricultura de precisão: resultados de um novo olhar

Sistemas de posicionamento por satélite, como dispositivos de guia (barra de luz) e piloto automático permitem o deslocamento preciso de máquinas como semeadoras, pulverizadores e colhedoras, contribuindo para maior rendimento operacional e eficiência nas operações mecanizadas de semeadura, tratos culturais e colheita. Como resultado, criam-se oportunidades para otimização da frota agrícola, economia de tempo, combustível, redução do desperdício de defensivos e controle de tráfego nas lavouras, amenizando os problemas de compactação do solo e de contaminação ambiental.

O advento das inovações relacionadas à automação agrícola se tornou um diferencial de eficiência na rotina das fazendas, incrementando marcadamente o rendimento operacional, ao viabilizar inclusive operações noturnas, com melhor utilização da mão-de-obra disponível e eliminação de alguns processos sujeitos a falhas decorrentes de fadiga física dos funcionários, como por exemplo o monitoramento visual de semeadoras-adubadoras. Por outro lado, essa nova realidade evidenciou a carência de mão-de-obra qualificada para operar o maquinário de última geração com todos os seus dispositivos eletrônicos e a falta de orientação dos fornecedores dos equipamentos na pós-venda.

3. Manejo fitossanitário

Os maiores avanços da AP no manejo de plantas daninhas, pragas e doenças em sistemas de produção de grãos estão ligados à melhoria no controle e na qualidade das aplicações de defensivos, com benefícios ambientais evidentes. Basicamente, a evolução dos equipamentos com a inclusão de dispositivos de posicionamento por satélite e dosadores eletrônicos permite um controle mais efetivo do fluxo de calda nos bicos de pulverização, mantém taxa de deposição constante independente de variações na velocidade de deslocamento, além de eliminar os riscos de sobreposição e de aplicação em áreas não-alvo. Evita-se assim o desperdício de produtos fitossanitários e minimiza-se a contaminação ambiental.

O sistema de piloto automático permite deslocamento preciso do pulverizador em passadas paralelas. Associando-se a delimitação prévia dos contornos do talhão com a utilização de controlador automático dos segmentos da barra de pulverização, os bicos são desligados quando parte da barra passa sobre áreas fora da zona de cultivo ou quando há sobreposição de faixas de aplicação. Outros avanços em eletrônica e equipamentos acopláveis permitem obter dados de condições climáticas (umidade, temperatura e velocidade do vento) em tempo real, de modo a alertar o operador sobre condições desfavoráveis para a aplicação ou de necessidade de ajustes operacionais para maior eficiência. É possível, ainda, gerar registros das pulverizações realizadas permitindo a avaliação de desempenho dessas operações. A racionalização do uso de defensivos pode ser um dos benefícios mais importantes da AP, visto que há uma tendência em se associar programas de qualidade ambiental no processo de agregação de valor aos produtos agrícolas. Esse enfoque poderá tornar-se mais relevante para o agricultor do que a possibilidade de retorno econômico imediato dos investimentos nas ferramentas de AP (ANTUNIASSI, 2012).

4. Aplicação de corretivos e fertilizantes em taxa variável

A prática de AP mais disseminada no Brasil atualmente consiste da amostragem de solo georreferenciada para o mapeamento da fertilidade dos talhões de cultivo, seguida da prescrição e aplicação de corretivos de acidez e de fertilizantes em quantidades que variam de acordo com a condição de fertilidade em cada local dentro da lavoura, tratando-se, portanto, de aplicações em taxa variável. Em princípio, espera-se que esses procedimentos resultem no uso mais eficiente de corretivos e fertilizantes, uma vez que o solo dentro da lavoura não é homogêneo e, consequentemente, os requerimentos de correção da acidez e de adubação variam de um local para outro.
A partir de amostragens georreferenciadas são gerados mapas diagnósticos dos diferentes atributos de solo. A obtenção desses mapas baseados num número limitado de pontos amostrais requer métodos de interpolação que assegurem uma informação mais próxima possível da realidade. Uma vez obtidos os produtos dessa interpolação, por exemplo, mapas de disponibilidade de potássio (K) e de saturação por bases (V%), é possível elaborar outros mapas que contenham a prescrição das quantidades de fertilizantes e corretivos necessários em diferentes partes do talhão, a fim de garantir melhor desempenho dos cultivos. Vários equipamentos disponíveis no mercado brasileiro já apresentam dispositivos eletrônicos que reconhecem os mapas de prescrição e mecanismos que ajustam automaticamente as dosagens de insumos à medida que se deslocam na área a ser manejada a taxa variável.

Áreas muito expressivas de culturas anuais nas principais regiões produtoras já receberam aplicação de corretivos e fertilizantes a taxa variável. O impacto mais imediato desse tratamento diferenciado das lavouras tem sido a possibilidade de economia de insumos comparativamente ao manejo tradicional, no qual se utilizam dosagens uniformes em área total baseadas na condição média de fertilidade do talhão. Apesar de certa euforia observada entre os agricultores, impulsionada pelas vantagens econômicas imediatas e pela intensa propaganda difundida pelas empresas prestadoras de serviços de AP, nem sempre se comprovam os benefícios agronômicos esperados.

5. Limitações do manejo da fertilidade do solo no modelo atual de AP

O manejo com base na amostragem do solo em grade (grid) e aplicações de corretivos e de fertilizantes em taxa variável, como praticado no Brasil, caracteriza um modelo que ainda precisa ser aprimorado. Após vultosa disseminação desses procedimentos nas regiões produtoras de grãos, se constatam indícios de frustração em parte dos agricultores usuários, que não se vêem estimulados à utilização continuada desse tipo de serviço, normalmente prestado por terceiros. Tal situação denota que há imperfeições na forma de execução do serviço, que as particularidades de cada propriedade ou talhão são condicionantes da eficiência dessa abordagem, ou ainda, que as expectativas de benefícios criadas pelo marketing em AP estão além do que a realidade dos sistemas de produção permite auferir.

As pesquisas para definição do tamanho de célula da grade amostral têm indicado a necessidade de um grande número de pontos amostrais com o intuito de captar a variabilidade do solo nas lavouras (COELHO, 2003; MACHADO et al., 2004; RESENDE et al., 2006; GIMENEZ; ZANCANARO, 2012). No entanto, o elevado custo de amostragem e das análises de fertilidade do solo, tem demonstrado incompatibilidade do rigor científico com o trabalho em escala comercial. Comercialmente, tem-se buscado trabalhar com células de área entre 2 e 5 hectares. Mesmo respeitando os princípios da geoestatística, procurando-se trabalhar com um número superior a 50 pontos amostrais, nem sempre se consegue obter mapas que representem a variabilidade espacial de um talhão. Assim, talhões com dimensões superiores a 200 ha, comuns na região do Cerrado, poderão contar com um número razoável de pontos amostrais ao se empregar grades com células de área superior a 4 hectares, porém, sem garantia de confiabilidade para os fins agronômicos pretendidos.

Num Latossolo Vermelho Amarelo em Planaltina de Goiás - GO, Resende et al. (2006) estudaram amostragens do solo numa lavoura de 97,5 ha considerando células variando de 0,25 a 9,0 ha. Os resultados mostraram viabilidade geoestatística para mapeamento dos principais atributos de fertilidade quando consideradas células com dimensões não maiores do que 2,25 ha (150m × 150m). Para grades amostrais com tamanhos de célula de até 4 ha foi possível detectar dependência espacial para os atributos matéria orgânica, K, Ca e Mg. No caso do P, obteve-se dependência espacial apenas quando se utilizou a amostragem mais densa (malha de 0,25ha). A literatura brasileira tem comprovado que, em geral, a textura, matéria orgânica, pH, K, Ca e Mg apresentam maior continuidade espacial do que o P e os micronutrientes (COUTO; KLAMT, 1999; SANTOS et al., 2001; MONTEZANO et al., 2006;
Agricultura de precisão: resultados de um novo olhar

Agricultura de precisão: resultados de um novo olhar (RESENDE et al., 2010). Via de regra, a quantidade de amostras que seria satisfatória geoestatisticamente costuma ser inviável nas condições de lavouras comerciais. A divisão do talhão em grade com células de tamanho variável vem sendo empregada para amostragens de solo pelas empresas prestadoras de serviços em AP no Brasil. Antes de uma definição baseada em alguma informação preliminar sobre o grau de homogeneidade das áreas a serem amostradas, a escolha do tamanho de célula ou malha amostral tem sido atrelada à negociação de preço a ser cobrado pelo serviço. Como forma de baixar custos, é frequente o uso de amostragem de baixa densidade.

Outro aspecto a destacar é que, na maioria das áreas em que o manejo da fertilidade se dá com fornecimento de insumos a taxa variável, tal operação é realizada com equipamentos que fazem distribuição dos produtos a lanço na superfície do solo (distribuidores centrífugos). Em geral, os sistemas de distribuição montados nos aplicadores disponíveis no mercado nacional apresentam deficiências quanto à uniformidade de aplicação, o que é agravado pela variação granulométrica presente nos corretivos e fertilizantes. Dessa maneira, o refinamento buscado com a tecnologia de AP acaba prejudicado também na etapa de aplicação dos insumos nas lavouras (GIAMONTE; ZANCARO, 2012). Portanto, há que se considerar a necessidade de aperfeiçoamento, desde os critérios para a definição da estratégia de amostragem de solo, a variabilidade espacial e temporal do talhão (RESENDE et al., 2010).

Ou seja, para P e micronutrientes há maior probabilidade de não se encontrar dependência espacial em amostragens pouco densas. Desse modo, é importante salientar que, dependendo do atributo em estudo, um aumento na área da célula amostral pode inviabilizar ajustes geoestatísticos para a elaboração de mapas confiáveis.

Em princípio, a descrição do comportamento espacial por meio da geoestatística constitui uma abordagem eficiente para atributos cuja variabilidade depende essencialmente de processos naturais (ex: aqueles associados às características de formação do solo, como a textura e a mineralogia) e que tendem a permanecer estáveis ao longo do tempo. Existem complicações que tornam mais complexa a caracterização da variabilidade espacial do solo em áreas agrícolas, especialmente no caso da fertilidade química do solo (ex: teores dos nutrientes). A distribuição espacial de locais que tiveram os teores de nutrientes alterados por falhas ou desuniformidade no manejo nutricional (calagem, adubação) das culturas é aleatória, implicando em descontinuidade no padrão de variabilidade dos nutrientes. Exemplos desse tipo de interferência ocorrem quando corretivos da acidez são distribuídos por mecanismos centrifugos em condições inadequadas de aplicação e quando os terraços das áreas de cultivo são desmanchados com remoção da camada superficial mais fértil (VILLELA et al., 2006). Amostras coletadas em locais muito discrepantes da lavoura e sem expressão em termos de área (“outliers”) influenciam no procedimento de interpolação e podem distorcer os mapas de fertilidade. Com as adubações (e suas falhas) a cada cultivo, acumulam-se interferências que levam à modificação dos padrões de variabilidade numa mesma área ao longo do tempo. Assim, dificilmente os padrões espaciais encontrados para os atributos de fertilidade química do solo numa área são extrapoláveis para outras ou se mantêm inalterados com o passar do tempo. Decorre então que, o ponto chave para a AP no manejo de solo deve ser o monitoramento do talhão numa perspectiva de ajustes contínuos ao longo do tempo, utilizando-se não apenas de amostragens periódicas de solo, mas de toda ferramenta que agregue e permita detalhar informações sobre
até a tecnologia de distribuição de corretivos e fertilizantes em taxa variável.

O caso particular da aplicação de fósforo a taxa variável em superfície constitui uma prática temerária, pois, o comportamento típico deste nutriente em termos de dinâmica no solo cria uma problemática que acentua os desafios para seu manejo sitio-específico e aumenta os riscos ambientais dessa modalidade de adubação. As principais implicações da disposição do fósforo na superfície decorrem da sua baixa mobilidade no solo, que propicia forte efeito residual das adubações, alta variabilidade espacial induzida pelo manejo agrícola e consequente problema de amostragem, dificuldade de o nutriente chegar até as raízes das culturas e maior risco de carreamento para os cursos d'água e eutrofização dos mananciais (RESENDE, 2011).

Comparada ao sistema de manejo tradicional com correção e adubação realizadas de maneira uniforme nas lavouras, em que muitas vezes o produtor nem sequer faz uso de resultados de análise do solo para definir as quantidades a serem aplicadas, a agricultura de precisão já de início proporciona um maior detalhamento de informações pela amostragem georreferenciada. Nesse cenário, são previsíveis os benefícios das aplicações em taxa variável. Assim, tem sido frequentes ganhos imediatos devido à adoção da AP, traduzidos em economia de insumos e, em casos mais esporádicos, melhoria da produtividade. Ou seja, gasta-se menos calcário e fertilizantes a taxa variável do que numa dosagem média fixa (MENEGATI et al., 2006; SOUZA et al., 2007; CAMPOS et al., 2008; COELHO, 2008; LUZ e al., 2010), na qual é maior o risco de se fornecer quantidades sub ou superestimadas em diferentes partes do talhão.

Outra situação comum é a constatação, nos mapas de fertilidade, de que o solo apresenta disponibilidade considerada alta ou muito alta para P e K. Tal situação vem ocorrendo em áreas sob plantio direto e adubadas há vários anos nas regiões Centro-Sul do país. Também nesse caso, a vantagem mais óbvia da AP é a de indicar oportunidades para redução na adubação, sem perdas de produtividade (HURTADO et al., 2008).

Questionamentos que permanecem diante do modelo atual de AP em fertilidade do solo no Brasil são os seguintes: 1) Quais as implicações do manejo de corretivos e fertilizantes a taxa variável em termos de homogeneização e estabilização dos teores de atributos do solo e da produtividade das culturas em médio e longo prazo? 2) Como é improvável a continuidade dos ganhos econômicos auferidos nas primeiras intervenções com AP nos talhões, qual deve ser a frequência ideal de amostragem de solo e do manejo sítio-específico da adubação, tendo em vista a economicidade? 3) Quais procedimentos devem constituir um protocolo aprimorado, que permita maior confiabilidade nos processos de amostragem de solo, de geração de mapas diagnósticos interpolados e de aplicação a taxa variável de insumos?

6. Perspectivas de aprimoramento no manejo da adubação em taxa variável

No que se refere à fertilidade do solo, a AP tem grande potencial de desenvolvimento, mas ainda envolve elevados custos com análises de solo. A variabilidade do solo detectada num talhão precisa ser agronomicamente relevante, a fim de que justifique o manejo localizado, evitando a realização de intervenções diferenciadas inócuas ou desnecessárias. Nesse quesito, técnicas que permitam otimizar o esforço amostral, mantendo a confiabilidade na recomendação do manejo sítio-específico vem sendo demandadas. Atualmente no Brasil, a identificação da variabilidade espacial das lavouras tem focado diretamente a realização de amostragens georreferenciadas de solo para mapeamento da sua fertilidade e posterior manejo diferenciado, sem integração com outros tipos de informação georreferenciada sobre o talhão. Embora o uso da AP possa resultar inicialmente em economia advinda das aplicações diferenciadas de corretivos e fertilizantes, salienta-se que, a sustentabilidade financeira no uso dessa ferramenta ao longo do tempo depende do constante aperfeiçoamento do seu ciclo como um todo (amostragem de solo, mapeamento, tomada de decisão de manejo, aplicações a taxa variável, monitoramento do solo e das culturas, aferição de desempenho e reorientação quando necessário) e não apenas da prática isolada de algumas das etapas constituintes.
É sabido que a produtividade em diferentes partes de uma lavoura depende de características do terreno (posição no relevo, tipo de solo, textura, capacidade de retenção de umidade, etc) que interagem ou influenciam na fertilidade química do solo. Portanto, um diagnóstico preliminar das causas de variação da produtividade possibilita direcionar a amostragem, reduzir o número de pontos de coleta e otimizar custos, além de melhorar a qualidade das informações expressas nos mapas de fertilidade e aumentar a confiabilidade na tomada de decisão quanto ao manejo localizado da adubação.

A identificação de zonas de manejo ou subáreas com uma combinação homogênea de fatores potencialmente limitantes da produtividade (MOLIN, 2002; SANTOS et al., 2003; LUCHIARI JUNIOR, 2004; MOLIN; CASTRO, 2008; CAMPOS et al., 2009; SANTI et al., 2012) pode ser considerada uma estratégia viável para o manejo localizado, em função do seu caráter permanente e possibilidade de manejo individualizado (MOLIN; CASTRO, 2008). Características topográficas, cor do solo, atributos físicos, drenagem, espessura do horizonte A, dados de sensoriamento remoto (imagens de satélite e fotografias aéreas), mapas de produtividade e histórico da área, além de critérios conjugados, podem nortear de maneira mais consistente locais para amostragens de interesse e a delimitação das zonas de manejo.

Nesse sentido, o desenvolvimento de sensores para mapeamento de determinados atributos do solo mostra-se promissor na identificação de zonas de manejo, possibilitando num futuro próximo, simplificar as amostragens atualmente realizadas ou até mesmo dispensá-las. Entre os sensores que poderão vir a direcionar as amostragens tem-se o sensor de condutividade elétrica do solo. O fato de a condutividade elétrica apresentar alta correlação com a composição granulométrica (textura) poderá possibilitar, indiretamente, o estabelecimento de relações também com a capacidade de troca de cátions, o teor de matéria orgânica e a capacidade hídrica do solo. Outros sensores em desenvolvimento no exterior merecem destaque pelo fornecimento de leituras instantâneas de pH. Sensores baseados na resposta espectral do dossel de plantas numa lavoura já vêm sendo adotados no exterior e em fazendas pioneiras no Brasil e permitirem identificar zonas de vigor contrastante e direcionar amostragens de solo.

Um subsídio de grande relevância à delimitação de zonas homogêneas para amostragem direcionada do solo é a identificação de subáreas de produtividade diferenciada dentro dos talhões. Sobre esse aspecto, Amado et al. (2007) verificaram que a cultura do milho foi mais eficiente do que a soja em evidenciar as variações de produtividade existentes. Infelizmente, a maioria dos agricultores não atenta para detecção dessas variações de produtividade nas lavouras. Dada a quantidade de mensurações realizadas pelos sensores de produtividade das colhedoras, cerca de um registro a cada dois segundos, o mapa de produtividade devidamente gerado constitui informação extremamente detalhada e confiável.

Raramente se verifica alta correlação entre um fator de produção isolado, seja ele edáfico ou não, com a produtividade. Assim, os fatores de produção relacionados à fertilidade do solo e manejáveis com uso de corretivos e fertilizantes compõem apenas uma parcela dos condicionantes da produtividade final de uma lavoura. Em lavouras relativamente bem conduzidas, a limitada contribuição dos componentes da fertilidade química do solo se comprova nas baixas correlações observadas entre dados espacializados de análises de solo e foliares com a produtividade das culturas (RESENDE et al., 2005; MONTEZANO et al., 2006, 2008; VIEIRA JÚNIOR et al., 2006; DURIGON et al., 2009; SANTI et al., 2009; SOUZA et al., 2010). Por outro lado, atributos físicos do solo como textura, densidade, porosidade e capacidade de armazenamento de água (AMADO et al., 2007, 2009; SÁ et al., 2008; ROSA FILHO et al., 2009; SANTI et al., 2012) podem ter grande importância relativa na determinação da produtividade, mas nem sempre são considerados na AP. Esses fatos reforçam a necessidade de se trabalhar com uma abordagem interdisciplinar, tanto na pesquisa quanto na aplicação da AP, visando melhor aproveitar o seu potencial na busca de maior eficiência no gerenciamento da produção agrícola.

Num trabalho de mais longo prazo focando o mapeamento de colheitas, Santi (2007) relativizou as produtividades observadas com referência à média do talhão, durante seis safra envolvendo as culturas de soja, milho e trigo no
Rio Grande do Sul. Ao integrar os mapas das seis safras, o autor identificou zonas que na verdade representam ambientes de potencial produtivo diferenciado e estáveis temporalmente. Esse tipo de informação abre oportunidades concretas de se realizar o manejo sitio-específico não só da fertilidade do solo, mas também de outras práticas culturais importantes na formação da produtividade final das culturas, como o ajuste na taxa de semeadura visando uma população de plantas que proporcione maior rentabilidade em cada ambiente de produção. Outro exemplo de planejamento inteligente foi trabalhado por Campos et al. (2009), ao associarem o modelo digital de elevação do terreno com o mapeamento de atributos físicos e químicos do solo para separar ambientes de produção e, assim, definir o manejo diferenciado da adubação e a alocação de cultivares de cana-de-açúcar num talhão de 505 hectares. Com esse mesmo objetivo, a utilização de técnicas multivariadas, como a obtenção de agrupamentos ou clusters, poderá ser importante aliada no gerenciamento agrícola.

Uma desvantagem da delimitação espacial de ambientes de produção/zonas de manejo sem um critério técnico consistente é que, dependendo do tamanho da propriedade, aumenta-se a demanda gerencial para manejarm talhões subdivididos, havendo necessidade de mais históricos detalhados. Por exemplo, é comum no estado do Mato Grosso produtores com mais de 50 talhões. Nesse caso, hipoteticamente, ao se criar três zonas de manejo em cada talhão, multiplica-se o esforço gerencial para acompanhamento do histórico, dificultando o trabalho com zonas de manejo. Neste sentido, quando se mapeia atributos temporalemente estáveis como textura, elevação do terreno, capacidade de retenção de água e até mesmo matéria orgânica, com utilização de sensores, fica mais fácil este gerenciamento e delineamento espacializado em sistemas de informação geográfica.

Em relação às alternativas de disposição de fertilizantes em taxa variável, espera-se que a indústria de máquinas e implementos prossiga na busca de melhorias constantes de eficiência de aplicação. Na agricultura de larga escala, em especial na região do Cerrado, a expectativa de maior rendimento operacional tem direcionado as escolhas do agricultor no momento de adquirir o maquinário. Muitas vezes, a eficiência técnica das operações agrícolas tem sido posta de lado ao se optar por práticas que confirmam maior agilidade na condução de lavouras de grande extensão. Tendência recente é a compra de semeadoras de grande porte, sem distribuidores de adubo, que permitem alto rendimento na semeadura, mas implicam na aplicação antecipada do adubo de plantio. Assim, o uso de equipamentos para distribuição superficial de fertilizantes continuará atrelado ao manejo de grande parte das áreas destinadas aos sistemas de produção de grãos no Brasil. Contudo, também existem modelos de semeadora destinadas a realizar adubação em taxa variável incorporada no sulco de semeadura e a aferição de sua eficiência deve ser considerada nas ações de pesquisa.

7. Utilização de sensores

Uma solução alternativa às amostragens intensivas normalmente necessárias ao trabalho com informações espacializadas consiste da identificação de subáreas homogêneas ou zonas de manejo nos talhões, a partir de informações advindas do histórico de uso, da topografia local, da produtividade das culturas ou do uso de sensores. Nesse sentido, auxilia-se a obtenção direcionada de informações, com foco no manejo sitio-específico.

O uso de sensores diretos ou remotos, conforme haja ou não contato físico com o objeto alvo, tem denotado grande potencial de aplicação no manejo das lavouras. São exemplos de sensores os utilizados na determinação da produtividade das culturas, do pH do solo, dos teores de matéria orgânica, da condutividade elétrica, da umidade volumétrica do solo e do status de nitrogênio em plantas, assim como os sensores de múltiplos propósitos instalados em satélites orbitando a Terra.

No Brasil, parte expressiva dos estudos com sensores têm focado melhorias na definição da adubação nitrogenada (COELHO; INAMASU, 2008; POVH et al., 2008; GROHS et al., 2009; MOTOMIYA; MOLIN; CHIAVEGATO, 2009; FIORIN et al., 2010, SHIRATSUCHI et al., 2011). Entre os sensores de uso direto destaca-se a utilização de medidor do teor relativo de clorofila.
ou clorofilômetro, visando à identificação de deficiências de N e sua possível correção durante o ciclo das culturas (HURTADO et al., 2011). O clorofilômetro é bastante confiável pela alta correlação entre as leituras da concentração relativa de clorofila e os teores foliares de N. Quando determinadas em grade amostral adequada, as leituras possibilitam a geração de informações espacializadas sobre o estado nutricional das lavouras (HURTADO et al., 2009). Contudo, o pós-processamento necessário à geração dos mapas de recomendação reduz a praticidade da ferramenta para utilização em larga escala, onde se prioriza a rapidez na identificação e correção de zonas deficientes em nitrogênio.

Nesse contexto, um avanço importante foi a disponibilização de sensores multiespectrais. Quando acoplados a veículos agrícolas, esses sensores podem viabilizar de maneira ágil a obtenção de informações espacializadas sobre o estado nutricional das lavouras em relação ao nitrogênio. Se associados a equipamentos dotados de controladores de aplicação em taxa variada de fertilizantes, possibilitam o redimensionamento de dosagens de N em tempo real, durante as adubações de cobertura. No Brasil, a utilização desse tipo de sensor encontra-se em fase de testes, com foco em culturas gramíneas, principalmente, a cana-de-açúcar (AMARAL; MOLIN, 2011), o milho (POVH et al., 2008; SHIRATSUCHI et al., 2011) e o trigo (POVH, et al., 2008; GROHS et al., 2011). O desempenho de sensores multiespectrais fundamenta-se na correlação entre nutrição nitrogenada e a intensidade da coloração verde das plantas, por meio do fornecimento do índice de vegetação por diferença normalizada (NDVI). Desse modo, pode-se relacionar as leituras com os níveis de adubação nitrogenada, conteúdo de N foliar e produtividade (MOLIN, 2010).

Sensores multiespectrais podem ser também embarcados em plataformas orbitais, permitindo a obtenção de imagens de alvos terrestres com diferentes graus de precisão ou resoluções espacial, espectral e temporal. As imagens obtidas são tratadas calculando-se o NDVI a partir de sensores com resolução espectral nas bandas do vermelho e do infravermelho próximo, contribuindo para a identificação de zonas de manejo nas lavouras. A partir dessas imagens, são possíveis inferências sobre atributos do solo, como a matéria orgânica.

O comportamento espectral da matéria orgânica em diferentes tipos de solo pode ser também avaliado com o uso do espectrorradiômetro, capaz de obter registros com uma alta resolução espectral (GENU; DEMATTÉ, 2012).

No mercado internacional são encontrados ainda sensores para a determinação do pH do solo de modo bem detalhado. Esse tipo de sensor pode ser associado a equipamentos coletores de dados de condutividade elétrica do solo, como por exemplo o Veris pH, que faz determinações georreferenciadas do pH a cada quatro segundos, adquirindo grande número de registros por unidade de área, o que permite gerar mapas confiáveis e muito detalhados do atributo.

8. Qualidade física do solo

A obtenção de informações sobre atributos químicos do solo deve ser, sempre que possível, complementada com dados de atributos físicos, por sua interação influenciar fortemente o desenvolvimento e a produtividade das culturas. Entretanto as avaliações tradicionais de atributos físicos em alta densidade amostral no campo são geralmente trabalhosas e demoradas, o que desestimula sua adoção rotineira pelos técnicos e agricultores.

Diversas operações agrícolas são realizadas em dependência do estado hídrico do solo tais como, o controle de umidade para a realização de irrigações, a aferição de dados de resistência à penetração do solo ou a realização de trabalho com maquinário agrícola buscando minimizar a compactação. Nesse enfoque, podem ser empregados sensores que possibilitam estimar o conteúdo de umidade do solo, com base na reflectometria do domínio do tempo (TDR), e permitem a obtenção de leituras por meio de hastes de diferentes comprimentos instaladas em equipamentos portáteis. Se utilizados numa malha amostral, podem ser construídos mapas de estado hídrico do solo, subsidiando o gerenciamento agrícola na abordagem de AP.

A granulometria apresenta importância ao permitir explicar a relação existente entre a porosidade e a parte sólida do solo. Vinculado à porosidade, o conhecimento da estrutura do solo permite associar os impactos do comportamento
físico-hídrico e da fertilidade do solo na produtividade das culturas. O seu mapeamento, a partir da amostragem em malha, permite melhorar o gerenciamento por zonas. O estudo da estrutura do solo pode ser ampliado a partir da obtenção de amostras indeformadas, mediante a determinação da densidade do solo, da macroporosidade, microporosidade e porosidade total, além da determinação da curva característica de retenção de água no solo. Aqui, as leituras obtidas pelo uso de TDR são de grande valia, sobretudo, quando correlacionadas às informações de produtividade das culturas.

Informações sobre a estrutura do solo em diferentes profundidades podem ser obtidas, ainda, a partir das leituras da condutividade hidráulica e infiltração da água no solo. Esses dados podem ser gerados em laboratório, após a amostragem de solo indeformado, e a campo, por meio do uso de permeímetros, como o de carga constante modelo IAC (VIEIRA, 1998). Esses últimos possibilitam o mapeamento dos dados e a sua correlação com os demais atributos do solo, quando coletados em grade amostral.

Boas produtividades estão intimamente vinculadas ao estado hídrico do solo, com forte influência do tipo de estrutura e as suas possíveis alterações em função do manejo adotado em áreas agrícolas. Assim sendo, uma forma prática de mapear o potencial produtivo das lavouras é se conhecendo o estado de compactação do solo, a partir das leituras de resistência à penetração. O atributo apresenta relação inversa com a proporcão do espaço poroso no solo, indicando para cada cultura, valores representativos da força de impedimento no qual o crescimento radicular pode ser limitado. A obtenção desses dados é simples e pode ser realizada a diferentes profundidades ou de forma contínua, por meio de penetrômetros de impacto ou hidráulicos, respectivamente, tendo como ressalva a necessidade de obtenção dos teores de umidade do solo in loco.

Os medidores da condutividade elétrica (CE) do solo por indução eletromagnética têm sua utilidade destacada pela rapidez na obtenção da informação, pela capacidade de detecção de CE em maior profundidade no perfil, assim como pela possibilidade de correlacionar os dados com outros obtidos para atributos granulométricos, de umidade e de presença de sais no solo. Quando utilizados dispositivos portáteis, a informação pode ser registrada para cada um dos pontos constituintes das malhas amostrais, permitindo a geração de mapas por interpolação. Ainda, quando acoplados a tratores equipados com coletores de dados e de posicionamento geográfico, possibilitam o registro de forma contínua, aumentando muito a densidade de informação espacializada sobre a CE. Em princípio, ao se mapear indiretamente zonas de textura distinta a partir da CE, é possível estabelecer associações também com a capacidade de troca de cátions, teor de matéria orgânica e capacidade hídrica do solo. Tais informações têm valor na detecção de subáreas homogêneas nos talhões, visando reduzir o número de amostras de solo necessárias para caracterizar sua fertilidade. No Brasil, trabalhos de pesquisa vêm sendo conduzidos objetivando adaptar e validar a utilização de medidores de CE às características e propriedades dos solos tropicais (MACHADO et al., 2006; MOLIN; CASTRO, 2008). O uso desse tipo de sensor tende a tornar-se mais rotineiro na identificação de subáreas de atributos físicos contrastantes dentro dos talhões de cultivos.

9. Mapeamento de produtividade

No Brasil, a inserção da AP criou uma primeira expectativa a partir da geração de mapas de produtividade, possibilitado pelo uso do GPS e dos sensores de impacto e umidade acoplados às colhedoras. Embora apresente uma informação consistente sobre o potencial produtivo das lavouras, o uso dessa ferramenta ainda não foi amplamente disseminado no País, em parte, devido à falta de suporte das empresas fornecedoras desse tipo de equipamento, mas, também, por alguma dificuldade no processamento pós-coleta dos dados e mesmo pelo desconhecimento de sua relevância por consultores agrícolas e produtores. De fato, o trabalho com o monitor de produtividade requer atenção para uma adequada calibração dos sensores. Caso contrário, os mapas resultantes podem acusar situações que não condizem com a realidade produtiva dos talhões.

Um levantamento criterioso de tendências de zonas homogêneas de potencial produtivo,
a partir de mapas de produtividade de algumas safras, pode permitir o direcionamento inteligente da etapa de amostragem de solo num talhão. É preciso levar em consideração que os mapas de produtividade são o resultado da interação e atuação conjunta dos fatores de produção (ligados ao solo, planta e ambiente) nas lavouras. Mapas de produtividade de milho e soja para um mesmo talhão podem divergir quanto às suas tendências de variabilidade. Sobre esse aspecto, Amado et al. (2007) verificaram que a cultura do milho foi mais efetiva do que a soja em evidenciar variações de produtividade numa área de cultivo.

A efetiva funcionalidade dos sensores de produtividade acoplados às colhedoras possibilita a elaboração de mapas de colheita e a visualização do desempenho produtivo das culturas em diferentes locais dentro de cada talhão, representando informação de extrema relevância para o registro de histórico das áreas (SANTI et al., 2009) e o estabelecimento de zonas de manejo. Estimativas grosseiras do rendimento físico das culturas pouco contribuem para o aprimoramento do manejo, sobretudo porque a produtividade média de um talhão não expressa o grau de variabilidade espacial e temporal em diferentes partes da lavoura.

10. Semeadura em taxa variável

A agricultura de precisão evolui no sentido de maximizar a rentabilidade das áreas de cultivo conforme seu potencial de retorno aos investimentos em insumos e manejo. Nessa perspectiva, um procedimento importante é o ajuste da população de plantas que promova melhor desempenho da cultura, conforme características favoráveis ou limitantes dos diferentes ambientes de cultivo eventualmente presentes dentro de um mesmo talhão. A disponibilização de semeadoras aptas a operar com taxa variável de distribuição de sementes representa uma flexibilidade que pode ser conveniente ao agricultor, principalmente devido ao fato de o gasto com sementes apresentar participação expressiva no custo de produção das lavouras atualmente. Em princípio, para a cultura do milho, uma maior população de plantas pode ser vantajosa em ambientes de alta fertilidade e com boa disponibilidade hídrica, ao passo que uma menor densidade de plantas seria recomendável em ambientes mais restritivos. Para a soja essa estratégia se inverte, pois uma alta densidade de plantas em área com elevada fertilidade induz ao acamamento da cultura em virtude do excessivo crescimento vegetativo e estiolamento, ao passo que, num ambiente menos favorável, uma maior população pode compensar a limitação de crescimento das plantas. Todavia, ainda são incipientes os trabalhos com semeadura em taxa variável no Brasil e a validação dessa técnica deverá ser realizada estabelecendo-se claramente as variáveis edafoclimáticas e de manejo que condicionam sua eficiência técnica para cada cultura.

11. Necessidade de qualificação de pessoal

A Embrapa considera estratégico o estudo integrado em AP e vem procurando fomentar um esforço nacional de pesquisa interdisciplinar em sistemas de culturas anuais e perenes de diferentes regiões do país, promovendo a interação entre unidades da Embrapa, universidades, empresas de máquinas e implementos, prestadoras de serviços, cooperativas agrícolas, técnicos e produtores.

Existem hoje equipamentos, softwares e empresas prestadoras de serviços que podem apoiar o produtor na coleta e processamento de dados sobre solo, clima e culturas. Esses registros podem ser armazenados e analisados ao longo do tempo, permitindo ajustes gradativos nas operações da fazenda e no manejo das lavouras.

Obstáculos ainda são impostos pela carência de pesquisas para adaptação e validação tecnológica considerando as características dos sistemas de produção, precariedade da assistência técnica por parte dos fornecedores de máquinas e equipamentos, escassez de pessoal especializado para consultoria agronômica em AP e, especialmente, falta de mão-de-obra treinada nas fazendas brasileiras (PIRES et al., 2004; SILVA; MORAES; MOLIN, 2010). Como ações que têm contribuído para aumentar o nível de treinamento e o quantitativo de pessoas aptas a exercer atividades relacionadas ao desenvolvimento e aplicação da AP cabe destacar: 1) a oferta de disciplinas e mesmo cursos
de graduação e de pós-graduação em algumas universidades, voltados à formação de recursos humanos especializados em AP; 2) o surgimento de grupos de pesquisa em diferentes regiões produtoras do País; 3) iniciativas de organizações de produtores e cooperativas envolvendo validação e esclarecimento acerca de tecnologias disponíveis aos agricultores; 4) estímulo da Embrapa à integração e ampliação da competência científica mediante a formação de rede de pesquisa e difusão de tecnologias, incluindo o treinamento de pessoal externo via participação de bolsistas de diversas agências financiadoras; e 5) atuação do SENAR no desenvolvimento de cursos especificamente focados em tecnologias de AP e direcionados à capacitação de pessoal das fazendas em âmbito nacional.

12. Considerações finais

De modo geral, o produtor brasileiro está cada dia mais bem informado e busca inovações que possam facilitar a sua rotina de trabalho e aumentar a rentabilidade da sua atividade. Concomitantemente, existe oferta cada vez mais diversificada de equipamentos e tecnologias para os diversos setores da agropecuária. Ao experimentar inovações, os produtores naturalmente são induzidos a melhorar seu nível gerencial, tornando-se mais preparados e competitivos. Essa tendência deverá ser reforçada diante do papel destacado que o País terá no abastecimento mundial de alimentos nas próximas décadas.

A agricultura de precisão é uma abordagem que permite agregar informações para melhor (re)conhecimento e domínio das unidades produtivas, sendo adequada aos produtores que vislumbrem retornos de longo prazo, decorrentes da adoção continuada da AP. O acúmulo de informações sobre a evolução dos talhões numa perspectiva espacial e temporal constitui um subsídio essencial na busca de aprimoramento constante do gerenciamento da moderna propriedade agrícola. Informações georreferenciadas de qualidade, devidamente processadas, são a chave para o acompanhamento do desempenho da propriedade e para o diagnóstico que direciona o aprimoramento gerencial. Logicamente que essa não é uma abordagem trivial. O produtor que deseja praticar a AP em sua plenitude precisa se cercar de profissionais capazes de prestar serviços técnicos e assessoramento agronômico de qualidade.

A AP aplicada de forma correta deve permitir melhor gerenciamento dos processos de produção agrícola, de modo a torná-los mais eficientes. Essa eficiência envolve o uso mais racional dos insumos necessários, otimizando o potencial produtivo das culturas e a competitividade do produtor rural, além de proporcionar melhor qualidade ambiental. Maior eficiência significa produção com menor custo na fazenda, o que tem reflexos positivos em termos de oferta e preço final dos produtos ao consumidor.

Agradecimentos

Aos parceiros da Rede AP, agricultores, cooperativas, universidades, prestadores de serviço e indústria de máquinas e equipamentos, que vêm contribuindo de forma decisiva para que as pesquisas desenvolvidas tenham o crivo da realidade do campo e uma abrangência geográfica nacional. Às agências de fomento à pesquisa, CNPq e CAPES, pelo suporte financeiro e bolsas.

Referências

SANTI, A. L. Relações entre indicadores de qualidade do solo e a produtividade das culturas em áreas com agricultura de precisão. 2007. 175 f. Tese (Doutorado)-Universidade Federal de Santa Maria, Santa Maria, 2007.

Estudo da variabilidade espacial dos atributos químicos e físicos do solo em um agroecossistema de arroz irrigado para suporte à Agricultura de Precisão

Lúcia Elena Coelho da Cruz*1, José Maria Alba Filippini*2, José Maria Barbarat Parfitt*2, Clenio Nailto Pillon*2

*Pós-Doutoranda, Embrapa
1 Pesquisador, Embrapa Clima Temperado, Monitoramento Ambiental
2 Pesquisador, Embrapa Clima Temperado, Irrigação e Drenagem
*E-mails: luciaecruz@yahoo.com.br, jose.filippini@embrapa.br, jose.parfitt@embrapa.br, clenio.pillon@embrapa.br

Resumo: A região sul do Rio Grande do Sul é bastante dependente economicamente da atividade primária, principalmente da cultura do arroz irrigado. A utilização cada vez maior dos solos de terras baixas com a agricultura convencional, associado à monocultura do arroz irrigado, tem provocado alterações na fertilidade do solo ao longo do tempo. Objetivo deste estudo foi avaliar a variabilidade espacial de atributos químicos e físicos do solo e considerando a existência de correlações entre esses atributos, estimar a matéria orgânica através da técnica da cokrigagem, usando a densidade do solo como covariável. O trabalho foi desenvolvido na Estação Experimental Terras Baixas da Embrapa Clima Temperado, Capão do Leão, RS. O solo foi amostrado em uma malha regular georreferenciada, com distância entre pontos de 10m, formando uma malha de 100 pontos. As coletas foram realizadas em 2008, na profundidade 0,0 - 0,20m. Os atributos matéria orgânica (MO) e densidade do solo (Ds) foram analisados por meio da estatística clássica e a dependência espacial por meio da geoestatística. É possível, através da cokrigagem, utilizando valores de densidade do solo como covariável, estimar com boa confiabilidade valores da matéria orgânica no local de estudo. A cokrigagem apresenta ser uma boa opção para estimativa de variáveis de difícil amostragem, seja por sua complexidade ou pelo elevado custo de análise, desde que se observe uma boa correlação entre a variável e a covariável a ser estimada.

Palavras-chave: cokrigagem, fertilidade, geoestatística, solo

Spatial variability of the physical and chemical attributes of the soil in an irrigated rice agro-ecosystem to support Precision Farming

Abstract: The Southern region of Rio Grande do Sul State (Brazil) depends on primary economic activities, mainly irrigated rice. Conventional agriculture dominates the lowlands systems for that crop, thus the soil fertility was harmed over time. This study aimed to evaluate the spatial variability of the physical and chemical soil properties, considering their correlations. Thus, the organic matter was estimated through the technique of cokriging. The study was conducted at the “Terras Baixas” Experimental Station of Embrapa Temperate Climate, “Capão do Leão”, Rio Grande do Sul State, Brazil. Soil was sampled according to a regular grid, with inter-points path of 10m and a total of 100 points, during 2008, at depth 0.0 - 0.20 m. Organic matter (OM) and bulk density (BD) were analyzed by means of classical statistical and spatial dependence through geostatistics. OM was estimated using values of bulk density as a covariate, with good reliability. The cokriging is a good option for estimation of variables when sampling presents difficult conditions or due to the high cost of analysis. This was possible because of the good correlation between OM and soil density.

Keywords: cokriging, fertility, geostatistics, soil
1. Introdução

A agricultura é uma das atividades mais relevantes para a economia brasileira. Entre os produtos de maior importância no cenário agrícola nacional, o arroz (*Oryza sativa* L.) participa com cerca de 56% do total da produção de grãos. O maior estado produtor do Brasil é o Rio Grande do Sul com 1.066,6 mil hectares, o que representa 44,5% da área nacional, respondendo ainda por 66,5% da produção brasileira (COMPANHIA..., 2013).

Os fatos demonstram que a região sul do Rio Grande do Sul é bastante dependente economicamente da atividade primária, principalmente da cultura do arroz irrigado. Embora os solos de terras baixas apresentem características como densidade naturalmente elevada, relação micro/macroporos muito alta e dificuldade de drenagem, motivada principalmente pela presença de uma camada subsuperficial praticamente impermeável, tornam seu manejo de extrema complexidade, sendo essas características acentuadas pelo preparo do solo realizado em condições de umidade excessiva. Até um determinado ponto, essas condições podem ser consideradas favoráveis para o cultivo com arroz irrigado, por reduzir as perdas de água e de nutrientes, porém são restritivas ao desenvolvimento do sistema radicular das culturas de sequeiro, podendo, em casos extremos de compactação, serem prejudiciais mesmo para o arroz irrigado. (GOMES et al., 2006). A utilização cada vez maior desse ambiente de terras baixas com a agricultura convencional, associado à monocultura do arroz irrigado, vem provocando alterações nos atributos físicos e químicos do solo ao longo do tempo, levando este agroecossistema à degradação da qualidade do solo.

A importância da qualidade do solo para a qualidade ambiental está intimamente ligada à degradação dos recursos naturais e a sustentabilidade agrícola, esses fatores repercutem diretamente na relação do manejo do solo e a sustentabilidade da agricultura. A matéria orgânica do solo é um indicador ideal para avaliar qualidade do solo, pelo fato das várias funções e processos físicos, químicos e biológicos, que ocorrem no solo estarem relacionados diretamente com a sua presença (VEZZANI; MIELNICZUK, 2009). Portanto, para o manejo sustentável da matéria orgânica do solo é fundamental à manutenção da capacidade produtiva do solo (CIOTTA et al., 2003).

O manejo da fertilidade do solo na agricultura convencional baseia-se nos teores médios dos nutrientes. De forma que, a análise química do solo expressa um único resultado para todo um talhão, assumindo que todas as propriedades do solo são semelhantes dentro da camada amostrada e desconsiderando a presença da variabilidade espacial, entretanto, essa situação não se sustenta mais em virtude da necessidade de melhorar o gerenciamento dos fatores de produção, o uso racional dos insumos e dos recursos naturais.

Neste sentido, a agricultura de precisão (AP) surge como um elenco de tecnologias e procedimentos utilizados para que os sistemas de produção agrícolas sejam otimizados, tendo como elemento chave o gerenciamento da variabilidade espacial da produção e os fatores a ela relacionados (MOLIN, 2000).

A AP baseia-se na análise da variabilidade espacial, estabelecendo um nexo com a geoestatística, cujo fundamento é o estudo da variabilidade espacial para otimizar o processo de transformação de informações pontuais em superfície contínua (CLARK, 1984). O estudo da dependência espacial de variáveis relacionadas com a agricultura de precisão é indispensável para a caracterização da área e para a geração de mapas temáticos, os quais facilitam o entendimento do comportamento e da ocorrência dessas variáveis nas áreas estudadas, consequentemente, da interferência no processo de produção. A geoestatística, segundo Vieira, Xavier e Grego (2008), é a maneira mais correta para verificar a presença de dependência espacial. A continuidade, ou dependência espacial, é estimada através do semivariograma e o método de interpolação, chamado krigagem, usa a dependência espacial entre amostras vizinhas para estimar valores em qualquer posição dentro do campo. Além disso, muitas vezes, duas propriedades correlacionam-se entre si e no espaço, sendo uma delas mais difícil de medir à campo ou ainda, sua determinação mais cara. A dependência espacial entre duas propriedades no espaço pode ser expressa pelo semivariograma cruzado, e se ele existir, o método chamado cokrigagem pode ser utilizado para...
estimar aquela mais difícil de medir, utilizando-se os dados de ambas. Estes métodos oferecem a escolha de medir a propriedade mais difícil com um número mínimo de amostras possível. A cokrigagem pode ser mais precisa do que a krigagem de uma variável simples, quando o variograma cruzado mostrar forte dependência entre as duas variáveis (VIEIRA, 2000).

A interação entre atributos físicos e químicos do solo influenciam diretamente a qualidade do solo, o crescimento e o desenvolvimento das culturas. Assim, podemos dizer que a densidade do solo é uma propriedade física calculada pela relação entre a massa do solo seco e o volume total e é afetada pela cobertura vegetal, teor de matéria orgânica, uso e manejo do solo, propriedades que alteram a estrutura do solo. Desta forma, a avaliação da variabilidade espacial destes atributos tem se tornado importante ferramenta na determinação de estratégias de manejo do solo.

Diante deste contexto este trabalho teve como objetivo avaliar a variabilidade espacial de atributos químicos e físicos do solo e considerando a existência de correlações entre esses atributos, estimar a matéria orgânica através da técnica da cokrigagem, usando a densidade do solo como covariável.

2. Material e Métodos

O trabalho foi desenvolvido na Estação Experimental Terras Baixas da Embrapa Clima Temperado, Capão do Leão, RS, (31° 49’ 12.34” S - 52° 27’ 57.78” O), em um Planossolo Háplico (Embrapa, 2006). O clima da região, de acordo com a classificação climática de Wilhelm Köppen, é do tipo Cfa (C: clima temperado quente, temperatura média do mês mais frio entre 3 e 18 ºC; f: em nenhum mês a precipitação pluvial é inferior a 60 mm; a: temperatura do mês mais quente é superior a 22 ºC).

O solo foi amostrado nos pontos de interseção de uma malha regular georreferenciada, com distância entre pontos de 10m, com um total de 100 pontos (Figura 1). As coletas foram realizadas em 2008, na profundidade 0,0 - 0,20m. Foram coletadas amostras deformadas e com estruturas preservadas. As amostras de solo deformadas foram coletadas com pá-de-corte, secas ao ar, destorreadas e passadas em peneira com malha de 2,0 mm, acondicionadas e encaminhadas para determinações físicas e químicas. Amostras com estruturas preservadas foram coletadas com anéis volumétricos para a determinação da densidade do solo (Ds) conforme a metodologia descrita em Embrapa (1997). A matéria orgânica (MO) foi calculada através do teor carbono orgânico, o qual foi determinado pelo método Walkey-Black descrito em Tedesco, Bohnen e Volkweiss (1995).

A área experimental foi tradicionalmente cultivada com arroz irrigado no sistema convencional, e a partir de janeiro de 2008 a área foi sistematizada (PARFITT, 2009), a coleta de 2008 foi realizada logo após a sistematização.

Os atributos do solo foram analisados através da estatística clássica e a hipótese de normalidade dos dados foi avaliada pelo teste W a 5%. As variáveis foram comparadas por meio da análise de
correlações de Pearson, com o auxílio do programa SPSS (STATISTICAL..., 2003).

A dependência espacial foi analisada por meio da geoestatística, utilizando a Versão 7.0 do GS+ (GAMMA, 2004). Os dados experimentais foram submetidos ao ajuste de modelos teóricos: esférico, exponencial e gaussiano. O ajuste do modelo permite a estimativa dos parâmetros: efeito pepita (C_0), patamar (C_0+C) e alcance (a). A escolha do modelo foi baseada no melhor coeficiente de determinação (R^2) e na menor soma de quadrados do resíduo (SQR). O índice de dependência espacial (IDE) foi calculado usando a equação $[(C/(C_0+C))^{100}]$, conforme Zimback (2001), e apresenta a seguinte proporção: fraca (<25%); moderada (25 - 75%) e forte (> 75%).

Os modelos e parâmetros dos semivariogramas simples e cruzados ajustados foram submetidos ao processo de validação cruzada e para analisar a precisão da interpolação dos dados por krigagem e cokrigagem na construção dos mapas de distribuição espacial. A MO foi usada como variável primária, a escolha deu-se pela razão da determinação indireta da oxidação do carbono orgânico por via úmida ser demorada e produzir grandes quantidades de resíduos para o ambiente. Como covariable foi a Ds, pelo fato do método de coleta e determinação ser simples e de baixo custo, sem sobras de resíduos no ambiente. Os mapas foram confeccionados utilizando o software ArcGIS (ESRI, 2008).

3. Resultados e Discussão

Os coeficientes de variação (CV) (Tabela 1), segundo a classificação de Pimentel-Gomes (1984), <10% baixo, 10–20% médio e >20% alto, a Ds apresentou baixa variabilidade (5,55%), enquanto a MO apresentou média variabilidade (16,55%), demonstrando assim uniformidade dos dados. Resultados semelhantes obtidos por Carvalho, Takeda e Freddi (2003) para a Ds. Para a MO, Souza et al., (1998) encontrou um CV de 11,1%, resultado próximo ao obtido no estudo em questão.

Os coeficientes de assimetria e curtose para ambas variáveis ficaram próximo de zero. Segundo Carvalho, Silveira e Vieira (2002), valores de assimetria e curtose de 0 e 3, indicam a normalidade dos dados. Também foi confirmado pelo teste W e pela proximidade dos valores de média e mediana (QUARTEZANI et al., 2011). A estimativa por krigagem apresenta melhores resultados quando a normalidade dos dados é satisfeita (PAZ-GONZALEZ; TABOADA CASTRO; VIEIRA, 2001).

O coeficiente de correlação entre a MO e Ds foi negativo e significativo ao nível de 5%, os resultados indicam que quando os valores da MO se elevam, os valores de Ds se reduzem. Esta correlação é uma das exigências para a utilização da extensão multivariada da krigagem, conhecida como cokrigagem. Resultados semelhantes foram obtidos por Silva et al. (2010), na correlação entre argila e fósforo e também quando Silva, Lima e Bottega (2011), correlacionou a Ds e estoque de potássio no solo.

Os resultados da análise dos semivariogramas simples e cruzados podem ser observados na Tabela 2 e Figura 2. O modelo teórico que melhor se ajustou a variabilidade dos dados foi o gaussiano, com alcance de 67,1, 76,4 e 78,5 para MO, Ds e MO × Ds, respectivamente. A escolha
do modelo foi baseada no melhor coeficiente de determinação (R^2) e na menor soma de quadrados do resíduo (SQR). Silva, Lima e Bottega (2011), encontraram para os atributos individualmente e em conjunto, dependência espacial com ajuste do modelo gaussiano e maior variabilidade medida pelo valor do alcance de semivariância para o semivariograma cruzado entre o estoque de potássio no solo e a Ds.

O índice de dependência espacial (IDE) foi moderado para a Ds (57,4%) e forte para a MO (83,8%) e MO × Ds (98,0%) (semivariograma

![Diagrama de Semivariograma Simplestar e Crossed](image)

Figura 2. Semivariograma simples das variáveis MO (a) e Ds (c); semivariograma cruzado das variáveis MO × Ds (e); validação cruzada das variáveis MO (b); Ds (d) e MO × Ds (f).

<table>
<thead>
<tr>
<th>Variável</th>
<th>Modelo</th>
<th>Co</th>
<th>Co+C</th>
<th>a</th>
<th>R^2</th>
<th>SQR</th>
<th>IDE</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO</td>
<td>gaussiano</td>
<td>0.01296</td>
<td>0.08018</td>
<td>67.1</td>
<td>0.96</td>
<td>3.1534</td>
<td>83.8</td>
<td>0.98</td>
</tr>
<tr>
<td>Ds</td>
<td>gaussiano</td>
<td>0.00466</td>
<td>0.01005</td>
<td>76.4</td>
<td>0.99</td>
<td>3.1147</td>
<td>57.4</td>
<td>0.99</td>
</tr>
<tr>
<td>MO × Ds</td>
<td>gaussiano</td>
<td>-0.00001</td>
<td>-0.02192</td>
<td>78.5</td>
<td>0.99</td>
<td>8.8577</td>
<td>98.0</td>
<td>0.93</td>
</tr>
</tbody>
</table>

MO % (m/v) - matéria orgânica, Ds (g cm$^{-3}$) - densidade do solo, C_y - efeito pepita; C_y+C - patamar; a - alcance; R^2 - coeficiente de determinação; SQR - soma de quadrados do resíduo; IDE - índice de dependência espacial ($C/(C_y+C)$)100; CR - coeficiente de regressão.
Agricul\nder Precisão: resultados de um novo olhar

Os gráficos de validação cruzada das variáveis MO e DS e das estimativas das mesmas variáveis utilizando valores de DS como covariável, estão apresentados na Figura 2. Observando os coeficientes de regressão das retas (Tabela 2), podemos dizer que o ajuste para as duas variáveis MO e DS sozinhas ou em conjunto (MO \times DS) foram ótimos porque quanto mais próximo ao valor um, melhor e o ajuste. Esses dados são requisitos para analisar a precisão da interpolação dos dados por krigagem e cokrigagem na construção dos mapas de distribuição espacial (Figura 3).

Comparando o mapa da MO (Figura 3) individualmente e o mapa resultante da cokrigagem a respeito de sua distribuição em função dos valores de DS, observamos que estes são coerentes, ou seja, a cokrigagem representou a variável MO tendo como covariável a DS estimado pela cokrigagem (c).

Figura 3. Mapa da distribuição espacial das variáveis MO (a) e DS (b) estimados pela krigagem e para a variável MO tendo como covariável a DS estimado pela cokrigagem (c).
muito bem as variações desse atributo na área em estudo, evidenciando a concentração de maiores teores na porção inferior da área como também se observa no mapa interpolado por krigagem.

4. Conclusões

É possível, através da cokrigagem, utilizando valores de densidade do solo como covariável, estimar com boa confiabilidade valores da matéria orgânica no local de estudo.

A cokrigagem entre a matéria orgânica e a densidade do solo demonstra ser mais precisa do que a krigagem de uma variável simples, porque o semivariograma cruzado apresenta forte dependência espacial entre as duas variáveis.

A cokrigagem apresenta ser uma boa opção para estimativa de variáveis de difícil amostragem, seja por sua complexidade ou pelo elevado custo de análise, desde que se observe uma boa correlação entre a variável e a covariável a ser estimada. Isso permitirá aprimorar as comparações com os dados levantados em 2010 e 2012/2013.

Agradecimentos

O presente trabalho foi realizado com o apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, Brasil, disponibilizando bolsa de Pós-Doutorado ao primeiro autor.

Referências

STATISTICAL PACKAGE FOR THE SOCIAL SCIENCES. SPSS 12.0 for Windows and SmartViewer. Chicago, 2003. CD-ROM.

Variabilidade espacial dos atributos físicos do solo e da produtividade do arroz de terras altas cultivado em integração lavoura pecuária**

Rodrigo Gonçalves Trevisan*1, Onâ da Silva Freddi*2, Flávio Jesus Wruck*3

1Graduando em Agronomia, Universidade Federal do Mato Grosso, UFMT/Sinop/ICAA, Sinop, MT
2Professor adjunto III, UFMT/Sinop/ICAA

*E-mails: rodrigoagronomia@hotmail.com, onafreddi@gmail.com.br, flavio.wruck@embrapa.br
**Trabalho executado com recursos do CNPq - Brasil

Resumo: A cultura do arroz de terras altas no Mato Grosso ainda não está consolidada nos sistemas de produção, sendo poucas as informações disponíveis sobre os efeitos de práticas de manejo na produtividade dessa cultura. Diante disso, este trabalho foi desenvolvido com o objetivo de avaliar a variabilidade espacial dos atributos físicos de um Latossolo Vermelho-Amarelo e as correlações destes com a produtividade do arroz de terras altas cultivado em semeadura direta sob diferentes coberturas vegetais, após sete anos de integração lavoura-pecuária. O estudo foi realizado em 2012, no município de Santa Carmem, norte do Estado de Mato Grosso. Os esquemas de rotação utilizados foram consórcios de braquiária com uma das três culturas: feijão-caupi, crotalária ou capim Sudão. Adotou-se uma malha regular com 100 pontos distribuídos numa área de 26400 m², nos quais determinou-se a produtividade de grãos, a massa de cem grãos, a severidade de mancha dos grãos, a densidade do solo, a macroporosidade, a microporosidade, a porosidade total e a resistência do solo à penetração (RP). Os procedimentos estatísticos utilizados foram a análise descritiva, análise de correlação e análise geoestatística. A produtividade de grãos correlacionou-se positivamente com a densidade do solo. Observou-se moderada dependência espacial em todas as variáveis, com exceção da RP, que apresentou efeito pepita puro. As maiores produtividades foram observadas no arroz após consórcio de braquiária e feijão-caupi.

Palavras-chave: geoestatística, mancha dos grãos, rotação de culturas, sistema plantio direto

Spatial variability of physical attributes of an Oxisol and upland rice yield under integrated crop-livestock system

Abstract: Upland rice in Mato Grosso is not yet consolidated in production systems. There is little information available on the effects of different management practices on the yield of this crop. Therefore, the aim of this study was to evaluate the spatial variability of the physical attributes of an Oxisol and the correlations of these with the yield of upland rice cultivated in no tillage system under different cover crops, after seven years of integrated crop-livestock system. The study was carried out in 2012, in Santa Carmem county, northern Mato Grosso state. The schemes of crop rotation used before planting rice were intercroppings of ruzi grass and one of the three crops: cowpea, sunn hemp or Sudan grass. It was adopted a regular grid with 100 points distributed in an area of 26400 m², in which were determined the yield, the mass of 100 grains, grain discoloration severity, soil bulk density, macroporosity, microporosity, total soil porosity and soil penetration resistance. The statistical procedures used were descriptive statistical analysis, correlation analysis and geostatistical analysis. Grain yield was positively correlated with soil bulk density. We observed moderate spatial dependence for all variables, except for soil penetration resistance, which showed pure nugget effect. Higher yields were observed in rice after intercropping of ruzi grass and cowpea.

Keywords: geostatistics, grain discoloration, crop rotation, no tillage system
1. Introdução

A cultura do arroz de terras altas em Mato Grosso ainda não está consolidada nos atuais sistemas de produção. Dentre as limitações ao cultivo do arroz de terras altas em sistema plantio direto (SPD) cita-se o seu baixo vigor e desenvolvimento inicial, atribuído à baixa eficiência no uso do nitrogênio, o que torna o manejo de plantas daninhas um problema bastante complexo (SEGUY; BOUZINAC, 1992).

A incidência de doenças também pode causar reduções severas na produtividade, destacando-se a brusone, a escaldadura e a manchas dos grãos. Esta última é de etiologia complexa, e geralmente envolve vários fungos ocorrendo simultaneamente, dentre os quais se destacam Phoma sp., Drechslera oryzae, Alternaria sp., Fusarium sp. e Nigrospora oryzae. Além de causar redução na produtividade, na massa dos grãos e no número de grãos cheios por panícula, pode causar problemas de chochamento, gessamento e coloração escura, que reduzem o rendimento de grãos inteiros no mercado (FILIPPI; PRABHU, 1998).

Os sistemas de integração lavoura-pecuária (ILP) têm se difundido por todo o Brasil por apresentarem várias vantagens em relação à produção de cada componente de forma isolada. Podem ser considerados como formas mais complexas de cultivo, onde as relações entre os vários fatores que influenciam na produção são mais intensas e por isso os resultados podem ser diferentes dos encontrados em áreas sem integração das atividades.

A presença de animais em áreas agrícolas tem sido associada a problemas de compactação do solo, com restrição ao desenvolvimento do sistema radicular e redução da produtividade. Entretanto, a resposta das culturas à compactação do solo depende da interação entre cultura, tipo de solo, conteúdo e distribuição de água durante seu ciclo e grau de compactação, o que justifica a obtenção de alguns resultados que mostram que se o manejo dos animais e da pastagem for correto, existem ganhos para o sistema mesmo com pequena redução na porosidade e aumento na densidade do solo (MARCHÃO et al., 2009).

Os índices de produtividade das culturas agrícolas dependem da capacidade produtiva dos solos. Desta forma, a variabilidade dos atributos do solo representa um dos fatores de oscilação da produtividade agrícola. Em áreas sob diferentes manejo do solo, o estudo da variabilidade espacial dos atributos torna-se particularmente importante, pois o sistema de preparo ou manejo não é uniforme em toda área, adicionando variabilidade num sistema que já é naturalmente desuniforme, devido à ação característica dos fatores de formação do solo. Nesse contexto, a pesquisa apoia-se intensamente no uso da geoestatística, que tem permitido a obtenção de inúmeras respostas às mais variadas questões existentes que, até então, eram ignoradas (CARVALHO; TAKEDA; FREDDI, 2003).

São poucas as informações para os solos do Norte do Mato Grosso sobre níveis limitantes de resistência do solo à penetração e densidade do solo e sua relação com a variabilidade espacial da produtividade do arroz em condições de campo, o que leva a impossibilidade de realizar-se recomendações adequadas que possibilitem atingir o potencial produtivo da cultura.

Portanto, é grande a necessidade de se compreender melhor os efeitos dos atributos do solo na produtividade do arroz de terras altas e maior ainda é a importância do desenvolvimento de tecnologias que possibilitem o cultivo de forma sustentável e competitiva do arroz no âmbito de sistemas mais complexos como é o caso do SPD e dos sistemas de ILP.

Diante do exposto, este trabalho foi desenvolvido com o objetivo de avaliar a variabilidade espacial dos atributos físicos de um Latossolo Vermelho-Amarelo e as correlações destes com atributos do arroz de terras altas cultivado em semeadura direta sob diferentes coberturas vegetais, após sete anos de integração lavoura-pecuária.

2. Material e Métodos

O experimento foi desenvolvido através de uma parceria entre a Universidade Federal de Mato Grosso (UFMT) e a Embrapa Arroz e Feijão, em uma área da Unidade de Referência Tecnológica em Sistemas de Integração Lavoura-Pecuária-Floresta - URT-iLPF - implantada na Fazenda
Dona Isabina, localizada no município de Santa Carmem, norte do estado de Mato Grosso (12° 03’ 58” S e 55° 21’ 07” O). O local apresenta tipo climático Aw, segundo a classificação de Köppen, caracterizado como tropical úmido com estação chuvosa no verão e seca no inverno, com precipitação média anual de 2000 mm, temperaturas médias mensais oscilando entre 24 °C e 27 °C e altitude de 375 m (SOUZA; CASAVECCHIA; STANGERLIN, 2012).

O solo é classificado como Latossolo Vermelho-Amarelo distrófico, de textura argilosa e vem sendo usado sob o sistema de ILP, com o cultivo de pastagem por dois anos entre as safras 2005/06 e 2007/08, seguido por safra de arroz e safrinha de feijão comum em 2008/09, safra de soja precoce e consórcio de milho e braquiária (Brachiaria ruziizensis) na safrinha de 2009/10. No ano agrícola 2010/11 cultivou-se soja precoce na safra principal e em seguida repartiu-se a área em três faixas para adoção de diferentes esquemas de rotação de culturas, que constituíam os tratamentos T1: consórcio de feijão-caupi (Vigna unguiculata) e braquiária (B. ruziizensis); T2: consórcio de crotalária (Crotalaria ochroleuca) e braquiária (B. ruziizensis) e T3: consórcio de capim Sudão (Sorghum sudanense) e braquiária (B. ruziizensis).

O arroz, cultivar BRS Monarca, foi semeado no dia 01/12/2011 e colhido no dia 25/03/2012. A adubação constituiu-se da aplicação de 0,370 Mg ha⁻¹ do fertilizante comercial 04-20-20 por ocasião da semeadura e mais duas adubações de cobertura com 0,060 Mg ha⁻¹ do formulado 20-00-20. Em 15/01/2012 aplicou-se o fungicida Priori, na dose de 0,3 L ha⁻¹ para o controle de doenças fúngicas. Os demais tratos culturais seguiram as recomendações técnicas para a cultura.

Adotou-se uma malha retangular constituída de 7 linhas e 12 colunas, contendo 84 pontos amostrais, espaçados de 20 em 20 m em ambos os eixos, com mais 16 pontos de refinamento, totalizando 100 pontos numa área de estudo de 26400 m².

Em cada ponto amostral determinou-se a produtividade de grãos, que foi representada pela massa de grãos contidos em duas linhas de 3 m, no entorno de cada ponto amostral, corrigindo-se a umidade para 13% e transformando-se para a área de um hectare, a massa de 100 grãos, e a severidade da mancha dos grãos. Para esta última avaliação utilizou-se a escala de notas elaborada pelo IRRI (INTERNATIONAL..., 1996).

Nos mesmos pontos coletou-se uma amostra com estrutura indeformada no centro da camada de 0-0,10 m, utilizando-se anéis volumétricos de 0,05 m de altura e 0,05 m de diâmetro. As amostras foram utilizadas para determinação das seguintes variáveis: densidade do solo, macroporosidade, microporosidade e porosidade total seguindo metodologia descrita em EMBRAPA (1997), além da resistência mecânica do solo à penetração, que foi avaliada utilizando-se um penetrômetro de bancada, após a estabilização das amostras na capacidade de campo (6 kPa), conforme metodologia proposta por Tormena, Silva e Libardi (1998).

Para cada variável, efetuou-se a análise descritiva e análise de correlação linear, com auxílio do programa R versão 2.15.2 (R CORE TEAM, 2012). Posteriormente, realizou-se a identificação dos outliers, considerando-atípicos os valores encontrados além de três vezes o intervalo interquartílico no gráfico Box Plot, sendo estes substituídos pelo valor médio de quatro circunvizinhos contidos na malha.

Os dados foram então submetidos a análise geoestatística, com auxílio do programa GS+ v.7.0 (ROBERTSON, 2004). Realizou-se a modelagem dos semivariogramas simples e cruzados, sendo os ajustes realizados pelo método dos mínimos quadrados ordinários e como critério para avaliação da dependência espacial utilizou-se a equação e a interpretação propostas por Zimback (2001). O critério final de decisão do modelo de semivariograma foi o melhor ajuste obtido pela validação cruzada. Uma vez ajustados os semivariogramas, realizou-se a krigagem ordinária dos dados e a geração dos mapas de contorno. A correlação espacial entre as variáveis foi testada por meio do semivariograma cruzado.

3. Resultados e Discussão

Por meio da análise descritiva (Tabela 1) observa-se que a produtividade média de grãos foi de 1,70 Mg ha⁻¹, valor este inferior à média estadual, que foi de 3,20 Mg ha⁻¹ na safra 2011/2012 (COMPANHIA..., 2012). Tal fato pode
ser justificado pela ocorrência de um veranico entre os 63 e 74 dias após a semeadura, no qual não ocorreram precipitações, coincidindo com a fase de emborramento e florescimento do arroz. Segundo HEINEMANN (2010) a deficiência hídrica apresenta efeito severo quando ocorre durante a fase reprodutiva na cultura do arroz de terras altas, podendo ocorrer perdas de produtividade superiores a 60%, quando esta ocorre a partir de 10 dias antes do período de florescimento.

Entretanto, a precipitação total durante o ciclo da cultura foi de 1200 mm, indicando que as condições de umidade do solo no início e no final do ciclo da cultura foram próximas as ideais. Portanto, a água disponível as plantas durante o período do veranico dependeu da capacidade de retenção de água do solo e pode-se inferir que a variabilidade da produtividade foi associada à variabilidade dos atributos relacionados com a capacidade de retenção de água do solo.

A macroporosidade média foi de 0,103 m³ m⁻³ (Tabela 1), o que está próximo do valor considerado como limitante à aeração, que segundo Reichert, Suzuki e Reinert (2007) é de 0,100 m³ m⁻³. Embora, a aeração do solo não seja limitante para o arroz, pois este é adaptado a condições de ambiente reduzido, essa observação é importante, pois os macroporos são o caminho preferencial de crescimento radicular, e também porque o solo é usado em sistemas de rotação de culturas e a porosidade de aeração pode limitar as culturas subsequentes.

A densidade média foi de 1,10 Mg m⁻³, o que pode ser considerado baixo para o tipo de solo, mostrando que é possível evitar a compactação do solo sob ILP, desde que se utilize um manejo adequado com especial atenção para a rotação de culturas.

As correlações entre os atributos do solo e os componentes da produção do arroz apresentaram um padrão característico (Tabela 2), no qual maiores valores de densidade do solo foram associados a maiores valores de produtividade de grãos e massa de cem grãos, reduzindo a severidade de mancha dos grãos. De maneira oposta, o aumento na macroporosidade foi responsável pelo aumento da severidade de mancha dos grãos e diminuição na produtividade de grãos e massa de cem grãos.

O maior volume de macroporos pode ter contribuído para maior perda de umidade, acentuando o problema causado pelo déficit hídrico, o que pode explicar as correlações negativas entre a produtividade de grãos e a macroporosidade. É importante observar que no momento da coleta das amostras havia grande diferença na umidade do solo, que se

<table>
<thead>
<tr>
<th>Atributo(a)</th>
<th>Média</th>
<th>Mediana</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Desvio padrão</th>
<th>Variação (%)</th>
<th>Curtose</th>
<th>Assimetria</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG (Mg ha⁻¹)</td>
<td>1,70</td>
<td>1,59</td>
<td>0,70</td>
<td>3,12</td>
<td>0,55</td>
<td>32,2</td>
<td>-0,649</td>
<td>0,395</td>
</tr>
<tr>
<td>MC (g)</td>
<td>2,68</td>
<td>2,67</td>
<td>2,07</td>
<td>3,30</td>
<td>0,25</td>
<td>9,3</td>
<td>0,026</td>
<td>-0,059</td>
</tr>
<tr>
<td>SM</td>
<td>4,94</td>
<td>5,00</td>
<td>1,00</td>
<td>9,00</td>
<td>1,96</td>
<td>39,6</td>
<td>-0,275</td>
<td>-0,005</td>
</tr>
<tr>
<td>MA (m³ m⁻³)</td>
<td>0,103</td>
<td>0,098</td>
<td>0,047</td>
<td>0,168</td>
<td>0,025</td>
<td>24,5</td>
<td>-0,304</td>
<td>0,366</td>
</tr>
<tr>
<td>MI (m³ m⁻³)</td>
<td>0,353</td>
<td>0,353</td>
<td>0,318</td>
<td>0,390</td>
<td>0,015</td>
<td>4,2</td>
<td>-0,246</td>
<td>0,016</td>
</tr>
<tr>
<td>PT (m³ m⁻³)</td>
<td>0,456</td>
<td>0,459</td>
<td>0,405</td>
<td>0,495</td>
<td>0,020</td>
<td>4,4</td>
<td>-0,502</td>
<td>-0,286</td>
</tr>
<tr>
<td>DS (Mg m⁻³)</td>
<td>1,10</td>
<td>1,10</td>
<td>0,98</td>
<td>1,23</td>
<td>0,05</td>
<td>4,2</td>
<td>-0,060</td>
<td>0,069</td>
</tr>
<tr>
<td>RP (MPa)</td>
<td>2,10</td>
<td>2,11</td>
<td>1,08</td>
<td>3,46</td>
<td>0,56</td>
<td>26,7</td>
<td>-0,650</td>
<td>0,152</td>
</tr>
</tbody>
</table>

(a) PG, MC, SM, MA, MI, PT, DS, e RP, são, respectivamente, produtividade de grãos, massa de cem grãos, severidade de mancha dos grãos, macroporosidade, microporosidade, porosidade total, densidade do solo e resistência a penetração.
presentava mais úmido nos pontos onde o solo era visualmente mais escuro, provavelmente com maior teor de matéria orgânica, o que também coincidiu com pontos onde havia concentração de animais no período em que a área foi usada para pastejo, antes da semeadura do arroz.

O valor negativo da correlação entre severidade de mancha dos grãos e produtividade de grãos mostra que quanto maior a severidade de ataque dos patógenos, menor a produtividade, portanto a ocorrência da mancha de grãos pode ter sido outro fator que limitou a produtividade (Tabela 2).

Na análise geoestatística dos componentes da produção do arroz e dos atributos físicos do solo avaliados (Tabela 3), verifica-se moderada dependência espacial em todas as variáveis, com exceção da resistência do solo à penetração, que apresentou efeito pepita puro. Os semivariogramas cruzados também apresentaram efeito pepita puro, indicando que não existiu correlação espacial ou que esta ocorre numa escala menor que a mensurada.

O modelo de semivariograma que melhor se ajustou a variância experimental foi do tipo esférico para a produtividade de grãos, exponencial para massa de cem grãos, severidade de mancha dos grãos e microporosidade, e gaussiano para as demais variáveis (Tabela 3). A severidade de mancha dos grãos foi a variável com maior alcance da dependência espacial (Ao = 124,5 m), enquanto que para as demais variáveis este variou entre 25,5 e 38,4 m.

A validação cruzada mostrou que os semivariogramas ajustados foram capazes de

<table>
<thead>
<tr>
<th>Variável(a)</th>
<th>MA</th>
<th>MI</th>
<th>PT</th>
<th>DS</th>
<th>RP</th>
<th>SM</th>
<th>MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>0,253*</td>
<td>-0,171</td>
<td>0,186</td>
<td>-0,372**</td>
<td>-0,243*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>-0,255*</td>
<td>0,220*</td>
<td>-0,164</td>
<td>0,238*</td>
<td>0,114</td>
<td>-0,461**</td>
<td></td>
</tr>
<tr>
<td>PG</td>
<td>-0,232*</td>
<td>0,168</td>
<td>-0,157</td>
<td>0,254*</td>
<td>0,159</td>
<td>-0,528**</td>
<td>0,574**</td>
</tr>
</tbody>
</table>

(a) PG, MC, SM, MA, MI, PT, DS, e RP, são, respectivamente, produtividade de grãos, massa de cem grãos, severidade de mancha dos grãos, macroporosidade, microporosidade, porosidade total, densidade do solo e resistência a penetração.

<table>
<thead>
<tr>
<th>Atributo(a)</th>
<th>Modelo(b)</th>
<th>Co</th>
<th>Co+C</th>
<th>Ao (m)</th>
<th>r^2</th>
<th>ADE(c)</th>
<th>Validação cruzada</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG (Mg ha$^{-1}$)</td>
<td>esf(64)</td>
<td>1,18E-01</td>
<td>2,95E-01</td>
<td>38,0</td>
<td>0,52</td>
<td>60</td>
<td>ME</td>
</tr>
<tr>
<td>MC (g)</td>
<td>exp(64)</td>
<td>2,13E-02</td>
<td>5,87E-02</td>
<td>36,3</td>
<td>0,52</td>
<td>64</td>
<td>ME</td>
</tr>
<tr>
<td>SM</td>
<td>exp(207)</td>
<td>1,79E+00</td>
<td>3,77E+00</td>
<td>124,5</td>
<td>0,79</td>
<td>53</td>
<td>ME</td>
</tr>
<tr>
<td>MA (m3 m$^{-3}$)</td>
<td>gau(50)</td>
<td>2,25E-04</td>
<td>5,03E-04</td>
<td>29,8</td>
<td>0,66</td>
<td>55</td>
<td>ME</td>
</tr>
<tr>
<td>MI (m3 m$^{-3}$)</td>
<td>exp(60)</td>
<td>1,02E-04</td>
<td>2,07E-04</td>
<td>38,4</td>
<td>0,63</td>
<td>51</td>
<td>ME</td>
</tr>
<tr>
<td>PT (m3 m$^{-3}$)</td>
<td>gau(57)</td>
<td>1,84E-04</td>
<td>3,36E-04</td>
<td>26,0</td>
<td>0,53</td>
<td>45</td>
<td>ME</td>
</tr>
<tr>
<td>DS (Mg m$^{-3}$)</td>
<td>gau(54)</td>
<td>8,80E-04</td>
<td>1,76E-03</td>
<td>25,5</td>
<td>0,42</td>
<td>50</td>
<td>ME</td>
</tr>
<tr>
<td>RP (MPa)</td>
<td>epp</td>
<td>3,21E-01</td>
<td>3,21E-01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) PG, MC, SM, MA, MI, PT, DS, e RP, são, respectivamente, produtividade de grãos, massa de cem grãos, severidade de mancha dos grãos, macroporosidade, microporosidade, porosidade total, densidade do solo e resistência a penetração; (b) esf: esférico, exp: exponencial, gau: gaussiano, epp: efeito pepita puro; (c) ADE: avaliador de dependência espacial, sendo AL: alta e ME: média.
prever adequadamente o valor das variáveis em locais não amostrados, com coeficientes angulares próximos a uma unidade e coeficientes de correlação maiores para as variáveis relacionadas à planta em relação às relacionadas aos atributos do solo (Tabela 3).

No mapa da produtividade de grãos observa-se áreas mais claras principalmente no centro da área após consórcio de braquiária e crotalária e em todo o lado esquerdo do mapa, que corresponde principalmente ao cultivo do arroz após consórcio de braquiária e feijão-caupi (Figura 1). Estas áreas representam produtividades acima da média, sendo os valores máximos encontrados na região central do mapa.

De acordo com as observações feitas a campo, esta área central de altas produtividades representa um local onde os animais ficavam concentrados durante o período que a área foi usada para pastejo, coincidindo com áreas de reduzida macroporosidade e maiores densidades do solo, onde a retenção de água no solo é maior e os efeitos do veranico foram minimizados, o que também está de acordo com as correlações lineares obtidas entre esses atributos e a produtividade de grãos.

A produtividade de grãos ficou abaixo da média em praticamente toda a área correspondente ao cultivo do arroz após consórcio de braquiária e capim Sudão, isto significa que o tratamento em questão diminuiu a produtividade do arroz. Um dos motivos pode ser a liberação de compostos alelopáticos por espécies pertencentes ao gênero *Sorghum*, principalmente a sorgoleone (VIDAL; TREZZI, 2004). As menores produtividades nessa área estão também associadas aos maiores valores de severidade de mancha dos grãos, o que pode ser atribuído à capacidade de várias espécies do gênero *Sorghum* em hospedar os principais patógenos responsáveis pela mancha dos grãos (FAKHRUNNISA; GHAFFAR, 2006).

4. Conclusões

Todos os atributos da planta e a maioria dos atributos do solo apresentaram dependência espacial moderada, com elevada variabilidade espacial no sistema de integração lavoura-pecuária em estudo, indicando grande potencial de uso das ferramentas geoestatísticas e das técnicas de agricultura de precisão.

O aumento da densidade do solo, dentro dos níveis observados, gerou incrementos na produtividade e redução na severidade de mancha dos grãos de arroz, entretanto as condições climáticas desfavoráveis observadas durante a produção não permitem que esses resultados sejam generalizados.

O cultivo de arroz de terras altas após consórcio de braquiária e feijão-caupi proporcionou maiores produtividades e redução na severidade de mancha dos grãos de arroz, enquanto que o capim Sudão proporcionou o oposto, não sendo recomendado como cultura de cobertura antes do cultivo de arroz.

Figura 1. Mapa de krigagem para a produtividade de grãos de arroz cultivado após os consórcios de braquiária com feijão-caupi (T1), crotalária (T2) e capim Sudão (T3) em um Latossolo Vermelho–Amarelo sob integração lavoura–pecuária. Fazenda Dona Isabina, Santa Carmém–MT, 2012.
Agradecimentos

Os autores agradecem a Embrapa Arroz e Feijão e a Fazenda Dona Isabina pelo apoio à realização do trabalho e ao Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil, CNPq, pelo auxílio financeiro.

Referências

Algoritmos para aplicações de doses variáveis de nitrogênio em tempo real para produção de milho safra e safrinha no Cerrado**

Luciano Shozo Shiratsuchi*1, Wellington Gonzaga do Vale*2, Tiago José Malacarne*3, Cledir Márcio Schuck*4, Robson Guimarães da Silva*5, Orlando Lúcio de Oliveira Júnior*6

1Pesquisador, Embrapa Agrossilvipastoril; Rodovia dos Pioneiros, MT222; km2,5, Sinop, MT
2Professor, Universidade Federal do Mato Grosso – UFMT
3Graduando em Agronomia; Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso – IFMT
4Técnico, Embrapa Agrossilvipastoril
5Técnico, Embrapa Milho e Sorgo
6Analista, Embrapa Agrossilvipastoril

*E-mails: luciano.shiratsuchi@embrapa.br, valewg@ufmt.br, tiagomalacarne@agronomo.eng.br, cledir.schuck@embrapa.br, robson.guimaraes@embrapa.br, orlando.oliveira@embrapa.br

**Financiamento da Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA).

Resumo: Sensores ativos de dossel acoplados a máquinas capazes de realizar aplicação em taxas variáveis e em tempo real de nitrogênio (N) vêm sendo usados com sucesso em outros países, mostrando que é possível economizar fertilizantes nitrogenados e aumentar a produtividade do milho. Geralmente estes sensores têm sido utilizados comercialmente no Brasil com algoritmos ou fórmulas matemáticas desenvolvidos em outros países como EUA e Europa. Desta forma, existe uma necessidade de desenvolver e/ou calibrar estes algoritmos para condições de Cerrado tanto para milho safra como milho safrinha. O objetivo deste trabalho foi desenvolver e calibrar algoritmos para adubação nitrogenada de cobertura em tempo real com a utilização em sensores ativos de dossel nas culturas de milho safra e safrinha. O experimento foi conduzido em parcelas grandes com diferentes doses de N em fazendas comerciais entre os anos 2010 e 2013 na região do Cerrado. Foram realizadas leituras periódicas com sensores ativos de dossel entre os estágios V8 e V12 no milho. Baseado no histórico de produtividade de milho safra e safrinha combinado com a abordagem de índice de suficiência de N (NSI), dois algoritmos foram desenvolvidos e calibrados para utilização em milho safra e safrinha. Sendo eles: Milho safra ou safrinha em plantio normal (epoca ideal sem atraso): Dose de N (kg.ha\(^{-1}\)) = -9509,6NSI\(^2\) + 15921NSI - 6481,2; Milho safrinha em plantio atrasado: Dose de N (kg.ha\(^{-1}\)) = -9509,6NSI\(^2\) + 15921NSI - 6541,2.

Palavras-chave: sensores ativos de dossel, agricultura de precisão, sensoriamento remoto proximal

Algoritmos para aplicações de doses variáveis de nitrogênio em tempo real para produção de milho safra e safrinha no Cerrado**

Algorithms for on-the-go nitrogen management for regular and second-season production of corn in the Brazilian Cerrado

Abstract: Research and extension efforts showed that active crop canopy sensors (ACS) can save nitrogen and increase productivity of corn using on-the-go nitrogen (N) applications. Generally these sensors have been used in Brazil with algorithms developed for northern countries. However, there is a need to develop an algorithm that incorporates regional crop system conditions for regular and second-season production of corn after soybeans called safrinha. This second crop represents more than 90% of the corn produced in the Mato Grosso state, that is the second state at national corn production. The objective of this study was to calibrate an algorithm for on-the-go N fertilizer applications for regular season and safrinha corn. The experiment was conducted in 21 site-years from 2010 to 2013 in the Brazilian Cerrado region. Experimental plots using different N
rates were sensed between V8 and V12 growth stage using ACS. Based on historical yield from high input farmers that use regular and safrinha system combined with the nitrogen sufficiency index approach (NSI) developed by Nebraska researcher’s, two algorithms for on-the-go nitrogen fertilizer application for corn were calibrated. Regular season corn and second season corn (no late planting): \[N \text{ rate (kg.ha}^{-1}) = -9509.6\text{NSI}^2 + 15921\text{NSI} - 6481.2; \] Second season corn at late planting: \[N \text{ rate (kg.ha}^{-1}) = -9509.6\text{NSI}^2 + 15921\text{NSI} - 6541.2. \]

Keywords: Active canopy sensors, precision agriculture, proximal remote sensing

1. **Introdução**

Sensores ativos de dossel acoplados a máquinas capazes de realizar aplicação em taxas variáveis e em tempo real de nitrogênio (N) vêm sendo usados com sucesso em outros países, mostrando que é possível economizar fertilizantes nitrogenados e aumentar a produtividade do milho (RAUN et al., 2005). Geralmente estes sensores têm sido utilizados comercialmente no Brasil com algoritmos ou fórmulas matemáticas desenvolvidos em outros países como EUA e Europa. Desta forma, existe uma necessidade de desenvolver e/ou calibrar estes algoritmos para condições de Cerrado tanto para milho safra como milho safrinha. Estudo recente (SHIRATSUCHI et al., 2011) e parte inicial deste trabalho parametrizou um primeiro algoritmo para milho safra na região do Cerrado, porém a abordagem de produtividade maximizada gerou uma formulação para altas produtividades em milho safrinha, prescrevendo altas doses de N. Porem, existe uma ampla demanda para algoritmos mais conservadores em termos de doses de fertilizantes nitrogenados onde a água pode ser fator principal na limitação de produtividade como acontece com o milho safrinha. O objetivo deste trabalho foi desenvolver e calibrar algoritmos para adubação nitrogenada de cobertura em tempo real com a utilização em sensores ativos de dossel nas culturas de milho safra e safrinha.

2. **Material e Métodos**

Para a calibração deste novo algoritmo foi utilizada a mesma abordagem da formulação ajustada para as condições do Cerrado, recentemente proposto por SHIRATSUCHI et al. (2011). A principal diferença é que ao invés de parametrizar a dose de N maximizando a produtividade, foram utilizadas exportações de N de acordo com produtividades históricas em milho safrinha e safrinha em plantio normal e milho safrinha em plantio atrasado. Foram utilizados dados experimentais acumulados de 21 experimentos realizados entre os anos de 2010 a 2013. Deste total 15 áreas foram coletadas em condições de milho safrinha em Mato Grosso, sendo 2 em Sinop e 13 em Sorriso e as demais em milho safrinha em Formosa - Go. Todas as áreas em produtores vêm sendo conduzidas sob sistema de plantio direto e/ou sucessão soja-milho. Nas áreas em produtores cada parcela experimental consistiu de faixas longas (sempre maiores que 500 m) pela largura do aplicador de fertilizante (20 a 30 m). Cada dose de N (0, 40, 72, 75, 80, 120, 144, 150, 160, 216, 250, 288, 360 kg N.ha\(^{-1}\)) foi replicada 3 vezes em cada talhão do produtor. Nas áreas de parcelas pequenas realizadas em estação experimental no estado do Mato Grosso foram realizadas doses crescentes em parcelas pequenas de 5 fileiras de 10 m espaçadas de 0,45 m para cada dose de N. As leituras com os sensores ativos de dossel, foram realizadas entre os estadios fenológicos de 7 à 13 folhas utilizando dois sensores Crop Circle™ e Greenseeker™ (Tabela 1).

O algoritmo proposto neste trabalho utiliza uma abordagem largamente utilizada e validada pela pesquisa nos EUA chamado índice de suficiência de nitrogênio (NSI) (SCHEPERS et al., 1992). Este conceito integra na leitura do sensor os efeitos do clima, solo e híbridos para condições locais de utilização, pois utiliza uma parcela referência dentro do talhão que é considerada não limitante em termos de N. O NSI utilizado neste estudo é basicamente a divisão da leitura de algum índice de vegetação derivado dos sensores por uma leitura em um local do talhão onde o N
não é considerado limitante (parcela referência). Neste caso foram montadas parcelas com doses elevadas de N de forma a não haver limitação de N (chamadas faixas ricas em N) em todas as áreas adjacentes as parcelas de doses de N. Foi utilizado o índice de vegetação por diferença normalizada (NDVI) (ROUSE et al., 1973) para o cálculo do NSI quando o sensor foi o Greenseeker e Meris Terrestrial Chlorophyll Index (MTCI) (DASH; CURRAN, 2004) quando o sensor foi o Crop Circle. NSI é igual ao índice de vegetação da dose de N na parcela dividido pelo índice de vegetação da parcela de faixa rica. O NDVI é representado pela fórmula: NDVI = (NIR-Red) / (NIR+Red) e o MTCI = (NIR-Red Edge)/(Red Edge-Red). Onde NIR é a refletância no infravermelho próximo, Red é a refletância no banda vermelha e Red Edge é a refletância próximo a 720nm.

As etapas gerais para calibração do algoritmo foram:

- Determinação da exportação de N pela cultura indiretamente pela produtividade média do milho safrinha em condições dos produtores em 2012 (totalizando 7765 ha colhidos com colhedoras instrumentadas utilizando sensores de produtividade);
- Utilização da sensibilidade dos sensores utilizando a relação do NSI e doses de N (21 áreas diferentes com milho safra e safrinha);
- Por diferença da exportação total de N (grãos mais palhada) e a quantidade estimada de N na planta pelos sensores, foi determinada uma equação que calcula a dose de N a ser aplicada em cobertura no milho. Não foi considerado nenhum crédito via leguminosas ou matéria orgânica do solo, sendo reposto todo N que foi exportado pela cultura.

O desenvolvimento deste algoritmo difere do proposto por SHIRATSUCHI et al. (2011), pois ao invés de utilizar a dose de N que maximiza a produtividade, utiliza dados de potencial produtivo médio em condições reais de milho safra e safrinha, onde limitações de água no final do ciclo pode interferir bastante na produtividade final.

3. Resultados e Discussão

O potencial produtivo médio entre os anos de 2010 a 2013 utilizado para se calcular a média de exportação de N dos 7765 ha colhidos com milho safra e safrinha em plantio normal (sem atraso na janela de plantio) foi de 8 ton.ha⁻¹. Exportando segundo International Plant Nutrition Institute (IPNI) 160 kg N.ha⁻¹ (grãos mais palhada) Figura 1.

Cada talhão possuía híbridos diferentes e épocas de plantio diversas, portanto baseando-se em dados históricos do produtor, foram considerados 2 potenciais produtivos: Potencial produtivo em plantio normal de 8 toneladas e plantio tardio de 5 toneladas, resultando em exportações de grãos mais palha de 160 e 100 kg N.ha⁻¹, respectivamente.

As respostas das leituras dos sensores à doses de N utilizando NDVI ou MTCI transformado em NSI foram semelhantes entre milho safra e safrinha, mostrando que a normalização para índice de suficiência integra as respostas espectrais de dois sistemas de produção de milho com diferentes potenciais produtivos (Figura 2).

Devido a esta semelhança na resposta espectral entre milho safra e safrinha optou-se por gerar uma curva média de resposta espectral para todo o conjunto de 21 experimentos, onde o teor relativo de N na planta estimado por NSI foi utilizado para estimar a condição nutricional de N do milho (Figura 3).

Interpreta-se esta curva média de resposta como sendo o quanto de N existe na planta (condição nutricional na hora da adubação de cobertura, V7 a V12) de acordo com leituras dos

Tabela 1.

<table>
<thead>
<tr>
<th></th>
<th>Crop Circle</th>
<th>Greenseeker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modelo ACS - 430</td>
<td>Modelo - Handheld</td>
</tr>
<tr>
<td>NIR:</td>
<td>760nm; RE: 720nm; Red: 670nm</td>
<td>NIR: 780nm; Red 660nm</td>
</tr>
</tbody>
</table>
sensores. Importante ressaltar que antes de V7 e depois do pendoamento a condição nutricional do milho expressa pelo índice de suficiência tem comportamento diferente da curva média apresentada. Antes de V7, os sensores tem dificuldades em diferenciar as doses de N e depois do pendoamento o NSI se diferencia mais entre as doses, não servindo mais como critério para adubação nitrogenada.

Fazendo-se a diferença da dose de N para milho safra em plantio normal ou milho safra (160 kg N.ha⁻¹) e milho safrinha em plantio tardio (100 kg N.ha⁻¹) com a condição nutricional de N na planta têm-se as doses de N a serem aplicadas para milho safrinha e safra em plantio normal e safrinha no Cerrado e plantio tardio (Figura 5). Estes algoritmos são sensíveis ao potencial produtivo que se foi adotado de 8 e 5 t.ha⁻¹, portanto doses maiores de N podem ser aplicadas se maiores potenciais produtivos forem almejados. Para geração de algoritmos com outros potenciais produtivos diferentes do proposto neste trabalho a equação apresentada na Figura 3 pode ser utilizada para gerar outras formulações de acordo com a expectativa de produção almejada.

Para máximo potencial produtivo sem limitação hídrica, a utilização de algoritmo desenvolvido anteriormente por SHIRATSUCHI et al. (2011) também pode ser utilizado.

É importante frisar que o algoritmo calcula o N total a ser aplicado na cultura, portanto se for utilizado N durante o plantio, esta dose deve ser subtraída da dose total. Por exemplo: foram aplicados 30 kg N.ha⁻¹ no plantio e o algoritmo pede a dose de 120 kg N.ha⁻¹ deve-se então ser complementada uma dose de 90 kg N.ha⁻¹ na cobertura utilizando os sensores ativos de dossel. Em condições de produção comercial uma dose inicial de no mínimo 30 kg N.ha⁻¹ em cobertura com 4 folhas é recomendada para que o estresse de N durante a cobertura da cultura não seja excessivo a ponto de causar redução de produtividade.

![Gráfico da Figura 1. Potencial produtivo médio no milho safrinha e safrinha plantado em época normal.](image-url)
Figura 2. Resposta dos sensores a doses de N em milho safra e safrinha.

Figura 3. Resposta média espectral dos sensores a doses de N em milho safra e safrinha.
Figura 4. Algoritmos para adubação de cobertura em milho safra e safrinha para plantio normal e tardio.

Figura 5. Ilustração do algoritmo para milho safra e safrinha em duas condições de plantio.
4. Conclusões

A resposta espectral do milho safra e safrinha utilizando-se sensores ativos de dossel foram semelhantes quando normalizado para índice de suficiência de nitrogênio, mostrando que a abordagem de geracao do algoritmo pode ser extrapolada para diversos potenciais produtivos e expectativas de produtividade.

Foram gerados dois algoritmos para adubação em tempo real com a utilização de sensores ativos de dossel em milho safra e safrinha. Estes algoritmos estão em constante atualização e estão sendo validados em condições de produtores parceiros.

Os dois algoritmos propostos neste trabalho foram: Milho safra ou safrinha em plantio normal (epoca ideal sem atraso): Dose de N (kg.ha\(^{-1}\)) = \(-9509,6NSI^2 + 15921NSI - 6481,2\); Milho safra em plantio atrasado: Dose de N (kg.ha\(^{-1}\)) = \(-9509,6NSI^2 + 15921NSI - 6541,2\).

Agradecimentos

Sinceros agradecimentos aos produtores e técnicos Ivan Bedin, Júnior Ferla e Francisco Luçardo por acreditarem em nosso trabalho, pelo aprendizado pratico repassado por eles e paciência durante toda condução dos trabalhos.

Agradecemos também à EMBRAPA e UFMT pelo apoio financeiro e estratégico para a Rede de Agricultura de Precisão.

Referências

Qualidade física do solo em zonas homogêneas para adoção do manejo sítio-específico

José Francirlei de Oliveira*1, Robélio Leandro Marchão*2, Edemar Joaquim Corazza*3, Juaci Vitória Malaquias*4, Sandro Manuel Carmelino Hurtado*5, Marina de Fátima Vilela*6, Maria de Fátima Guimarães*7

1Doutorando, Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina – UEL, Rodovia Celso Garcia Cid, PR 445, Km 380, CEP 86051-980, Londrina - PR
2 Pesquisador, Embrapa Cerrados
3 Pesquisador, Embrapa Informação Tecnológica
4 Analista, Embrapa Cerrados
5 Pós-Doutorando, Instituto Agronômico de Campinas
6 Pesquisadora, Embrapa Cerrados
7 Professor Associado, Departamento de Agronomia, CCA, Universidade Estadual de Londrina

*E-mails: jfoliveira79@iapar.br, robelio.marchao@embrapa.br, edemar.corazza@embrapa.br, juaci.malaquias@embrapa.br, sandroelbat@gmail.com, marina.vilela@embrapa.br, mfatima@uel.br

Resumo: O manejo de uma gleba pode apresentar diferentes impactos na qualidade físico-hídrica do solo, aumentando o risco de degradação de acordo com a intensidade de uso e as características edáficas da área. O objetivo deste trabalho foi avaliar a qualidade físico-hídrica do solo de uma gleba agrícola, dividida em zonas homogêneas para adoção do manejo sítio-específico. Num estudo prévio, foram definidas na gleba três zonas homogêneas, 1A, 1B e 1C. Em relação à camada 80-100 cm, observaram-se maiores valores de densidade do solo da zona 1B, onde ocorreu aumento médio de 12% na camada 0-5 cm e nas zonas 1A e 1C esse aumento foi menor que 5%. Apesar do incremento na densidade do solo, não se observou redução proporcional na porosidade. Ao observar as curvas características de retenção de água, verifica-se que, apesar do aumento na densidade do solo, a redução da porosidade foi mais drástica na zona 1C, principalmente nas camadas 0-5 e 20-30 cm, com redução de até 24% da porosidade estrutural em relação à camada 80-100 cm e nas zonas 1A e 1B essa redução foi de 3% e 6%, respectivamente. Assim, pode-se concluir que o funcionamento físico-hídrico do solo em cada uma das zonas homogêneas é diferente, sendo a susceptibilidade à compactação da zona 1B e a redução da porosidade da zona 1C os principais fatores que podem potencialmente acelerar os processos de degradação físico-hídrica da gleba pelo manejo. A divisão da gleba em zonas homogêneas permite ainda inferir que o tráfego de máquinas nessas zonas não deve ser feito simultaneamente.

Palavras-chave: Integração lavoura-pecuária, sistema plantio direto, compactação do solo, atributos físico-hídricos, agricultura de precisão.

Soil physical quality of homogeneous zones for site specific management

Abstract: The management of a field may have different impacts in soil physico-hidrical properties, increasing the risk of land degradation. The objective of this work was to evaluate the effect of soil management on soil physical quality of an agricultural field divided in homogeneous zones for precision agriculture. In a previous study, three zones were defined, 1A, 1B and 1C. Management promoted higher impact in soil bulk density of the 1B zone, which presents an average increase of 12% in the 0-20 cm layer. In the 1A and 1C zones this increase was less than 5%. However, this difference not reflected linearly in the soil porosity values. While observing the soil water retention curves, we noted
that, despite the soil bulk density increase, the reduction in porosity was more drastic in the 1C zone, mainly in the layers 0-5 and 20-30 cm, with a reduction up to 24% of the structural porosity in relation to the layer 80-100 cm. In 1A and 1B zones this reduction was of 3% and 6%, respectively. Therefore, the dynamic of the soil physical quality and soil functioning in each of management zones are differently dependent of the soil management, being the susceptibility to compaction in the 1B zone and the reduction of the porosity in the 1C zone the principal factors which can accelerate the process of land degradation. The division of the field in management zones allowed highlighting that the machinery traffic in these zones should not be done simultaneously.

Keywords: Crop-livestock integration, no-tillage, soil compaction, physico-hidrical properties, precision agriculture.

1. Introdução

Os latossolos cobrem cerca de 50% do território brasileiro e são caracterizados principalmente pelo avançado grau de intemperização cuja fração argila é constituída predominantemente de óxidos de ferro e alumínio, principalmente hematita, goetita e gibsite, e ainda por caulinita, com morfoestrutura microagregada muito forte e estável (BALBINO et al., 2002).

Apesar da homogeneidade que lhe é conferida, a literatura relata constantemente as variações dos componentes estruturais dos latossolos (BALBINO et al., 2002; MARQUES et al., 2004; REATTO et al., 2007), qualificados quanto ao grau de desenvolvimento, tamanho e tipo da morfoestrutura observada nas transições entre os horizontes do perfil (MARQUES et al., 2004; BALBINO et al., 2002). Essa morfoestrutura pode variar horizontalmente de acordo com a posição na paisagem, como observaram Reatto et al. (2007) em topossequencia regional, Camargo et al. (2008) em escala de gleba agrícola e Juhász et al. (2006) em escala experimental. Assim, o manejo do solo de uma gleba pode apresentar diferentes níveis de impacto na qualidade física das diferentes vertentes dessa gleba, seja influenciado pela posição na paisagem ou pela variação vertical do perfil, o que pode diferenciar a dinâmica da água e aumentar o risco de degradação do solo. Trabalhos como os de Duffera, White e Weisz (2007), Vitharana et al. (2008) e Peralta et al. (2013) buscaram delimitar as zonas homogêneas para manejo contudo, não existe na literatura nenhum trabalho que tenha avaliado o efeito do manejo sobre a qualidade física do solo em zonas homogêneas sob manejo sito-espécifico.

Alguns trabalhos têm utilizado a curva característica de retenção de água do solo para comparar o efeito dos sistemas de manejo partindo da premissa que podem ocorrer mudanças na forma da curva de retenção de água relativa com a degradação do solo (SANTOS et al., 2011). Ainda, uma análise da distribuição de poros de forma dinâmica pode ser feita a partir da curva característica de retenção de água (PIRES et al., 2008), que é uma propriedade afetada por outros atributos do solo (HILLEL, 1998; MIGUEL; VILAR, 2009), demonstrando-se sensível aos sistemas de manejo podendo ser utilizada, portanto, para avaliar a qualidade física do solo em zonas homogêneas sob manejo sito-espécifico.

O objetivo deste trabalho foi avaliar o efeito do manejo sobre a qualidade físico-hídrica do solo de uma gleba agrícola dividida em zonas homogêneas para adoção de manejo por sito-espécífico.

2. Material e Métodos

O estudo foi conduzido na Fazenda Alto Alegre, município de Planaltina - GO em uma área de 310 ha (15º, 32’ S de Latitude e 47º, 67’ W de Longitude) com altitude média de 1000 m, cujo solo predominante é o Latossolo Vermelho Amarelo distrófico caulinitíco de textura argilosa (SANTOS et al., 2006). A vegetação nativa na gleba foi removida há aproximadamente 23 anos para implantação de agricultura sendo manejada sob preparo convencional do solo (aração seguida por gradagen) até o início da década de 1990. A
partir de então se adotou o sistema de plantio direto, baseado na rotação soja-milho, sendo que a partir de 2006 o milho é cultivado no sistema de integração lavoura-pecuária, em consórcio com *Brachiaria ruziziensis* para produção de forragem e pastejo na entressafra.

Na gleba de estudo foi estabelecida malha regular de 175 x 175 m com 97 pontos onde foram coletadas amostras deformadas e indeformadas da camada 0,80-1,00 m para determinação dos atributos do solo e das áreas homogêneas. Mais detalhes acerca dos atributos e metodologias utilizadas para divisão da gleba em zonas homogêneas, bem como das relações espaciais dos atributos do solo que influenciam a umidade gravimétrica dessa área estão escritos em Oliveira et al. (2011a, b).

A Figura 1 apresenta o local onde os perfis modais foram abertos dentro de cada zona homogênea.

Em cada zona homogênea foi aberto um perfil e amostras deformadas e indeformadas (com auxílio de cilindro de 100 cm³) foram coletadas nas profundidades 0,00-0,05, 0,05-0,10, 0,125-0,175, 0,225-0,275, e 0,875-0,925 m para determinação da curva de retenção de água pelo método da centrífuga (SILVA; AZEVEDO, 2002; REATTO et al., 2008). Os cilindros foram saturados por 24 h e determinou-se o conteúdo de água em equilíbrio com os potenciais -1, -3, -6, -10, -33, -80, -400, -1000 e -1500 KPa. Ao final deste processo, as amostras foram secadas em estufa a 105°C para determinação da massa seca, da densidade do solo (Ds) e dos conteúdos gravimétricos de água associados à cada tensão aplicada (kPa). Para cada valor de umidade foi calculado o conteúdo relativo de água conforme descrito em Santos et al. (2011).

A curva característica de retenção de água foi ajustada pelo modelo proposto por Van Genuchten (1980).

A granulometria foi determinada utilizando-se NaOH 1N como dispersante químico e posterior agitação por 16 horas em mesa orbital. O teor de carbono foi determinado por oxidação úmida conforme descrito em Claessen (1997). Os valores de Ki e Kr, correspondentes à média das camadas nos perfis, foram calculados a partir dos teores totais de Si, Fe e Al obtidos por ataque sulfúrico.

As curvas de retenção de água foram comparadas entre perfis/zonas na mesma camada e entre camadas no mesmo perfil/za utilizado o método descrito por Silva e Azevedo (2002), que tem como base a soma dos quadrados dos erros (SQerro) obtidos nos ajustes das curvas de retenção. A partir dessa comparação foi possível determinar um valor de F com 2 graus de liberdade no numerador e 8 graus de liberdade no denominador. Para as comparações entre zonas e camadas se assumiu que as alterações na camada arável (0-30 cm) em relação ao horizonte subsuperficial (80-100 cm) são devidas ao manejo, conforme observado nos levantamentos pedológicos e descrição de perfis culturais realizados na gleba em estudos prévios.

3. Resultados e Discussão

As zonas 1A e 1B apresentaram valores de ki e Kr >0,75 e a 1C, ki e Kr <0,75 (Tabela 1). Conforme Santos et al. (2006) as zonas 1A e 1B são compostas por latossolos cauliniticos e a 1C, gibscítico. Além da mineralogia, a granulometria destas áreas também é diferente, sendo a zona 1A classificada como textura média, 1B argilosa e 1C muito argilosa (SANTOS et al., 2006).
Tabela 1. Atributos físicos e químicos do horizonte diagnóstico (0.80-1.00 m) dos três perfis dentro de cada zona homogênea.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Tipo de solo</th>
<th>Granulometria (µm)</th>
<th>CO (g kg⁻¹)</th>
<th>Ki</th>
<th>Kr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><2</td>
<td>2-50</td>
<td>50-2000</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>LVA Álico</td>
<td>272</td>
<td>150</td>
<td>578</td>
<td>13,23</td>
</tr>
<tr>
<td>1B</td>
<td>LVA Álico</td>
<td>361</td>
<td>212</td>
<td>427</td>
<td>15,56</td>
</tr>
<tr>
<td>1C</td>
<td>LV Distófico</td>
<td>700</td>
<td>188</td>
<td>112</td>
<td>18,20</td>
</tr>
</tbody>
</table>

Tabela 2. Densidade do solo (g cm⁻³) das camadas 0-5, 5-10, 10-20, 20-30 e 80-100 cm nas zonas 1A, 1B e 1C da figura 1.

<table>
<thead>
<tr>
<th>Camada (cm)</th>
<th>Zonas de manejo</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td></td>
<td>1,18 a</td>
<td>1,05 a</td>
<td>0,88 b</td>
</tr>
<tr>
<td>5-10</td>
<td></td>
<td>1,24 a</td>
<td>1,06 b</td>
<td>0,97 b</td>
</tr>
<tr>
<td>10-20</td>
<td></td>
<td>1,13 a</td>
<td>1,06 a</td>
<td>0,93 b</td>
</tr>
<tr>
<td>20-30</td>
<td></td>
<td>1,17 a</td>
<td>1,07 b</td>
<td>0,98 c</td>
</tr>
<tr>
<td>80-100</td>
<td></td>
<td>1,13 a</td>
<td>0,95 b</td>
<td>0,89 b</td>
</tr>
</tbody>
</table>

De maneira geral, os teores de carbono orgânico na forma de polissacarídeos e produtos da oxidação da lignina são maiores em solos com maior teor de argila e solos com menor teor de argila apresentam predominância de carbono orgânico particulado, que resulta em maiores proporções de carbono orgânico lábil, de mais fácil decomposição e menos estável no solo (NEUFELDT et al., 2002). Ressalta-se que essa diferença nos teores de carbono pode resultar em maiores estoques de carbono nessa área uma vez que as perdas e ganhos bem como mudanças qualitativas em função do manejo são menos evidentes nos solos de textura muito argilosa, indicando maior resiliência quando comparado a solos de textura mais grosseira (DIECKOW et al., 2009). Tais diferenças são fatores chave para a dinâmica do carbono e devem ser consideradas na implantação de projetos que contemplem sistemas agrícolas de baixa emissão de carbono.

A menor densidade de solo e o maior teor de carbono orgânico da zona 1C (Tabela 2) podem ser explicados pela predominância de óxidos e granulometria da área (Tabela 1). A menor densidade ocorre porque a gibisita liga-se à superfície de outros minerais pelas suas arestas, promovendo um empilhamento desorganizado que privilegia a formação de microestruturas arredondadas (ROBERT et al., 1987; VRDOLJK; SPOSITO, 2002), diferentemente da caulinita, predominante nas zonas 1A e B, que promove um empilhamento face a face organizado das placas, o que implica na presença de estruturas em blocos e, consequentemente, latossolos com maior densidade e maior proporção de microporos (FERREIRA et al. 1999; VRDOLJK; SPOSITO, 2002).

Analisando as comparações entre camadas (camada arável versus camada 80-100 cm), não se confirmou a hipótese de maior impacto do manejo na zona 1C devido à menor capacidade de suporte de carga de solos Óxidos em relação aos caulinitícos (ALAYI et al., 2009), contudo, o manejo promoveu maior impacto na densidade do solo da zona 1B onde ocorreu aumento médio de 12% da Ds da camada entre 0-30 cm, em relação à camada 80-100 cm. Nas zonas 1A e 1C o incremento na Ds na camada 0-30 cm não foi maior que 5% (Tabela 2).

Esse resultado possivelmente ocorreu devido à influência da forma do relevo na formação e cristalínidade dos minerais de caulinita e goetita, que por sua vez estão diretamente relacionados com a estabilidade dos agregados e a densidade do solo (CAMARGO et al., 2008a, b; ALAYI et al., 2009).
Apesar das diferentes características granulométricas e mineralógicas, as curvas de retenção da camada 80-100 cm das zonas foram semelhantes entre si (Tabela 3 e Figura 2), demonstrando que as diferenças de densidade do solo não se refletiram na porosidade das zonas.

Na comparação entre as zonas homogêneas (Figura 2 e Tabela 3), observou-se que as curvas de retenção de água foram diferentes apenas entre as zonas 1A e 1B na camada 0-5 cm e 1A e 1C na camada 20-30 cm e apenas na zona 1C as curvas da camada superficial (0-5 e 20-30 cm) se diferiram daquela na camada 80-100 cm.

A porosidade pode ser dividida em duas porções: a primeira, a porosidade estrutural e a segunda, porosidade textural, que correspondem à porosidade acima e abaixo do ponto de inflexão da curva de retenção de água (GUÉRIF et al., 2001). Também, quando avaliada a camada superficial, se observa que, apesar dos resultados de Ds, a redução da porosidade estrutural foi mais drástica na zona 1C, principalmente nas camadas 0-5 e 20-30 cm, sendo que nesta camada houve redução de 24% da porosidade estrutural (equivalente à umidade volumétrica nas tensões de 0 a -10 kPa) em relação à camada 80-100 cm e nas zonas 1A e 1B essa redução foi de 3% e 6% (Figura 2). A perda da porosidade estrutural pela zona 1C denota perda da porosidade formada pela atividade biológica, fissuras e unidades estruturais formadas pelo manejo, com consequente perda de qualidade físico-hídrica do solo (DEXTER et al., 2004), tornando essa zona mais susceptível à degradação.

Alayi et al. (2009), estudando o suporte de carga de latossolos com diferentes mineralogias, observaram que aqueles com maiores teores de óxidos de ferro e alumínio caracterizam o solo com menor suporte de carga. Ademais, para as zonas homogêneas delimitadas neste estudo se observa que a menor capacidade de carga da zona 1C se reflete mais na porosidade do que na organização dos agregados.

Dexter et al. (2004) ressaltaram que quando um solo é compactado o volume de poros é reduzido, contudo, nem todos os poros são reduzidos similarmente, sendo que este processo explica a diferença de comportamento entre os resultados de Ds e redução de porosidade e permite enfatizar que a dinâmica da qualidade físico-hídrica nas zonas homogêneas é afetada diferentemente pelo manejo dependendo do tipo de solo e demais características edáficas, sendo a susceptibilidade à compactação da zona 1B e a redução da porosidade da zona 1C os principais fatores que podem acelerar os processos de degradação da gleba. Estes resultados demonstram que o tráfego de máquinas nas glebas agrícolas heterogêneas pode causar diferentes níveis de compactação dependendo das variações edáficas contidas na gleba. Neste estudo, demonstrou-se que as zonas 1B e 1C estão potencialmente mais sujeitas à degradação em menor período de tempo que a zona 1A.

Tabela 3. Valores de probabilidade do teste F, com 2 e 8 graus de liberdade, nas comparações das curvas características de retenção de água entre as zonas de manejo e as camadas 0-5, 5-10, 10-20 e 20-30 cm em relação à camada 80-100 cm dentro das zonas homogêneas 1A, 1B e 1C.

<table>
<thead>
<tr>
<th>Zonas</th>
<th>Comparação entre zonas de manejo</th>
<th>1A</th>
<th>1B</th>
<th>1C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-5 cm e 5-10 cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>0,039*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>1,5453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-20 e 20-30 cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>76,456</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>0,0416*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80-100cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camadas</td>
<td>Comparação entre camadas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1A</td>
<td>1B</td>
<td>1C</td>
<td></td>
</tr>
<tr>
<td>0-5</td>
<td>0,4763</td>
<td>0,9974</td>
<td>0,0144*</td>
<td></td>
</tr>
<tr>
<td>5-10</td>
<td>6,386</td>
<td>0,8754</td>
<td>0,1238</td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>3,3057</td>
<td>0,8754</td>
<td>0,1258</td>
<td></td>
</tr>
<tr>
<td>20-30</td>
<td>0,8688</td>
<td>2,3624</td>
<td>0,0027*</td>
<td></td>
</tr>
</tbody>
</table>

* - significativo a 5%
4. Conclusões

A dinâmica da qualidade físico-hídrica e o funcionamento do solo em cada uma das zonas homogêneas são diferentemente dependentes do manejo, sendo a susceptibilidade à compactação da zona 1B e a redução da porosidade da zona 1C os problemas que podem acelerar os processos de degradação físico-hídrica na gleba estudada.

A divisão de glebas em zonas homogêneas para adoção do manejo por sítio-específico auxilia no entendimento do impacto do manejo na qualidade física do solo bem como nas técnicas de conservação que devem ser empregadas para minimizá-lo.

Agradecimentos

Referências

Figura 2. Curvas características de retenção de água das camadas 0-5, 5-10, 10-20, 20-30 e 80-100 cm das zonas homogêneas.

Uso do sensoriamento remoto na obtenção de parâmetros biofísicos em plantios de soja

Ricardo Guimarães Andrade*1, Luiz Eduardo Vicente*1, Antônio Henrique de Castro Teixeira*1, Janice Freitas Leivas*1, Daniel de Castro Victoria*1, Samuel Roggia*2, Júlio Cézar Franchini*2

*Pesquisador, Embrapa Monitoramento por Satélite. Av. Soldado Passarinho, 303, CEP 13070-115, Campinas, SP
2 Pesquisador, Embrapa Soja. Rod. Carlos João Strass, Distrito de Warta, CEP 86001-970, Londrina, PR
*E-mails: ricardo.andrade@embrapa.br, luiz.vicente@embrapa.br, heriberto.teixeira@embrapa.br, janice.leivas@embrapa.br, daniel.victoria@embrapa.br, saumel.roggia@embrapa.br, julio.franchini@embrapa.br

Resumo: Neste trabalho, objetivou-se a aplicação de técnicas de sensoriamento remoto como ferramenta para obtenção de parâmetros biofísicos em plantios de soja. O estudo abrange a região da fazenda da Embrapa Soja, Londrina, PR. Foram utilizados dados meteorológicos de estação convencional pertencente ao Instituto Nacional de Meteorologia (INMET) e imagem do satélite WorldView-2 do dia 30/01/12. A metodologia foi satisfatória na obtenção de parâmetros biofísicos em plantios de soja e tem uso potencial como ferramenta para o monitoramento e a avaliação das condições de cultivo. Tais resultados podem auxiliar em estratégias mais adequadas para tomada de decisão em larga escala.

Palavras-chave: soja, Worldview-2, monitoramento

Use of remote sensing techniques in obtaining biophysical parameters in soybean plantations

Abstract: This study aimed at applying remote sensing techniques as tool to obtain biophysical parameters in soybean plantations. The study area includes farm of the National Soybean Research Center (Embrapa Soybean), Londrina, Brazil. We used meteorological data from conventional station belonging to the National Institute of Meteorology of Brazil (INMET) and WorldView-2 satellite image from January 30th, 2012. The methodology used was satisfactory in obtaining biophysical parameters in soybean plantations and has potential use as tool for monitoring and evaluating of culture conditions. These results may help in the most appropriate strategies for decision making on large scale.

Keywords: soybean, Worldview-2, monitoring
1. Introdução

O sucesso da soja como cultura agrícola no Brasil deve-se principalmente aos avanços tecnológicos ligados ao uso de cultivares adaptada e de alta produtividade, a mecanização e o conhecimento de estratégias adequadas de manejo cultural e fitossanitário, bem como, a ampliação da área cultivada. Nesse contexto, a soja foi uma das culturas agrícolas que viabilizou a exploração agrícola do Cerrado brasileiro. Este processo foi responsável pelo desenvolvimento de regiões que até alguns anos atrás eram de baixo desenvolvimento econômico e, consequentemente, pouco povoadas. Atualmente, muitas dessas regiões se destacam em termos de produção de soja e vem contribuindo para consolidação do país como um dos maiores produtores mundiais de soja.

A produção de soja prevista para safra 2012/2013 é superior a 80 milhões de toneladas, com área cultivada de aproximadamente 28 milhões de hectares (COMPANHIA..., 2013). Dada a relevância da soja para a economia brasileira, torna-se imprescindível a obtenção de informações que auxiliem na tomada de decisão no que se refere ao plantio, manejo e comercialização da produção (RIZZI; RUDORFF, 2005). Nesse contexto, é de primordial importância o desenvolvimento e a aplicação de técnicas que contribuam para a identificação, a quantificação e o monitoramento da produção agrícola tanto na escala local quanto regional (BATISTELLA et al., 2011; ANDRADE et al., 2013). A agricultura de precisão é uma técnica de grande aplicação para tomada de decisão sobre muitas das práticas de manejo na lavoura. No entanto, essa técnica depende do mapeamento diagnóstico da lavoura e de equipamentos capazes de realizar operações calibradas de amostragem e quantificação de fatores bióticos e abióticos que ocorrem na lavoura. Em alguns casos, dependendo da dimensão da área cultivada esses métodos tradicionais podem se tornar trabalhosos e desestimular o seu emprego. Nesse caso, as técnicas de sensoriamento remoto podem corroborar para a agricultura de precisão com informações em diferentes escalas espaciais e temporais das áreas cultivadas e contribuir para o monitoramento dos fatores bióticos e abióticos com impactos positivos para a tomada de decisão principalmente em larga escala.

Esta técnica pode auxiliar, por exemplo, na tomada de decisão referente a mão-de-obra nos tratos culturais, no uso de máquinas e de implementos agrícolas e na logística de colheita quanto ao armazenamento e escoamento da produção. Nesse sentido, diversas pesquisas destacam o potencial das técnicas de sensoriamento remoto para obtenção de parâmetros biofísicos de superfície (TEIXEIRA et al., 2009; ANDRADE et al., 2012) e predição da produção das culturas (BASTIAANSSEN; ALI, 2003; TEIXEIRA et al., 2012). Diante do exposto, este trabalho objetivou aplicar técnicas de sensoriamento remoto como ferramenta para obtenção de parâmetros biofísicos em plantios de soja.

2. Material e Métodos

O presente estudo abrange a região da fazenda da Embrapa Soja, Londrina, PR (Figura 1). Para obtenção de parâmetros biofísicos em áreas de plantios de soja, utilizou-se de uma imagem do satélite WorldView-2 do dia 30 de janeiro de 2012 e de dados meteorológicos diários provenientes da estação meteorológica convencional instalada no município de Londrina, PR, pertencente ao Instituto Nacional de Meteorologia (INMET).

O WorldView-2 representa uma nova geração de satélites com sensores capazes de imagear a superfície em altíssima resolução espacial (~ 0,50 m - módulo pancromático), com características multiespectrais de 8 bandas dispostas ao longo do visível ao infravermelho próximo (400-1040 nm), tornando-o singular para aplicações em agricultura de precisão.

Inicialmente, a imagem do satélite WorldView-2 passou pelas etapas de correção geométrica e radiométrica. Posteriormente, obteve-se a reflectância no topo da atmosfera (ρ_{TOA}) e a reflectância de superfície em cada banda ao aplicar o método DOS (Dark Object Subtraction) proposto por Chavez Junior (1988, 1989) para corrigir os efeitos da atmosfera nos valores de reflectância registrados em cada pixel da imagem.

Em seguida, obteve-se o índice de vegetação ajustado para correção dos efeitos do solo...
(Soil Adjusted Vegetation Index - SAVI), conforme Huete (1988):

\[SAVI = \frac{(I + L) \times (\rho_{WP} - \rho_{VERM})}{(L + \rho_{WP} + \rho_{VERM})} \] \text{Eq. (1)}

Onde, \(I \) representa o grau de fechamento do dossel variável de 0 a 1, sendo utilizado o valor médio de 0,5. Já os parâmetros \(\rho_{WP} \) e \(\rho_{VERM} \) são as reflectâncias de superfície nas bandas do infravermelho próximo e do vermelho, respectivamente. O SAVI foi utilizado na estimativa do índice de área foliar (IAF) ao aplicar a equação (ALLEN et al., 2002):

\[IAF = -\frac{\ln(0.69 - SAVI)}{0.59} \] \text{Eq. (2)}

A próxima etapa foi o cálculo do índice de vegetação da diferença normalizada (NDVI) conforme equação 3 de (ROUSE et al., 1973):

\[NDVI = \frac{(\rho_{WP} - \rho_{VERM})}{(\rho_{WP} + \rho_{VERM})} \] \text{Eq. (3)}

De pose dos valores de NDVI foi possível aplicar o modelo de regressão linear simples proposto por Kamble, Kilic e Hubbard (2013) para estimativa do coeficiente da cultura (Kc):

\[Kc_{NDVI} = 1,457 \times NDVI - 0,1725 \] \text{Eq. (4)}

Para estimativa da evapotranspiração da cultura (\(ET_c \), dada em mm dia\(^{-1}\)) empregou-se a equação 5:

\[ET_c = Kc_{NDVI} \times ET_o \] \text{Eq. (5)}

Onde, \(ET_o \) é a evapotranspiração de referência, dada em milímetros por dia, estimada por meio do método Penman-Monteith, detalhado no boletim da FAO N° 56 (ALLEN et al., 1998).

\[ET_o = \frac{0.408 \times (R_n - G) + \frac{0.900}{T + 273} \times u_2 \times (e_v - e_s) \Delta + \gamma \times (1 + 0.34 \times u_2)}}{\Delta + \gamma (1 + 0.34 \times u_2)} \] \text{Eq. (6)}

Onde, \(R_n \) é a radiação líquida à superfície da cultura (MJ m\(^{-2}\) dia\(^{-1}\)), \(G \) é a densidade de fluxo de calor no solo (MJ m\(^{-2}\) dia\(^{-1}\)), \(T \) é a média diária da temperatura do ar (°C), \(u_2 \) é a velocidade do vento a 2 metros de altura (m s\(^{-1}\)), \(e_v \) é a pressão de vapor de saturação do ar (kPa), \(e_s \) é a pressão de vapor atual do ar (kPa), \(e_v - e_s \) é o déficit de pressão de vapor de saturação do ar (kPa), \(\Delta \) é a declividade da curva de pressão de vapor do ar na atmosfera (kPa °C\(^{-1}\)) e \(\gamma \) é a constante psicrométrica (kPa °C\(^{-1}\)).
A biomassa da vegetação foi estimada por meio da equação 7:

\[\text{BIO} = \sum \left(e_{\text{max}} \times E_f \times \text{APAR} \times 0.864 \right) \]

Eq. (7)

Onde, BIO é o acúmulo de biomassa da vegetação (kg ha\(^{-1}\)), \(e_{\text{max}} \) é a máxima eficiência do uso da radiação, considerou-se o valor de 2.5 g MJ\(^{-1}\) (BASTIAANSSEN; ALI, 2003), \(E_f \) é a razão entre o fluxo de calor latente (\(\dot{L}E \), em W m\(^{-2}\)) e o saldo de radiação (W m\(^{-2}\)) (TEIXEIRA et al., 2012). Nesse caso, obteve-se \(\lambda E \) da cultura por meio dos valores de \(\text{ET}_c \) ao transformar a unidade mm dia\(^{-1}\) para W m\(^{-2}\). Já o saldo de radiação foi estimado a partir dos dados oriundos da estação meteorológica. O parâmetro APAR é a radiação fotosinteticamente ativa absorvida (W m\(^{-2}\)) e foi estimada por meio da equação 8 (TEIXEIRA et al., 2009):

\[\text{APAR} = (0.161 + 1.257 \times \text{NDVI}) \times 0.44 \times R_G \]

Eq. (8)

Onde, \(R_G \) é a radiação solar global incidente (W m\(^{-2}\)) e o escalar 0.44 representa a porcentagem da \(R_G \) referente à radiação fotosinteticamente ativa (PAR).

A Figura 2 apresenta o fluxograma das etapas realizadas na obtenção dos parâmetros biofísicos em áreas de plantios de soja.

3. Resultados e Discussão

Nas Figuras 3a e 3b são respectivamente apresentados os mapas do NDVI e do SAVI para a área de estudo que abrange a fazenda experimental da Embrapa Soja, Londrina, PR. Nota-se que os valores de NDVI variaram de -0,81 a 0,97, com valor médio de 0,29. Já o SAVI que é um índice que busca minimizar os efeitos do solo, teve variações entre -0,71 a 0,69, com média de 0,23. Como esperado, esses índices apresentaram os valores mínimos principalmente em pixels que representam áreas de corpos d'água. Valores altos (NDVI > 0,7 e SAVI > 0,5) se destacaram mais (cor verde) em grandes áreas agrícolas ao redor da fazenda da Embrapa Soja. Porém, ressalta-se que em parcelas experimentais cultivadas com soja em estádio superior a 80 dias (Figura 1), foram observados valores de NDVI entre -0,13 e 0,70, com média de 0,46 ± 0,17 (Figura 3a). Já os valores de SAVI nessas parcelas variaram de -0,18 a 0,58, com média de 0,36 ± 0,15 (Figura 3b).

A Figura 4a mostra a distribuição espacial do coeficiente de cultura (Kc) estimado a partir do modelo de regressão linear simples proposto por Kamble, Kilic e Hubbard (2013) que tem como base uma relação geral do NDVI com Kc em diferentes tipos de manejo e estádios das culturas. Os valores de Kc variaram conforme o vigor da vegetação e o percentual de fechamento.

Figura 2. Fluxograma das etapas para obtenção dos parâmetros biofísicos em plantios de soja.
o IAF médio foi de 0,97 ± 0,41 m² m⁻² e teve valor máximo de 1,82 m² m⁻². Em experimento de campo com a cultivar de soja MG/BR-46 (Conquista), Heffig et al. (2006) obtiveram valores de IAF que variaram de acordo com o espaçamento entre linhas e o estádio fenológico da cultura. Para 90 dias após o plantio (estádio R₅), os autores observaram valores de IAF oscilando entre 1,7 m² m⁻² e 3,2 m² m⁻² para espaçamento entre linhas de 0,7 m e 0,2 m, respectivamente. No entanto, para 85 dias após o plantio, Daughtry et al. (1992) encontraram IAF de 2,2 m² m⁻² e 5,9 m² m⁻² para espaçamento entre linhas de 0,76 m e 0,18 m, respectivamente.

Nas Figuras 5a e 5b são apresentados os mapas de evapotranspiração (ET, mm mês⁻¹) e biomassa vegetal (BIO, kg ha⁻¹ mês⁻¹) da região de estudo. Para o mês de janeiro de 2012, a ETA e a BIO tiveram valores superiores a 100 mm mês⁻¹ e 4500 kg ha⁻¹ mês⁻¹ em grande parte das áreas localizadas próximas das bordas das Figuras 3a e 3b, respectivamente. Para a área como um todo, foram encontrados valores médios de ET e BIO da ordem de 55 mm mês⁻¹ e 2935 kg ha⁻¹ mês⁻¹, respectivamente.

Para a área total das parcelas experimentais com plantio de soja (Figura 1), o máximo valor de ET foi de 119 mm mês⁻¹, com média de 71 ± 33 mm mês⁻¹ (Figura 5a). Já a BIO teve valor máximo de 8200 kg ha⁻¹ mês⁻¹, com média de 3488 ± 2440 kg ha⁻¹ mês⁻¹ (Figura 5b). Em áreas irrigadas, TEIXEIRA et al. (2012) obtiveram...
Valores médios de ET e BIO variando conforme os meses do ano. Os valores médios de ET estimados pelos autores variaram de 49,5 ± 29,7 mm mês⁻¹ a 96,7 ± 42,1 mm mês⁻¹. Já os valores médios de BIO oscilaram entre 1300 ± 1180 kg ha⁻¹ mês⁻¹ e 3190 ± 1620 kg ha⁻¹ mês⁻¹.

4. Conclusões

O uso de imagem do satélite WorldView-2 juntamente com observações meteorológicas pode contribuir para o monitoramento e a avaliação das condições de cultivo. Em geral, a metodologia teve aplicação satisfatória na obtenção de parâmetros biofísicos em plantios de soja. Esses parâmetros podem auxiliar em estratégias mais adequadas para tomada de decisão em larga escala, bem como na qualificação e espacialização direta de características fenológicas dos cultivos, contribuindo diretamente como suporte a outros métodos complementares da agricultura de precisão.
O uso de imagens WorldView-2 devidamente calibradas e corrigidas para os efeitos da atmosfera abre uma nova frente de aplicações para produtos de alta resolução, ainda inéditos no Brasil, sem os quais não seria possível a aplicação de índices complexos e análises de alto nível como as demonstradas nesse trabalho. Essa abordagem fornece ao dado seu máximo potencial de aplicação no âmbito do mapeamento de características biofísicas intrínsecas aos alvos, indo além do tradicional processamento com resultados de cunho visual.

Agradecimentos

Aos colegas da equipe de pesquisa e desenvolvimento da Embrapa Soja pela parceria e apoio no âmbito do projeto Agspec liderado pela Embrapa Monitoramento por Satélite (http://www.cnpm.embrapa.br/projetos/agspec/).

Referências

Variabilidade espacial e temporal da produtividade da soja em sistema arborizado no Noroeste do Paraná**

Julio Cezar Franchini*1, Fernando Sichieri2, Ricardo Padulla2, Vanderlei Porfírio-da-Silva1, Alvadi Balbinot Junior1, Henrique DeBiasi1

1Pesquisador, Embrapa Soja, CEP 86001-970, Londrina, PR
2Fartura Consultoria Agropecuária, Colorado, PR
3Pesquisador, Embrapa Florestas. Estrada da Ribeira, km 111, Caixa Postal 319, 83411-000, Colombo, PR

*E-mail: julio.franchini@embrapa.br
** Trabalho parcialmente financiado com recursos rede de fomento ILPF

Resumo: Devido a maior complexidade dos sistemas de integração lavoura-pecuária-floresta (iLPF), a interação entre os seus componentes ainda precisa ser mais bem entendida para que a sinergia entre eles possa ser maximizada. Nesse sentido, em uma área de iLPF no município de Santo Inácio, Noroeste do Paraná, foi avaliada a influência do componente arbóreo sobre a produtividade da soja aos 30 e aos 42 meses após o plantio das árvores. O sistema, composto por renques simples de Corymbia maculata, espaçados em 14 m entre renques e 4,2 m entre árvores, foi cultivado com soja no verão e Urochloa ruziziensis no inverno. A produtividade da soja no sistema iLPF foi comparada com a produtividade da soja cultivada em área adjacente, sem arborização. O componente arbóreo proporcionou uma redução média de 2,8% e 27,0% na produtividade da soja, na terceira e quarta safra da cultura, respectivamente. A produtividade da soja dentro dos renques variou de acordo com a posição em relação às árvores e em relação à orientação geográfica. As linhas de soja, próximas às árvores, tiveram a produtividade reduzida, sendo o efeito mais intenso para as posições com incidência direta do sol da tarde. A baixa densidade de árvores por área, associada à copa compacta, fuste reto e sem bifurcações da espécie de eucalipto avaliada, não interferiu na produtividade nominal da soja apenas até a terceira safra da cultura.

Palavras-chave: competição interespecífica, geoestatística, integração lavoura-pecuária-floresta

Spatial and temporal variability of soybean yield in arboreal system in northwest Paraná

Abstract: Due to greater complexity of integrated crop-livestock-forest systems (iLPF), the interaction among its components still need to be better understood so that the synergy between them can be maximized. Accordingly, in an area of iLPF in Santo Inácio, Northwestern Paraná, the influence of the tree component on soybean yield was evaluated 30 and 42 months after planting the trees. The system, consisted of simple rows of Corymbia maculata, spaced 14 m each other, and 4.2 m between trees, was planted with soybeans in summer and Urochloa ruziziensis in winter. Soybean yield in the iLPF system was compared with the soybean yield obtained in an adjacent area, not forested. The tree component provided a mean reduction of 2.8% and 27.0% on soybean yield in the third and fourth year of cultivation, respectively. Soybean yield varied within the tree inter-row according to the position in relation to the trees and in relation to the geographic orientation. The lower soybean yields were obtained in the soybean rows closer to the trees. This effect was stronger for positions with direct sunlight in the afternoon. The low tree density per area, associated with compact canopy, straight trunk and without bifurcations of the eucalyptus species evaluated, had no effect on nominal productivity of the soybean crop until the third cultivation.

keywords: interspecific competition, geostatistics, crop-livestock-forest integration systems
1. Introdução

Na atualidade, a agricultura é submetida a grandes desafios, como a produção de alimentos, em elevada quantidade e qualidade, energia, fibra, madeira e outros bens, além de auxiliar na mitigação de gases causadores do efeito estufa, com o mínimo impacto ambiental. Neste contexto, a alternativa mais apropriada é o uso de sistemas de produção que ocupem eficientemente os recursos disponíveis nos agroecossistemas, concomitante à melhoria da qualidade do solo e da água, redução do consumo de insumos e geração de maior renda por área. A iLPF pode ser definida como uma estratégia que visa a produção sustentável, integrando atividades agrícolas, pecuárias e florestais realizadas na mesma área, em cultivo consorciado, em sucessão ou rotacionado, e busca efeitos sinérgicos entre os componentes do agroecossistema, contemplando a adequação ambiental, a valorização do homem e a viabilidade econômica (BALBINO; BARCELLOS; STONE, 2011). O componente arbóreo no sistema iLPF pode proporcionar benefícios ambientais, principalmente em termos de conservação do solo e da água e sequestro de carbono, além de benefícios econômicos, especialmente pela produção de madeira, a qual pode ser combinada com produção animal e de grãos. No sistema iLPF, o número de árvores por hectare deve ser ajustado de acordo com a prioridade de produtos previamente estabelecidos. Se o interesse for produzir madeira grossa para serraria, é necessário conduzir as árvores em espaçamentos maiores, que possibilita o uso da área no intervalo entre renques para o cultivo de culturas de grãos. Todavia, é necessário avaliar os efeitos do componente arbóreo sobre as culturas anuais, como a soja. Neste sentido, o estudo da variabilidade espacial e temporal da produtividade da soja, utilizando a geoestatística, pode ser de grande utilidade na avaliação dos efeitos do componente arbóreo sobre a cultura, já que os mesmos, possivelmente, encontram-se associados à posição relativa das linhas de cultivo das espécies e à idade das árvores.

O objetivo desse trabalho foi avaliar a influência do componente arbóreo com baixa densidade de árvores por área sobre a produtividade de grãos da soja, 30 e 42 meses após a implantação do sistema no município de Santo Inácio, na região Noroeste do Paraná.

2. Material e Métodos

O trabalho vem sendo desenvolvido desde outubro de 2009 em uma área de 10 hectares pertencente à Estância JAE, localizada no município de Santo Inácio, PR, cujas coordenadas geoprocessadas são: 22º45’56” sul, 51º50’30” oeste e 386 m de altitude (FRANCHINI et al., 2011). O solo da área foi classificado como Latossolo Vermelho distrófico. Algumas características físicas e químicas do solo no momento de implantação do trabalho são apresentadas na Tabela 1.

O sistema iLPF foi implantado com a lavoura de soja e a espécie de eucalipto Corymbia maculata Hill & Johnson (Eucalyptus maculata Hook), plantado em renques de fileiras simples, distanciados em 14 m, com espaçamento entre plantas de 4,2 m, o que equivale a uma densidade de 170 árvores por hectare. As mudas, oriundas da Embrapa Florestas, foram obtidas a partir de sementes. Na implantação, um renque mestre foi alocado em nível e, a partir deste, foram alocados os demais, sempre mantendo distância entre renques de 14 m, a fim de promover adequada conservação do solo e da água e facilitar a mecanização das culturas anuais presentes no sistema. Antes da
implantação das árvores, a área era utilizada com pastagem perene de *Urochloa brizantha* cv. Marandu. O eucalipto foi plantado em outubro de 2009, utilizando 0,25 kg do adubo formulado 08-24-18 (N-P-K) por cova, depositado a 25 cm da planta e 10 cm de profundidade. Nas linhas de plantio, o solo foi preparado com subsolador. O controle de plantas daninhas no eucalipto foi realizado com capina manual (coroamento) no primeiro ano e com glifosato no segundo.

Nos dias 15 de novembro de 2011 e 10 de novembro de 2012, na terceira e quarta safra de grãos, respectivamente, a lavoura de soja foi semeada no espaço entre os renques e afastada em 0,5 m das linhas de plantio do eucalipto, com espaçamento entre linhas de 0,5 m. Em ambas as safras, foi utilizada a cultivar BMX Potência RR, na densidade de 250 mil plantas por hectare. A adubação de base foi de 400 kg ha\(^{-1}\) do adubo formulado NPK 05-20-20. O controle de plantas daninhas foi realizado com o herbicida glifosato. As demais práticas de manejo foram aquelas indicadas para a cultura da soja na região. A colheita da soja foi realizada nos dias 19 de março de 2012 e 14 de março de 2013. No momento da colheita, o eucalipto apresentou valores médios de 0,12 m para o DAP e 9,8 m para a altura da copa em 2012 e 0,16 m para o DAP e 12,5 m para altura da copa em 2013. De um total de 26 linhas de soja, na área entre os renques e em uma área localizada no mesmo tipo de solo ao lado da área de iLPF e sem a interferência das árvores, foram coletadas amostras de duas fileiras de soja por 3 metros, nas linhas 2 e 3; 7 e 8; 13 e 14; 19 e 20; e 24 e 25. A coleta foi repetida 17 vezes, em intervalos de 10 metros, perfazendo uma distância de 160 metros e um total de 85 amostras no sistema iLPF e 85 amostras no cultivo de soja solteira. A produtividade de grãos foi corrigida para a umidade de 13%.

Os dados de produtividade foram submetidos à análise geoestatística (VIEIRA et al., 2002), sendo possível o seu mapeamento segundo os modelos ajustados apresentados na Tabela 2. As produtividades foram normalizadas dentro de cada ano considerando o valor máximo observado para a produtividade na área não arborizada.

3. Resultados e Discussão

A produtividade média normalizada da soja na safra 2011/2012 foi de 96,2 % (variando de 73,4 a 100,0%) e 93,3 % (variando de 55,7 a 106,8%) nas áreas fora e dentro dos renques, respectivamente, representando uma perda média de 2,9% no ambiente arborizado. A variância dos resultados foi maior para a área dentro em relação à área fora dos renques, 137,7 e 21,9, respectivamente.

A produtividade média normalizada da soja na safra 2012/2013 foi de 97,6 % (variando de 63,6 a 100,0%) e 70,6 % (variando de 39,5 a 85,1%) nas áreas fora e dentro dos renques, respectivamente, representando uma perda média de 27,0% no ambiente arborizado. Da mesma forma que observado na safra 2011/2012, a variância dos resultados foi maior para a área dentro em relação à área fora dos renques, 100,0 e 60,9, respectivamente.

Modelo\(^a\)	Parâmetros\(^b\)	a	R\(^2\)	
Dentro				
EXP	C\(_0\) 6,54	C\(_1\) 11,92	a 38,47	0,87
Fora				
EXP	C\(_0\) 5,32	C\(_1\) 4,58	a 6,73	0,44
2013				
Dentro				
GAU	C\(_0\) 46,97	C\(_1\) 15,36	a 6,57	0,68
Fora				
ESF	C\(_0\) 23,83	C\(_1\) 16,88	a 21,84	0,52

\(^a\)EXP (exponencial), GAU (gaussiano), ESF (esférico); \(^b\)C\(_0\) = efeito pepita; C\(_1\) = variância estrutural; a = alcance.
Os mapas com os valores normalizados segundo os modelos ajustados (Tabela 2) são apresentados nas Figuras 1 e 2. A partir dos valores normalizados das áreas dentro e fora do renque de árvores, foi obtida a diferença de produtividade nas posições no interior dos renques (Figura 3). As diferenças relativas mostram que houve grande influência da posição no entre renque e do ano de avaliação sobre a produtividade da soja (Figura 3). O valores médios indicaram que as posições mais próximas dos renques apresentam redução de produtividade. Na safra 2011/2012, nas posições sombreadas no período da tarde (lado esquerdo da Figura 3), a perda média de produtividade foi de 2,5%. Nas posições com exposição ao sol no período da tarde (lado direito da Figura 3), a perda média de produtividade foi de 8,9%. Ainda em 2011/2012, na porção intermediária do renque, a produtividade da soja foi maior quando comparada com a área não arborizada nas posições entre 4 e 7 m do renque à esquerda, sendo o aumento médio de produtividade nesse intervalo de 2,9%. Na safra 2012/2013, o comportamento observado em 2011/2012 foi parcialmente mantido, com as posições sombreadas no período da tarde (lado esquerdo da Figura 3) apresentando menor perda média de produtividade (-21,2%) do que as posições com exposição ao sol no período da tarde (lado direito da Figura 3) (-33,6%), no entanto as perdas foram muito maiores do que as observadas na safra anterior. Além disso, na safra 2012/2013, em nenhuma posição no entre renque a produtividade da soja foi maior quando comparada com a área não arborizada (Figura 3).

É interessante ressaltar que, na safra 2010/2011, no segundo ano de cultivo, não foi observada influência dos renques sobre a produtividade da soja, pois o desempenho da lavoura foi similar nas diferentes posições no interior do renque (BALBINO; BARCELLOS; STONE, 2011). Isso

Figura 1. Mapas normalizados de produtividade da soja (%) nas áreas dentro e fora do renque de árvores, na safra 2011/12, em sistema de integração lavoura-pecuária-floresta conduzido na Estância JAE, em Santo Inácio, PR.

Figura 2. Mapas normalizados de produtividade da soja (%) nas áreas dentro e fora do renque de árvores, na safra 2012/2013, em sistema de integração lavoura-pecuária-floresta conduzido na Estância JAE, em Santo Inácio, PR.
Os resultados indicam que sistemas arborizados em solos arenosos da região do Arenito Paranaense, com espaçamento do entre renque de 14 metros, mesmo com baixa densidade de árvores por área, não interfeririam na produtividade da soja apenas até a terceira safra da cultura.

4. Conclusões

O componente arbóreo do sistema iLPF proporcionou uma redução média de 2,8% e 27,0% na produtividade da soja, na terceira e quarta safra da cultura, respectivamente.

A maior redução na produtividade da soja ocorreu nas linhas próximas às árvores, sendo o efeito mais intenso para as posições com incidência do sol da tarde. Na terceira safra de soja (2011/2012), as perdas variaram em torno de 5,5% nestas posições, enquanto na quarta safra de soja (2012/2013), as perdas aumentaram para 27%, em média.

As linhas de soja localizadas na porção central do intervalo entre renque tiveram acréscimo de 2,9% na produtividade apenas na terceira safra de soja (2011/2012). A baixa densidade de árvores por área, associada à copa compacta, fuste reto e sem bifurcações da espécie de eucalipto avaliada, proporcionam condições favoráveis para a integração com a cultura da soja apenas até a terceira safra.
Agradecimentos

A Bunge e Finep/FNDCT/Ministério da Ciência e Tecnologia (MCT), pelo apoio financeiro aos projetos que originaram os resultados apresentados.

Referências

Condutividade elétrica do solo e produtividade: Uso no Sistema de Integração Lavoura-Pecuária para Determinar Zonas de Manejo Durante o Cultivo de Soja

Naylor Bastiani Perez*,1, Marcos Corrêa Neves*,2, Rodison Natividade Sisti³, Cleist Luiz Ribeiro Nunes⁴, Fabrício Machado da Luz Leitão⁴

¹Engenheiro Agrônomo, Doutor em Zootecnia, Pesquisador A da Embrapa CPPSUL
²Engenheiro Eletricista, Doutor em Sensoriamento Remoto, Pesquisador A da Embrapa Meio Ambiente
³Engenheiro Agrícola, Assistente da Embrapa CPPSUL
⁴Graduando em Agronomia pela URCAMP

*E-mails: naylor.perez@cppsul.embrapa.br, marcos.neves@embrapa.br

Resumo: Dentro da Agricultura de Precisão, uma das estratégias propostas para tratar a heterogeneidade de uma parcela agrícola é o estabelecimento de zonas de manejo homogêneas. Pela facilidade de aquisição de dados e obtenção mapeamentos, a condutividade elétrica do solo tem sido sugerida como uma variável capaz de se correlacionar com fatores de produção, o que poderia ser uma alternativa para orientar o estabelecimento das zonas de manejo. O presente trabalho avaliou quatro conjuntos de dados obtidos em uma unidade de referência da Rede de Agricultura de Precisão, submetida a um sistema de integração lavoura-pecuária envolvendo a sucessão de cultivo de soja durante o verão e de pastagem de azevém durante o inverno. Dois deles relativos à produtividade da soja, obtida em anos contrastantes em disponibilidade hídrica, e outros dois relativos à condutividade elétrica do solo (CE), resultantes de aquisições com diferentes espaçamentos, em diferentes anos. A análise de correlação entre as variáveis mostrou uma forte correlação positiva entre as duas avaliações de CE e correlação positiva moderada, entre os dois levantamentos de produtividade. Entre a CE e a produtividade não houve nenhuma correlação, havendo oscilação nos níveis de produtividades de soja independentemente da variação da CE. Tendo em vista os resultados obtidos, conclui-se que as medidas de CE apresentam boa repetibilidade, mesmo com o espaçamento de 25 metros, considerado suficiente para captar a variabilidade existente. Por outro lado, as zonas de CE não foram efetivas para determinar as zonas de manejo na fase de cultivo de soja, cabendo ainda estudos para verificar a efetividade da CE em relação à variabilidade na produtividade do pasto.

Palavras-chave: condutividade elétrica do solo; krigagem; variabilidade espacial, ILPF.

Soil Electrical Conductivity and Productivity: Use in Crop-Livestock System to determining Management Zones During Soybean Crop

Abstract: The homogeneous management zones is a key strategy to address the heterogeneity of an agricultural parcel in precision agriculture. The soil electrical conductivity (EC) has been suggested as an alternative way to plot the management zones because it is easy and cheap to measure and has good correlations with yield factors. This study evaluated four sets of data obtained in a Brazilian Precision Agriculture Research Network (BPARN) unit, in a crop-livestock system with soybean cultivation during the summer and ryegrass during winter. Two of the four data sets are related to soybean productivity, obtained in two contrasting water availability years, and others related to EC, also obtained in two
different years. Correlation analysis between variables showed a strong positive correlation between the two surveys of EC and moderate positive correlation between the two surveys of productivity. There was no correlation between productivity and electrical conductivity. The results show that the EC has good repeatability, even with different spacings (7 and 25 m). On the other hand, the information of EC was not effective for determining management zones in the soybean cultivation. New studies are need to verify the effectiveness of the EC to characterize in pasture productivity.

Keywords: Soil Electrical conductivity, kriging, spatial variability, crop-livestock system.

1. **Introdução**

A Rede de Agricultura de Precisão da Embrapa estabeleceu unidades demonstrativas sob diferentes sistemas de produção agrícola e situações ambientais. A unidade de referência de Bagé, RS, localizada nos campos experimentais da Embrapa Pecuária Sul, vem sendo utilizada em um sistema de integração lavoura-pecuária (ILP), combinando o cultivo de soja durante o verão e a sucessão com pastagem de azevém durante o inverno. Considerando a intervenção sitio específica, a otimização deste tipo de sistema apresenta um desafio adicional pela complexidade, já que existe um número maior de variáveis a serem observadas e controladas, incluindo a mobilidade dos animais, a desfolha seletiva, o pisoteio e as dejeções. Para aumento da produtividade do sistema, por exemplo, é preciso considerar tanto a produção de soja como o ganho de peso dos animais ao longo do tempo. Uma série de experimentos e observações tem sido realizados nesta unidade a fim de aumentar o conhecimento e definir formas de atuação no sistema dentro das premissas da Agricultura de Precisão (PEREZ et al., 2011).

O estabelecimento de zonas de manejo homogêneas é uma forma de tratar a variabilidade espacial existente dentro de uma parcela agrícola, onde áreas anteriormente tratadas pela média são subdivididas em áreas menores com mínima heterogeneidade (LUCHIARI JUNIOR et. al, 2000). Essas zonas são frequentemente definidas em função da produtividade agrícola, mas diferentes métodos têm sido propostos utilizando outras variáveis como topografia, fotografias aéreas e imagens de sensoriamento remoto (CASTRO; MOLIN, 2004).

Pela facilidade de aquisição de dados e custo relativamente baixo, a Condutividade Elétrica (CE) tem sido proposta como um norteador para a definição das zonas de manejo. Estudos mostram que a CE se correlaciona com vários parâmetros físicos e químicos de solo ligados à produção, entre eles: umidade, teor de argila, capacidade de troca catiônica e matéria orgânica (NEVES et al., 2010; MOLIN et al., 2005).

Este trabalho utilizou dados de duas colheitas de soja e dois levantamentos de CE com o objetivo de analisar a consistência das aquisições de dados dessas duas variáveis, bem como verificar a existência de correlação entre os dados de da CE e da produtividade. De acordo com as análises, buscou-se verificar a viabilidade da CE para o estabelecimento de zonas de manejo em cultivo de soja.

2. **Material e métodos**

A experimentação foi conduzida em um sistema de Integração Lavoura-Pecuária (ILP) com o cultivo de soja durante o verão e sucessão a pastagem cultivada de azevém durante o inverno. A localização física da unidade de referência e seu aspecto geral são mostrados na Figura 1. Os dados utilizados no trabalho são: i) levantamento de CE a 30 cm, efetuado em junho de 2010 e em junho de 2013, utilizando o sistema Veris 3100 com espaçamento de 25 e 7,5 metros, respectivamente; ii) levantamento da produtividade da soja, efetuado em abril de 2012 e maio de 2013, utilizando uma colheitadeira SL 6.300 acoplada ao Controlador Topper 4500 da Stara Agricultura de Precisão, com sensores de produtividade infra-vermelhos corrigidos por sensores de umidade capacitivo e de temperatura. Para os quatro grupos de dados, foram construídas superfícies com o método de interpolação por Krigagem, gerando superfícies continuas que descrevem a
variação espacial dos dados sobre a área de estudo. Buscando uma avaliação da correlação entre os quatro levantamentos, foram amostrados valores nas mesmas localizações, nas quatro superfícies, através de uma grade amostral com 1000 pontos distribuídos regularmente sobre a área, gerando assim um conjunto com 1000 registros e 4 variáveis. Por fim, foi analisada a correlação dos valores com gráficos de espalhamento e coeficiente do correlação de Pearson (ρ).

O aplicativo Sufer 9 foi utilizado para a análise estatística, ajuste dos semivariogramas, e geração das quatro superfícies de CE e produtividade; o GVSIG 1.12 foi utilizado para manipulações dos dados espaciais, operações de mascaramento, geração da grade amostral e montagem da tabela para verificação da correlação. Os demais tratamentos e gráficos foram gerados em planilha eletrônica (Excel).

3. Resultados e discussões

Os modelos teóricos usados na Krigagem e os referentes ajustes dos parâmetros obtidos são mostrados na Tabela 1. A observação visual da variabilidade das superfícies obtidas pela interpolação (Figura 2) mostra que os resultados de produtividade da soja não guardam relação direta com os mapeamentos da CE. Isso pode ser constatado analisando-se áreas com altos valores de CE, representadas em azul (Figura 2c e 2d), onde esperava-se encontrar maiores produtividades, mas que apresentam algumas áreas com baixa produtividade (Figura 2a e 2b). De forma inversa, parte das zonas com baixa condutividade, representados em vermelho (Figura 2c e 2d), apresentam áreas correspondentes com elevadas produtividades de soja (Figura 2a e 2b). Por outro lado, a comparação visual dos levantamentos de

Tabela 1. Modelos e ajustes utilizados na interpolação da Condutividade Elétrica (30 cm de profundidade) e na produtividade da Soja.

<table>
<thead>
<tr>
<th>Variável</th>
<th>Modelo</th>
<th>Pepita</th>
<th>Escala</th>
<th>Alcance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE - 2011</td>
<td>exponencial*</td>
<td>1,2</td>
<td>5,4</td>
<td>43</td>
</tr>
<tr>
<td>CE - 2013</td>
<td>quadrático*</td>
<td>2,2</td>
<td>3,5</td>
<td>180</td>
</tr>
<tr>
<td>Produtividade 2012</td>
<td>quadrático</td>
<td>0,01</td>
<td>0,098</td>
<td>145</td>
</tr>
<tr>
<td>Produtividade 2013</td>
<td>esférico</td>
<td>0,02</td>
<td>0,145</td>
<td>170</td>
</tr>
</tbody>
</table>

* Para o ajuste do modelo foi retirada a tendência dos dados.
cada uma das variáveis permite identificar áreas com comportamento similar.

Entre os dois levantamentos de produtividade é possível identificar algumas áreas com comportamento similares. É importante ressaltar que os dois anos foram muito distintos em relação às condições climáticas, sobretudo se considerada a ocorrência dos fenômenos climáticos contrastantes, “la niña” em 2012 e “el niño” em 2013. Com isso, em 2013, houve uma precipitação 51% maior (Figura 3), assim como uma maior produtividade média, 61% superior.

Os dois mapeamentos da CE são muito similares, embora os valores absolutos de CE tenham se alterado, como esperado, as suas feições espaciais se repetem de forma nítida. Para analisar quantitativamente a correlação entre os levantamentos de CE e de produtividade, foram amostrados 1.000 pontos nas quatro superfícies mostradas na Figura 2. A Figura 4 mostra a grade...
incexistência de correlação, ocorrendo altas e baixas produtividades de forma independente da variação da CE. Este padrão indica que, pelo menos para o caso da unidade de referência de Bagé, a CE sozinha não poderia ser usada para a definição de zonas de manejo, visando o aumento da produtividade de soja no sistema ILP.

Analisando-se separadamente os levantamentos das variáveis CE e produtividade (Figura 6) encontram-se resultados similares. Os dois conjuntos de dados de produtividade apresentam uma correlação positiva clara, ainda que com um espalhamento considerável, com um coeficiente de correlação de 0,54. Ao analisar a correlação existente entre os dois levantamentos de CE encontrou-se uma forte correlação positiva, com espalhamento relativamente pequeno (ρ = 0,91). Estes resultados mostram que os levantamentos realizados em anos e espaçamentos diferentes, repetem a variabilidade existente em um bom grau, confirmando o estudo de Reis (2005) que investigou a repetibilidade do mapeamento da CE. Além disso, o espaçamento de 25 metros se mostrou suficiente para detectar a variabilidade espacial existente na CE.

Investigando a distribuição espacial de pontos da malha amostral com menores valores de produtividade nos dois levantamentos verificou-se que eles aparecem agrupados em uma zona ao norte da unidade de referência (pontos em vermelho na Figura 7). Esta zona possui valores elevados de CE. Isto é uma aparente incongruência nos dados, que não encontra referência lógica. Entretanto, a observação temporal de imagens satelitais (Figura 8), antes e após a instalação da Unidade Experimental, permite identificar uma grande

Figura 6. Espalhamento entre os levantamentos de produtividade de soja das safras 2012 e 2013(a) e entre a CE obtida com espaçamento de 25 metros (2010) e 7,5 metros (2013), quadro (b).
Agricultura de precisão: resultados de um novo olhar

Figura 7. Pontos amostrais com baixa produtividade nos dois anos, em vermelho no mapa e no gráfico, indicando uma área com comportamento diferenciado.

Figura 8. Imagens satelitais da Unidade de Referência, evidenciando o efeito de práticas de manejo anteriores à implantação do o experimento (2007 a) na baixa produtividade de soja (área circunscrita), o que não é notado em imagens mais recentes 2011 (b).

considerando o peso seco passou para 0,56, praticamente equivalente ao valor obtido para o peso úmido ($\rho = 0,54$).

4. Conclusões

Os valores da CE apresentaram boa repetibilidade e o espaçamento de 25 metros foi adequado para captar a variabilidade existente. As zonas de CE não foram efetivas
para determinar as zonas de manejo na fase de cultivo de soja, não havendo correlações com os valores de produtividade nos dois anos analisados. Isoladamente, esta informação pode produzir zonas de manejo com pouca relação com a fase de produção de grãos no sistema ILP, cabendo ainda estudos para verificar a efetividade da CE em relação à variabilidade na produtividade do pasto.

Os mapeamentos da produtividade de soja apresentaram repetição de alguns padrões espaciais dentro da área analisada, mesmo em dois anos com condições climáticas bem distintas. As regiões definidas consistentemente como sendo de alta e de baixa produtividade, serão analisadas para a identificação das causas destes padrões, visando a intervenção sitio-específica.

Os estudos até aqui realizados mostram que, para situações onde a produtividade possa ser diretamente monitorada, com elevado número de pontos e baixo custo de aquisição, como no caso da cultura da soja, o estabelecimento das zonas de manejo deva ocorrer considerando esta variável. Não obstante, outro métodos de quantificação da variabilidade espacial devem ser empregados a fim de determinar as diferentes formas de intervenção, considerando as especificidades de cada zona, buscando a melhor compreensão da heterogeneidade espacial existente na parcela agrícola.

Agradecimentos

Stara S.A. Indústria de Implementos Agrícolas.

Referências

Distribuição espaço-temporal de lagartas desfolhadoras e sua correlação com o rendimento de grãos na cultura da soja

Antônio Luís Santi*1, Maurício Roberto Cherubin*2, Cinei Teresinha Riffel*1, Cladir José Basso*3, João Leonardo Fernandes Pires*4, Lisandra Pinto Della Flora*5, Geomar Mateus Corassa*6, Mateus Tonini Eitelwein*6

1Prof., Universidade Federal de Santa Maria, Linha Sete de Setembro BR 386, km 40, CEP 98400-000, Frederico Westphalen, RS, Brasil
2Doutorando em Solo e Nutrição de Plantas, Escola Superior de Agricultura Luiz de Queiroz - USP, Av. Pádua Dias, 11, CEP 13418-900, Piracicaba, SP, Brasil
3Prof., Departamento de Agronomia, Sociedade Educacional Três de Maio, Av. Santa Rosa, 2405, CEP 98910-000, Três de Maio, RS, Brasil
4Pesquisador, Embrapa Trigo, Rodovia BR 285, km 294, 451, CEP 99001-970, Passo Fundo, RS, Brasil
5Engº Agrº, Mestrando do PPGAAA, Universidade Federal de Santa Maria - UFSM
6Doutorando em Engenharia de Sistemas Agrícolas, Escola Superior de Agricultura Luiz de Queiroz - USP, Piracicaba, SP, Brasil

*E-mails: santi_pratica@yahoo.com.br, cherubin@usp.br, cinei@setrem.com.br, claudirbasso@gmail.com, joao.pires@embrapa.br, lisandra_flora@yahoo.com.br, geomarmateus@hotmail.com, mateus_eitelwein@outlook.com

Resumo: O objetivo do trabalho foi avaliar a distribuição espaço-temporal de lagartas desfolhadoras e sua correlação com o rendimento de grãos na cultura da soja. Para tanto, em áreas localizadas nos municípios de Júlio de Castilhos - RS, na safra 2008/09 e Palmeira das Missões - RS, na safra 2009/10 realizou-se o monitoramento georreferenciado de Anticarsia gemmatalis e Pseudoplusia includens utilizando o método amostral do pano de batida, em malha regular de 71 x 71 m, durante o ciclo da cultura da soja. Os dados de rendimento de grãos foram obtidos por meio de colhedora equipada com sistema Fieldstar®. Os dados foram submetidos à análise estatística descritiva, geoestatística e ao teste de correlação linear. A partir dos resultados obtidos, conclui-se que a distribuição espaço-temporal das lagartas desfolhadoras da cultura da soja ocorreu de forma agregada na área, com moderada dependência espacial, indicando que o monitoramento georreferenciado constitui-se uma importante ferramenta de suporte ao manejo integrado de pragas na cultura da soja. A correlação entre a presença de lagartas desfolhadoras e o rendimento de grãos foi baixa ou ausente, indicando que populações de lagartas abaixo do nível de controle indicado não afetam o rendimento de grãos da soja.

Palavras-chave: agricultura de precisão, Anticarsia gemmatalis, monitoramento georreferenciado, Pseudoplusia includens

Spatio-temporal distribution of defoliating caterpillars and their correlation with grain yield in soybean

Abstract: The objective of this study was to evaluate the spatio-temporal distribution of defoliating caterpillars and their correlation with grain yield in soybean crop. For this, in areas located in Júlio de Castilhos - RS, in the season 2008/09 and Palmeira das Missões - RS, season 2009/10 was carried out georeferenced monitoring of the Pseudoplusia includens and Anticarsia gemmatalis using the sampling method of the beating cloth in regular grid of 71 x 71 m during the cycle of the soybeans crop. The grain yield data were obtained using combines equipped with Fieldstar® system. The data were submitted to descriptive statistics, geostatistics and linear correlation test. From the results it is concluded that the spatio-temporal distribution of caterpillars defoliating soybean crop occurred aggregate in the area, with moderate spatial dependence, indicating that the georeferenced monitoring is an important tool to support in soybean integrated pest management. The correlation between...
1. Introdução

O Brasil vem se destacando no cenário mundial como importante produtor e exportador de soja. No entanto, alguns fatores interferem na máxima expressão do potencial produtivo da cultura, destacando-se as variáveis agrometeorológicas, fatores de solo, genótipos e aspectos fitossanitários, como controle de plantas daninhas, doenças e pragas. Dentre as principais pragas que atacam a cultura, as lagartas desfolhadoras como a *Anticarsia gemmatalis* Hübner, 1818 (Lepidoptera: Noctuidae) e *Pseudoplusia includens* Walker, 1857 (Lepidoptera: Noctuidae) destacam-se por potencializar as perdas de rendimento de grãos ocasionadas pela redução da área fotossintética (PRAÇA; SILVA NETO; MONNERAT, 2006; SOSA-GÓMEZ et al., 2010).

Atualmente, o monitoramento e controle de pragas na cultura da soja, baseiam-se nas tecnologias do manejo integrado de pragas (MIP). No MIP a definição de estratégias de controle é definida pelo nível de dano econômico, que está associado ao nível populacional das pragas quantificado pelos métodos de amostragem, na ocorrência de inimigos naturais e na capacidade da cultura em tolerar os danos (GUEDES et al., 2006; SOSA-GÓMEZ et al., 2010). Dessa forma, a pesquisa definiu como nível de ação para intervenção de desfolhadores na cultura da soja: 20 lagartas grandes (≥ 1,5 cm) por metro da cultura, ou ainda, 30 e 15% de desfolha em sua fase vegetativa e reprodutiva, respectivamente (BUENO et al., 2010). Para quantificar as lagartas utiliza-se o método amostral do pano-de-batida (SOSA-GÓMEZ et al., 2010). Os autores recomendam realizar batidas de pano em vários pontos da lavoura, considerando-se a média de todos os pontos amostrados, para a tomada de decisão.

Diante disso, verifica-se que essa metodologia desconsidera a variabilidade espaço-temporal, com que estas pragas ocorrem na lavoura, caracterizando locais com populações e necessidade de combate diferenciada. Para tanto, visando o aperfeiçoamento do método amostral do pano-de-batida e, consequentemente, a maximização da eficiência do monitoramento e controle de lagartas desfolhadoras na cultura da soja, pode-se associá-lo ao uso de ferramentas de agricultura de precisão (AP). Essa integração de tecnologias e procedimentos possibilitaria compreender melhor a dinâmica espaço-temporal das lagartas na cultura da soja e também avaliar sua influência no rendimento de grãos. Além disso, poderá subsidiar estudos para a adoção de estratégias de aplicação localizada de inseticidas, reduzindo os impactos ambientais associados ao agroecossistema da soja. De acordo com Fernandes, Busoli e Barbosa (2003) o conhecimento do modelo de distribuição espacial de pragas na cultura é fundamental para estabelecer um plano adequado de amostragem sequencial e, assim, permitir a correta utilização das estratégias de controle e a otimização das técnicas de amostragem.

Nesse contexto, com base nos avanços gerados pela AP e a sua possível associação com o MIP, o objetivo do trabalho foi avaliar a distribuição espaço-temporal de lagartas desfolhadoras e sua correlação com o rendimento de grãos na cultura da soja.

2. Material e Métodos

Para esse estudo, foram conduzidos dois experimentos. O primeiro foi realizado no ano agrícola 2008/09 no município de Júlio de Castilhos (JC) - RS, Brasil, situado entre as coordenadas de lat. 29°27’33’S a 29°29’38’S, e long. 53°78’91”O a 53°80’14”O, dispondo de uma área de 47,98 ha, com altitude aproximada de 513 m. O segundo foi realizado no ano agrícola 2009/10 no município de Palmeira das Missões (PM) - RS, Brasil, situado entre as coordenadas de lat., 28°03’99”S a 28°05’15”S e long. 53°58’02”O a 53°56’69”O, totalizando 64,00 ha, com altitude aproximada de 700 m.
A vetorização das áreas experimentais foi realizada a partir da demarcação do perímetro das mesmas, por meio de aparelho de GPS de navegação portátil. Posteriormente, foi gerada e sobreposta uma malha amostral quadrangular de 71 × 71 m, totalizando 96 pontos amostrais na área de JC e 128 na área de PM. As malhas amostrais foram geradas por meio do programa computacional CR - Campeiro 7 (GIOTTO; ROBAINA, 2007).

Para o monitoramento das lagartas *A. gemmatalis e P. includens* foi utilizado o método de amostragem do pano-de-batida, com três repetições em cada ponto, sendo uma no ponto georreferenciado e as outras duas distantes dois metros à direita e à esquerda desse ponto, paralelamente a linha de cultivo. O monitoramento da ocorrência das lagartas foi realizado ao longo do ciclo da soja em JC e constou de cinco avaliações nos seguintes estádios fenológicos da cultura: a) 1ª avaliação, *V₄* (terceiro trifólio aberto); b) 2ª avaliação, *V₅* (quinto trifólio aberto); c) 3ª avaliação, *R₅* (início do florescimento); d) 4ª avaliação, *R₃* (início da formação de legumes); e) 5ª avaliação, *R₅* (início do enchimento de grãos). Já em PM, foram realizadas quatro avaliações até a intervenção com controle químico, nos mesmos estádios fenológicos da área de JC.

O rendimento de grãos foi obtido mecanicamente por meio de uma colhedora marca Massey Ferguson modelo MF34, equipada com o Sistema *Fieldstar*. Posteriormente, os dados foram filtrados a fim de identificar e eliminar eventuais erros (*outliers*).

Os dados de ocorrência de lagartas e do rendimento de grãos foram submetidos à análise estatística descritiva, com uso do programa computacional Statistical Analysis System - SAS 8.0 (STATISTICAL…, 1999). As análises de variabilidade espacial foram realizadas por meio de semivariogramas (VIEIRA, 2000), cujos ajustes foram realizados por modelos teóricos utilizando o programa computacional Gamma Design Software - GS+ (ROBERTSON, 1998). Os modelos dos semivariogramas foram ajustados com base no melhor coeficiente de determinação (*r²*) e menor soma de quadrados do resíduo (SQR), e avaliados pela técnica de validação cruzada (VIEIRA, 2000). O grau de dependência espacial (GD), foi calculado por meio da equação, GD = \[\frac{C_0}{C_0+C_1}\]*100, cuja classificação, segundo Cambardella et al. (1994) é de forte, para GD ≤ 25%; moderado, para GD

Tabela 1.

<table>
<thead>
<tr>
<th>Local</th>
<th>Avaliação</th>
<th>Parâmetro estatístico</th>
<th>Mínimo</th>
<th>Média</th>
<th>Máximo</th>
<th>Desvio padrão</th>
<th>Coeficiente*</th>
<th>Teste W (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CV</td>
<td>Cs</td>
</tr>
<tr>
<td>Júlio de Castilhos</td>
<td>1ª</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2ª</td>
<td>0,00</td>
<td>0,37</td>
<td>2,00</td>
<td>0,49</td>
<td>132,53</td>
<td>1,64</td>
<td>2,49</td>
</tr>
<tr>
<td></td>
<td>3ª</td>
<td>0,00</td>
<td>1,10</td>
<td>5,67</td>
<td>1,13</td>
<td>102,28</td>
<td>1,31</td>
<td>1,98</td>
</tr>
<tr>
<td></td>
<td>4ª</td>
<td>0,00</td>
<td>1,53</td>
<td>7,00</td>
<td>1,51</td>
<td>99,07</td>
<td>1,17</td>
<td>1,30</td>
</tr>
<tr>
<td></td>
<td>5ª</td>
<td>1,33</td>
<td>8,47</td>
<td>20,33</td>
<td>4,26</td>
<td>50,33</td>
<td>0,80</td>
<td>0,34</td>
</tr>
<tr>
<td>Palmeira das Missões</td>
<td>1ª</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2ª</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3ª</td>
<td>0,00</td>
<td>3,97</td>
<td>18,67</td>
<td>2,72</td>
<td>68,52</td>
<td>1,66</td>
<td>5,83</td>
</tr>
<tr>
<td></td>
<td>4ª</td>
<td>12,33</td>
<td>28,96</td>
<td>54,33</td>
<td>9,09</td>
<td>31,37</td>
<td>0,36</td>
<td>-0,87</td>
</tr>
</tbody>
</table>

*CV(%): coeficiente de variação; Cs: coeficiente de assimetria; Ck: coeficiente de curtose; (1)Teste W: Teste de Shapiro-Wilk para distribuição normal, onde; (***) significativo em níveis de *p* ≤ 0,05. Quando for significativo indica que a hipótese para distribuição normal é rejeitada.
entre 25 e 75%, e fraco, para GD > 75%. O método de interpolação geoestatístico utilizado para construção dos mapas temáticos foi a krigagem, efetuado por meio do programa CR - Campeiro 7.

A correlação entre a ocorrência de lagartas e o rendimento de grãos foi obtida por meio da matriz de correlação linear de Pearson ($p < 0.05$), utilizando o programa computacional Statistical Analysis System - SAS 8.0.

3. Resultados e Discussão

Os resultados da estatística descritiva dos dados de distribuição de lagartas ao longo do ciclo da cultura da soja (Tabela 1) demonstraram baixa infestação nas amostragens realizadas no período vegetativo da cultura (1ª e 2ª avaliações), sendo que em PM foram encontradas lagartas somente a partir da terceira amostragem, quando a cultura já se encontrava no início do florescimento. Além disso, pode-se constatar que nas primeiras avaliações, onde ocorrem as menores populações, as ocorrências de lagartas foram mais dispersas, fato comprovado pelos elevados valores de CV% obtidos e Cs e Ck distantes de zero. Por outro lado, com o aumento do número de lagartas no período reprodutivo, atingindo 20,33 e 54,33 lagartas por pano de batida (em JC e PM, respectivamente), constatou-se uma diminuição da dispersão da distribuição desses indivíduos, evidenciando uma distribuição mais homogênea das pragas nas áreas estudadas, embora em nenhuma das avaliações a distribuição de frequência tenha sido normal. No entanto, verifica-se que ao se analisar a ocorrência de lagartas, apenas pelos valores médios, torna-se impossível determinar como ocorre a evolução populacional destas pragas nos diferentes locais da área, inviabilizando, também, o estabelecimento de possíveis estratégias de controle a partir de aplicações localizadas visando reduzir as quantidades e aumentar a eficiência do uso de inseticidas.

Quanto aos parâmetros geoestatísticos (Tabela 2), excetuando a 1ª avaliação na área de JC e a 1ª e 2ª avaliação na área de PM, onde não foram constatadas ocorrências de lagartas, a presença de lagartas ocorreu de forma agregada nas áreas, com moderada dependência espacial e valores do índice de dependência espacial (IDE) variando de 41% a 55%. Os semivariogramas foram melhor ajustados pelo modelo esférico. Segundo Dal Prá et al. (2011) o modelo esférico é o mais utilizado para avaliações de insetos, que geralmente formam agregados e atacam as culturas em reboleiras. Estes resultados demonstram o comportamento agregado da A. gemmatalis e P. includens na cultura da soja, concordando com os obtidos em estudos já realizados envolvendo outros insetos-pragas, tais como: Spodoptera frugiperda (FARIAS et al., 2008), Alabama argillacea (FERNANDES; BUSOLI; BARBOSA, 2003) e Diloboderus abderus (DAL PRÁ et al., 2011).

Com relação à distância limite de dependência espacial (alcance), verificou-se que estas aumentaram à medida que se elevaram as populações das lagartas em ambas as áreas. Portanto, pode-se inferir que a malha amostral foi eficiente para a detecção da variabilidade espaço-temporal das lagartas desfolhadoras A. gemmatalis e P. includens na cultura da soja, exceto nos estádios iniciais da cultura, quando não havia infestação. Farias et al. (2003) afirmam que os dados de alcance podem auxiliar na escolha de uma malha amostral, onde a distância máxima entre os pontos fornecem dados confiáveis de infestação por insetos-praga nas áreas de cultivo.

Em relação ao rendimento de grãos da soja, verificou-se que a área de JC apresentou maior amplitude de rendimento de grãos, variando de 1.290 a 4.660 kg ha$^{-1}$ (média de 2.411 kg ha$^{-1}$), com CV de 25,41%, classificado como alto (PIMENTEL-GOMES; GARCIA, 2002). Por outro lado, em PM, o rendimento de grãos foi mais homogêneo, variando de 1.750 a 3.750 kg ha$^{-1}$ (média de 2.748 kg ha$^{-1}$), com CV de 15,10%, classificado como médio. A dependência espacial foi classificada como moderada, com IDE de 42,61 e 28,07% (CAMBARDELLA et al., 1994) e alcances de 300 e 600 m, para JC e PM, respectivamente.

Com base nos coeficientes de correlação linear entre a distribuição espaço-temporal das lagartas e a variabilidade de rendimento de grãos nas áreas estudadas (Tabela 3), nota-se que em JC foram observadas correlações significativas negativas (-0,27 e -0,26) entre a ocorrência das lagartas na 3ª e 4ª avaliações, em que as plantas se encontravam em R$_1$ (início de florescimento) e R$_3$ (início da formação de vagens), respectivamente, e o rendimento de grãos. Estes resultados
demonstram a importância da utilização de ferramentas de AP, como o monitoramento georreferenciado de lagartas e do rendimento de grãos da soja, possibilitando evidenciar os efeitos negativos diretos do ataque de lagartas, ou associados a outros fatores de produção ao rendimento de grãos.

Na figura 1 é possível verificar estas correlações espacializadas nas áreas de estudo, por meio dos mapas temáticos de distribuição de lagartas no

<table>
<thead>
<tr>
<th>Avaliação</th>
<th>Número pontos</th>
<th>Modelo</th>
<th>Parâmetro geoestatístico*</th>
<th>Dependência espacial</th>
<th>Júlio de Castilhos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C₀</td>
<td>C₁</td>
<td>A₀ (m)</td>
</tr>
<tr>
<td>1ª</td>
<td>96</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2ª</td>
<td>96</td>
<td>Esférico</td>
<td>0,13</td>
<td>0,110</td>
<td>124</td>
</tr>
<tr>
<td>3ª</td>
<td>96</td>
<td>Esférico</td>
<td>0,67</td>
<td>0,598</td>
<td>248</td>
</tr>
<tr>
<td>4ª</td>
<td>96</td>
<td>Esférico</td>
<td>1,07</td>
<td>1,218</td>
<td>372</td>
</tr>
<tr>
<td>5ª</td>
<td>96</td>
<td>Esférico</td>
<td>8,53</td>
<td>9,660</td>
<td>372</td>
</tr>
</tbody>
</table>

Palmeira das Missões

<table>
<thead>
<tr>
<th>Avaliação</th>
<th>Número pontos</th>
<th>Modelo</th>
<th>Parâmetro geoestatístico*</th>
<th>Dependência espacial</th>
<th>Palmeira das Missões</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C₀</td>
<td>C₁</td>
<td>A₀ (m)</td>
</tr>
<tr>
<td>1ª</td>
<td>128</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2ª</td>
<td>128</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3ª</td>
<td>128</td>
<td>Esférico</td>
<td>2,914</td>
<td>4,205</td>
<td>492</td>
</tr>
<tr>
<td>4ª</td>
<td>128</td>
<td>Esférico</td>
<td>36,67</td>
<td>45,886</td>
<td>615</td>
</tr>
</tbody>
</table>

*C₀ = Efeito pepita; C₁ = Contribuição; A₀ = alcance; C₀+C₁ = patamar; IDE = Índice de dependência espacial.

<table>
<thead>
<tr>
<th>Júlio de Castilhos</th>
<th>2ª Avaliação</th>
<th>3ª Avaliação</th>
<th>4ª Avaliação</th>
<th>5ª Avaliação</th>
<th>Rendimento de grãos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ª Avaliação</td>
<td>1,000</td>
<td>0,218*</td>
<td>0,339*</td>
<td>0,055</td>
<td>-0,151</td>
</tr>
<tr>
<td>3ª Avaliação</td>
<td>1,000</td>
<td>0,337*</td>
<td>0,189</td>
<td></td>
<td>-0,271*</td>
</tr>
<tr>
<td>4ª Avaliação</td>
<td>1,000</td>
<td>0,226</td>
<td></td>
<td>-0,266*</td>
<td></td>
</tr>
<tr>
<td>5ª Avaliação</td>
<td>1,000</td>
<td></td>
<td></td>
<td>-0,160</td>
<td></td>
</tr>
<tr>
<td>Produtividade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Palmeira das Missões</th>
<th>2ª Avaliação</th>
<th>3ª Avaliação</th>
<th>Rendimento de grãos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ª Avaliação</td>
<td>1,000</td>
<td>0,024</td>
<td>-0,137</td>
</tr>
<tr>
<td>3ª Avaliação</td>
<td>1,000</td>
<td>-0,170</td>
<td></td>
</tr>
<tr>
<td>Produtividade</td>
<td></td>
<td>1,000</td>
<td></td>
</tr>
</tbody>
</table>

*Correlação significativa p < 0,05 pelo Teste T.
momento de maior infestação e dos mapas de rendimento de grãos. Por outro lado, na área de PM não ocorreu correlação significativa entre a presença de lagartas e o rendimento de grãos, podendo-se inferir que outros fatores de produção foram determinantes à variabilidade espacial do rendimento de grãos da soja. Estes resultados podem estar associados ao fato de que em JC a população não atingiu o nível de dano econômico e em PM o monitoramento realizado permitiu definir o momento ideal de controle, não comprometendo o rendimento de grãos da cultura. Portanto, evidencia que os atuais níveis de controle são eficientes e que a cultura da soja é altamente plástica, apresentando uma quantidade excedente de folhas se comparada a sua necessidade fotosintética, e, portanto, uma capacidade compensatória que permite suportar certos níveis de desfolha causados pelo ataque de lagartas sem que haja perda de produção (COSTA et al., 2003; BUENO et al., 2010).

Além disso, a ausência ou as baixas correlações encontradas entre a presença de lagartas e o rendimento de grãos, confirmam que o rendimento de grãos é condicionado por inúmeros fatores, sendo as pragas apenas um deles. Meurer (2007) afirma que mais de uma centena de fatores de solo, planta, sistema de manejo e clima pode afetar o rendimento de grãos das culturas. Dos quais muitos podem ser controlados e outros não, tais como os fatores meteorológicos. Isso justifica a colocação de Santi (2007) onde aponta que um atributo isolado não é capaz de explicar a variabilidade do rendimento de grãos das culturas.

Figura 1. Distribuição espacial de lagartas no momento de maior infestação (A e B) e do rendimento de grãos da cultura da soja (C e D) das áreas experimentais de Júlio de Castilhos (esquerda) e Palmeira das Missões (direita).
e que o conjunto de atributos (químicos, físicos e biológicos), proporciona maior probabilidade de compreensão dos fenômenos.

4. Conclusões

A distribuição espaço-temporal das lagartas desfolhadoras da cultura da soja ocorreu de forma agregada nas áreas, com moderada dependência espacial.

O monitoramento georreferenciado foi uma estratégia eficiente para a caracterização da variabilidade espaço-temporal da distribuição de lagartas desfolhadoras, constituindo-se uma importante ferramenta de suporte ao MIP na cultura da soja.

A correlação entre a presença de lagartas desfolhadoras e o rendimento de grãos foi baixa ou ausente, comprovando que populações de lagartas abaixo do nível de controle indicado não afetam o rendimento de grãos na cultura da soja.

Referências

SANTI, A. L. Relações entre indicadores de qualidade do solo e a produtividade das culturas em áreas com agricultura de precisão. 2007. 175 f. Tese (Doutorado em Ciência do Solo) - Universidade Federal de Santa Maria, Santa Maria. 2007.

Agricultura de precisão no manejo de pragas na cultura da soja no sul do Brasil**

Antônio Luis Santi*,1, Cinei Terezinha Riffel*2, Claudir José Basso*1, Telmo Jorge Carneiro Amado*3, Lisandra Pinto Della Flora*1, Geomar Mateus Corassa*4, Mateus Tonini Eitelwein*5, João Leonardo Fernandes Pires*6

1Engº Agrº, Universidade Federal de Santa Maria - UFSM, Linha Sete de Setembro, Frederico Westphalen, RS, CEP 98400-000
2Prof., Depto. de Agronomia, Sociedade Educacional Três de Maio, Av. Santa Rosa, 2405, CEP 98910-000, Três de Maio, RS, Brasil
3Engº Agrº, Dr. Professor Associado do Departamento de Solos da UFSM, Bolsista do CNPq
4Engº Agrº, Mestrando do PPGAAA, Universidade Federal de Santa Maria - UFSM
5Doutorando em Engenharia de Sistemas Agrícolas, Escola Superior de Agricultura Luiz de Queiroz - USP, Piracicaba, SP, Brasil
6Pesquisador, Embrapa Trigo, BR 285 km 294, Passo Fundo, RS

*E-mails: santi_pratica@yahoo.com.br, cinei@setrem.com.br, claudirbasso@gmail.com, florestatel@hotmail.com, lisandra_cafw@yahoo.com.br, geomarmateus@hotmail.com, mateus_eitelwein@outlook.com, joao.pires@embrapa.br

**Parte da tese de doutorado do segundo autor - Programa de Pós-Graduação em Fitossanidade - UFPel.

Resumo: Entre os fatores que podem interferir negativamente no rendimento de grãos da soja, destacam-se os insetos-praga. O estudo da distribuição espacial de insetos-praga é fundamental para a utilização de estratégias de controle, aperfeiçoamento de técnicas de amostragens, quantificação de danos econômicos e incorporação de um programa de agricultura de precisão (AP) voltado para manejo integrado de pragas. Avaliar a distribuição espacial de pragas na cultura da soja por meio de ferramentas de AP e a possibilidade de controle sítio específico foi o objetivo desse estudo. O estudo foi realizado na safra agrícola 2007/2008 em uma área de 99,75 ha, localizada no município de Boa Vista das Missões, RS, Brasil. A área foi amostrada em malha de 100 m x 100 m (1 ha) totalizando 98 pontos amostrais. Para fins de comparação, 40,27 ha foram manejados segundo princípios da AP e 59,48 ha segundo a metodologia convencional. Durante a safra investigada realizaram-se 13 avaliações de pragas semanalmente. Este estudo indicou que a utilização das ferramentas de AP em associação ao Manejo Integrado de Pragas - MIP mostram-se promissoras na redução do custo de produção e no incremento da sustentabilidade da produção de soja.

Palavras-chave: Anticarsia gemmatalis, Glycine max (L.) Merrill, Manejo Integrado de Pragas, Sítio-específico

Precision agriculture applied to soybean pest management in Southern Brazil

Abstract: Among the factors that may negatively impact on yield, stand out insect pests. The study of spatial distribution of insect pests is essential for the use of control strategies, improvement of techniques for sampling, quantification of economic damages and incorporating a program of precision agriculture (PA) focused on integrated pest management. To evaluate the spatial distribution of the occurrence of soybean pests and the possibility of site specific control management in place was the specific purpose of this study. The study was conducted in the crop year 2007/2008 in an area of 99.75 ha, located in Boa Vista das Missões, RS, Brazil. The area was sampled through a grid 100 m x 100 m (1 ha) totaling 98 sampling points in whole field. For comparison, 40.27 ha were managed according to the principles of AP and 59.48 ha according to conventional methodology. During this season were conducted 13 evaluations weekly. This study indicate that the use of the tools of the AP in association Integrated Pest Management - IPM are promising strategies to reduce the cost of production as well as to increase the sustainability of soybean production.

Keywords: Anticarsia gemmatalis, Glycine max (L.) Merrill, integrated pest management, Site Specific
1. Introdução

O gerenciamento sítio específico dos fatores de produção das culturas, que anteriormente era apenas utilizado para o levantamento da fertilidade dos solos, aplicações localizadas de fertilizantes ou monitoramento de operações de colheita, passa agora a ser estendido para outras operações agrícolas como a identificação, mapeamento, manejo e controle de plantas espontâneas, doenças e de insetos-praga (RIFFEL et al., 2012).

O custo da produção atualmente é o fator determinante no que tange aos investimentos do produtor no aumento da produtividade, pois grandes extensões de lavouras são entendidas como homogêneas e seu manejo é o resultado das necessidades médias para aplicação dos insumos. Além disso, o aumento do custo de produção, na lavoura tradicional, encontra-se intimamente relacionado à utilização de agrotóxicos (EMBRAPA, 2001).

Segundo Goel et al. (2003) o sistema de agricultura de precisão (AP) enfoca a variabilidade espacial e temporal dos requerimentos de aplicação de insumos durante todo processo produtivo. Embora recente no Brasil, essa tecnologia já vem sendo utilizada por longos anos na Europa e surgiu principalmente pela preocupação com o meio ambiente. As perspectivas da utilização do sistema AP nas propriedades rurais são promissoras visto que oferece inúmeras vantagens ao produtor e ao meio ambiente. A utilização racional de insumos e a redução dos custos de produção são os principais estímulos ao uso da AP.

A adoção da AP no controle de insetos-praga constitui-se uma alternativa à agricultura tradicional, que atualmente, provoca impactos ambientais e custos desnecessários ao produtor. Assim, o sistema de AP faz uso de diversas ferramentas para a sua empregabilidade, o Manejo Integrado de Pragas (MIP) se caracteriza pelo uso de diversas técnicas que são empregadas harmonicamente visando solucionar um problema específico (KOGAN, 1998). O uso eficiente destas ferramentas é dependente de um profundo conhecimento da biocologia das pragas e da apropriada integração de informações. Outro importante objetivo dos programas de manejo é chegar a soluções mais duradouras, ao invés de "saídas" de curto prazo. No MIP, as pragas e, consequentemente, o seu manejo ocorre em três universos multidimensionais: ecológico, socioeconômico e de produção agrícola (PANIZZI, 2006).

Embora ainda sejam incipientes as pesquisas de monitoramento de insetos-praga na soja por meio das ferramentas da AP, pode-se citar o trabalho de Guedes et al. (2006), que avaliaram a ocorrência de Diabrotica speciosa (Coleoptera: Chrysomelidae) em cultivo de soja considerando uma amostragem tradicional e amostragem em malha amostral. Pela amostragem tradicional, em toda a área haveria a necessidade de realização de controle químico (7,5 indivíduos m⁻²). Por outro lado, na amostragem georreferenciada, apenas 28% da área teria necessidade de controle imediato e em 32% da área o monitoramento seria preconizado. Oliveira et al. (2005), analisaram a distribuição espacial de corós na cultura da soja em plantio direto no Cerrado e concluíram que com o mapeamento da localização dos insetos serviria para uma nova determinação de amostragem para essa importante praga de solo naquela região.

Cada vez mais a integração de métodos que priorizem a rentabilidade aliado a preservação ambiental terão espaços importantes em diferentes áreas do conhecimento dos agrossistemas agrícolas, como por exemplo, o da soja. Este trabalho teve como objetivo avaliar a ocorrência de insetos-praga na cultura da soja por meio de ferramentas de AP e a possibilidade de manejo sítio específico.

2. Material e Métodos

Esta pesquisa foi conduzida em uma lavoura comercial com 99,75 ha, situada no município de Boa Vista das Missões, RS (Figura 1A). O solo local é classificado como Latossolo Vermelho distrófico típico, textura argilosa (SANTOS et al., 2006). O relevo da área amostrada é suave ondulado, com altitude aproximada de 630 m. O clima da região classificado segundo Maluf (2000), como STPU (subtropical com primavera úmida) com temperatura média anual de 18,1ºC e precipitação pluvial anual de 1.919 mm, com excesso hídrico anual de 748 mm.

Para a definição do perímetro das áreas e a localização dos pontos amostrais foi utilizado um
A área foi dividida em uma malha regular de 100 m × 100 m, totalizando 98 pontos amostrais (Figura 1B). A amostragem foi realizada em cada ponto utilizando-se um “pano-de-batida”, constituído de um tecido branco medindo 1 m de comprimento, sustentado lateralmente por duas hastes que ultrapassam o comprimento do pano com largura ajustável ao espaçamento da soja. A amostragem foi realizada no centro de cada ponto amostral e também em mais dois locais próximos, um direcionado à direita e outro à esquerda da linha de semeadura, distando aproximadamente 2 m do ponto central, totalizando assim três repetições por ponto. Para realização da amostragem com o pano-de-batida, este foi estendido na entre linha e as plantas das fileiras paralelas foram sacudidas vigorosamente sobre ele, de forma que os insetos desalojados caíssem sobre o pano e pudessem ser contabilizados. Foram realizadas 13 avaliações durante todo o ciclo da cultura.

No momento da amostragem foram realizadas as contagens e o registro do número de indivíduos bem como de sua espécie. Para fins de comparação, 40,27 ha foram manejados segundo princípios da AP e 59,48 ha segundo metodologia convencional, comumente adotada pelo produtor (Figura 1A). Durante as amostragens, também foram coletados dados referentes ao nível de desfolha da cultura, para posteriormente possibilitar a tomada de decisão quanto a aplicação de inseticida.

Para fins de delimitar os mapas temáticos, o número de indivíduos foi alocado em seis classes populacionais, que estão associadas às cores nos mapas. Para a análise da dependência espacial (E), foi utilizada a classificação de Cambardella et al. (1994), sendo considerado de forte dependência espacial o semivariograma que apresentou o valor do efeito pepita <25% do patamar; moderada quando entre 25% e 75% e de fraca quando >75%.

3. Resultados e Discussão

Na primeira avaliação em toda a área (98,75 ha), aos 12 dias após a emergência, foi observada a presença (em média) de um indivíduo por pano de batida em 30,53 ha, enquanto que 36,57 ha apresentaram mais de um indivíduo. Em 32,65 ha não houve a presença de lagartas. Após a realização da primeira coleta a área passou a ser monitorada em dois sistemas de manejo. Na área monitorada na forma tradicional, após a primeira análise, realizou-se aplicação em área total, de forma

Figura 1. Área total (A) dividida em área conduzida com agricultura de precisão (40,27 ha) e área conduzida em manejo tradicional (59,48 ha) e área total dividida em malha de 100 X 100 m (B), totalizando 98 pontos amostrais. Boa Vista das Missões, RS, 2007/2008.
Preferência, e assim sucessivamente quando da ocorrência de indivíduos, sem, no entanto, atentar para o número de indivíduos, ciclo da cultura ou nível de desfolha tolerado pela cultura. Para este manejo, ao todo foram realizadas três aplicações de inseticidas durante todo o período de avaliação.

Na área onde o manejo utilizada era o de AP, a partir das avaliações realizadas em 02/01/2008, apenas 0,12 ha continham a presença de lagartas em número, que segundo a recomendação, necessitaria de intervenção. Porém, em função do ciclo da cultura que ainda permanecia em estádio vegetativo, optou-se em acompanhar a evolução até a próxima avaliação. Na avaliação realizada em 06/01/2008, a necessidade de aplicação aumentou para 28,66 ha, sendo que em 9,09 ha o número de indivíduos superava o nível da recomendação. As avaliações referentes ao índice de desfolha também indicaram uma relação entre o número de lagartas e o nível de desfolha verificada, justificando intervenção em área total. Atribuiu-se a evolução do número de insetos-praga à temperatura favorável observada na região e também ao aumento da disponibilidade de alimento em função do desenvolvimento vegetativo da cultura.

Diversos trabalhos em laboratório indicam que Anticarsia gemmatalis tem seu desenvolvimento favorecido quando a temperatura está entre 20ºC a 30ºC, sendo considerada ideal a temperatura de 27ºC (MAGRINI et al., 1996). Entretanto, para efeito de cópula, a temperatura ideal é de 25ºC (MILANO et al., 2008). As temperaturas verificadas na região do Planalto Médio do RS durante esta fase de avaliação confirmam as condições favoráveis ao desenvolvimento deste inseto, pois a temperatura média observada foi de 24,5ºC (FUNDAÇÃO..., 2007). Na avaliação, após a aplicação de inseticida na data de 11/01/2008 observou-se que em 0,71 ha ainda incidia um número considerável de indivíduos. Este fato foi atribuído a uma possível falha na aplicação.

A disposição da ocorrência de lagartas observada nas avaliações evidenciou que a sua distribuição na lavoura não é uniforme, semelhante ao observado por Gazzoni e Yorinori (1995), levando a crer que o manejo sitio específico tende a ser uma ferramenta bastante útil. Krell, Pedigo e Babcock (2003), verificaram que há um retorno ligeiramente vantajoso quando da aplicação em local específico em relação à aplicação em área total para o controle de Cerotoma trifurcata (Coleoptera: Chrysomelidae).

No presente trabalho, na área monitorada segundo preceitos da AP foi realizada apenas uma aplicação, em comparação com a área manejada de forma tradicional (onde foram realizadas três aplicações). Essas informações apresentam assim a potencialidade da intensificação do monitoramento, treinamento de pessoal, tomada de decisão baseada em levantamentos apresentados preventiva, e assim sucessivamente quando da ocorrência de indivíduos, sem, no entanto, atentar para o número de indivíduos, ciclo da cultura ou nível de desfolha tolerado pela cultura. Para este manejo, ao todo foram realizadas três aplicações de inseticidas durante todo o período de avaliação.

Para este manejo, ao todo foram realizadas três aplicações de inseticidas durante todo o período de avaliação.

A disposição da ocorrência de lagartas observada nas avaliações evidenciou que a sua distribuição na lavoura não é uniforme, semelhante ao observado por Gazzoni e Yorinori (1995), levando a crer que o manejo sitio específico tende a ser uma ferramenta bastante útil. Krell, Pedigo e Babcock (2003), verificaram que há um retorno ligeiramente vantajoso quando da aplicação em local específico em relação à aplicação em área total para o controle de Cerotoma trifurcata (Coleoptera: Chrysomelidae).

No presente trabalho, na área monitorada segundo preceitos da AP foi realizada apenas uma aplicação, em comparação com a área manejada de forma tradicional (onde foram realizadas três aplicações). Essas informações apresentam assim a potencialidade da intensificação do monitoramento, treinamento de pessoal, tomada de decisão baseada em levantamentos apresentados

e correlacionados em mapas temáticos, ou seja, associação de técnicas já preconizadas pelo MIP e agora retomadas na AP, de forma a tornar o agroecossistema da cultura da soja cada vez mais sustentável.

Os dados da análise geostatística, para a distribuição de lagartas, de acordo com a classificação de Cambardella et al. (1994), mostram uma dependência espacial moderada para a maior parte das épocas de avaliações, variando de 31% a 54% (Tabela 1).

Nas avaliações 6 e 7, com o aumento da população de lagartas, a dependência espacial aumentou, sendo classificada como moderada (26%) e forte (20%), respectivamente.

A presença do percevejo Nezara viridula (Hemiptera: Pentatomidae) foi observada a partir da avaliação efetuada em toda a área experimental no dia 09/02/2008, quando a cultura já se encontrava em estágio reprodutivo (Figura 3). Conforme as indicações de pesquisa a intervenção se faz necessária quando da presença de dois ou mais indivíduos por metro de fileira da cultura para lavoura destinada à produção de grãos (EMBRAPA, 2008), o que se verificou em apenas 5,47 ha. Em 59% da área a população do percevejo apresentava menos de um indivíduo/pano de batida e, portanto, ainda não apontava para a necessidade de interferência com aplicação de inseticida. No entanto, com o desenvolvimento da cultura, associada às condições ambientais favoráveis, na avaliação realizada em 15/02/2008 houve aumento da população da praga, bem como a expansão da área com a presença do inseto para 64,25 ha. Nesse caso, a aplicação foi realizada em área total, mas sugere aprofundamento no estudo da dinâmica populacional.

Esses dados reforçam as hipóteses de que a aplicação localizada de inseticidas, baseada em mapas temáticos, pode auxiliar na redução de custos e minimização dos impactos ambientais possíveis de serem causados pela aplicação sem critérios efetuados na agricultura convencional. Tão importante quanto à utilização da filosofia de AP como ferramenta no manejo de pragas, é a necessidade do treinamento de monitores com relação à identificação de pragas, bem como, cuidados e critérios na avaliação de cada praga em nível de lavoura. O treinamento, os cuidados com relação ao encaminhamento na lavoura, os critérios com relação à própria avaliação e o uso da ferramenta AP são importantes fatores para o sucesso no manejo de pragas quando trabalhados de forma integrada.

<table>
<thead>
<tr>
<th>Avaliação</th>
<th>Modelo</th>
<th>Efeito Pepita (Co)</th>
<th>Contribuição (C1)</th>
<th>Alcance (m)</th>
<th>Patamar (Co + C1)</th>
<th>E = Co + (Co + C1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ª Aval</td>
<td>Esférico</td>
<td>0,9378</td>
<td>1,1535</td>
<td>400</td>
<td>2,0913</td>
<td>45%</td>
</tr>
<tr>
<td>2ª Aval</td>
<td>Esférico</td>
<td>0,3631</td>
<td>0,3919</td>
<td>525</td>
<td>0,7550</td>
<td>48%</td>
</tr>
<tr>
<td>3ª Aval</td>
<td>Esférico</td>
<td>1,1402</td>
<td>1,3665</td>
<td>525</td>
<td>2,5067</td>
<td>45%</td>
</tr>
<tr>
<td>4ª Aval</td>
<td>Esférico</td>
<td>0,3558</td>
<td>0,2990</td>
<td>175</td>
<td>0,6548</td>
<td>54%</td>
</tr>
<tr>
<td>5ª Aval</td>
<td>Esférico</td>
<td>1,6162</td>
<td>3,6238</td>
<td>700</td>
<td>5,2400</td>
<td>31%</td>
</tr>
<tr>
<td>6ª Aval</td>
<td>Esférico</td>
<td>37,0914</td>
<td>108,0443</td>
<td>700</td>
<td>145,1357</td>
<td>26%</td>
</tr>
<tr>
<td>7ª Aval</td>
<td>Esférico</td>
<td>78,1062</td>
<td>320,8107</td>
<td>700</td>
<td>398,9169</td>
<td>20%</td>
</tr>
<tr>
<td>8ª Aval</td>
<td>Esférico</td>
<td>12,7180</td>
<td>11,4701</td>
<td>350</td>
<td>24,1881</td>
<td>53%</td>
</tr>
<tr>
<td>9ª Aval</td>
<td>Esférico</td>
<td>4,1581</td>
<td>5,2350</td>
<td>875</td>
<td>9,3931</td>
<td>44%</td>
</tr>
<tr>
<td>10ª Aval</td>
<td>Esférico</td>
<td>0,3631</td>
<td>0,3919</td>
<td>525</td>
<td>0,7550</td>
<td>48%</td>
</tr>
<tr>
<td>11ª Aval</td>
<td>Esférico</td>
<td>0,7701</td>
<td>0,6504</td>
<td>175</td>
<td>1,4205</td>
<td>54%</td>
</tr>
<tr>
<td>12ª Aval</td>
<td>Esférico</td>
<td>3,5014</td>
<td>3,3665</td>
<td>350</td>
<td>6,8679</td>
<td>51%</td>
</tr>
<tr>
<td>13ª Aval</td>
<td>Esférico</td>
<td>8,6078</td>
<td>11,0039</td>
<td>700</td>
<td>19,6117</td>
<td>44%</td>
</tr>
</tbody>
</table>
4. Conclusões

Diferente de outras variáveis mapeadas por meio de ferramentas da AP, no manejo fitossanitário, o monitoramento e o manejo georreferenciado de pragas, requer conhecimento sobre a dinâmica populacional das espécies e a integração de conhecimento.

As ferramentas de AP associadas ao MIP mostram-se promisoras na redução do custo de produção, bem como na sustentabilidade do agroecossistema da cultura da soja.

Os avanços na tecnologia de aplicação de inseticida a taxa variável dependem de estudos que avaliem a densidade amostral, a dinâmica populacional por meio de análise geoestatística e que validem modelos de previsão de ocorrência de insetos-praga na cultura da soja.

Referências

Agricultura de Precisão

Perda de produtividade da soja em área infestada por nematoide das lesões radiculares na região médio norte do Mato Grosso**

Julio Cezar Franchini*1, Henrique Debiasi*3, Waldir Pereira Dias*1, Edison Ulisses Ramos Jr.*1, Joao Flavio Veloso Silva2

1Pesquisador, Embrapa Soja, CEP 86001-970, Londrina, PR
3Pesquisador, Embrapa Agrossilvipastoril, CEP 78550-970, Sinop, MT
*E-mail: julio.franchini@embrapa.br
**Trabalho parcialmente financiado com recursos do Fundo de Apoio a Cultura da Soja (FACS).

Resumo: O nematoide das lesões radiculares, atualmente, é um dos principais problemas do sistema de produção e tem gerado grande preocupação aos produtores de grãos no Mato Grosso. Até o momento, não existem estimativas precisas das perdas potenciais causadas por esse nematoide na produtividade da soja no Estado. O presente trabalho teve por objetivo avaliar a produtividade da soja e a população de nematoides das lesões radiculares nas raízes da soja visando determinar a relação entre esses parâmetros para estimar as perdas de produtividade na cultura. O estudo foi realizado na safra 2011/2012 no município de Vera/MT, visando o mapeamento da variabilidade espacial da produtividade da soja e da população de nematoides das lesões radiculares usando conceitos de geostatística. Os resultados indicaram alta correlação entre a produtividade da soja e a população do nematoide das lesões radiculares. Com base na equação ajustada foi possível determinar que a cada 82 indivíduos/g de raiz da soja ocorre a perda de 1 saca ha–1 na produtividade da soja. As perdas de produtividade da cultura, estimadas na área do estudo, variaram de 1 a 28 sacas ha–1, com valor médio de 12 sacas ha–1 ou 21% da produtividade potencial.

Palavras–chave: geostatística, Pratylenchus brachyurus, solos arenosos, variabilidade espacial

Yield loss of soybean in area infested with root lesion nematode in medium north region of Mato Grosso

Abstract: The root lesion nematode is currently one of the main problems of the production system, generating great concern to grain farmers in Mato Grosso State, Brazil. Accurate estimates of potential losses caused by this nematode on soybean yield in this region have not been performed so far. This study aimed to evaluate the relationship between the soybean yield and the population density of root lesion nematode to estimate the losses in soybean yields. The study was conducted in 2011/2012 growing season in the municipality of Vera/MT, aiming to map the spatial variability of soybean yield and root lesion nematode population using concepts of geostatistics. The results showed high correlation between soybean yield and root lesion nematode population. The equation showed that 82 individuals/g root reduces the soybean yield in 60 kg ha–1. Soybean yield losses, estimated in the study area, ranged from 60 to 1680 kg ha–1 with an average of 720 kg ha–1 or 21% of potential yield.

Keywords: geostatistics, Pratylenchus brachyurus, sandy soils, spatial variability
1. Introdução

Nos últimos anos, os nematoídes das lesões radiculares (*Pratylenchus spp.*) têm causado danos elevados e crescentes associados a perdas econômicas significativas, especialmente no Cerrado e nas culturas da soja e do milho. As causas desse aumento da importância econômica ainda não estão bem esclarecidas, mas parecem estar relacionadas com a adoção de sistemas de produção (DIAS et al., 2010) com uma ou mais das seguintes características associadas: ausência de rotação de culturas; rotação ou sucessão com culturas hospedeiras do nematoide, como soja e milho; sistema plantio direto ou cultivo mínimo, mantendo o solo com umidade mais elevada e adequada para os nematoídes; uso mais frequente de solos com textura arenosa ou média; compactação do solo; baixa fertilidade do solo; e frequente de solos com textura arenosa ou média; compactação de solo; baixa fertilidade do solo; e ocorrência simultânea de outros patógenos de solo (GOULART, 2008). O problema é agravado pela inexistência, até o presente momento, de cultivares de soja tolerantes/resistentes a *Pratylenchus brachyurus*, a exemplo do relatado para outras espécies de *P. brachyurus* de soja tolerantes/resistentes a *P. brachyurus*.

Nos Estados Unidos, foram verificadas reduções de até 30% na produção de soja em virtude dos danos ocasionados por *Pratylenchus brachyurus* (SCHMITT; BARKER, 1981). No Brasil, há relatos do aumento da área infestada e das perdas de produtividade da soja por pesquisadores e produtores em Goiás, Mato Grosso e Mato Grosso do Sul (DIAS et al., 2010). No entanto, até o momento, não existem estimativas precisas sobre a perda de produtividade potencial causada por esse nematoide na cultura da soja. Tendo em vista que os danos de *P. brachyurus* geralmente ocorrem em reboleiras, a determinação das perdas ocasionadas pelo parasita requer o mapeamento da variabilidade espacial da produtividade e da população do nematoide, com o uso de ferramentas relacionadas à geoestatística.

Com o objetivo de estimar a perda de produtividade da soja em função do ataque de *P. brachyurus*, na safra 2011/2012, foi determinada a variabilidade espacial da produtividade da soja e da população de nematoídes das lesões radiculares em área de produção comercial localizada no município de Vera, na região Médio-Norte do Mato Grosso.

2. Material e Métodos

Este trabalho foi realizado na Fazenda Dacar, localizada no município de Vera, região Médio-Norte do Estado do Mato Grosso (12º08’25,67”S e 55º11’42,71”O), em área originalmente sob vegetação natural típica da região (vegetação de transição entre cerrado e floresta). O solo no local foi caracterizado como Latossolo Vermelho Amarelo distrófico, textura arenosa (130, 20 e 850 g·kg⁻¹ de argila, silte e areia, respectivamente). A área foi aberta em 2004, sendo cultivada com arroz nos dois primeiros anos e com a sucessão soja/milheto desde então. A soja tem recebido a aplicação média de 80 kg·ha⁻¹ de P₂O₅ e K₂O em cada safra. Em torno de 40% do fertilizante tem sido aplicado no sulco de semeadura e o restante a lanço, sendo o P em pré-semeadura e o K em pós-semeadura. A última calagem foi realizada em abril de 2010, utilizando calcário dolomítico (10% de MgO e 18% de CaO). O calcário foi aplicado em superfície utilizando taxa variável, com o valor médio aplicado equivalendo a 600 kg·ha⁻¹.

A grade amostral para elaboração dos mapas para aplicação de calcário foi de uma amostra a cada 5 ha.

Em 15 de janeiro de 2012, quando a soja (cultivar M9144RR) se encontrava no estádio R3, foram coletadas 100 amostras de raízes de soja para a quantificação da população do nematoide das lesões radiculares, seguindo uma grade amostral de 20 × 20 m. Em cada ponto, foi coletada uma amostra composta por 10 raízes de plantas de soja tomadas ao redor do ponto. A população foi estimada nas raízes por meio da extração e contagem dos nematoídes segundo a metodologia descrita por Coolen e D’Herde (1972). As raízes foram pesadas e os valores expressos em número de indivíduos/g de raiz. Em 15 de fevereiro, nos mesmos pontos, a produtividade da soja foi determinada pela colheita de 4 linhas de 3 metros.

A população de nematoídes e a produtividade da soja foram submetidas à análise geoestatística (VIEIRA et al., 2002) e apresentaram baixa dependência espacial, no entanto foi possível seu mapeamento. Para análise dos dados, a população de nematoídes foi transformada pela aplicação do logaritmo natural, enquanto para a produtividade da soja foram utilizados os dados originais.
3. Resultados e Discussão

A população de nematoides e a produtividade da soja apresentaram baixa dependência espacial, 15% e 12%, respectivamente, o que indica maiores valores de efeito pepita em relação à variância estrutural. No entanto, ainda foi possível o ajuste dos semivariogramas, cujos parâmetros são apresentados na Tabela 1. Os parâmetros ajustados dos semivariogramas foram utilizados para a krigagem dos dados e elaboração dos mapas (Figura 1). A população de nematoides variou de 287 a 2067, com valor médio de 1006 indivíduos/g de raiz. Já a produtividade da soja variou de 30 a 58, com valor médio de 47 sacas ha	extsuperscript{-1}. A grade amostral utilizada foi adequada para ambas as variáveis determinadas, tendo em vista que o alcance (a) foi maior que a distância entre os pontos amostrais. Medidas localizadas a distâncias maiores que o alcance têm distribuição espacial aleatória e por isto são independentes entre si (VIEIRA et al., 2000). Portanto, a distância entre as observações deve ser inferior ao alcance. Esse resultado tem grande importância prática, já que, de acordo com o presente trabalho, o mapeamento da variabilidade espacial da população de nematoides requer uma distância entre os pontos de amostragem de no máximo 50 m, tornando necessária a coleta de pelo menos 4 amostras compostas de raízes e solo por hectare. Esse requisito contrasta com o que vem sendo utilizado em condição de campo, onde mapas de variabilidade espacial da densidade populacional de diferentes espécies de nematoides têm sido elaborados a partir de amostragens seguindo grades amostrais de até 5 ha. Visando reduzir os custos relacionados à amostragem e à análise de raízes e solo para determinação da população de nematoides, uma opção poderia ser a realização conjunta dessa avaliação com métodos de quantificação dos danos dos nematoides, como o mapeamento dos sintomas por meio de fotografias aéreas.

A partir dos dados krigados, foi estabelecido o coeficiente de correlação entre a população de nematoides e a produtividade da soja (Figura 2). O coeficiente de correlação obtido foi bastante elevado ($r = 0,744$) considerando que a produtividade é um parâmetro influenciado por inúmeros outros fatores além da população de nematoides. Isto demonstra que a população de nematoides na área de estudo foi uma variável determinante para a produtividade da soja. Assim, a aplicação localizada de estratégias de controle de *P. brachyurus* apresenta grande potencial na redução dos danos ocasionados pelo nematoide à soja. A partir da equação ajustada, estimou-se que a produtividade máxima de soja na ausência de nematoides (valor do intercepto no eixo y) seria de aproximadamente 59 sacas ha	extsuperscript{-1}. Outra informação importante obtida a partir do coeficiente linear da equação ajustada é que, a cada 82 nematoides/g de raiz, ocorreria a perda de 1 saca ha	extsuperscript{-1} na produtividade da soja.

Com base na produtividade máxima estimada pela equação, para a área de estudo, foi elaborado um mapa de perda de produtividade. Para isto, do valor máximo da produtividade estimada para a área, foi subtraído o valor estimado por krigagem para cada ponto. O mapa de perdas variou de 1 a 29, com valor médio de 12 sacas ha	extsuperscript{-1} (Figura 1). Considerando que a produtividade máxima da área seria de 59 sacas ha	extsuperscript{-1}, a perda de produtividade poderia ser estimada em 21%.

Tabela 1. Modelos ajustados ao semivariograma da população de nematoides e da produtividade da soja.

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Parâmetro 1</th>
<th>Parâmetro 2</th>
<th>Parâmetro 3</th>
<th>Parâmetro 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>C<sub>0</sub></td>
<td>C<sub>1</sub></td>
<td>a</td>
<td>R<sup>2</sup></td>
</tr>
<tr>
<td>População</td>
<td>GAU</td>
<td>0,600</td>
<td>0,104</td>
<td>50,00</td>
</tr>
<tr>
<td>Produtividade</td>
<td>ESF</td>
<td>79,40</td>
<td>10,96</td>
<td>86,22</td>
</tr>
</tbody>
</table>

¹ESF (esférico); GAU (Gaussiano); ²C_0 = efeito pepita; C_1 = variância estrutural; a = alcance.
Figura 1. Mapas da população de nematoides nas raízes, produtividade e perdas estimadas de produtividade de soja (M9144RR) na safra 2011/2012, em área infestada por Pratylenchus brachyurus, na Fazenda Dacar, localizada em Vera/MT.

Figura 2. Correlação linear entre a população de nematoides e a produtividade da soja (M9144RR) na safra 2011/2012, em área infestada por Pratylenchus brachyurus, na Fazenda Dacar, localizada em Vera/MT.
4. Conclusões

A produtividade da soja apresenta alta correlação com a população de nematóides nas raízes na área de estudo.

A cada 82 indivíduos por g de raiz, ocorre a redução de 1 saca ha\(^{-1}\) na produtividade da soja.

A perda média estimada em função do ataque de *Pratylenchus brachyurus* é de 21% na produtividade potencial de soja na área de estudo.

Agradecimentos

Referências

Uso de sensor óptico ativo para caracterização do perfil de NDVI em dosséis de trigo submetidos a diferentes estratégias de manejo

João Leonardo Fernandes Pires*1, Geomar Mateus Corassa*2, Mércio Luiz Strieder1, Geneli Antonio Dalmago1, Gilberto Rocca da Cunha1, Anderson Santi1, José Pereira da Silva Júnior1, Antônio Luís Santi*3, Henrique Pereira dos Santos1, Aldemir Pasinato*4, Camila Remor5

1Pesquisador, Embrapa Trigo, Rodovia BR 285 km 294, Passo Fundo, RS
2Engº Agrº, Mestrando do PPGAAA, Universidade Federal de Santa Maria - UFSM
3Professor, UFSM, Campus de Frederico Westphalen
4Analista da Embrapa Trigo
5Acadêmica de Agronomia da Universidade de Passo Fundo, Bolsista CNPq/IC

*E-mails: joao.pires@embrapa.br, geomarmateus@hotmail.com, santi_pratica@yahoo.com.br, aldemir.pasinato@embrapa.br

Resumo: Novas tecnologias associadas a sensores remotos têm sido usadas na cultura de trigo. Destaca-se a possibilidade de uso do monitoramento do cultivo em tempo real com indicadores que permitem estimar o vigor, potencial produtivo ou estado nutricional das plantas com base na reflectância do dossel. O uso de sensores ópticos ativos na pesquisa de trigo pode contribuir na caracterização de resposta de genótipos à práticas culturais, com posterior uso como suporte à tomada de decisão de manejo. Nesse sentido, em Passo Fundo, RS, na safra de inverno 2012, utilizou-se o sensor óptico ativo GreenSeeker® para avaliar linhagens de trigo passíveis de lançamento comercial pela Embrapa. Caracterizou-se os padrões de NDVI dos genótipos em ensaios de densidade de semeadura, doses de nitrogênio, estratégias de aplicação de nitrogênio em cobertura e aplicação de redutor de crescimento. O sensor óptico ativo GreenSeeker® é uma ferramenta importante para discriminação de diferenças de refletância entre dosséis de trigo. Tanto na comparação de genótipos quanto de práticas de manejo empregadas na cultura do trigo, o sensor óptico ativo, permite identificar precocemente diferenças de refletância entre dosséis, que estão associadas com práticas de manejo de cultivo. Ainda, caracteriza-se como uma avaliação não destrutiva e de fácil execução.

Palavras-chave: GreenSeeker®, NDVI, Triticum aestivum

Use of active optical sensor for NDVI characterization profiles in wheat canopies under different management strategies

Abstract: Remote Sensing Technology (RST) has been widely used for wheat crops. Among important functions, RST has the possibility of real-time monitoring cultivation using indicators to estimate general traits as vigor, yield potential and nutritional plant status based on the canopy reflectance. The use of active optical sensor on wheat research can largely contribute on the characterization response of genotypes to crop management practices, with following use as decision support system. During 2012 winter growing season crop, in Passo Fundo, RS state, Brazil, active optical sensor GreenSeeker® was used to evaluate several wheat lines (Embrapa future new varieties). NDVI genotypes patterns were characterized in trials of sowing density, nitrogen rates, top-dressing nitrogen dose strategies and growth regulator use. Regardless of the applied crop management strategy, the results obtained in this study showed that the GreenSeeker® sensor is an important tool for discrimination reflectance differences among wheat canopies. The study also showed that GreenSeeker® system was able to
early identify this kind of differences independently of the applied wheat crop management strategy. Furthermore, the use of GreenSeeker® in wheat crop canopy evaluation is a nondestructive method and has easy operational interface.

Keywords: GreenSeeker®, NDVI, Triticum aestivum L.

1. Introdução

O Índice de Vegetação por Diferença Normalizada (NDVI) foi proposto por Rouse et al. (1973) e tem sido utilizado para mensurar a coloração verde e o tamanho do aparato fotossintético da cultura (PIETRAGALLA; VEJA, 2012). Os valores de NDVI variam em uma escala de -1 a 1, sendo que, quanto maior o seu valor, maiores são as diferenças entre a reflectância do infravermelho proximo com o vermelho, o que indica maior quantidade de clorofila e vigor de desenvolvimento e, consequentemente, maior o potencial produtivo das plantas (RISSINI, 2011).

Sensores portáteis de NDVI, como o GreenSeeker®, permitem rápida mensuração do NDVI* in situ*, com resolução para caracterizar o dossel quanto ao Índice de Área Foliar (IAF), Índice de Área Verde (IAV), biomassa e conteúdo de nutrientes (ex. nitrogênio). As avaliações podem ser utilizadas ainda, para estimar o rendimento de grãos, o acúmulo de biomassa, a taxa de crescimento, a cobertura do solo, o vigor inicial, o padrão de senescência e a detecção de estresses bióticos e abióticos. O NDVI pode ainda, servir como indicador para a tomada de decisão em Agricultura de Precisão, como a detecção e o controle localizado de plantas daninhas e a definição da dose e do momento de aplicação de nitrogênio (PIETRAGALLA; VEJA, 2012).

A maioria dos sensores portáteis de NDVI são ativos (produzem sua própria fonte de ondas eletromagnéticas) permitindo medições em diferentes condições de densidade de fluxo de radiação solar e a comparação dos dados coletados em diferentes datas e horas do dia (PIETRAGALLA; VEJA, 2012). É importante, no entanto, para a mensuração do NDVI que a superfície das plantas esteja livre de umidade, ou seja, sem a presença de orvalho, irrigação ou chuva (PIETRAGALLA; VEJA, 2012).

Segundo Pietragalla e Veja (2012), algumas possibilidades de uso de sensores de NDVI para caracterização fenotípica em trigo podem ser citadas:

- **Vigor inicial:** medições aos 5, 10 e 15 dias após a emergência podem ser utilizadas para diferenciar genótipos. Neste caso, recomenda-se utilizar sementes da mesma origem, pois sementes de diferentes locais podem apresentar diferenças de vigor, o que pode confundir a avaliação de genótipos.
- **Deteção de estresses bióticos e abióticos:** recomenda-se fazer medições de NDVI antes, durante e depois do evento/período de estresse. As diferenças de NDVI encontradas vão permitir diferenciar genótipos resistentes e sensíveis a determinado estresse.
- **Acúmulo de biomassa e taxa de crescimento da cultura:** as medições devem ser periódicas da emergência até a maturação fisiológica. Os fatores coloração verde e duração da manutenção do área verde do dossel estão associados a genótipos com rendimentos de grãos elevados.

Neste sentido, o objetivo do trabalho foi demonstrar a capacidade e utilidade do sensor óptico ativo GreenSeeker®, como uma ferramenta na identificação de padrões de NDVI associados a genótipos e práticas de manejo na cultura de trigo.

2. Material e Métodos

A Embrapa Trigo realiza, anualmente, uma série de ensaios para caracterização e ajuste fitotécnico de cultivares de trigo a fim de indicar ao setor produtivo o conjunto manejo-cultivar mais apropriado para a obtenção de retorno econômico com a cultura de trigo. Nas safras...
2011 e 2012 utilizou-se, nestes “campos de prova” o sensor óptico ativo GreenSeeker® (NTECH INDUSTRIES, 2008) para realizar leituras de NDVI de diversos ensaios, com várias estratégias de manejo utilizadas em trigo. Os ensaios utilizados foram:

1 - Ensaio de densidade de semeadura x dose de nitrogênio em cobertura x genótipo: ensaio que utilizou como tratamentos quatro densidades de semeadura (200, 300, 400 e 500 sementes aptas m-2); quatro doses de nitrogênio em cobertura (0, 40, 80 e 120 kg de N ha-1) e cinco genótipos de trigo (BRS Parrudo, PF 060451, PF 070226, PF 070759 e PF 080310). Neste ensaio avaliaram-se diferenças de vigor entre genótipos, diferenças entre genótipos no perfil de NDVI durante o ciclo do trigo e efeitos da densidade de semeadura e dose de nitrogênio na variação do NDVI.

2 - Ensaio de estratégias de aplicação de nitrogênio em cobertura: buscou-se testar três estratégias de aplicação de N para trigo. A primeira representou a tradicionalmente realizada pelos produtores do Planalto Médio do RS, com aplicação de 150 kg de ureia ha-1 no afilhamento do trigo; a segunda representou o produtor que tem o objetivo de contemplar a aplicação tardia (com foco em suprimento de N para melhorar/garantir a qualidade tecnológica do genótipo), mas que não quer investir em maior quantidade de ureia e aplica 75 kg de ureia ha-1 no afilhamento e mais 75 kg de ureia ha-1 no espigamento; a terceira representa o produtor que busca contemplar a aplicação tardia, mas que vai investir mais em ureia, ou seja, aplica 150 kg de ureia ha-1 no afilhamento e mais 50 kg de ureia ha-1 no espigamento.

3 - Aplicação de redutor de crescimento no afilhamento: ensaio que utiliza três tratamentos para avaliação da aplicação de redutor de crescimento (Trinexapaque-Étilico) em trigo. Os tratamentos consistem em: sem redutor; redutor aplicado no afilhamento (com foco no aumento do rendimento de grãos) e redutor aplicado com o primeiro nó visível e segundo nó perceptível (foco na redução de acamamento).

A metodologia empregada para a quantificação do NDVI segue a descrição do Centro Internacional de Melhoramento de Milho e Trigo - CIMMYT (PIETRAGALLA; VEJA, 2012). As leituras foram realizadas por meio de deslocamento sobre as linhas centrais de cada unidade experimental, posicionando-se o sensor a uma altura de 0,8 a 1,0 m acima do dossel (Figura 1). Em cada parcela foram geradas entre 25 e 30 leituras, as quais compuseram a média da parcela. As leituras foram realizadas durante todo o ciclo da cultura, identificando-se em cada leitura o estádio de desenvolvimento e o número de dias após a emergência (DAE).

3. Resultados e Discussão

O uso do sensor óptico ativo no “campo de provas” da Embrapa Trigo em 2012 permitiu demonstrar a capacidade da ferramenta no auxílio à fenotipagem de trigo. Em estudos que visam definir o melhor manejo para cada genótipo em fase de lançamento comercial, foi possível...
verificar, por meio do perfil de NDVI, a resposta das linhagens em diferentes situações de manejo. Estes resultados ajudam a explicar as respostas verificadas em termos de rendimento de grãos.

A seguir exemplifica-se em cada ensaio realizado os dados obtidos pelo sensor GreenSeeker® bem com, as possíveis explanações para os resultados, fazendo-se a ligação com os dados de rendimento de grãos obtidos em cada situação.

A avaliação de vigor inicial, por meio do NDVI, permitiu identificar genótipos com resposta diferenciada e alterações em função da densidade de semeadura. Na Figura 2, verifica-se que na densidade de 300 sementes aptas m\(^2\) há diferença entre os genótipos aos 5, 10 e 15 dias após a emergência (DAE), com o genótipo PF 070759 destacando-se em relação aos demais (Tukey 5%), para o vigor inicial embora não diferindo de PF 080310 aos 5 e 15 DAE. Quando se quantificou o NDVI em densidade de semeadura de 500 sementes aptas m\(^2\) foi possível verificar maiores valores de NDVI e maior separação no padrão de vigor inicial entre as cultivares/linhagens de trigo avaliadas, principalmente ao 15 DAE.

Os padrões de NDVI ao longo do ciclo permitiram diferenciar os genótipos estudados. Conforme pode ser observado na Figura 3 o genótipo BRS 327 apresentou NDVI superior aos demais genótipos até o espigamento e a partir desse estádio, passou a apresentar valores abaixo dos genótipos BRS Parrudo e PF 060451. A variação da resposta do BRS 331 após o espigamento também indica queda drástica nos valores de NDVI, passando a ser o valor mais baixo entre os genótipos avaliados. Merece destaque também o ciclo diferenciado dos genótipos, sendo BRS 331 o mais precoce e PF 060451 o mais tardio. Este fato pode explicar, em parte, os valores de NDVI mais baixos e mais altos de BRS 331 e PF 060451, respectivamente, em relação aos demais no final do ciclo. Como resultado do ensaio o maior rendimento de grãos obtido foi com o genótipo PF 060451 com 3.815 kg ha\(^{-1}\) seguido de BRS 327 que obteve 3.479 kg ha\(^{-1}\), BRS Parrudo que alcançou 3.348 kg ha\(^{-1}\) e BRS 331 que obteve o menor rendimento, com 3.086 kg ha\(^{-1}\).

Na comparação de doses de nitrogênio (Figura 4) o NDVI permitiu acompanhar o efeito do momento da aplicação (realizada na sexta folha) e da dose utilizada em cobertura. A resposta do NDVI é similar até a aplicação de N quando passa a diferenciar-se de acordo com a dose de N, sendo na dose de 0 kg de N ha\(^{-1}\) os valores mais baixos de NDVI, 40 kg de N ha\(^{-1}\), intermediários e 80 e 120 kg de N ha\(^{-1}\) os valores mais altos e bastante similares até o enchimento de grãos onde a dose maior aparentemente mantém o NDVI com valores mais elevados por mais tempo. Tal fato, torna possível verificar na Figura 4, a característica de “stay green” presente em BRS Parrudo, permitindo que o genótipo mantenha a coloração verde do dossel (representada pelos valores de NDVI) no final do enchimento de grãos.
de forma diferenciada, em relação aos demais genótipos, como por exemplo, o PF 070759.

No ensaio sobre estratégias de aplicação de nitrogênio em cobertura, as leituras de NDVI permitiram visualizar a resposta dos tratamentos ao longo do ciclo da cultura. Quando se aplicou toda dose de nitrogênio no afilhamento, os valores de NDVI foram os mais elevados, permanecendo assim até o estádio de grãos em massa mole. Quando se aplicou suplemento de N (50 kg de ureia ha⁻¹) no espigamento, os valores de NDVI permaneceram elevados ao longo de todo o ciclo da cultura. Já, quando se dividiu a dose (metade no afilhamento e metade no espigamento), os valores de NDVI ficaram abaixo dos demais tratamentos, até o estádio de grãos em massa mole quando superaram o tratamento de dose total no afilhamento e chegaram ao final do ciclo bastante próximo ao tratamento com suplemento de N no espigamento.

Os resultados obtidos no ensaio mostraram que o maior rendimento de grãos foi obtido no tratamento com suplementação de ureia no espigamento (150 + 50) que obteve 4.405 kg ha⁻¹ (Tukey 5%), não differindo do tratamento que recebeu toda a dose de N no afilhamento (150), o qual atingiu 4.008 kg ha⁻¹, mas sendo superior ao tratamento que dividiu a dose entre afilhamento

![Diagrama de NDVI](image_url)

Figura 3. Uso de NDVI para diferenciação da resposta de genótipos de trigo com mesma densidade de semeadura e dose de nitrogênio. Embrapa Trigo, Passo Fundo, 2013.

![Diagrama de perfil temporal de NDVI](image_url)

Figura 4. Perfil temporal de NDVI dos genótipos de trigo BRS Parrudo (a) e PF 070759 (b) com diferentes doses de nitrogênio aplicadas em cobertura. Embrapa Trigo, Passo Fundo, 2013.
e espigamento (75 + 75) que obteve 3.691 kg ha⁻¹. Avaliando-se os dados de rendimento de grãos em conjunto com resultados de NDVI, depreende-se que a divisão da dose de nitrogênio entre afilhamento e espigamento pode ter feito com que a quantidade de nitrogênio fornecida antes do espigamento (demonstrada pelos valores maiores baixos de NDVI) tenha comprometido a formação do potencial de rendimento de grãos da cultura, representado especialmente pelo componente do rendimento número de grãos m⁻², que é, em grande parte, definido antes do espigamento. Apesar da aplicação de outra metade da dose no espigamento, houve pouca capacidade de compensação, pois o componente que ainda restou a ser definido deste ponto em diante é o peso do grão (expresso pelo peso de 1.000 grãos) que apresenta limitações em termos de capacidade de resposta. Já o tratamento que obteve o melhor resultado, além de ter dose suficiente de nitrogênio para potencializar o número de grãos m⁻², com o suplemento de N no espigamento, também potencializou o peso de 1.000 grãos. Apesar desses resultados, é importante a avaliação da qualidade tecnológica e, principalmente, da avaliação econômica, para a verificação de qual tratamento é o mais interessante do ponto de vista prático.

A Figura 6 apresenta o perfil de NDVI de uma linhagem de trigo submetida a diferentes densidades de semeadura em uma situação de menor e de maior aplicação de nitrogênio. Observou-se que o sensor óptico ativo foi capaz de detectar as diferenças das populações de plantas (de forma coerente com o incremento no número de plantas), que foram mais pronunciadas nos estádios iniciais de desenvolvimento onde o dossel está expandindo a área foliar e cobrindo o solo de forma diferenciada. Já, próximo ao espigamento/floração, a resposta das diferentes populações foi bastante semelhante. Outra constatação possível foi o efeito do nitrogênio, onde os valores de NDVI máximos foram menores com menor suprimento de nitrogênio em relação à situação de maior suprimento de nitrogênio. Os resultados obtidos mostraram que a dose de 80 kg de N ha⁻¹ apresentou rendimento de grão superior (3.643 kg ha⁻¹) a dose de 0 kg de N ha⁻¹ (2.453 kg ha⁻¹). As diferenças observadas no NDVI entre densidades de plantas até o estádio de 6-7 folhas pode ter contribuído para os resultados de rendimento de grãos observados. Na menor dose de N, houve melhor resultado para 500 sementes aptas m⁻² (2.685 kg ha⁻¹), com 300 e 400 sementes aptas m⁻² obteve-se rendimento de grãos bastante similar (2.401 kg ha⁻¹ e 2.433 kg ha⁻¹, respectivamente) e na densidade de 200 sementes aptas m⁻², obteve-se o menor

Figura 5. Perfil de NDVI da cultivar de trigo BRS 374 com diferentes estratégias de aplicação de nitrogênio em cobertura (150 kg de ureia ha⁻¹ no afilhamento; 75 kg de ureia ha⁻¹ no afilhamento + 75 kg de ureia ha⁻¹ no espigamento; e 150 de ureia ha⁻¹ no afilhamento + 50 kg de ureia ha⁻¹ no espigamento). Embrapa Trigo, Passo Fundo, 2013.
os valores de NDVI decresceram num período entre a quinta folha e o espigamento. Tal resposta pode estar relacionada com a mudança no padrão foliar (folhas mais eretas que o normal). Nesse sentido, a angulação foliar associada à coloração mais intensa, não geraram efeitos positivos no NDVI, pelo contrário, reduziram os valores no período considerado. Os resultados obtidos para rendimento de grãos mostraram que a não aplicação de redutor foi bastante semelhante à aplicação no afilhamento tanto na dose de 60 kg de N ha\(^{-1}\) quanto na dose de 120 kg de N ha\(^{-1}\) (4.323 kg ha\(^{-1}\) contra 4.447 kg ha\(^{-1}\) respectivamente com 60 kg de N ha\(^{-1}\) e 5.064 kg ha\(^{-1}\) contra 5.075 kg ha\(^{-1}\) com 120 kg de N ha\(^{-1}\)).

A Figura 6 mostra o perfil de NDVI com diferentes estratégias de aplicação de redutor em diferentes doses de N. Nas duas doses de N foi possível verificar perfil bastante semelhante de NDVI dos tratamentos “sem redutor” e “redutor no 1\(^{\circ}\) nó”. Já com a aplicação no afilhamento, a Figura 7.

Figura 6. Perfil de NDVI do genótipo de trigo PF 080310 em diferentes densidades de semeadura com 0 kg de N ha\(^{-1}\) (a) e 80 kg de N ha\(^{-1}\) em cobertura (b). Embrapa Trigo, Passo Fundo, 2013.

Figura 7. Perfil de NDVI da cultivar de trigo BRS 327 com diferentes tratamentos de aplicação de redutor de crescimento e doses de nitrogênio em cobertura de 60 kg de N/ha (a) e 120 kg de N/ha (b). Embrapa Trigo, Passo Fundo, 2013.
Agricul
tur
A
P
Recisão: result
A
dos de um novo olh
A
Agradecimentos

Referências

4.929 kg ha⁻¹ respectivamente com 120 kg de N ha⁻¹). Quando se aplicou redutor no 1º nó, os valores foram inferiores nas duas situações (3,963 kg ha⁻¹ e 4,636 kg ha⁻¹ com 60 e 120 kg de N ha⁻¹, respectivamente). Tal fato, apesar de não ser explicado diretamente pelos perfis de NDVI obtidos, pode estar relacionado ao período de deficiência hídrica observado durante a safra 2012 nas condições onde o ensaio foi conduzido. Esta deficiência, por si só, já promove redução na estatura das plantas e a associação com a aplicação de redutor pode ter reduzido ainda mais a estatura com mudanças na estrutura da planta e, portanto, com reflexos negativos no potencial produtivo.

4. Conclusões

O sensor óptico ativo GreenSeeker® é uma ferramenta capaz de identificar padrões de NDVI associados às genótipos e práticas culturais.

Tanto na comparação de genótipos quanto de práticas de manejo empregadas na cultura do trigo, o sensor óptico ativo permite identificar diferenças precocemente.

Dependendo do foco de aplicação, o uso do sensor óptico ativo tem o diferencial de ser uma avaliação não destrutiva de fácil execução prática.
Aplicação de nitrogênio a taxa variável em cultura de trigo: estudo de caso na Unidade Piloto de Agricultura de Precisão de Não-Me-Toque, RS

João Leonardo Fernandes Pires*1, Geomar Mateus Corassa*2, Almir César Rambo*3, Leonardo Kerber*4, Aldemir Pasinato*5, Genei Antonio Dalmago6, José Pereira da Silva Júnior1, Anderson Santi1, Antônio Luís Santi*6, Eliana Maria Guariani1, Gilberto Rocca da Cunha1, Mércio Luiz Strieder1, Elizandro Fochesatto*7

1Pesquisador, Embrapa Trigo. Rodovia BR 285 km 294, Passo Fundo, RS
2Acadêmico de Mestrado, UFSM, Campus de Frederico Westphalen
3Eng. Agr., Departamento Técnico da Cotrijal
4Analista de Produção, Cotrijal
5Analista, Embrapa Trigo
6Professor, UFSM, Campus de Frederico Westphalen
7Acadêmico de Mestrado, Universidade Federal do Rio Grande do Sul

E-mails: joao.pires@embrapa.br, geomarmateus@hotmail.com, arambo@cotrijal.com.br, lkerber@cotrijal.com.br, aldemir.pasinato@embrapa.br, santi_pratica@yahoo.com.br, elizandrofochesatto@hotmail.com

Resumo: O uso de sensores ópticos ativos como ferramenta para a definição da dose de nitrogênio a ser aplicada em cobertura na cultura do trigo é tecnologia disponível e em uso no Brasil. Com o objetivo de realizar o manejo sitio específico da adubação nitrogenada em cobertura na cultura do trigo utilizando-se sensor óptico ativo, foi realizado um estudo de caso na Unidade Piloto da Rede de AP em Não-Me-Toque, RS, na safra 2012. No momento da aplicação de nitrogênio em cobertura, a área foi dividida em dois talhões: um com aplicação a taxa fixa e outro a taxa variável. Foi utilizado equipamento comercial dotado de sensor óptico ativo para aplicação em taxa variável. A área foi monitorada antes e depois da aplicação de nitrogênio por meio de GreenSeeker®. Os resultados indicaram que o equipamento utilizado apresenta agilidade e flexibilidade na variação da dose de nitrogênio aplicada, configurando-se como uma ferramenta importante para o manejo sitio específico em trigo. Entretanto, há oportunidade para melhoria na estratégia de aplicação de N a taxa variável. Outros fatores, além da leitura de NDVI, podem ser levados em consideração para a aplicação em taxa variável. É necessário, por exemplo, considerar a “dose máxima” para cada cultivar em função da resposta no rendimento de grãos e suscetibilidade ao acamamento.

Palavras-chave: NDVI, taxa variável, Triticum aestivum L.

Nitrogen application at variable rate: a pilot study case in Não-Me-Toque, RS

Abstract: The use of active optical sensors as a tool to better define the top-dressing nitrogen dose is an available technology on wheat crops in Brazil. In order to perform site-specific nitrogen management in wheat using active optical sensor, a case study was conducted at Não-Me-Toque, RS state, Brazil, during 2012 growing season. For top-dressing nitrogen application, the area was divided into two plots, using a) fixed and b) variable N rates. Nitrogen application was carried out with an commercial equipment. The area was monitored before and after nitrogen application using the GreenSeeker®. The results obtained from this study showed that the equipment used has agility and flexibility concerning nitrogen variation dose, becoming an important tool for site-specific management in wheat. However,
1. Introdução

A aplicação de nitrogênio (N) em cobertura na cultura do trigo é uma prática importante para a exploração do potencial de rendimento da cultura e obtenção de retorno econômico nas lavouras. No Rio Grande do Sul, atualmente, utiliza-se o teor de matéria orgânica do solo, a cultura anterior e a expectativa de rendimento de grãos como indicadores da dose de N a ser aplicada (REUNIÃO..., 2013). Para as aplicações de N em cobertura, tem sido empregada a aplicação a taxa fixa, ou seja, uma única dose, distribuída de maneira uniforme em toda a área, não sendo levadas em consideração as respostas das diferentes cultivares, a variabilidade espacial da lavoura ou outros fatores locais que podem interferir no aproveitamento do N aplicado, como umidade do solo, cobertura de palha, etc.

Entretanto, com o advento da agricultura de precisão, novas tecnologias têm sido utilizadas como indicador para a aplicação de N a taxa variável. Tais ferramentas tem o intuito de diagnosticar o estado nutricional da cultura e de tornar mais fidedignas as doses de N a serem aplicadas em cobertura, conforme a necessidade identificada de maneira instantânea. Dentre estas tecnologias, têm-se os aplicadores autopropelidos, dotados de sistema de posicionamento geográfico (GPS). Estes equipamentos realizam leituras da lavoura por meio de sensores ópticos ativos acoplados na máquina, considerando a posição geográfica. Tais sensores baseiam-se nas propriedades ópticas das folhas, combinando valores de reflectância do dossel de diferentes comprimentos de onda para a avaliação de uma comunidade de plantas, ao invés de plantas individuais.

Estes sensores são capazes de determinar o “índice de vegetação” de forma rápida e não destrutiva e evidenciar a variabilidade espacial existente na lavoura (FENG et al., 2008) sem realizar contato físico com a mesma (MOLIN, 2001). Assim, permitindo orientar de forma ágil e instantânea a aplicação localizada de nitrogênio. Estudos tem demonstrado que a concentração de N em trigo, determina alterações na reflectância espectral nas folhas (FENG et al., 2008, POVH et al., 2008), as quais podem ser detectadas por estes sensores. Dessa forma, a resposta espectral torna-se um indicador importante na caracterização do estado nutricional da cultura.

Dentre os sensores utilizados para estimar as doses de N a serem aplicadas a taxa variável tem-se o N-Sensor (Yara International), que é acoplado na parte superior do aplicador e realiza um escaneamento lateral conforme a máquina vai se deslocando na lavoura. Por meio do escaneamento tem-se uma estimativa de biomassa e de clorofila presentes na área de leitura e, instantaneamente, ocorre a conversão para um índice de valor absoluto denominado “Índice de Vigor de Biomassa” que, por meio de uma curva de calibração pré estabelecida, permite que sejam determinadas as doses de nitrogênio a serem aplicadas. Em tempo real as informações são transferidas ao distribuidor de fertilizantes que realiza a aplicação a taxa variada (BRAGAGNOLO, 2010). Além do N-Sensor, outros sensores remotos têm sido utilizados, como é o caso de GreenSeeker® (NTECH..., 2009) o qual fornece o Índice de Vegetação por Diferença Normalizada (NDVI). Este índice tem sido amplamente utilizado em estudos buscando a caracterização do potencial produtivo e a definição de doses de N a serem aplicadas em trigo (POVH et. al, 2008; GROHS et al., 2009).

Com o objetivo de realizar o manejo sitio específico da adubação nitrogenada em cobertura na cultura do trigo utilizando-se sensor óptico ativo, foi realizado um estudo de caso, em lavoura comercial, utilizando-se aplicação a taxa fixa e a taxa variável.
2. Material e Métodos

O trabalho foi realizado no Município de Não- Me-Toque, RS em uma Área Piloto do projeto de Agricultura de Precisão. A área possui 55,22 ha, sendo cultivada em sistema plantio direto. A variabilidade no rendimento de grãos e na fertilidade da área vem sendo mapeada ao longo dos últimos anos com algumas intervenções para correção da fertilidade sendo realizadas nesse período (última em 2011). A partir de informações de mapas de rendimento de grãos de milho (2008/2009) e trigo (2009), decidiu-se por utilizar enfoque de manejo sitio-específico de trigo por meio da aplicação de nitrogênio a taxa variável. A área foi dividida em duas glebas (Figura 1) sendo metade da área utilizada para aplicação de nitrogênio a taxa fixa (tradicional) e metade a taxa variável (sítio específico). Esta estratégia foi implementada na safra de inverno 2012. A área foi semeada com a cultivar de trigo BRS 327 da Embrapa utilizando adubação de 147 kg de DAP ha\(^{-1}\) e 100 kg de KCl ha\(^{-1}\) (taxa fixa). A fim de caracterizar o dossel em diferentes momentos durante o ciclo, inicialmente realizou-se leituras de Índice de Vegetação por Diferença Normalizada (NDVI) no estádio inicial da lavoura aos 16 dias após a emergência (início do afilhamento - estádio 2 segundo Feeks e Large - LARGE, 1954). Para tanto, em cada ponto utilizado historicamente para caracterização da fertilidade do solo (grid de 1 ponto por hectare) realizou-se leitura do NDVI utilizando-se o sensor óptico ativo GreenSeeker\(^{a}\) com integração de um comprimento de leitura de 10 m. Construiu-se então o mapa de variabilidade de NDVI da área antes da aplicação de nitrogênio (Figura 2). No estádio de 6ª folha, realizou-se aplicação de N a taxa fixa e variável, dependendo da gleba definida previamente. Foi utilizada dose alvo de 150 kg de ureia ha\(^{-1}\) (69 kg de N ha\(^{-1}\)). Foi utilizado um equipamento comercial dotado de sensor óptico ativo e capaz de fazer aplicação de N a taxa variável. A estratégia de aplicação utilizada foi a de “redistribuição de adubo”, ou seja, utilização de uma dose alvo (no caso 150 kg de ureia ha\(^{-1}\)) com aplicação desta dose na média da área a taxa variável. Na área de taxa fixa, a aplicação foi da mesma dose independente do padrão das plantas presentes na área. No momento da aplicação de N, por meio do sensor instalado no equipamento foi possível gerar mapas de N absorvido, biomassa, N recomendado e de N aplicado na área (Figura 3). Aos 23 dias após a aplicação de N (alongamento do trigo), retornou-se a área para avaliação do NDVI (por meio do GreenSeeker\(^{a}\)) e verificação da efetividade de aplicação de N sobre o crescimento resistente.
das plantas de trigo. A estratégia utilizada foi fazer a leitura contínua de NDVI com uso de GPS acoplado ao GreenSeeker® utilizando-se as linhas de passagem do aplicador de ureia como rotas de caminhamento para coleta dos dados. Os dados coletados foram processados preliminarmente gerando-se o mapa de NDVI da área (Figura 4).

No momento da colheita, foram marcados cerca de 100 pontos para coleta de amostras e avaliação do rendimento de grãos, componentes do rendimento de grãos e qualidade tecnológica do trigo. Após as diferentes avaliações, foram elaborados mapas temáticos especializados de cada variável para a área total, por meio do software ArcGis10.

3. Resultados e Discussão

A safra 2012 foi marcada por uma série de eventos meteorológicos adversos que também afetaram a Área Piloto (dados não mostrados). Merece destaque a ocorrência de vendavais que fizeram com que a cultura tivesse acamamento durante o estádio de enchimento de grãos. Também, a ocorrência de geadas tardias para a região, ocorridas no final do mês de setembro, foram verificadas na área.

Dentre as variáveis tradicionalmente utilizadas para representar o potencial produtivo, destacam-se o padrão de afilhamento, o nitrogênio acumulado no tecido foliar e a biomassa seca acumulada na parte aérea (WOBETO, 1994). Contudo, nos últimos anos as características óticas das plantas também passaram a ser priorizadas, visto que apresentam boa relação com o rendimento final de grãos. Os resultados de NDVI observados evidenciaram uma variação de NDVI de 0,320 a 0,472 quando este foi avaliado antes da aplicação de ureia. O Coeficiente de Variação observado nos 50 pontos amostrados foi de 7,63%.

Na Figura 2 encontra-se o mapa de NDVI da Unidade Piloto no afilhamento (1ª avaliação) mostrando a existência de variabilidade na lavoura de trigo amostrada.

A Figura 3 demostra a variabilidade da área (biomassa e nitrogênio absorvido) no momento de aplicação da ureia em cobertura e também o nitrogênio recomendado e efetivamente aplicado pelo equipamento.

Apesar da similaridade espacial entre o N recomendado e o N aplicado (Figura 3), verificou-se, em algumas situações, diferença (ponto a ponto) entre o N recomendado e o efetivamente aplicado pelo equipamento na faixa onde se utilizou a aplicação a taxa variável. A recomendação com base no NDVI variou de 38 a 99 kg de N ha\(^{-1}\) com média de 68,7 kg de N ha\(^{-1}\). A quantidade de N aplicado ficou, em média, em 67,9 kg de N ha\(^{-1}\) e a variação entre N recomendado e N aplicado ficou em - 0,75 kg de N ha\(^{-1}\), havendo variação de + 32 kg de N ha\(^{-1}\) até - 47 kg de N ha\(^{-1}\) (em relação à média aplicada) dependendo do ponto de aplicação.

A Figura 4 representa a variabilidade no NDVI de trigo 23 dias após a aplicação de ureia, momento em que já é esperado efeito das doses de N aplicadas (tanto fixas como variáveis). Neste momento, os valores de NDVI, com mais de 13.000 pontos de leitura, variaram de 0,382 até 0,852, mas com valor de CV de 3,56%, abaixo do valor observado na leitura antes da aplicação de N (7,63%).

Para fins de avaliação dos valores de NDVI observados, pode-se citar os referenciais.
encontrados por Grohs et al. (2009) para leituras na sexta folha de trigo. No estudo os autores indicam, para cultivo de trigo após milho, os valores de 0,13; 0,45; 0,68 e 0,80 como indicativos de lavouras com baixo, médio, alto e muito alto potencial produtivo, respectivamente. Salienta-se que estes indicadores são para sexta folha e as avaliações pós aplicação de N foram feitas após este estádio. Dentro desta realidade, é possível verificar na Figura 4 a efetividade da aplicação de N tanto a taxa fixa quanto variável visto que a maior parte da área apresentou valores de NDVI superiores a 0,68 considerados por Grohs et al. (2009) como indicativos de lavouras de alto potencial de rendimento de grãos.

O rendimento de grãos foi avaliado por meio de amostragem da área (Tabela 1). Para tentar minimizar os efeitos dos eventos adversos (geadas e...
vendavais) nos resultados de rendimento de grãos, as coletas foram direcionadas, em cada ponto, para regiões onde as plantas encontravam-se eretas e sem danos aparentes de geada. Na média dos pontos amostrados, a área com taxa fixa obteve valores superiores (em números absolutos) a área manejada a taxa variável em todas as características avaliadas, com exceção da proteína no grão. Essa resposta pode estar associada à estratégia de aplicação e/ou a conformação das duas glebas em termos de variabilidade de outros fatores de produção que também influenciam no rendimento de grãos (topografia, nutrientes no solo, etc.).

Na Figura 5 verifica-se a variabilidade no rendimento de grãos de trigo na safra 2012 e algumas características de qualidade tecnológica de trigo (força de glúten - W e peso do hectolitro - PH). É possível identificar áreas com elevado rendimento de grãos associadas com valores de força de glúten e PH também elevados. Tais regiões da Unidade Piloto ocorreram tanto nas áreas onde foi realizada aplicação de N a taxa fixa, quanto a taxa variável, mostrando que ambas as estratégias de aplicação proporcionaram a obtenção de rendimentos de grãos e qualidade tecnológica adequados. As regiões da lavoura que apresentaram baixo rendimento de grãos e qualidade tecnológica parecem estar mais associadas à topografia onde os menores valores foram verificados nas partes mais baixas do terreno. Tal fato pode estar relacionado com a disponibilidade de outros nutrientes que não o nitrogênio e também a possível ocorrência de danos por geada visto que as áreas mais baixas.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Avaliação</td>
<td>Aplicação de N a taxa fixa</td>
<td>Aplicação de N a taxa variável</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pontos amostrados (n°)</td>
<td>Mínimo</td>
<td>Máximo</td>
<td>Média</td>
<td>Mínimo</td>
<td>Máximo</td>
<td>Média</td>
</tr>
<tr>
<td>Rendimento de grãos (kg ha⁻¹)</td>
<td>194</td>
<td>4.874</td>
<td>3.327</td>
<td>101</td>
<td>4.400</td>
<td>2.343</td>
</tr>
<tr>
<td>Estatura (cm)</td>
<td>92</td>
<td>112</td>
<td>103</td>
<td>87</td>
<td>109</td>
<td>101</td>
</tr>
<tr>
<td>Espigas m⁻²</td>
<td>300</td>
<td>730</td>
<td>468</td>
<td>200</td>
<td>605</td>
<td>426</td>
</tr>
<tr>
<td>Espiguetas m⁻²</td>
<td>3.843</td>
<td>12.118</td>
<td>6.693</td>
<td>2.560</td>
<td>9.620</td>
<td>5.973</td>
</tr>
<tr>
<td>Peso de mil grãos (g)</td>
<td>28</td>
<td>46</td>
<td>38</td>
<td>39</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Peso do Hectolitro (kg hl⁻¹)</td>
<td>61</td>
<td>82</td>
<td>78</td>
<td>46</td>
<td>83</td>
<td>73</td>
</tr>
<tr>
<td>Força de glúten - W (10⁻⁴ J)</td>
<td>83</td>
<td>571</td>
<td>219</td>
<td>68</td>
<td>479</td>
<td>193</td>
</tr>
<tr>
<td>Número de queda (segundos)</td>
<td>120</td>
<td>393</td>
<td>281</td>
<td>62</td>
<td>471</td>
<td>263</td>
</tr>
<tr>
<td>Proteína nos grãos (%)</td>
<td>12</td>
<td>18</td>
<td>15</td>
<td>13</td>
<td>19</td>
<td>16</td>
</tr>
</tbody>
</table>
O trigo apresenta variação quanto à suscetibilidade ao acamamento entre as cultivares disponíveis no mercado. Além do componente genético, esta característica é muito influenciada pelo ambiente, pela população de plantas e pela disponibilidade/aplicação de nitrogênio. A ocorrência de acamamento na área, apesar do uso de redutor de crescimento, mostra que este problema é complexo e remete à necessidade de ajustes nas estratégias de aplicação de N para que se possa reduzir o risco. Há possibilidade de se limitar o equipamento aplicador no sentido de que, mesmo obtendo uma leitura que indique a aplicação de N, esta seja limitada em função da dose máxima (pré-estabelecida) suportada pela cultivar para que se evite o acamamento das plantas.

Outro fato que reforça a necessidade de realização de alguns ajustes está na resposta das cultivares de trigo à dose de N para o rendimento de grãos. Sabe-se que há variação na resposta de cultivares a dose. Algumas cultivares atingem o máximo rendimento de grãos com doses menores do que outras. Dependendo da região de cultivo (altitude, regime hídrico e térmico, etc.) a resposta à dose também pode variar. Portanto, essa resposta deveria ser considerada no manejo de N a taxa variável. Se uma cultivar/região, por exemplo, já atingiu rendimento de grãos máximo com 60 kg de N ha\(^{-1}\) uma dose de 80 kg de N ha\(^{-1}\) estaria sendo economicamente inviável, além de gerar impacto ambiental negativo desnecessariamente. Por outro lado, uma cultivar com resposta até 100 kg de N ha\(^{-1}\), com a mesma dose de 80 kg de N ha\(^{-1}\), não estaria expressando o seu máximo potencial produtivo, pois estaria sendo limitada pelo nitrogênio.

4. Considerações finais

O equipamento utilizado para aplicação a taxa variável permite agilidade e flexibilidade na variação da dose de nitrogênio aplicada, tornando-se ferramenta importante para o manejo sítio específico de nitrogênio em trigo.

A experiência realizada na Unidade Piloto de Não-Me-Toque permitiu constatar que há espaço para melhoria na estratégia de aplicação de N a taxa variável na cultura do trigo. Outros fatores, além da leitura de NDVI, podem ser levados em consideração para definição da estratégia de aplicação a taxa variável, qualificando ainda mais esta forma de aplicação. É necessário considerar uma "dose máxima" para cada cultivar ou grupo de

![Figura 5. Mapa de variabilidade de Rendimento de grãos (kg ha\(^{-1}\)), força de glúten W (10\(^{-4}\) J) e peso do hectolitro - PH (kg hl\(^{-1}\)) de trigo na Unidade Piloto de Não-Me-Toque, RS, 2012. Embrapa Trigo, Cotrijal, 2013.](attachment:image)
cultivares em função da resposta à dose e também em relação à suscetibilidade ao acamamento.

Agradecimentos

Referências

Agricultura de precisão na cultura do algodão**

Ziany Neiva Brandão*, João Henrique Zonta*, Gilvan Barbosa Ferreira*

1DSc., Recursos Naturais: Sistema Água-Solo-Planta-Atmosfera, Embrapa Algodão,
Rua Osvaldo Cruz, 1143, CEP: 58.428-095, Campina Grande, PB
2DSc., Eng. Agrícola: Recursos Hídricos, Embrapa Algodão
3DSc., Agronomia: Solos e Nutrição de Plantas, Embrapa Algodão

*E-mails: ziany.brandao@embrapa.br, joao-henrique.zonta@embrapa.br, gilvan.ferreira@embrapa.br
**Apoio da Embrapa Algodão dentro do projeto MP-1: Projeto de Agricultura de Precisão da Embrapa

Resumo: O algodão possui alto custo de produção, sendo uma planta exigente em qualidade de solo, que se desenvolve bem em solos com elevada fertilidade, profundos e com boa drenagem. Possui sistema radicular bem desenvolvido e é sensível à acidez. Devido à elevada demanda de nutrientes, torna-se necessário o monitoramento constante da lavoura, além da correção e aplicação anual e adequada de fertilizantes para a manutenção de níveis de suficiência de nutrientes e consequente obtenção de alta produtividade. Para manter uma produção economicamente viável de algodão, devem-se empregar técnicas que visem maximizar a utilização dos insumos. Através das ferramentas de agricultura de precisão (AP) é possível identificar zonas heterogêneas, possibilitando o manejo do solo e dos insumos agrícolas, com aumento da produtividade e redução dos custos de produção, além de evitar possíveis problemas ambientais. O objetivo desse trabalho foi apresentar algumas ferramentas para o gerenciamento na produção de algodão em lavouras comerciais, além de oferecer uma visão geral das tecnologias atualmente utilizadas por pesquisadores no monitoramento do algodeiro.

Palavras-chave: Monitoramento do algodeiro, variabilidade do solo, ferramentas de agricultura de precisão, avaliação nutricional por refletância.

Precision agriculture in cotton

Abstract: Cotton has high production cost, demanding good soil quality and growing well in soils with high fertility, deep and with good drainage. It has well developed root system and is sensitive to acidity. Due to the high nutrient demand, it becomes necessary to keep constantly crop monitoring, besides the annual and adequate correction and application of fertilizers to maintain sufficient levels of nutrients and consequent obtaining of high productivity. To maintain an economically feasible cotton production, should be employed techniques aimed at maximizing the use of inputs. Through the precision agriculture (PA) tools is possible to identify heterogeneous areas, enabling the soil and inputs management to increase crop productivity and reduce production costs, preventing possible environmental problems. This work aimed to present some tools for cotton production management in commercial fields, as well as offer an overview of the currently technologies used by researchers for cotton monitoring.

Keywords: Cotton monitoring, soil variability, precision agriculture tools, nutritional evaluation by reflectance.
1. Introdução

A agricultura de precisão (AP) já não é mais sinônimo de mapas de produtividade e tecnologia de aplicação de insumos à taxa variável (VRT) para o gerenciamento de variabilidade espacial em sitió-específico. Atualmente a agricultura de precisão é vista como uma abordagem de vários sistemas para aumentar à produtividade de culturas, cujo principal objetivo é a redução de incertezas na tomada de decisão através de um melhor entendimento e gerenciamento das variabilidades existentes no campo.

Consequentemente, para aperfeiçoamento desses sistemas deve-se contar com o conhecimento de várias áreas da engenharia, agronomia e tecnologia da informação, de forma a dar suporte às várias necessidades tecnológicas e de gerenciamento de informações, com dados de várias fontes e escalas diferenciadas, para as decisões associadas à produção agrícola.

Para ambientes diferentes, dependendo das informações que se queira obter, devem ser adequados processos de gerenciamento diferenciados o que personaliza cada tomada de decisão. Por exemplo, variações de clima, infestação por insetos, doenças e necessidades hídricas e nutricionais variam não só entre culturas, como também entre regiões e safras, mesmo quando trabalhada uma cultura única.

As informações específicas para cada metro quadrado da fazenda estão agora sendo usadas para inverter a antiga prática de uniformizar aplicações de insumos em grandes áreas. Entretanto, essas novas práticas de gerência trazem um novo desafio, que é o controle de enormes quantidades de informação, trazendo como consequência a necessidade de mão de obra especializada (PAXTON et al., 2011; BRANDÃO et al., 2008; MCKINION et al., 2001; BASTIAANSEN, 2000).

Devido a adoção de tecnologias, a área de plantio da cultura do algodão no Brasil diminuiu cerca de dois terços, desde 1982 que era de 3.826,6 mil hectares para 2012, chegando a 1.393,4 mil hectares, tendo sido observados no mesmo período um incremento na produtividade na ordem de 682% (COMPANHIA..., 2013).

Considerando a necessidade de gerenciamento intenso com múltiplas aplicações de fertilizantes, de reguladores de crescimento, de pesticidas e de irrigação em grandes áreas com algodão, o processo de decisão é complexo devido à não uniformidade dos solos, relevo, clima e distribuição de água. Quando técnicas de agricultura de precisão são aplicadas a este processo de gerência, espera-se melhorar a produtividade e ao mesmo tempo reduzir os custos com insumos (BRANDÃO et al., 2008).

O gerenciamento de todas essas informações não é simples. Uma solução pode ser o uso de um sistema de suporte de decisão integrado à cultura, usando várias tecnologias com informações georreferenciadas, sensores de resposta em tempo real, GIS (Geographic Information System) e imagens espectrais e sistemas de transmissão de dados para estimar, baseado nas condições ambientais, o impacto das práticas culturais na produção, além de gerenciar a enorme base de dados de informações obtidas.

Indubitavelmente a água é o principal fator limitante para qualquer sistema produtivo (LI; LASCANO, 2011), e para o algodoeiro o déficit hídrico ou excesso de umidade durante a formação das estruturas reprodutivas podem comprometer a produtividade da cultura levando a abscisão dos botões florais e de maçãs jovens (BRANDÃO et al., 2011). Assim, os sistemas de irrigação e avaliação da umidade disponível ao algodoeiro se tornaram os primeiros sistemas de agricultura de precisão a serem utilizados no mundo (LI; LASCANO, 2011). Entretanto, em um sistema de produção de algodão, além da água o gerenciamento dos níveis de nutrientes, especialmente nitrogênio, fósforo e potássio (NPK), é um fator imprescindível para obtenção de alta produtividade e melhoria da qualidade da fibra. Muitos estudos têm tido como objetivo a determinação dos efeitos tanto de déficit hídrico como da deficiência desses nutrientes na fotossíntese, no crescimento e na biomassa do algodoeiro, usando técnicas de sensoriamento remoto para analisar a influência desses efeitos na resposta espectral da cultura (BRANDAO, 2009; ZHAO et al., 2007; REDDY et al., 2004). A necessidade de redução dos custos de produção também leva muitos pesquisadores em vários países a usarem técnicas de manejo do solo mais adequadas e a avaliarem seus efeitos na produção. Combinadas, essas técnicas visam à obtenção da máxima produtividade e qualidade da fibra com o menor custo possível, tornando a cultura mais
competitiva e dando sustentabilidade a cadeia produtiva do algodoeiro (BRANDÃO et al., 2008).

A principal característica do sistema de cultivo do algodoeiro em vigência nas principais regiões produtoras é a forte dependência em insumos externos (fertilizantes e defensivos sintéticos), que incrementam o custo de produção e determina o limiar de lucro da cultura. Dada a esta característica, o cultivo do algodoeiro vem se tornando cada vez mais restrito a uma parcela dos constituintes do sistema produtivo que respondem pela produção em larga escala com a adoção de novas tecnologias e técnicas de gerenciamento.

2. Técnicas de Agricultura de Precisão para avaliação dos solos

O algodão herbáceo (Gossypium hirsutum L.) é uma planta muito exigente em qualidade de solo, desenvolvendo-se bem em solos com elevada fertilidade, com propriedades físicas adequadas, bem drenados, estruturados e profundos. Como essa cultura possui um sistema radicular bem desenvolvido, sensível à acidez e com elevada demanda de nutrientes, torna-se necessário o monitoramento constante, correção e aplicação anual e adequada de fertilizantes para a manutenção de níveis de suficiência no solo e consequente obtenção de alta produtividade. (CARVALHO; FERREIRA; STAUT, 2011; ROSOLEM; MELLIS, 2010).

O algodão possui alto custo de produção, sendo cerca de três vezes superior ao da cultura da soja. Nessa cultura os fertilizantes e corretivos de acidez do solo correspondem a cerca de 20% do custo total de produção (SANA, 2013). Por isso, para uma produção economicamente viável de algodão, devem-se empregar técnicas que visem maximizar a utilização dos insumos adicionados ao solo. As ferramentas de agricultura de precisão (AP) possibilitam identificar zonas heterogêneas, podendo-se, com isso, manejar o solo, a cultura e os insumos agrícolas, com diminuição do custo de produção e possíveis problemas ambientais.

A amostragem de solo de forma georreferenciada permite uma visão espacial da variação dos atributos avaliados com a geração de mapas interpretativos, que facilitam a tomada de decisão (BRANDÃO et al., 2008). O conjunto de informações que integra um banco de dados permite gerenciar a variabilidade e corrigir os atributos químicos do solo para maximizar o potencial produtivo em zonas da lavoura tornadas homogêneas pela aplicação de insumos em taxa variável.

Quase toda a produção algodoeira do Brasil encontra-se em solos do Cerrado, mesmo nos estados do nordeste que possuem esse cultivo. Considerando essa região, os fatores de solo que mais afetam a produtividade das culturas são: acidez elevada, teores de fósforo (P), potássio (K), cálcio (Ca), magnésio (Mg) e enxofre (S) disponíveis e matéria orgânica (MO) baixos e, entre os físicos, baixo teor de argila (arenosos) e compactação do solo (VENDRAME et al., 2010). Além disso, outros fatores devem ser considerados, como drenagem do solo, posição na paisagem e presença de cascalho influenciam a produtividade de diferentes cultivares, além de limitações de correção pela ação antrópica, que são as variabilidades induzidas pelas atividades agrícolas (SANA, 2013). Assim, manchas de calcário e gesso, presença de terraços, áreas de corte e estradas de divisão de lavouras devem ser registradas para não gerarem interpretações errôneas sobre a variação da produtividade do algodoeiro. Além disso, outros fatores que atuam diretamente no desenvolvimento e produtividade dessa cultura, como a presença de pragas, doenças e plantas daninhas, devem ser considerados ao longo de cada ciclo de produção.

A agricultura de precisão agrega informações de variabilidade e possibilita encontrar respostas para os fatores que estão influenciando a produtividade, utilizando sistemas georreferenciados que possibilitam a criação de zonas de manejo. Sensores de solo oferecem medições em tempo real, reduzindo o tempo de aplicação de corretivos, e as cansativas e caras amostragens de solo, minimizando os custos com manuseio, transporte e armazenagem de amostras. Dessa forma, é possível estabelecer procedimentos diferenciados para cada área na lavoura.

Atualmente, vários sensores de solo são utilizados por cotonicultores, em especial aqueles que fornecem dados de textura de solo, umidade e fertilidade. Embora já existam sensores comercialmente disponíveis, muitos deles fornecem dados que são afetados por mais de uma
característica agronômica e necessitam de análises ou sensores complementares. Muitos estudos têm como objetivo a avaliação desses sensores comerciais, especialmente por fornecerem dados em tempo real e um mapa completo e georreferenciado das características avaliadas. Entre os mais utilizados por cotonicultores nos EUA e Austrália encontram-se os sensores de condutividade elétrica aparente do solo (CEa) e de matéria orgânica, como os apresentados na Figura 1. Outros sensores também muito utilizados são os que fornecem dados complementares para programações de irrigação e níveis de nutrientes no solo.

Algumas pesquisas relatam que as leituras da CEa estão relacionadas a características e propriedades do solo como salinidade, umidade, textura e CTC (Molin; Rabello, 2011), sendo possível obter boas correlações entre elas a partir de leituras da CEa tomadas em campo com o sensor VERIS 3100 (Veris..., 2013; Sudduth et al., 2005). Embora ainda não seja muito utilizado no Brasil, a medição em campo da CEa vem sendo muito utilizada na última década por cotonicultores na Austrália e EUA, com as técnicas mais variadas, dependendo do atributo que se queira avaliar (Tabela 1).

Em experimento realizado antes do plantio do algodão na fazenda Pamplona, no estado de Goiás, Brandão et al. (2011) encontraram correlações significativas entre os valores de CEa e os de pH, que variaram de 42 a 61% na camada superficial (CEa até 30 cm) e de 52 a 75% na camada mais profunda (CEa até 90 cm). Eles observaram que na camada superficial, a CEa apresentou correlações similares tanto com o pHágua, quanto com o pH_{CaCl2} na superfície, enquanto o pH_{CaCl2} apresentou menor valor. Por outro lado, na camada mais profunda do solo a CEa apresentou a melhor correlação com o pH_{SMP} que foi de 75% seguido do pH_{CaCl2} (59%) e por último o pH_{água} (52%), sendo possível observar essas similaridades nos mapas gerados com os resultados das análises e a CEa (Figura 2). Em trabalho realizado para recomendação de calagem para os estados do Kansas, Illinos, Iowa, Nebraska e Wisconsin, USA, com base na correlação entre pH_{água} e pH_{SMP} com a CEa, Lund et al. (2005) relatam que o pH_{SMP} apresentou melhor correlação em três de quatro campos experimentais estudados. No solo agrícola, o pH do solo está relacionado com o teor de bases trocáveis no solo (RAIJ, 1991). Do mesmo modo, a condutividade elétrica está relacionada com a maior concentração de íons na solução de solo, que aumenta com o crescimento dos teores dos nutrientes trocáveis.

A utilização de outras ferramentas como GPS, sistemas de pilotos automáticos, sistemas de controle de irrigação ou softwares de tratamento de imagens são hoje uma realidade, no mundo e também no Brasil, sendo utilizados por grandes empresas como a SLC Agrícola ou a Fazenda Busato.

3. Resposta espectral e sua relação com a nutrição do algodoeiro

Embora existam diversas técnicas de avaliação nutricional do algodoeiro na Agricultura de Precisão, as técnicas que utilizam a refletância espectral têm conseguido bastante espaço
concentração total de clorofila nas folhas de algodão. Alguns estudos sobre os efeitos da deficiência nutricional de K na concentração de clorofila têm demonstrado que a clorofila a e a concentração total de clorofila foliar no algodão apresentaram-se reduzidas quando observados teores baixos de K (Pettigrew, 2003; Tarpley; Reddy; Sassenrath-Cole, 2000).

O N por sua vez é o principal macronutriente responsável pela produtividade das culturas e seu gerenciamento em grandes áreas é uma atividade complexa devido à sua característica de volatilidade. Devido à alta exigência do algodoeiro em N, a gestão desse nutriente é uma das mais importantes práticas em sistemas de alta produtividade, pois tanto a deficiência como o excesso desse elemento, influenciam negativamente o crescimento da planta, a retenção de frutos, a qualidade da fibra e a produtividade (Eddy et al., 2004).

O N aplicado no solo pode ser perdido por volatilização, lixiviação, desnitrificação ou imobilização (Lofton et al., 2010). Essas diferentes perdas podem criar áreas com baixa disponibilidade de N às plantas e sua consequente desnutrição. Por outro lado, o fornecimento insuficiente de N pode resultar em redução da área foliar e consequentemente menor capacidade fotosintética, resultando em má qualidade de fibra e menor produtividade (Rosolem e Mellis, 2010; Brandão, 2009). Entretanto, aplicações excessivas podem causar crescimento vegetativo exagerado da planta e reduzir a produção e a qualidade da fibra.

O manejo eficiente da adubação nitrogenada é essencial para obtenção de altas produtividades, redução de custo e proteção ambiental, sendo comercial, devido às facilidades de correlações com alguns nutrientes, especialmente o nitrogênio (N) e o potássio (K). As técnicas de sensoriamento remoto estão hoje sendo utilizadas por empresas comerciais não só para observar as variações espaciais e temporais desses elementos, mas para atuar na suplementação dos mesmos de maneira imediata, e na quantidade que a planta necessita, reduzindo custos e danos ambientais (Brandão, 2009).

Características da refletância espectral de plantas saudáveis ou não, em vários estágios do crescimento, podem ajudar a identificar estresses nutricionais específicos em condições onde outros fatores ambientais são controlados. Deficiências de N e K influenciam a coloração da folha e a eficiência fisiológica do algodão (Brandão, 2009; Read; Reddy; Jenkins, 2006; Bronson et al., 2005; 2011).

Deficiências de N no algodão geralmente resultam em produção menor de biomassa da planta e senescência prematura, evidenciadas pelo amareloamento ou clorose das folhas mais velhas, que tende a se estender visivelmente para toda a planta. Uma deficiência de K é expressa no dossel, em geral, como clorose interneval e marginal nas folhas mais velhas, progredindo para as mais novas. Em condição de uso de variedades modernas compactas e de estreito período de frutificação, a deficiência também pode aparecer como clorose nas bordas das folhas mais jovens, iniciando-se desde o início da formação dos frutos (Carvalho; Ferreira; Staut, 2011).

Assim, mudanças no status fisiológico das plantas podem ser estimadas por meio de medidas na pigmentação da folha (por exemplo, clorofila a, clorofila b, etc.), onde a disponibilidade de N e K estão bem correlacionadas com a concentração total de clorofila nas folhas de algodão. Alguns estudos sobre os efeitos da deficiência nutricional de K na concentração de clorofila têm demonstrado que a clorofila a e a concentração total de clorofila foliar no algodão apresentaram-se reduzidas quando observados teores baixos de K (Pettigrew, 2003; Tarpley; Reddy; Sassenrath-Cole, 2000).

O N por sua vez é o principal macronutriente responsável pela produtividade das culturas e seu gerenciamento em grandes áreas é uma atividade complexa devido à sua característica de volatilidade. Devido à alta exigência do algodoeiro em N, a gestão desse nutriente é uma das mais importantes práticas em sistemas de alta produtividade, pois tanto a deficiência como o excesso desse elemento, influenciam negativamente o crescimento da planta, a retenção de frutos, a qualidade da fibra e a produtividade (Reddy et al., 2004).

O N aplicado no solo pode ser perdido por volatilização, lixiviação, desnitrificação ou imobilização (Lofton et al., 2010). Essas diferentes perdas podem criar áreas com baixa disponibilidade de N às plantas e sua consequente desnutrição. Por outro lado, o fornecimento insuficiente de N pode resultar em redução da área foliar e consequentemente menor capacidade fotosintética, resultando em má qualidade de fibra e menor produtividade (Rosolem e Mellis, 2010; Brandão, 2009). Entretanto, aplicações excessivas podem causar crescimento vegetativo exagerado da planta e reduzir a produção e a qualidade da fibra.

O manejo eficiente da adubação nitrogenada é essencial para obtenção de altas produtividades, redução de custo e proteção ambiental, sendo

<table>
<thead>
<tr>
<th>Sensores comerciais</th>
<th>Técnicas de medição em campo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matéria orgânica</td>
<td>Refletância nas faixas do visível e infravermelho próximo.</td>
</tr>
<tr>
<td>Textura</td>
<td>Indução eletromagnética</td>
</tr>
<tr>
<td>Umidade</td>
<td>Resistividade elétrica</td>
</tr>
<tr>
<td>Nutrientes</td>
<td>Radar de penetração no solo</td>
</tr>
<tr>
<td>pH</td>
<td>Sensores acústicos</td>
</tr>
<tr>
<td>Salinidade</td>
<td>Sensores TDR (time domain reflectometry)</td>
</tr>
<tr>
<td></td>
<td>Resonância magnética nuclear</td>
</tr>
<tr>
<td></td>
<td>Eletrodos seletivos à íons</td>
</tr>
<tr>
<td></td>
<td>Sensores de condutividade elétrica</td>
</tr>
</tbody>
</table>

Tabela 1. Alguns sensores de solo e técnicas de medição utilizadas.
assim objeto de intensas pesquisas ao longo das últimas décadas (CARVALHO; FERREIRA; STAUT, 2011). Muitas pesquisas têm utilizado a reflectância do dossel para identificação do status desse nutrient na planta de algodoeiro através de sensores de contato direto com as folhas (Figura 2a.), ou sensores remotos ativos ou passivos (Figuras 2b e 2c) (BRANDÃO, 2009).

Esses equipamentos têm mostrado excelentes correlações com o nitrogênio foliar obtido em laboratório (BRONSON et al., 2011; LOFTON et al., 2010; BRANDÃO, 2009; MOTOMIYA; MOLIN; CHIAVEGATO, 2009) e pela facilidade e rapidez de resposta foram adaptados às condições de uso em campo, implantados em implementos agrícolas de aplicação à taxa variada de insumos, como pode ser visto na Figura 3, sendo já bastante utilizados por produtores dos EUA.

Outra categoria de sensores remotos são os orbitais ou sub-orbitais, que possuem em comum o princípio de imageamento por faixas. A largura das faixas de imageamento e precisão dos dados dependem do tipo de sensor. Enquanto imagens aéreas podem oferecer uma melhor resolução, elas apresentam diferentes tons que possibilitam uma classificação subjetiva do dossel (Figura 4a.) (BRANDÃO et al., 2012b). As imagens orbitais podem oferecer desde temperatura do terreno até valores da luz refletida pelas plantas exatamente como os sensores em solo, dependendo do sensor a ser usado (Figura 4b.). Por sua vez, os radares apesar de mais caros, fazem o imageamento da área sem problemas de interferência de nuvens.

4. Mapas de Produtividade

No planejamento agrícola, a estimativa da produtividade da cultura em que se está trabalhando é muito importante, e pode ser obtida durante o ciclo da cultura, de forma que se possa interferir no resultado final, uma vez que podem ser monitorados durante o período vegetativo através de sensores remotos espectrais (ZARCO-TEJADA; USTIN; WHITING, 2005).

Figura 2. (a) Sensor de contato direto para medição dos teores de clorofila foliar (Clorofílômetro portátil da Minolta®), (b) Sensor óptico ativo Crop Circle® (Foto: Holland Scientific.) e (c) Espectrorradiômetro passivo da Apogee®, utilizados na cultura do algodoeiro. Fonte: Brandão, 2009.

Figura 3. (a) Sensor de clorofila GreenSeeker®. Foto: Ricardo Inamasu, e (b) Instalação do sensor para aplicação de insumos em ATV. Foto GreenSeeker®
O sensoriamento tem facilitado à avaliação do ambiente produtivo durante todo o ciclo do algodoeiro, numa ampla gama de escalas temporais e espaciais, dependendo do sensor escolhido. Entretanto, a avaliação da produtividade das culturas ao final do seu ciclo fornece um dado real que permite a criação de zonas de manejo (ZM) daquela cultura, a partir de históricos da produtividade daquela área, combinados com dados de atributos do solo, explicando numa forma visual a maior parte da variabilidade e suas causas.

O mapeamento da produtividade proporcionado pelas ferramentas da agricultura de precisão destaca-se como ferramenta no gerenciamento da variabilidade espacial e temporal de lavouras comerciais, orientando práticas de manejo (MILANI et al., 2006). Tal aplicação, no entanto, requer, além da análise de mapas de produtividade, o histórico de várias safras de diferentes culturas para que a variabilidade temporal e espacial seja contemplada (BLACKMORE; GODWIN; FOUNTAS, 2003).

Mapas de produtividade de vários anos possibilitam não só a identificação da variabilidade temporal, mas permitem criar zonas com semelhança de características, definindo unidades de manejo em um talhão associando-os aos atributos do solo, deficiências nutricionais ou hídricas.

Para a geração dos mapas de produtividade, é necessário que a colhedora esteja equipada com sensor de rendimento, sistema de posicionamento global (GPS) e um dispositivo para o armazenamento dos dados de produtividade que vêm associados às suas coordenadas geográficas (SANTI, 2007). Assim, a produtividade do algodão é medida por sensores de fluxo de massa, que ficam instalados conectados aos dutos de entrada de pluma e caroço de algodão na máquina e medem a quantidade que passa através dos mesmos (JOHN DEERE, 2006). Os dados de produtividade devem ser submetidos à limpeza de erros. Aplicação do processo de filtragem dos dados brutos permite obter resultados mais coerentes, elevando a qualidade final das informações (MENEGATTI; MOLIN, 2004). O processo de obtenção de dados e de processamento das informações pode ser visualizado na Figura 5.

Tem-se encontrado variação da produtividade das culturas de soja, milho e trigo (AMADO et al., 2007) e sua correlação com atributos do solo, como pH água, Ca e Mg trocáveis, CTC e argila natural (REICHERT et al., 2008).

Vellidis e Brannen (2012) reportam experimentos da Universidade da Georgia em 5 estados nos EUA onde os mapas de colheita auxiliaram na localização das áreas de baixas produtividades. Eles obtiveram altas correlações com os mapas de condutividade elétrica aparente do solo (CEa) criados com o Veris 3100. Usando esses mapas, os pesquisadores identificaram em experimento de 63 acres (25,2 ha) no estado de Oklahoma, uma área com aproximadamente 5 acres (2 ha) com produtividade muito baixa, sendo muito inferior à média na área estudada (Figura 6a). Após identificarem a causa, foram aplicadas ações corretivas e a mesma área no ano seguinte.

seguinte apresentou as maiores altas produtividades

da lavoura (Figura 6b).

5. Controle da Irrigação no sistema Produtivo do Algodão

Em culturas irrigadas, para um adequado
manejo hídrico, são utilizados métodos
micrometeorológicos como os das correlações
turbulentas, da razão de Bowen, métodos indiretos
como proposto por FAO 56-Penman-Monteith e
medidas diretas com lisímetros (BRANDÃO et al.,
2011). Esses métodos, aliados a modernas estações
meteorológicas, sensores automatizados e sistemas
da armazenagem de dados em campo, já são hoje
bastante difundidos entre cotonicultores.

Em média, a quantidade de água necessária
para atender às necessidades hídricas do
algodoeiro durante uma safra é de 700 a 1300mm,
dependendo do clima e da duração do período
total de crescimento. As necessidades hídricas da
cultura variam com os estádios fenológicos, em
função da biomassa, apresentando um mínimo, no
estádio inicial, após a emergência e um máximo
no período compreendido entre a floração e
a frutificação. O déficit hídrico ou excesso de
umidade durante a formação das estruturas
reprodutivas do algodoeiro podem comprometer
a produtividade da cultura, uma vez que leva a
abscessão dos botões florais e de maçãs jovens,
sendo este um período crítico, podendo ser
observada redução de produtividade de até 50%
(BRANDÃO et al., 2011).

Entretanto, apesar de precisos, métodos
que dependem da instalação de equipamentos
como sensores ou lisímetros na área podem se
tornar uma tarefa trabalhosa e de elevado custo.
Neste contexto, os métodos que calculam a
evapotranspiração a partir de imagens de satélites
se mostram muito úteis, pois são capazes de estimar
com boa precisão a evapotranspiração real da
cultura (ETc) em grandes áreas, mesmo que essas
possuam grande heterogeneidade (BRANDÃO,
2009; BEZERRA; SILVA; FERREIRA, 2008).

O consumo de água no sistema solo-planta-
atmosfera pode ser estimado por meio de imagens
de satélite sem a necessidade de quantificação
de complexos processos hidrológicos
(BASTIAANSSEN, 2000), fornecendo uma
boa estimativa da evapotranspiração. Gavilán
e Berengena (2007) compararam dados da ETc
obtidos com a técnica da razão de Bowen com
medidas lisimétricas em áreas que apresentam
fortes eventos advectivos, e constataram que
os mesmos foram superestimados em até
5,7% quando apenas dados diurnos foram
considerados. Algoritmos como o SEBAL
(Surface Energy Balance Algorithm for Land), têm sido
aplicados com êxito em diversos ecossistemas para
estimativa da ETc (BEZERRA; SILVA; FERREIRA,
2008; BASTIAANSSEN, 2000). Nesse algoritmo,
a ETc é estimada a partir da quantificação da
densidade de fluxo de calor latente - LE, obtido
como resíduo da equação do balanço de energia
- BE. Segundo Tasumi (2003), a estimativa da ET
obtida pelo método SEBAL indica alto potencial
em áreas agrícolas quando comparada às medidas
lisimétricas, resultando em informações com
boa precisão para o gerenciamento dos recursos
hídricos, tendo sido obtidos erros médios em
torno de 2,5%. Assim, a escolha dos métodos e
equipamentos para gerenciamento e controle da
irrigação depende das condições e tamanho da
lavoura, mão de obra e equipamentos disponíveis
e é uma das primeiras aplicações de agricultura de
precisão que se tem conhecimento.

Agradecimentos

A Rede de Agricultura de Precisão da Embrapa.

Referências

AMADO, T. J. C.; PONTELLI, C. B.; SANTI, A. L.; VIANA, J.
H. M.; SULZBACH, L. A. S. Variabilidade espacial e temporal
da produtividade de culturas sob sistema de plantio direto.
Pesquisa Agropecuária Brasileira, Brasília, v. 42, p. 1101-

BASTIAANSSEN, W. SEBAL - Based sensible and latent
heat fluxes in the irrigated Gediz Basin, Turkey. Journal of

BEZERRA, B. G. SILVA, B. B.; FERREIRA, N. J. Estimativa
da evapotranspiração real diária usando-se imagens digitais

BLACKMORE, B. S.; GODWIN, R. J.; FOUNTAS, S. The
analysis of spatial and temporal trends in yield map data over

SANTI, A. I. Relações entre indicadores de qualidade do solo e a produtividade das culturas em áreas com agricultura de precisão. 2007. 150 f. Tese (Doutorado)-Universidade Federal de Santa Maria, Santa Maria, 2007.

Uso de imagens orbitais e suborbitais na caracterização da variabilidade espacial da produtividade**

Ziany Neiva Brandão*1, Ronaldo Pereira de Oliveira*2, Ronei Sandri Sana*3, Valdinei Sofiaitti*4, João Henrique Zonta*5, José da Cunha Medeiros*6

1 DSc. em Recursos Naturais: Sistema Água-Solo-Planta-Atmosfera, Embrapa Algodão. Rua Osvaldo Cruz, 1143, CEP 58.428-095, Campina Grande, PB
2 PhD. em Agricultura de Precisão, Embrapa Solos
3 MSc. em Agronomia: Ciência do Solo, Assessor Técnico de Planejamento Agrícola, SLC Agrícola, Rua Bernardo Pires, 128 - 4º andar - CEP 90.620-010 - Porto Alegre, RS
4 DSc. em Agronomia: Fitotecnia, Embrapa Algodão
5 DSc. em Eng. Agrícola: Recursos Hídricos, Embrapa Algodão
6 PhD. em Agronomia: Ciência do Solo, Embrapa Algodão

*E-mails: ziany.brandao@embrapa.br, ronaldo.oliveira@embrapa.br, ronei.Sana@slcagricola.com.br, valdinei.sofiaitti@embrapa.br, joao-henrique.zonta@embrapa.br, jose.medeiros@embrapa.br

**Apoio técnico e financiamento indireto da SLC Agrícola, numa parceria com a Embrapa Algodão dentro do projeto MP-1: Projeto de Agricultura de Precisão da Embrapa

Resumo: Imagens de satélites fornecem dados para gerenciamento de áreas florestadas e culturas com estimativa da produtividade no mundo inteiro. O objetivo desse trabalho foi avaliar a capacidade de índices de vegetação obtidos através de imagens do satélite Landsat-5 e por imagens aéreas de alta resolução na estimativa da produtividade do algodoeiro no cerrado de Goiás. Estimativas do índice de área foliar e medições da altura das plantas também foram realizadas nessas datas. Ao final do mês de abril foram adquiridas imagens aéreas de alta resolução da área de estudo. Índices de vegetação foram obtidos com os dados de refletância das imagens de satélite e aérea. Os resultados mostram que os dados de refletância multiespectral atingiram níveis significativos de precisão na estimativa da produtividade do algodoeiro, onde o MSAVI e o MTVI2 apresentaram os melhores desempenhos. O NDRGI obtido através da imagem aérea de alta resolução não se mostrou apropriado para estimativa da produtividade, mas permitiu a identificação da variabilidade espacial do índice de área foliar no algodoeiro para as duas épocas de avaliação. No estádio mais avançado todos os IVs obtidos por imagens de satélite apresentaram-se como bons estimadores da produtividade, podendo ser usados para identificação de zonas de manejo do algodoeiro no cerrado, desde que se tenha informações sobre o clima e manejo da cultura.

Palavras-chave: fotografias aéreas, imagens de satélite, variabilidade espacial, índices de vegetação

Use of suborbital and orbital images to characterize the spatial variability of crop yield

Abstract: Satellite images provide data for monitoring forested areas and crop cultures estimating their yield worldwide. The purpose of this study was to evaluate the ability of vegetation indices obtained from satellite images Landsat-5 and high-resolution aerial images to estimate cotton yield in the Cerrado of Goiás state. Estimates of leaf area index and height measurements from plants were also held on these dates. At the end of April were acquired high-resolution aerial images of the study area. Vegetation indices were obtained from the reflectance data of satellite images and aerial photographs. The results show that data from multispectral reflectance reached significant levels of accuracy in estimating the cotton yield, where MSAVI and MTVI2 showed the best performance. The NDRGI obtained from high resolution aerial image is not suitable for estimation of productivity, but allowed the identification of the spatial variability of leaf area index in cotton for both evaluation
periods. In advanced phonological stages all IVs from satellite images showed as good estimators of cotton yield, and they can be used for identifying management areas in cotton in the cerrado, since previous information about climate and crop management were provided.

Keywords: aerial photographs, satellite images, spatial variability, vegetation indices

1. Introdução

Nas últimas décadas os avanços nas áreas de engenharia têm facilitado a obtenção de dados para aplicações em sensoriamento remoto voltadas à Agricultura de Precisão (AP), com o fornecimento contínuo de imagens de satélite e o uso de sensores altamente precisos na aerofotogrametria.

Sensores a bordo dos satélites Landsat disponibilizam imagens para o mundo desde a década de 70, onde o mais novo satélite da série foi lançado em 2013. Com revisita a uma mesma área a cada 16 dias, 30 metros de resolução e disponibilização das imagens 12 horas após a passagem do satélite, as imagens espectrais do sensor OLI (Operacional Land Imager) do Landsat-8 são fornecidas em 9 bandas, 8 dessas similares ao seus antecessores (Landsat 5 e 7), e 1 banda adicional (Cirrus, banda 9). Imagens dessa série de satélites são até hoje as mais usadas por pesquisadores, produtores e governos e vêm fornecendo dados para gerenciamento de áreas florestadas, monitoramento de bacias hidrográficas e áreas de degelo, além do uso intensivo no monitoramento de culturas com estimativa da produtividade (UNITED..., 2013).

Pesquisadores em todo o mundo procuram aprimorar as técnicas de tratamento de imagens de satélite de baixa resolução por serem disponibilizadas gratuitamente, fornecendo extensa cobertura e alta resolução temporal. Essa é uma escolha vantajosa para detecção de anomalias na produção, incluindo áreas com alta densidade de culturas, áreas de produção de biodiesel, áreas de produção de soja, áreas de produção de algodão, áreas de produção de algodão, áreas de produção de soja, áreas de produção de algodão, áreas de produção de algodão, áreas de produção de algodão, áreas de produção de algodão.

Os índices de vegetação (IVs) são transformações lineares da refletância do dossel, que podem utilizar algumas faixas do espectro eletromagnético relacionadas às características que se quer avaliar. Nesse sentido, existem diversas classes de índices que podem ser utilizados para este fim, como os índices de área foliar, biomassa e da radiação fotossinteticamente ativa (BRANDÃO et al., 2008). Os avanços tecnológicos dos sensores remotos permitem analisar, através de imagem de satélites, a distribuição espacial de áreas cultivadas e as modificações da cobertura vegetal em séries temporais, possibilitando o monitoramento das áreas vegetadas com um diagnóstico preciso das condições da cultura ou do solo em estudo (HABOUDANE et al., 2004).

Com o rápido desenvolvimento e melhorias nos monitores de colheita, produtores e pesquisadores têm trabalhado com mapas de produtividade obtidos em campo como meio de diagnosticar
a variabilidade do solo e das culturas de uma determinada lavoura (LOUHAICHI; YOUNG; JOHNSON, 2013). O grande número de dados e a boa precisão desses mapas de produtividade têm permitido o planejamento da adubação e correção da acidez do solo para as safras subsequentes, além de fornecer os dados da colheita em andamento.

Assim, o objetivo desse trabalho foi avaliar a capacidade de índices de vegetação obtidos através de imagens do satélite Landsat-5 e por imagens aéreas de alta resolução na estimativa da produtividade do algodoeiro no cerrado de Goiás.

2. Material e Métodos

Esse trabalho foi desenvolvido numa área experimental de 57,6 ha, situada na Fazenda Pamplona, localizada no município de Cristalina, GO, cujas coordenadas centrais são 16º10’16” S, 47º37’47” W. O solo foi classificado como Latossolo vermelho-amarelo e o clima da região é caracterizado como tropical, com estação seca e predominância do tipo Aw, da classificação climática de Köppen. O período chuvoso vai de outubro a março, com pluviometria média anual de 1.446,5mm.

O algodão foi semeado em dezembro de 2011 com espaçamento de 0,76m e 14 plantas m⁻¹, em regime de sequeiro. Os dados diários de temperatura (máxima, média e mínima), umidade relativa, radiação solar e precipitação pluvial, foram obtidos numa estação meteorológica localizada dentro da fazenda Pamplona, tendo registrado um acumulado de 897mm durante o ciclo da cultura, distribuídos de dezembro de 2010 a maio de 2011.

A adubação nitrogenada foi realizada em quatro épocas (pré-semeadura, semeadura, emergência e aos 45 DAE) totalizando 160 kg ha⁻¹. Todos os nutrientes foram aplicados de maneira uniforme para a área tendo sido seguida a recomendação de adubação da fazenda baseada na análise de solo e na expectativa de produtividade da área.

A escolha das épocas de avaliação levou em conta as datas de passagem de satélites e o estádio fenológico em que as plantas se encontravam. Assim, em 05 de abril foi realizada uma avaliação nutricional do algodoeiro, sendo esta duas semanas antes da primeira imagem adquirida, pois havia se considerado a passagem anterior do Landsat-5. Os dados foram coletados tomando como base uma grade amostral preparada antes da instalação do experimento, contendo 90 pontos espaçados de 80x80m. Os pontos centrais foram previamente marcados e georreferenciados com um GPS 76CSx da Garmin. Para as análises do tecido foliar foram coletadas folhas em 30 plantas aleatórias por ponto da grade amostral, tendo sido colhida a folha da 5ª posição do caule principal, contada a partir do ápice (CARVALHO; FERREIRA, 2006).

Imagens geradas pelo sensor TM (Thematic Mapper) do satélite Landsat-5 foram obtidas aos 125 DAE, dia 19-04-2011 e 170 DAE no dia 06-06-2011 com órbita 221 e ponto 071. Cada data representa uma fase fenológica distinta do algodoeiro, com a primeira registrando o início da frutificação plena e a segunda a abertura dos capulhos.

As bandas espectrais do sensor TM do Landsat-5 usadas nesse trabalho correspondem aos canais 2, na faixa de 520-600 nm, a cuja refletância nesse trabalho associamos à denominação de \(\rho_{G} \), canal 3 operando em 630-690 nm (\(\rho_{R} \)) e 4, 760-900 nm (\(\rho_{NIR} \)).

Após a correção do georreferenciamento, foi feita a calibração radiométrica das imagens, e posteriormente avaliada a precisão dos pontos marcados com o GPS Garmin 76CSx. Foram então determinadas as refletâncias nas regiões do visível e infravermelho próximo, que serviram para determinação do Índice de Área Foliar (IAF) e dos Índices de Vegetação (IVs). Os índices de vegetação NDVI (Normalized Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), MSAVI (Modified Soil Adjusted Vegetation Index), e MTVI2 (Modified Triangular Vegetation Index) foram estimados pelas seguintes expressões:

\[
NDVI = \frac{\rho_{NIR} - \rho_{R}}{\rho_{NIR} + \rho_{R}} \quad \text{Eq. 1}
\]

\[
SAVI = \frac{(1 + L)(\rho_{NIR} - \rho_{R})}{(\rho_{NIR} + \rho_{R} + L)} \quad \text{Eq. 2}
\]

\[
MSAVI = \frac{1}{2} \left[2\rho_{NIR} + 1 - \sqrt{(2\rho_{NIR} + 1)^2 - 8(\rho_{NIR} - \rho_{R})} \right] \quad \text{Eq. 3}
\]

\[
MTVI2 = \frac{1,5 \left(\rho_{NIR} - \rho_{G} \right) - 2,5(\rho_{R} - \rho_{G})}{(2\rho_{NIR} + 1)^2 - \left(-6\rho_{NIR} - 5\rho_{R} - 0,5 \right)} \quad \text{Eq. 4}
\]

O fator \(L \) é uma função da densidade da vegetação e sua determinação requer um conhecimento prévio das quantidades de vegetação existentes no local (HUETE, 1988).

Ainda na mesma época de avaliação, foram adquiridas imagens aéreas multispectrais da área experimental, no estádio de frutificação plena do algodoeiro em Cristalina (Figura 2a.). As imagens foram coletadas por câmera multispectral de alta resolução nas bandas R(red), G(green), e B(blue). Foram obtidas tanto fotografias ortorretificadas com resolução de 0,30m, como também imagens do Índice de Maturidade das plantas (NDRGI - Normalized difference red green index), que possibilitou a classificação da imagem obtida em 4 classes, conforme apresentado na Figura 2b.

O NDRGI foi desenvolvido para estimativa do estádio fenológico de culturas e áreas florestadas...
devido a sua sensibilidade aos tons de verde e amarelo. Muito usado para classificação em imagens multispectrais, esse índice pode também ser chamado de Green NDVI (GRVI) e é dado pela seguinte expressão (MOTOHKA et al., 2010):

$$NDRGI = \left(\frac{\rho_G - \rho_B}{\rho_G + \rho_B} \right)$$ Eq. 5

Em agosto de 2011 foi realizada a colheita mecanizada do algodão sendo a produção convertida em quilograma por hectare. A colheita mecanizada utilizou a colhedora de algodão modelo John Deere 9996, equipada com o sistema Green Field, composto de sensor de rendimento do tipo fluxo ultrassônico, cartão de armazenamento de dados, e antena receptora de Sistema de Posicionamento Global (GPS) com sinal diferencial, modelo Green Star. Os dados foram submetidos à análise estatística descritiva para verificar possíveis discrepâncias e a normalidade nos dados. Foram determinadas as correlações entre os dados de nitrogênio foliar, produtividade e índices de vegetação obtidos por satélite e por aerofotogrametria. A análise geoestatística foi realizada através da construção e ajuste de semivariogramas e interpolação por krigagem ordinária utilizando o pacote geoestatístico Vesper (WHELAN; McBRATNEY; MINASNY, 2001).

3. Resultados e Discussão

A região onde se encontra a área experimental possui duas estações bem definidas, uma seca que vai de abril a setembro e outra chuvosa, de outubro a março. A estação chuvosa na safra 2010/2011 estendeu-se até meados de maio com alta concentração de chuvas, chegando a 381,7 mm de março a maio de 2011. Com isso, o algodão aos 125 DAE se encontrava no período de maior NDVI, registrando valores de 0,83 a 0,90, correspondendo ao padrão de maior altura de plantas e maior índice de área foliar (IAF), que foi obtido através de imagem do Landsat de 19 de abril de 2011 (Tabela 1). O mapa classificado do NDRGI, apresentado na Figura 2.b representa o IAF obtido nesse período. Com a alta resolução da ortofoto é possível confirmar a intensidade da cobertura vegetada (Figura 2.a). Nessa época os 2/3 superiores das plantas estavam muito verdes, com maçãs cheias ou em fase de enchimento. Nessa data, as imagens de satélite também registraram os maiores valores do IAF (Figura 3.a), que foram de 1,88 a 3,49 aos 125 DAE, e seu decréscimo com a entrada das plantas em fase de senescência aos 170 DAE, variando de 0,39 a 0,80 (Figura 3.b), podendo ser observados na amplitude dos valores.

A avaliação nutricional que havia sido realizada duas semanas antes da primeira imagem do Landsat-5 revela a grande quantidade de nitrogênio disponível às plantas, que era de 41,0 a 51,7 g kg⁻¹, estando acima do recomendado para essa fase para lavouras de alta produtividade que é 40-45 g kg⁻¹ (YAMADA et al., 1999). Os teores de nutrientes presentes nas folhas refletem as condições de fertilidade dos solos e da adubação a que a cultura foi submetida. O N é um elemento móvel na planta, que tende a se concentrar nos tecidos jovens e a diluir sua concentração com o tempo, devido à estabilização do crescimento.
do tecido, ao aumento de carboidratos e lipídios e, especialmente, por causa da redistribuição para os frutos e partes jovens da planta ainda em crescimento (MARSCHNER, 2005).

As relações entre os índices de vegetação (IVs) obtidos através das imagens Landsat e a produtividade exibem a variabilidade causada pelo conteúdo de clorofila, além da influência das condições atmosféricas e das características estruturais da cultura (Figura 4). De fato, os IVs são desenvolvidos para representarem melhor os tons de verde, mas têm que ser capazes de reduzir os efeitos indesejados de refletância de outros alvos. Brandão (2009) reporta boas correlações entre o nitrogênio foliar e as variáveis biofísicas com os índices de vegetação obtidos pelo Landsat quando avaliados entre o início do florescimento até a frutificação no algodoeiro, mas reduzida capacidade desses IVs na predição da produtividade, uma vez que a presença de frutos e o surgimento de folhas amarelas altera muito a refletância no infravermelho próximo (NIR). Índices como o NDGRI se propõem a melhorar a capacidade de estimativa do estádio fenológico devido ao fato da não utilização da faixa do NIR.

A Tabela 1 apresenta as correlações entre os índices de vegetação obtidos pelos dois métodos, nas duas épocas de avaliação, e a produtividade do algodoeiro. A variabilidade espacial observada através dos IVs representou a produtividade com correlações de moderadas a boas (0,59 a 0,66) durante a frutificação e de boas a alta (0,63 a 0,75) no início da senescência.

Equações de regressão foram obtidas nos dois estádios fenológicos estudados para avaliar a capacidade dos índices de vegetação (IVs) como estimadores da produtividade (Figura 4). Os IVs acompanharam o crescimento da produtividade nas duas épocas avaliadas, seguindo o modelo linear, tendo coeficientes de correlação apresentados na Tabela 1. Em abril, aos 125 DAE, a nebulosidade na região não permitiu que os IVs apresentassem melhor sua potencialidade como estimador da produtividade com coeficientes de determinação variando de 0,34 a 0,43 (Figura 4a.). Nessa fase o MSAVI apresentou o melhor desempenho, seguido pelo MTVI2, com correlações altamente significantes de 0,66 e 0,62 respectivamente (Tabela 1). O SAVI e o NDVI apresentaram o pior desempenho nessa fase, com correlações de 0,59.

Entretanto, quando a nebulosidade se dispersou já aos 170 DAE esses últimos IVs mostraram bons desempenhos com o NDVI sendo o melhor estimador da produtividade, onde foi observado um $R^2=0,58$ e correlação de Pearson de 0,76 (Figura 4b). Toulios et al., 2010, em um trabalho testando o NDVI e o SAVI em várias épocas no algodoeiro, encontraram correlações altamente significativas entre o NDVI e a produtividade durante o florescimento do algodoeiro aos 90 DAE ($r=0,72$), com uma pequena redução ao chegar à frutificação plena aos 140 DAE ($r=0,69$), usando imagens com resolução espacial de 20m.

O MSAVI mostrou sua capacidade de redução dos efeitos do solo e melhorou o desempenho com relação à medição anterior, sendo adequado para estimativa da produtividade com $R^2=0,52$, índice de correlação de Pearson de 0,72 e significância a 1% pelo teste t. O MTVI2 manteve uma boa estimativa para a produtividade do algodoeiro, mesmo quando as imagens de satélite sofreram interferências atmosféricas maiores. Embora não tenha se apresentado como o melhor IV na senescência, esse IV mostra sua potencialidade quando há grandes quantidades de folhas em

Tabela 1. Correlações do índice de vegetação (IV) obtido por fotografia aérea (NDRGI) e pelos IVs obtidos através de imagens do sensor TM do satélite Landsat-5 aos 125 e 170 DAE no algodoeiro em Goiás na safra 2011.

<table>
<thead>
<tr>
<th></th>
<th>NDRGI</th>
<th>IAF1</th>
<th>NDVI1</th>
<th>SAVI1</th>
<th>MSAVI1</th>
<th>MTVI21</th>
<th>Altura</th>
<th>IAF2</th>
<th>NDVI2</th>
<th>SAVI2</th>
<th>MSAVI2</th>
<th>MTVI22</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDRGI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0,58*</td>
<td>0,40**</td>
<td>0,48*</td>
<td>0,48*</td>
<td>0,55*</td>
<td>0,54*</td>
<td>0,54*</td>
<td>0,49*</td>
<td>0,37**</td>
<td>0,45*</td>
<td>0,37**</td>
</tr>
<tr>
<td>Nf_foliar</td>
<td>0,05</td>
<td>0,28ns</td>
<td>0,46*</td>
<td>0,40ns</td>
<td>0,46*</td>
<td>0,38**</td>
<td>0,14ns</td>
<td>0,36**</td>
<td>0,43*</td>
<td>0,48*</td>
<td>0,44*</td>
<td>0,53*</td>
</tr>
<tr>
<td>Prod</td>
<td>0,39*</td>
<td>0,64*</td>
<td>0,59*</td>
<td>0,59*</td>
<td>0,66*</td>
<td>0,62*</td>
<td>0,35**</td>
<td>0,63*</td>
<td>0,76*</td>
<td>0,72*</td>
<td>0,72*</td>
<td>0,67*</td>
</tr>
</tbody>
</table>

* , ** significativo a 1% e 5% pelo teste t. “não significativo. Subscriptos 1 e 2 para as épocas. (a) 1 aos 125 DAE e (b) 2 aos 170 DAE.
Agricul tur
A
de precisão: result
A
dos de um novo olh
A
especial o IAF e a altura de plantas. Embora o
vôo tenha ocorrido próximo a primeira data da
imagem Landsat, o IAF estimado por satélite
apresentou boas correlações com o NDRGI nas
duas épocas avaliadas (Tabela 1).

Apesar da baixa correlação entre a produtividade
e o NDRGI (Tabela 1), a produtividade está bem
correlacionada com o índice de área foliar de
várias culturas, tendo sido reportadas correlações
superiores a 0,85 em diversas pesquisas para
o algodoeiro (HABOUDANE et al., 2004;
READ; REDDY; JENKINS, 2006; BRANDÃO,
2009). Assim, a possibilidade de predição do
IAF da cultura através do NDRGI pode ser

amarelecimento (HABOUDANE et al., 2004).
Aos 170 DAE o MTVI2 apresentou correlação
de 0,67 com a produtividade. Esse efeito também
foi observado por Brandão (2009) num estudo
da avaliação do crescimento do algodoeiro
irrigado no semiárido, onde obteve correlações
de 0,74 e 0,73 entre a produtividade e os IVs
MSAVI e MTVI2, respectivamente, no estádio
de frutificação e usando imagens do Landsat-5.

Enquanto os IVs obtidos por imagens de
satélite apresentaram potencial para estimativa
da produtividade, o NDRGI obtido por fotografia
aérea de alta resolução mostrou-se um bom
preditor das variáveis biofísicas da cultura, em
especial o IAF e a altura de plantas. Embora o
vôo tenha ocorrido próximo a primeira data da
imagem Landsat, o IAF estimado por satélite
apresentou boas correlações com o NDRGI nas
duas épocas avaliadas (Tabela 1).

Apesar da baixa correlação entre a produtividade
e o NDRGI (Tabela 1), a produtividade está bem
correlacionada com o índice de área foliar de
várias culturas, tendo sido reportadas correlações
superiores a 0,85 em diversas pesquisas para
o algodoeiro (HABOUDANE et al., 2004;
READ; REDDY; JENKINS, 2006; BRANDÃO,
2009). Assim, a possibilidade de predição do
IAF da cultura através do NDRGI pode ser

\[
\begin{align*}
\text{Prod}_{\text{NDVI}} &= 11060x - 6585,6 R^2 = 0,35 \\
\text{Prod}_{\text{SAVI}} &= 4493,7x - 351,74 R^2 = 0,43 \\
\text{Prod}_{\text{MSAVI}} &= 4609,3x + 476,95 R^2 = 0,39 \\
\end{align*}
\]

Figura 4. Equações de regressão para produtividade do algodoeiro como função dos índices de vegetação
obtidos através das imagens do sensor TM do Landsat-5, em dois estádios fenológicos, para o NDVI, SAVI,
MSAVI e MTVI2. (a) aos 125 DAE e (b) aos 170 DAE.
útil na delimitação de zonas de manejo por produtividade, tendo como base os níveis do IAF na área estudada.

Os mapas krigados do NDRGI e da produtividade na área experimental são apresentados na Figura 5 onde podem ser observadas a similaridade da distribuição desse IV com a produtividade.

Os fatores responsáveis pela variabilidade espacial da produtividade incluem a quantidade de água disponível às plantas, topografia, uniformidade na aplicação de fertilizantes, variação genética, propriedades nutricionais do solo, bem como a infestação de pragas e doenças (ZHANG; WANG; WANG, 2002). Todos esses fatores influenciam o arranjo e distribuição das plantas no campo bem como o vigor das mesmas, sendo realçados pelo IAF (ZHAO et al., 2007). Essas características têm sido utilizadas para definição de zonas de manejo e podem ser recuperadas através do NDRGI (MOTOHKA et al., 2010; LYLE; LEWIS; OSTENDORF, 2012). O mais importante é a observação constante da área de produção e delimitação de áreas de manejo considerando as variações observadas ano a ano (DIKER; HEERMANN; BRODAHL, 2004), uma vez que interferências provocadas por manejo ou aplicação de fertilizantes vão alterando as características morfológicas e nutricionais observadas na área estudada.

Os índices de vegetação obtidos por satélite são apropriados para estimativa da produtividade, desde que se conheçam as condições a que o campo foi submetido, as quantidades de fertilizantes e as condições climáticas e atmosféricas. Gitelson et al. (2012) citam a importância da calibração atmosférica e redução de ruídos nas imagens de satélite, tendo obtido até 20% de melhoria na predição da produtividade após a correção das imagens. Neste trabalho tanto o MSAVI como o MTVI2 se mostraram apropriados para a estimativa da produtividade do algodoeiro, mesmo em estádios mais avançados.

4. Conclusões

Os índices de vegetação obtidos através de imagens do Landsat-5 se mostraram apropriadas para predição da produtividade desde que consideradas e conhecidas as condições a que a cultura foi submetida.

Mesmo considerando que as imagens foram obtidas a partir da frutificação da cultura, para as duas épocas de avaliação o MSAVI se apresentou como o melhor estimador da produtividade do algodoeiro.

O MTVI2 se apresentou estável mesmo quando as condições atmosféricas são adversas mostrando potencial para avaliação do estádio fenológico do algodoeiro.

O NDRGI obtido a partir de imagens aéreas de alta resolução não se mostrou apropriado para estimativa direta da produtividade, mas sim do índice de área foliar, sendo sensível ao vigor e distribuição das plantas em campo.

Agradecimentos

A Rede de Agricultura de Precisão da Embrapa que nos apoiou e deu suporte aos trabalhos e a SLC Agrícola pela excelente parceria, sem a qual esse trabalho não teria êxito.

Referências

Agricultura de precisão para o manejo da fertilidade do solo em algodoeiro cultivado no cerrado brasileiro**

João Henrique Zonta*2, Ziany Neiva Brandão*3, José da Cunha Medeiros*4, Ronei Sandri Sana5, Valdinei Sofiatti*6

1DSc. em Eng. Agrícola: Recursos Hídricos, Embrapa Algodão
2DSc. em Recursos Naturais: Sistema Água-Solo-Planta-Atmosfera, Embrapa Algodão, Rua Oswaldo Cruz, 1143, CEP 58.428-095, Campina Grande, PB
3PhD. em Agronomia: Ciência do Solo, Embrapa Algodão
4Mestrando em Agronomia: Solos. Assessor Técnico de Planejamento Agrícola, SLC Agrícola, Rua Bernardo Pires, 128 - 4º andar - CEP 90.620-010 - Porto Alegre, RS
5DSc. em Agronomia: Fitotecnia, Embrapa Algodão

*E-mails: joao-henrique.zonta@cnpa.embrapa.br, ziany.brandao@embrapa.br, jose.medeiros@embrapa.br, Ronei.Sana@slcagricola.com.br, valdinei.sofiatti@embrapa.br

**Apoio técnico e financiamento indireto da SLC Agrícola, numa parceria com a Embrapa Algodão dentro do projeto MP-1: Projeto de Agricultura de Precisão da Embrapa

Resumo: O objetivo deste trabalho foi avaliar a possibilidade de uso de mapas temáticos de fertilidade do solo em área de produção comercial de algodão, visando a adoção da agricultura de precisão no manejo da fertilidade do solo. O experimento foi conduzido em uma área com solo classificado como Latossolo Vermelho Amarelo sob plantio direto, no município de Cristalina, Goiás, durante a safra 2010/2011. As amostras de solo foram coletadas numa grade amostral constituída de 90 pontos (80 × 80 m), distribuídos numa área de 57,6 ha. Foram determinados os teores de P, K, Ca, Mg, S, Na, Cu, Mn, B, Zn, Fe, matéria orgânica (MO), pH, soma de bases (SB), saturação por bases (V) e saturação por alumínio (m). Efetuou-se a análise descritiva clássica. Foram modelados semivariogramas para todos os atributos e mapas de krigagens, onde a maioria dos semivariogramas foram ajustados ao modelo esférico. A dependência espacial encontrada nas propriedades do solo indicam que as variações espaciais devem ser consideradas no planejamento de coleta de amostras de solo e nas práticas de manejo do solo. Concluiu-se que para a adoção da agricultura de precisão e aplicação de insumos em taxa variável, é necessário realizar um criterioso estudo da variabilidade da fertilidade do solo, gerando mapas por classe de fertilidade de cada atributo e identificando para quais atributos esta prática de manejo deve ser adotada.

Palavras-chave: Aplicação em taxa variável, geoestatística, krigagem

Precision agriculture for soil fertility management at cotton cultivated in Brazilian savannah

Abstract: The purpose of this work was to evaluate the use of thematic maps of soil fertility into a cotton commercial area, aimed at the adoption of precision agriculture in soil management. The experiment was conducted in Cristalina, Goiás state, in an Oxisol under tillage, during the 2010/2011 season. Soil samples were collected at a grid sampling consisting of 90 points (80 × 80 m), distributed into 57.6 ha. The contents of P, K, Ca, Mg, S, Na, Cu, Mn, B, Zn, Fe, organic matter (OM), pH, sum of bases (SB), base saturation (V) and aluminum saturation (m) were determined. The classic descriptive analysis was conducted. Semivariograms and kriging maps were modeled for all attributes and most of semivariograms were adjusted to the spherical model. Spatial dependency found in soil properties point to the spatial variations should be considered when planning sampling of soil and soil management practices. For the adoption of precision agriculture and application of inputs at variable rate, it is necessary to perform a careful study of the soil fertility variability, creating maps for fertility class of each attribute and identifying which attributes this management practice would be adopted.

Keywords: Variable rate application, geostatistic, kriging
1. Introdução

As fazendas produtoras de algodão no cerrado brasileiro são geralmente gerenciadas por empresas agrícolas, com sistema de produção intensivo, totalmente mecanizado, e consequentemente, com elevadas produtividades. Este tipo de sistema de produção gera um custo elevado principalmente com adubação, controle de plantas daninhas e de pragas e doenças. A aplicação destes insumos (fertilizantes, herbicidas, inseticidas e fungicidas), é feita em grandes áreas de forma homogênea, sem considerar a variabilidade espacial das características do solo e da incidência de pragas e doenças (BRANDÃO et al, 2008). Porém, ao analisarmos os atributos do solo, diversos trabalhos realizados têm demonstrado que a variabilidade espacial destas características em áreas de exploração agrícola deve ser considerada (SERRANO et al., 2010). Segundo Amado et al. (2009) o conhecimento da variabilidade espacial dos atributos do solo e da cultura é uma importante ferramenta para analisar a variabilidade da produtividade e aperfeiçoar o manejo em áreas agrícolas por meio de um gerenciamento agrícola que leve em consideração informações pontuais de solo e das culturas.

Andrade et al. (2005) e Vieira, Mello e Lima (2007) afirmam que a evolução da tecnologia na agricultura tem demonstrado a importância de se mensurar a variabilidade espacial e temporal das propriedades do solo que afetam a produtividade das culturas, visto que estas informações podem ser utilizadas como base para a aplicação de insumos em taxa variável e ajustada especificamente para cada parcela (FARIA et al., 2009). Isso é possível somente através do estabelecimento de zonas específicas de manejo, que é uma condição necessária à agricultura de precisão (AP) (DALCHIAVON et al., 2012).

A AP foi primeiramente utilizada no manejo de nutrientes, fundamentada em um esquema de coleta de solo em malha, sendo geralmente adotado um esquema de amostragem a cada 50 metros, ou seja, 4 amostras por hectare (INAMASSU et al., 2011). No Brasil, atualmente as empresas têm realizado a coleta de amostras a cada 4 ou 5 hectares.

Neste contexto, o objetivo deste trabalho foi avaliar a possibilidade de uso de mapas temáticos de fertilidade do solo em área de produção comercial de algodão, visando a adoção da agricultura de precisão no manejo da área.

2. Material e Métodos

Localizada no município de Cristalina, GO, a área do experimento possui dimensão de 57,6 ha, cujas coordenadas centrais são 16°10’16"S, 47°37’47"O. Os solos da região são predominantemente Latossolos vermelho-amarelos e a altitude média na área experimental é de 1009 m. Na safra 2010/2011 foi semeado algodão, sendo que a área é manejada em sistema de plantio direto/cultivo mínimo desde a safra 2001/2002, com sucessão das culturas de soja/milho e algodão. Antes da instalação do experimento foi preparada uma grade amostral com 90 pontos de 80 x 80 m. Os pontos centrais foram previamente marcados e georreferenciados com um GPS (modelo 76CSx da marca Garmin).

A coleta das amostras de solo foi realizada em novembro de 2010, após a colheita da soja, antecedendo o plantio do algodoeiro. As amostras de solos para análise química foram coletadas num raio de até 10 m de cada ponto central, sendo retiradas 8 sub-amostras. Os atributos químicos do solo avaliados foram: macronutrientes (fósforo (P), potássio (K), cálcio (Ca), magnésio (Mg) e enxofre (S)), micronutrientes (sódio (Na), cobre (Cu), manganês (Mn), boro (B), zinco (Zn) e ferro (Fe)), matéria orgânica (MO), pH, soma de bases (SB), saturação por bases (V) e saturação por alumínio (m).

Os dados foram submetidos à análise descritiva, de dispersão e de forma da distribuição, sendo a hipótese de normalidade verificada pelo teste de Shapiro e Wilk (1965), a nível de 5% de probabilidade. As semivariâncias experimentais foram estimadas utilizando-se o software Vesper 1.6 (MINASNY; McBRATNEY; WHELAN, 2006). Os modelos de ajuste do semivariograma foram selecionados com base no menor valor da raiz quadrada do erro médio (RQEM) e de AIC (Critério de Informação de Akaike (AKAIKE, 1973)). Os mapas temáticos foram gerados através da krigagem em blocos (10 x 10 m) (BURROUGH; McDONNEL, 1998), com uso do software...
Com relação à normalidade dos dados, Paz-Gonzalez, Taboada e Vieira (2001) afirmam que, no caso de dados que seguem distribuição normal, as estimativas usando o método da krigagem é mais eficiente e apresenta melhores resultados, porém, de acordo com Cressie (1993), mesmo para dados que não seguem distribuição normal, a krigagem é eficiente. Os variogramas foram ajustados, com exceção dos atributos Ca (Gaussiano) e H+Al (Exponencial), seguindo o modelo Esférico. Estes resultados são semelhantes aos obtidos por Dalchiavon et al. (2012), que estudando a dependência espacial dos atributos da fertilidade de um latossolo distroférico, obtiveram ajuste do variograma através do modelo esférico em 70% dos atributos avaliados, como P, Mg, MO, pH e m%.

As variáveis geoestatísticas dos atributos ficaram entre 264,5 m (B) e 84,28 m (Ca), sendo que para a maioria dos atributos o alcance variou na faixa entre 100 e 200 m, variando conforme o atributo analisado. Motomiya et al. (2011), em solos do Cerrado, encontraram alcances de 118, 200, 50, 124 e 127 metros para SB, K, H+Al, Ca e pH, respectivamente, valores próximos ao encontrados no presente trabalho.

3. Resultados e Discussão

Na Tabela 1 são apresentados os dados da análise exploratória para as características do solo analisadas. Os valores de P, K, MO, B, SB, m% e V% apresentaram distribuição normal de acordo com o teste de Shapiro-Wilk’s (Tabela 1). Os outros parâmetros apresentaram coeficientes de assimetria e/ou curtose e, desta forma, apresentaram distribuição não-normal pelo mesmo teste. Com exceção das características MO e H+Al, todas as demais apresentaram assimetria positiva (Tabela 1).

Com relação à normalidade dos dados, Paz-Gonzalez, Taboada e Vieira (2001) afirmam que, no caso de dados que seguem distribuição normal, as estimativas usando o método da krigagem é mais eficiente e apresenta melhores resultados.

Tabela 1. Parâmetros da estatística descritiva de alguns atributos químicos do solo em área cultivada com algodoeiro, Cristalina, Goiás

<table>
<thead>
<tr>
<th>Atributo¹</th>
<th>Média</th>
<th>Mediana</th>
<th>Máximo</th>
<th>Mínimo</th>
<th>DP²</th>
<th>CV%³</th>
<th>Ck⁴</th>
<th>CA⁵</th>
<th>w⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (mg dm⁻³)</td>
<td>2,62</td>
<td>2,60</td>
<td>4,70</td>
<td>0,60</td>
<td>1,03</td>
<td>39,49</td>
<td>-0,80</td>
<td>0,22</td>
<td>ns</td>
</tr>
<tr>
<td>K (cmolc dm⁻³)</td>
<td>0,23</td>
<td>0,24</td>
<td>0,30</td>
<td>0,18</td>
<td>0,02</td>
<td>12,01</td>
<td>-0,50</td>
<td>0,17</td>
<td>ns</td>
</tr>
<tr>
<td>Ca (cmolc dm⁻³)</td>
<td>3,06</td>
<td>2,90</td>
<td>4,80</td>
<td>1,80</td>
<td>0,64</td>
<td>21,18</td>
<td>-0,18</td>
<td>0,45</td>
<td>*</td>
</tr>
<tr>
<td>Mg (cmolc dm⁻³)</td>
<td>1,08</td>
<td>1,10</td>
<td>1,80</td>
<td>0,60</td>
<td>0,26</td>
<td>24,31</td>
<td>-0,58</td>
<td>0,27</td>
<td>*</td>
</tr>
<tr>
<td>Cu (mg dm⁻³)</td>
<td>1,50</td>
<td>1,40</td>
<td>2,70</td>
<td>0,70</td>
<td>0,48</td>
<td>31,91</td>
<td>-0,13</td>
<td>0,67</td>
<td>*</td>
</tr>
<tr>
<td>Mn (mg dm⁻³)</td>
<td>2,07</td>
<td>2,00</td>
<td>3,00</td>
<td>1,60</td>
<td>0,40</td>
<td>19,24</td>
<td>-0,08</td>
<td>0,85</td>
<td>*</td>
</tr>
<tr>
<td>B (mg dm⁻³)</td>
<td>1,21</td>
<td>1,21</td>
<td>1,66</td>
<td>0,72</td>
<td>0,23</td>
<td>18,88</td>
<td>-0,64</td>
<td>0,04</td>
<td>ns</td>
</tr>
<tr>
<td>Zn (mg dm⁻³)</td>
<td>3,91</td>
<td>3,90</td>
<td>5,00</td>
<td>3,00</td>
<td>0,50</td>
<td>12,93</td>
<td>-0,67</td>
<td>0,25</td>
<td>*</td>
</tr>
<tr>
<td>MO (g dm⁻³)</td>
<td>2,90</td>
<td>2,90</td>
<td>3,50</td>
<td>2,30</td>
<td>0,26</td>
<td>9,10</td>
<td>-0,50</td>
<td>-0,01</td>
<td>ns</td>
</tr>
<tr>
<td>H+Al (cmolc dm⁻³)</td>
<td>2,58</td>
<td>2,60</td>
<td>3,60</td>
<td>0,80</td>
<td>0,50</td>
<td>19,38</td>
<td>0,87</td>
<td>-0,58</td>
<td>*</td>
</tr>
<tr>
<td>pH</td>
<td>5,33</td>
<td>5,40</td>
<td>6,20</td>
<td>4,60</td>
<td>0,34</td>
<td>6,47</td>
<td>0,12</td>
<td>0,05</td>
<td>*</td>
</tr>
<tr>
<td>SB (cmolc dm⁻³)</td>
<td>4,26</td>
<td>4,25</td>
<td>5,92</td>
<td>2,81</td>
<td>0,77</td>
<td>18,29</td>
<td>-0,67</td>
<td>0,08</td>
<td>ns</td>
</tr>
<tr>
<td>m%</td>
<td>0,22</td>
<td>0,22</td>
<td>0,29</td>
<td>0,16</td>
<td>0,03</td>
<td>13,88</td>
<td>-0,79</td>
<td>0,08</td>
<td>*</td>
</tr>
<tr>
<td>V%</td>
<td>62,7</td>
<td>62,81</td>
<td>91,6</td>
<td>44,78</td>
<td>8,63</td>
<td>13,77</td>
<td>0,43</td>
<td>0,28</td>
<td>*</td>
</tr>
</tbody>
</table>

¹- P, K, Ca, Mg, Cu, Mn, B, Zn, MO, H+Al, SB, m%, V% são respectivamente o fósforo, potássio, cálcio, magnésio, cobre, manganês, boro, zinco, matéria orgânica, hidrogênio + alumínio, soma de bases, saturação por alumínio, saturação por bases. ²- DP – Desvio padrão; ³- CV - Coeficiente de variação; ⁴- Ck - Coeficiente de curtose; ⁵- CA - Coeficiente de assimetria; ⁶- w - Teste de Shapiro-Wilk’s; * - Distribuição não-normal pelo teste de Shapiro-Wilk’s (p-valor < 0,05); ns - Distribuição normal pelo teste de Shapiro-Wilk’s (p-valor > 0,05).
O alcance é o principal parâmetro fornecido pela geoestatística, pois representa a distância na qual uma variável apresenta continuidade espacial, sendo que a partir desta distância, o comportamento espacial da variável passa a ser totalmente aleatório (LEMONS FILHO et al., 2008). Para o solo em estudo numa aplicação em taxa variável de fósforo, as amostras poderiam ser coletadas com uma grade amostral de até 112 × 112 metros, ou uma amostra para cada 1,25 ha, enquanto que, para a aplicação de calcário em taxa variável, em função da soma de bases (SB), a grade amostral poderia ser de até 196 × 196 metros, ou uma amostra a cada 3,85 ha. Todos os valores de alcance obtidos foram maiores que o valor de espaçamento entre as amostragens (80 metros), indicando que as amostras estão correlacionadas umas a outras, o que permite que se façam interpolações (VIEIRA, 2000).

De acordo com Cambardella et al. (1994), as variáveis que apresentam forte dependência espacial são mais influenciadas pelas propriedades intrínsecas do solo, como textura e mineralogia, enquanto aquelas que apresentam fraça dependência são influenciadas por propriedades extrínsecas do solo, como o cultivo e aplicação de fertilizantes, ou seja, são dependentes do manejo do solo. Desta forma, de acordo com os resultados, pode-se observar que os valores de Ca, Mg, V% e H+Al podem ter sido influenciados pela aplicação desuniforme de calcário na área, visto que apresentam moderada dependência espacial, e ambos estão relacionados à aplicação deste corretivo.

A partir do ajuste dos semivariogramas, foram construídos mapas de krigagem, que são fundamentais para a agricultura de precisão, haja vista que a partir desses são definidas zonas específicas de manejo da fertilidade do solo, possibilitando a aplicação de insumos com taxas variáveis, visando à homogeneização da fertilidade do solo.

Na Figura 1 são apresentados os mapas de krigagem para os atributos K e P, Ca e Mg e V% e pH, sendo os mapas de krigagem elaborados de acordo com as classes de fertilidade do solo recomendadas por Carvalho, Ferreira e Staut (2011).

De acordo com a Figura 1 B, o solo apresentou teor muito baixo de P (P<5,0 mg dm⁻³) em 100% da área (CARVALHO; FERREIRA; STAUT, 2011). Como não foi verificada variabilidade, quando categorizado em classes de fertilidade, nos níveis de fósforo no solo, a aplicação deste nutriente em taxa variável, neste caso, não seria recomendada. Bronson et al. (2003) analisando dois campos cultivados com algodão irrigado, verificaram que quando foi aplicado fertilizante fosfatado em taxa variável, taxa constante e sem aplicação de fertilizante, não houve resposta significante na produtividade, apesar de haver uma redução no uso de fertilizantes. Os mesmos autores afirmam que mais pesquisas são necessárias para determinar se a economia de fertilizantes são consistentes o suficiente para compensar os custos adicionais de amostragem do solo intensivo, análise e equipamento especializado que a aplicação taxa variável de fertilizantes exige.

Vale ressaltar a importância da geração de mapas de krigagem com as classes dos atributos baseadas em recomendações de fertilidade do solo, visto que no caso do fósforo, mesmo apresentando variabilidade espacial, na geração do mapa por krigagem, 100% da área estava inserida na classe de teores classificados como “muito baixo”, ou seja, homogêneo em toda área segundo classificação de Carvalho, Ferreira e Staut (2011).

Com relação ao teor de K, observa-se na Figura 1A que 4,1% da área possui teor de K entre 51 e 80 mg dm⁻³, e 95,9% da área está com teor de K>80 mg dm⁻³, demonstrando maior dessuniformidade se comparado ao P, porém, ainda insignificante para o uso da agricultura de precisão e aplicação em taxa variável. Para a cultura do algodoeiro no cerrado, os teores de K neste solo são considerados adequado/bom em 4,1% da área e alto/muito bom em 95,9% da
área (CARVALHO et al., 2011). Dessa forma a adubação de manutenção com o K, em conjunto com a dose de reposição em função da expectativa de produtividade da área, seriam suficientes para manter os níveis de K adequados no solo, não sendo vantajoso fazer a aplicação em taxa variável, uma vez que a variação dos teores no solo foram muito baixos.

Para o teor de cálcio (Ca) no solo (Figura 1C), verificou-se que 4,9% da área possui teor de Ca de 1 a 2,5 cmol\(_{c}\) dm\(^{-3}\) (classificado como médio) e 95,1% da área apresenta teor de cálcio de >2,5 cmol\(_{c}\) dm\(^{-3}\) (classificado como alto) (COMISSÃO..., 1988). O Magnésio (Figura 1D) apresentou níveis superiores a 0,6 cmol\(_{c}\) dm\(^{-3}\) em 100% da área, sendo os níveis no solo classificados como “alto” em toda área. A exemplo do que foi verificado com os nutrientes fósforo e potássio, a aplicação em taxa variável para cálcio e magnésio também seria desnecessária.

Com relação ao pH (Figura 1F), este apresentou maior heterogeneidade, sendo 78,9% da área com pH <5,5 e 21,1% com pH>5,5. Os valores da saturação por bases (V%) (Figura 1E), foram classificados em 38,4% da área com V%<60 e 61,6% da área com V%>60. Segundo Carvalho, Ferreira e Staut (2011), há evidências de que a cultura do algodoeiro responde positivamente à calagem no Cerrado até a saturação por bases de 60%. Assim, verifica-se, que nesta área existe a necessidade de se realizar a calagem, em parte da área, a fim de se elevar a saturação de bases até

![Diagrama de krigagem dos atributos químicos](image)

Figura 1. Mapas de krigagem dos atributos químicos potássio (A), fósforo (B), cálcio (C), magnésio (D), saturação por bases (E) e pH (F) de um Latossolo Vermelho amarelo em área de cultivo de algodoeiro sob sistema plantio direto.
60%. Desta forma, poderia ser aplicado calcário em toda área, em doses diferentes em função das áreas de manejo determinadas pelo mapa gerado, visto que bons resultados poderiam ser obtidos em economia de calcário e melhor uniformidade na fertilidade do solo. Este resultado está de acordo com as afirmações de Souza et al. (2007) que comprovaram a eficiência da correção da acidez do solo por meio da aplicação de calcário em taxa variável utilizando-se da análise geoestatística, como técnica para determinação da heterogeneidade do solo.

A recomendação da utilização de técnicas de agricultura de precisão e aplicação de insumos em taxa variável deve ser realizada de forma criteriosa, visto que, na área em estudo, apesar de alguns atributos, como o fósforo e o potássio, Ca e Mg apresentarem dependência espacial e variabilidade dentro da área, quando elaborados mapas categorizados em classes de fertilidade do solo, os mesmos não indicam a necessidade de aplicação em taxa variável para estes nutrientes. Por outro lado, atributos como o pH e V%, após gerados os mapas de classes de fertilidade do solo, apresentaram potencialidade para a realização de calagem em aplicação com taxa variável, demonstrando que dentro de uma mesma área, podem existir diversas situações distintas, sendo recomendado ou não a adoção do manejo seguindo os preceitos da agricultura de precisão.

4. Conclusões

A dependência espacial encontrada nas propriedades químicas do solo analisadas indica que as variações espaciais devem ser consideradas no planejamento de coleta de amostras de solo e nas práticas de manejo do solo.

Para a adoção da agricultura de precisão e aplicação de insumos em taxa variável, deve-se realizar um criterioso estudo da variabilidade da fertilidade do solo, gerando mapas por classe de fertilidade de cada atributo, o que permite identificar para quais atributos esta prática de manejo deve ser adotada.

Para a área em estudo, a aplicação de insumos em taxa variável seria recomendada somente para a aplicação de calcário, devido a heterogeneidade apresentada nos mapas de V% e pH.

Agradecimentos

A SLC Agrícola e à Rede de Agricultura de Precisão da Embrapa.

Referências

Produtividade do algodoeiro em função da variabilidade espacial de atributos do solo e adubação fosfatada no cerrado**

Ronei Sandri Sana*1, Gilvan Barbosa Ferreira*2, Valdinei Sofiatti*2, José da Cunha Medeiros*2, Ziany Neiva Brandão*3, Ibanor Anghinoni*4

1Eng. Agrônomo, Mestrando em Ciência do Solo pela UFRGS, Assessor Técnico de Planejamento Agrícola da SLC Agrícola, Rua Bernardo Pires, 128, 4º andar, CEP 90.620-010, Porto Alegre, RS
2DSc., Agronomia, Pesquisadores da Embrapa Algodão
3DSc., Recursos Naturais: Sistema Água-Solo-Planta-Atmosfera, Analista, Embrapa Algodão
4PhD em agronomia, Professor do Departamento de Solos, UFRGS

*E-mails: ronei.sana@slcagricola.com.br, gilvan.ferreira@embrapa.br, valdinei.sofiatti@embrapa.br, jose.medeiros@embrapa.br, ziany.brandao@embrapa.br, ibanghi@ufrgs.br

**Projeto Financiado pela Rede Agricultura de Precisão em parceria com o Grupo SLC Agrícola. O texto é parte da dissertação mestrado do primeiro autor

Resumo: O algodoeiro é uma planta que demanda forte correção e adubação do solo. As técnicas de agricultura de precisão podem ajudar a racionalizar o uso de insumos e melhorar a produtividade da lavoura. Neste trabalho, mapeou-se os valores de atributos de fertilidade de solo e de nutrição do algodoeiro e relacionou-se com a variabilidade da produtividade na área. O ensaio foi executado na Fazenda Pamplona, em Cristalina, GO, nas safras 2010/2011 e 2011/2012. Utilizou-se uma área de 57,6 ha separada dentro da fazenda, onde se fez um grid com 90 pontos distanciados de 80 × 80 m. Nesses pontos, foram amostrados solos e plantas e medidos a produtividade do algodão com sensor de rendimento. Também se mediu a condutividade elétrica aparente do solo, o índice de área foliar e a altura da planta. Os atributos de solos e planta mostraram-se com forte dependência espacial, porém nem sempre se relacionaram entre si e com a produtividade obtida na lavoura. Entretanto, quando forte mudanças nos teores dos nutrientes no solo foram provocadas por adubação corretiva de fósforo, foi observada pequena resposta da cultura em produtividade.

Palavras-chave: nutriente disponível, estado nutricional, condutividade elétrica aparente, crescimento da planta, algodão em caroço

Cotton yield as a function of spatial variability of soil properties and phosphorus fertilization in the brazilian savanna

Abstract: The cotton plant demand strong correction and fertilization of soil. Techniques of precision agriculture can help to rationalize the use of inputs and improve crop productivity. In this work, it was mapped soil fertility attribute values and cotton nutrition and relating to the variability of productivity in the area. The experiment was carried out in Pamplona Farm, Crystalline, GO, in the 2010/2011 and 2011/2012 seasons. We used a 57.6 ha separate area in the farm, where was made a grid with 90 points of 80x80m. In these points soil and plant were sampled and cotton yield measured by sensor. It was also measured the apparent electrical conductivity of the soil, leaf area index and plant height. The attributes of soils and plants showed strong spatial dependence, but not always related to each other, or even with the yield obtained in field. However, when strong changes in soil nutrient levels were caused by phosphorus corrective fertilization, it was observed a little response on culture productivity.

Keywords: available nutrient, nutritional status, apparent soil electrical conductivity, plant growth, seed cotton
1. Introdução

A agricultura de precisão é uma tecnologia que permite a máxima racionalização no uso dos insumos (WERNER et al., 2007). O algodoeiro tem alta demanda de nutrientes para ser produtivo e o custo com correção e adubação chega a 30% do custo total da cultura (CARVALHO; FERREIRA; STAUT, 2011). Assim, usar tecnologia que permita o uso racional dos insumos e aumente a produtividade é essencial para dar sustentabilidade a esse cultivo no cerrado.

A distribuição dos nutrientes, argila, matéria orgânica e umidade é dependente de uma série de características do solo, manejo usado e do ambiente existente na propriedade. É possível estabelecer sua dependência geoespacial e mapear a área para poder aplicar os insumos em taxas variáveis (DALCHIAVON et al., 2012). Por outro lado, as plantas absorvem os nutrientes em quantidades maiores dependendo de sua presença no solo e seus teores associados. Assim, sob condições adequadas de manejo da cultura e clima, é esperado que a produtividade esteja estreitamente relacionada com os nutrientes existentes, e/ou postos no solo. Este trabalho teve por objetivo caracterizar e mapear a variabilidade dos nutrientes no solo, na planta e sua relação com a produtividade do algodão, com e sem uso de taxas variadas de fósforo em solo de Cerrado.

2. Material e Métodos

Esse experimento foi realizado na Fazenda Pamplona, em Cristalina/GO, em área com dimensão de 57,6 ha, cujas coordenadas geográficas são 16°10’16”S, 47°37’47”O, nas safras 2010/2011 e 2011/2012. Os solos da região são predominantemente Latossolos Vermelho-Amarelos e a altitude média de 1009 m, com clima tropical, com estação seca e predominância do tipo Aw, da classificação climática de Köppen, com temperaturas médias de 28,6 e 16,8°C, para a máxima e mínima respectivamente. O período chuvoso vai de outubro a março, com pluviometria média anual de 1.446,5 mm, bastante variável anualmente.

A área é cultivada sob sistema de plantio direto/cultivo mínimo desde a safra 2001/2002, com sucessão e rotação de culturas soja/milho e algodão. Em área de lavoura, separou-se uma área experimental e fez-se grade de 90 pontos espaçados em 80x80m e georreferenciados com GPS 76CSx da Garmim. Em cada ponto, coletou-se amostras de solo para análises de rotina.

Tabela 1. Resultados de análise do solo nas safras 2010/11.

<table>
<thead>
<tr>
<th>Safra</th>
<th>Área (ha)</th>
<th>pH CaCl₂</th>
<th>pH água</th>
<th>índice</th>
<th>H+Al</th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>SB</th>
<th>CTC pH</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cmol dm⁻³</td>
<td>%</td>
<td></td>
<td>SMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,0</td>
<td>%</td>
</tr>
<tr>
<td>10/11*</td>
<td>50,3</td>
<td>5,4</td>
<td>5,7</td>
<td>6,5</td>
<td>2,6</td>
<td>0,0</td>
<td>3,1</td>
<td>1,1</td>
<td>0,25</td>
<td>4,4</td>
<td>7,0</td>
</tr>
</tbody>
</table>

*Resultados de análise de solo da safra 2010/11, representando a média dos pontos coletados na área experimental.

pH H₂O (1:1); pH CaG₂ (1:1); pH SMP (10:10:5); Ca2+, Mg2+ e K+ trocáveis · Extração com Resina Trocadora de Cátions-RTC, Matéria orgânica foi obtida pelo método da oxidação (EMBRAPA, 1997).

P Mehlich-1 - Extraído por solução Mehlich-1 (TEDESCO et al., 1995).

P Resina - Resina Trocadora de Ànions-RTA (RAF et al., 2001).
(Tabela 1; EMBRAPA, 1997; TEDESCO et al., 1995). Antes da semeadura da safra 2010/2011, fez-se a medição da condutividade elétrica aparente do solo (CEa) por meio do equipamento VERIS EC 3100 (VERIS..., 2011), adaptado a um sistema subsolador com eletrodos de contato, conforme proposto por Inamassu et al. (2007), com as medidas coletadas e armazenadas sendo georeferenciadas por um GPS Trimble. Os dados obtidos foram de latitude, longitude e altitude (m), além dos valores de CEa do solo (mS.m⁻¹), para as profundidades de 0-30 cm e 0-90 cm, coletados a intervalos de um segundo.

Durante os cultivos, nas safras 2010/2011 e 2011/2012, fez-se amostragem de folhas para análises, assim como mediu-se a altura da planta aos 110 e 108 dias após a emergência (DAE) e ambas as safras, respectivamente.

Os dados coletados foram submetidos aos testes padrões de estatísticas descritivas, estudo da dependência espacial por geostatística e geração de mapas dos valores encontrados em cada variável estudada. Também foram feitas correlações entre os teores no solo e na planta e destes com a produtividade medida via sensor e manualmente na área.

Tabela 2. Coeficiente de correlação entre os atributos químicos e físicos do solo e atributos de planta, aos 70 DAE, na safra 2010/11.

<table>
<thead>
<tr>
<th>Atributos de solo</th>
<th>Atributos de planta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>CEa (0-0,3m)</td>
<td>0,36*</td>
</tr>
<tr>
<td>CEa (0-0,9m)</td>
<td>0,08</td>
</tr>
<tr>
<td>pH CaCl₂</td>
<td>-0,17</td>
</tr>
<tr>
<td>pH água</td>
<td>0,29*</td>
</tr>
<tr>
<td>pH SMP</td>
<td>-0,02</td>
</tr>
<tr>
<td>Ca</td>
<td>0,01</td>
</tr>
<tr>
<td>Mg</td>
<td>0,14</td>
</tr>
<tr>
<td>K</td>
<td>0,23</td>
</tr>
<tr>
<td>Soma de bases</td>
<td>0,06</td>
</tr>
<tr>
<td>V%</td>
<td>0,05</td>
</tr>
<tr>
<td>CTC pH 7,0</td>
<td>0,09</td>
</tr>
<tr>
<td>H + Al</td>
<td>0,03</td>
</tr>
<tr>
<td>P Mehlich-1</td>
<td>-0,02</td>
</tr>
<tr>
<td>P resina</td>
<td>-0,02</td>
</tr>
<tr>
<td>MOS</td>
<td>0,04</td>
</tr>
<tr>
<td>S</td>
<td>-0,03</td>
</tr>
<tr>
<td>B</td>
<td>-0,12</td>
</tr>
<tr>
<td>Fe</td>
<td>0,21</td>
</tr>
<tr>
<td>Mn</td>
<td>0,22</td>
</tr>
<tr>
<td>Cu</td>
<td>-0,05</td>
</tr>
<tr>
<td>Zn</td>
<td>0,04</td>
</tr>
</tbody>
</table>

*Correlação Pearson. Significativo a 1% de probabilidade pelo teste t.
Figura 1. Mapa de altitude, da condutividade elétrica na superfície e em profundidade, do pH em água e dos teores de Ca, Mg, K, H+Al, saturação por bases trocáveis, P-Mehlich-1 disponível, matéria orgânica e argila em Latossolo Vermelho Amarelo da Fazenda Pamplona, em novembro de 2010. Cristalina, GO.
Foram encontradas correlações entre as condutividades elétricas aparentes do solo (Figura 1) e diversos atributos do solo, em especial ligados ao pH e cátions trocáveis, especialmente na superfície (Figura 1 e Tabela 2), como já demonstrado por Brandão et al. (2011). Com exceção do potássio trocável no solo, não houve correlação entre os demais nutrientes disponíveis medidos no solo e nas folhas das plantas, indicando que possivelmente esse fator não estava controlando o crescimento e acúmulo de nutrientes na planta, devido aos teores serem adequados para o algodoeiro.

De fato, apesar dos teores dos nutrientes na planta variarem menos na área e terem um índice de dependência espacial menor (alcance de 173 a 480 m), bem superior aos dos nutrientes medidos no solo (variação entre 102 a 325 m), eles também não se relacionaram com a produtividade da cultura na safra 2010/2011 (Figura 1). Isto indica que outros fatores de manejo como pragas e doenças, do clima e solo, como por exemplo a má distribuição da umidade no terreno, tiveram influência maior que os teores dos nutrientes no solo e nas plantas, uma vez que estas se encontravam bem nutridas (Tabela 3), conforme já foi verificado também por Smith et al (1998).

Na safra 2011/2012, apesar da flagrante diferença no padrão da variação dos teores foliares dos nutrientes na área (Figura 5), quando comparado com o ano anterior (Figura 2), não foram observadas correlações significativas com a produtividade da lavoura, com exceção do fósforo, após a aplicação de doses diferenciadas na área (Tabela 3). Essa diferença entre os dois anos agrícolas pode advar de fatores como o excesso de chuvas durante os meses de janeiro a maio de 2012, onde em muitos pontos parte dos solos foi levado pelas fortes chuvas.

Considerando que os teores de fósforo no solo foram elevados pelas doses crescentes aplicadas, foi observada resposta linear e crescente na produtividade de algodão em caroço (Figuras 4 e 5), com ganhos de até 500 kg/ha de algodão em caroço. Esse aumento da produtividade demonstra que a variabilidade de fósforo na área é alta e a correção dos pontos onde é menor o teor de fósforo permite crescimento na produtividade, apesar de outros fatores estarem interferindo na resposta, possivelmente associado às condições de

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>S</th>
<th>Altura</th>
<th>SPAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlações na safra 2010/2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>-0,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>-0,19</td>
<td>0,50*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>0,12</td>
<td>0,40*</td>
<td>0,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0,17</td>
<td>0,24</td>
<td>-0,13</td>
<td>0,31*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>-0,06</td>
<td>0,42*</td>
<td>0,32*</td>
<td>0,56*</td>
<td>-0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura</td>
<td>-0,04</td>
<td>0,48*</td>
<td>0,12</td>
<td>0,14</td>
<td>0,08</td>
<td>0,47*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPAD</td>
<td>0,54*</td>
<td>-0,15</td>
<td>-0,22</td>
<td>-0,03</td>
<td>-0,12</td>
<td>-0,12</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Produtividade</td>
<td>-0,06</td>
<td>-0,14</td>
<td>0,14</td>
<td>-0,24</td>
<td>-0,07</td>
<td>-0,16</td>
<td>-0,07</td>
<td>-0,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlações na safra 2011/2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0,67*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0,07</td>
<td>0,27*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>0,52*</td>
<td>0,52*</td>
<td>-0,35*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0,40*</td>
<td>0,34*</td>
<td>-0,03</td>
<td>0,45*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0,50*</td>
<td>0,69*</td>
<td>0,34*</td>
<td>0,35*</td>
<td>0,19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura</td>
<td>0,37*</td>
<td>0,61*</td>
<td>-0,03</td>
<td>0,39*</td>
<td>0,06</td>
<td>0,35*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPAD</td>
<td>0,49*</td>
<td>0,12</td>
<td>-0,19</td>
<td>0,23</td>
<td>0,24</td>
<td>0,11</td>
<td>0,14</td>
<td></td>
</tr>
<tr>
<td>Produtividade</td>
<td>-0,09</td>
<td>-0,30*</td>
<td>-0,22</td>
<td>-0,14</td>
<td>-0,13</td>
<td>-0,46*</td>
<td>-0,14</td>
<td>0,27*</td>
</tr>
</tbody>
</table>

Agricultura de precisão: resultados de um novo olhar

Agradecimentos
Os autores agradecem ao Macroprograma-1 (rede de Agricultura de Precisão) da Embrapa, que financiou a pesquisa, e à parceria com a SLC agrícola, pelas facilidades concedidas para os trabalhos de campo.

umidade da área. Nesse caso, os dados concordam com os obtidos por Guedes Filho (2009), que demonstrou haver relação espacial entre as produtividades das culturas e os atributos físicos e químicos do solo.

4. Conclusões
Tanto os teores dos nutrientes no solo quanto os teores foliares estão sob dependência espacial no solo, porém nem sempre se relacionam entre si. Também podem não explicar a produtividade de algodão em caroço obtida, exceto quanto teores baixos são elevados por doses crescentes de fertilizantes, como o fósforo estudado.

Figura 3. Mapas dos teores foliares de N, P, K, Ca, Mg e de S aos 108 dias da emergência, de altura e de produtividade de algodão em caroço medida por sensor na Fazenda Pamplona, safra 2011/2012. Cristalina, GO.
Figura 4. Resposta do algodoeiro à aplicação de adubo fosfatado em faixas, safra 2011/2012. A) Faixas de aplicação de fósforo; B) Produtividade medida com sensor; C) Produtividade normalizada.

Figura 5. Produtividade do algodoeiro em função de doses crescentes de fósforo.

Referências

Potencial de aplicação da Agrometeorologia em Agricultura de Precisão para produção de grãos

Genei Antonio Dalmago*1, Gilberto Rocca da Cunha*2, João Leonardo Fernandes Pires*3, Anderson Santi*3, Elizandro Fochesatto*4

1Pesquisador, Embrapa Trigo, BR 285 km 294, Passo Fundo, RS. B. CNPq/PQ
2Pesquisador, Embrapa Trigo, BR 285 km 294, Passo Fundo, RS. B. CNPq/DT
3Pesquisador, Embrapa Trigo, BR 285 km 294, Passo Fundo, RS
4Aluno de Mestrado do PPG-Fitotecnia/Agrometeorologia da UFRGS

*E-mails: genei.dalmago@embrapa.br, gilberto.cunha@embrapa.br, joao.pires@embrapa.br, anderson.santi@embrapa.br, elizandrofochesatto@hotmail.com

Resumo: A pesquisa em agricultura de precisão tem feito progressos em várias áreas do conhecimento, enquanto que, outras áreas ainda foram pouco exploradas. É possível que este foco de pesquisa restrito esteja dificultando a compreensão de respostas das culturas agrícolas, pelo fato de não se dispor de todas as informações e/ou por não estarem sendo interpretadas na visão geral do sistema. O objetivo deste estudo é apresentar o potencial de inserção de novas variáveis e análises adicionais de outros fatores envolvidos nas respostas das culturas de grãos, que ainda não foram abordadas em áreas agrícolas com Agricultura de Precisão. Esta pesquisa foi focada no potencial de contribuição da agrometeorologia e suas interfaces nas explicações de respostas produtivas de áreas cultivadas com Agricultura de Precisão. Dois aspectos importantes foram destacados: a presença de microclimas em lavouras e da contribuição de variáveis agrometeorológicas para a explicação dos processos envolvidos na produção. Essencialmente, o texto aborda a importância da agrometeorologia e áreas afins para a produção agrícola, a formação e identificação de microclimas em lavouras e variáveis do microclima/agrometeorológicas e de plantas, com potencial de aplicação na Agricultura de precisão. A agrometeorologia e áreas de interface relacionadas podem contribuir para a compreensão dos processos envolvidos na produção de culturas de grãos em Agricultura de Precisão.

Palavras-chave: manejo sitio-específico, microclima, micrometeorologia, monitoramento agrometeorológico

Potencial de aplicação da Agrometeorologia em Agricultura de Precisão para produção de grãos

Abstract: Precision Agriculture researches have make progresses in several knowledge areas, but some related research fields are still poorly exploited. It is possible that this restricted research focus can difficult a fully understanding of crop responses, once the lack of information and/or misinterpretation of the data difficult the system overview. The objective of this study was to present the insertion potential of new variables and additional analysis of other factors involved in the crop responses, which have not yet been addressed in farming areas managed with Precision Agriculture. This research was focused on the contribution potential of agrometeorology and its interfaces on the explanations related to crop production responses in areas cultivated with Precision Agriculture. Two important aspects were highlighted: presence of microclimates in the crop field and the contribution of agrometeorological variables for the explanation of processes involved in the crop production. Essentially, the text addresses the importance of the agrometeorology and related areas on the agricultural production, the formation and identification of microclimates in the crop field and, microclimatic/ agrometeorological and plant variables with application potential in Precision Agriculture. The agrometeorology and related interface areas can contribute in the comprehension of the processes involved in the crop production under Precision Agriculture.

Keywords: specific-site management, microclimate, micrometeorology, agrometeorology monitoring
1. Introdução

A Agricultura de Precisão tem avançado nos últimos anos, em todo o mundo, com aplicações em praticamente todas as áreas da agropecuária. No caso da agricultura, inúmeras pesquisas foram realizadas com o objetivo de compreender e explicar a variabilidade da produção dentro de uma lavoura, buscando elementos para aprimorar o manejo geral das áreas, com a finalidade de aumentar a produção e reduzir custos. É fato, que avanços significativos têm sido feitos no manejo sitio-específico para diferentes culturas agrícolas.

Na medida em que resultados promissóres têm surgido, também apareceram muitos entraves ao avanço desta tecnologia, que precisam ser resolvidos pela pesquisa. Entre esses entraves está a falta de consistência nos resultados obtidos por diferentes grupos que trabalhem com o tema. É conhecida, por exemplo, a baixa correlação entre diversas variáveis e o rendimento de grãos de culturas agrícolas, ou, praticamente a falta de correlação. Neste cenário, é possível especular algumas causas que podem estar envolvidas, na falta de correlação entre o rendimento de grãos e as variáveis que explicam essa resposta. Um dos aspectos é o viés que a técnica tem, por ter sido inserida no meio científico/acadêmico via mecanização agrícola, com forte vinculação na avaliação e manejo dos atributos químicos do solo, como principais elementos determinantes da produção das culturas agrícolas. No início, a estratégia foi promissora, mas o tempo tem mostrado que a mesma não foi suficiente e, ao contrário do que se preconizava, a estratégia de correção da fertilidade química do solo unicamente, parece estar causando variabilidade no solo, pelo menos no sentido vertical do perfil.

A ênfase dada à pesquisa dos atributos químicos e, mais recentemente físicos do solo, tem levado ao desenvolvimento rápido de soluções tecnológicas e de sua transferência ao setor produtivo, criando estruturas de apoio, com altos investimentos. Isso fez com que outras áreas do conhecimento agronômico fossem colocadas em segundo plano, como a produção biológica da planta, o controle de pragas, doenças e de plantas daninhas, bem como outros princípios consagrados, como a rotação de culturas, escalonamento de épocas de semeadura, controle integrado de pragas, entre outras, que, na sua essência são também aspectos relacionados à Agricultura de Precisão. A inserção de outras variáveis poderá agregar conhecimento a interpretação de dados e contribuir na explicação de respostas observadas.

A proposta deste trabalho é apresentar o potencial de inserção de variáveis ligadas a agrometeorologia, para auxiliar na explicação de respostas das culturas produtoras de grãos, em áreas manejadas com a filosofia de agricultura de precisão. Trata-se da inserção de novas variáveis ao processo de compreensão/explicação das respostas das plantas, como a radiação solar, a temperatura e umidade do ar e a velocidade do vento, entre outras.

2. Conceito e importância da Agrometeorologia/micrometeorologia agrícola

A agrometeorologia é a área das ciências agrárias que estuda as condições atmosféricas e suas consequências no ambiente rural (PEREIRA; ANGELOCCI; SENTELHAS, 2002). A micrometeorologia agrícola é um ramo da ciência atmosférica e da agrometeorologia, que estuda fenômenos de variação diária em micro escala até, aproximadamente dois metros acima da superfície (GEIGER, 1961). Na agronomia, a micrometeorologia estuda os fluxos térmicos e hídricos associados às plantas, bem como as relações com outros fatores bióticos e abióticos, que interferem na produção das mesmas. O microclima é, portanto, o conjunto de fenômenos que ocorrem na camada de ar de ar ao solo ou à cultura (GEIGER, 1961).

Na camada de ar junto ao solo são encontradas condições altamente diversas em pequenas escalas de tempo e de espaço. O atrito aumenta quanto mais próximo a superfície e isso tem forte implicação em fenômenos de deslocamento linear e turbulento dos fluxos. Nessa camada de ar é onde se desenvolvem as plantas, especialmente no início do crescimento, quando são mais sensíveis as intempéries e mais sujeitas a danos causados por condições estressantes. Com o crescimento das plantas, a influência da camada de ar superficial perde importância, e a condição micrometeorológica vai sendo alterada, criando um microclima
diferente do anterior, com novas relações se estabelecendo entre os fatores (GEIGER, 1961).

Os fatores que influenciam o microclima são de diferentes naturezas. O primeiro, e talvez o principal, é o tipo de cobertura existente sobre o solo e sua altura. A presença de vegetação em crescimento ou simplesmente morta, cria microclimas diversos, que diferem na absorção de radiação solar e nas trocas dos fluxos térmicos e hídricos. Por exemplo, a vegetação em franco crescimento transfere mais vapor d’água para o ar ao seu redor do que uma vegetação morta. Ainda, o microclima pode ser afetado pelas características do solo, especialmente pela capacidade em reter mais ou menos água, pois, além de criar microambientes mais ou menos úmidos, também interferem nas trocas térmicas do solo, devido ao alto poder calorífico da água. Ademais, diferenças mínimas no declive do solo podem favorecer o deslocamento do ar frio para locais mais baixos do terreno (PEREIRA; ANGELOCCI; SENTELHAS, 2002). A declividade do terreno ainda afeta a quantidade de energia que chega a sua superfície durante o dia. O conhecimento destes processos e suas relações de troca são fundamentais para o desenvolvimento de estratégias de manejo das culturas agrícolas e seus ambientes para aproveitar o potencial de recursos naturais, especialmente em ambientes mais frágeis.

3. Formação e/ou identificação de microclimas em lavouras de grãos

Os fatores do entorno da lavoura que podem favorecer a formação de microclimas são basicamente dois, quais sejam: a presença ou ausência de vegetação de grande porte no entorno e a exposição da lavoura, se em área mais aberta ou mais protegida. O efeito de vegetação, de grande porte, no entorno tem alcance dentro da lavoura, que pode chegar até 30 vezes a altura da vegetação, muito embora esse efeito seja dependente da densidade, da posição da vegetação e da variável ambiental em questão (PEREIRA; ANGELOCCI; SENTELHAS, 2002). Se a área for grande, o efeito mais significativo ocorrerá na borda da lavoura, mas se o tamanho da lavoura for pequeno, praticamente todo o ambiente pode ser alterado por essa estratégia.

Com relação à exposição da lavoura, dois aspectos podem formar microclimas na lavoura. Em áreas com localização mais exposta, como no topo de áreas onduladas, a cultura tende a ficar mais exposta ao vento e menos sujeita à geada, em regiões como o Sul do Brasil. Essa condição cria nestas áreas um microclima diferente de áreas mais baixas, em que a ação do vento, por exemplo, é menor, mas fenômenos como geada tendem a ter efeitos prejudiciais mais severos. Em áreas mais expostas, também ocorre a redução do potencial de doenças, em virtude da redução do período de molhamento foliar, principalmente pela maior velocidade do vento. Esse tipo de exposição de lavouras é relativamente comum no Sul do Brasil. O outro aspecto é a exposição da lavoura em função da declividade, o que também é comum no Sul do Brasil. Uma lavoura, cuja face seja exposta para o Sul, recebe, proporcionalmente, menos radiação solar durante o inverno, do que uma lavoura com exposição Norte. Isso faz com que haja menos energia disponível para os processos de produção das plantas, podendo repercutir na redução do rendimento de grãos e/ou no atraso da ocorrência de estádios fenológicos, impactando sobre o manejo da cultura. Além disso, lavouras com planos de declividade variável favorecem o escoamento do ar frio, que se forma nas partes altas, para a parte mais baixa da lavoura, aumentando o efeito negativo de geadas (PEREIRA; ANGELOCCI; SENTELHAS, 2002).

Os microclimas dentro da lavoura podem ser classificados em dois grupos, aqueles estáticos, que são originados pela configuração da superfície e aqueles dinâmicos, que dependem do manejo do solo e/ou da cultura e do crescimento das plantas. Entre os microclimas estáticos, o que mais se destaca é a presença de áreas mais baixas, oriundas das configurações naturais do terreno. Nestas áreas, há tendência de concentração de maior umidade do solo e acumulação de ar frio durante
o inverno, criando ambientes diferenciados para o desenvolvimento de pragas e doenças. Estes microambientes podem também ser gerados pelo manejo inadequado do solo, o qual pode criar micro ondulações com diferente umidade do solo. Outro fator que gera microclimas é a variabilidade de cobertura do solo, normalmente, formada por palha das culturas anteriores (CUTFORTH; ANGADI; McCONKEY, 2006). A presença de palha, a forma de distribuição da mesma, a quantidade e a cor da palha afetam a energia disponível na superfície para aquecimento do solo e para as trocas gasosas e aquecimento do ar (SHEWN & TANNER, 1990). Por exemplo, coberturas do solo mais claras refletem maior quantidade de energia do que coberturas mais escuras, resultando em menor quantidade de energia. Por outro lado, a variabilidade na distribuição da palha, com locais com mais ou menos palha, ou até mesmo sem palha, submetem as plantas, principalmente no início do ciclo, a condições diferenciadas de estresse, especialmente estresse hídrico, devido à mudança no balanço de radiação solar e de energia (COMIRAN et al., 2007; HECKLER et al., 2007). Dependendo da intensidade do estresse e da disponibilidade de água no solo, pode ocorrer morte de plantas, causando manchas na lavoura, com menor população de plantas. Esse tipo de microclima pode ser observado antes da cobertura total do solo pelas plantas, principalmente, em anos com ocorrência de estiagens, no início do ciclo das culturas.

A formação de microclimas ocorre também dentro dos dosséis e a caracterização dos mesmos muda com o crescimento das plantas. A medida que as plantas crescem, uma camada maior de ar fica com movimentos reduzidos, mantendo, normalmente maior umidade do ar do que o ar acima da cultura. Ao mesmo tempo, o crescimento da área foliar e seu arranjo espacial, reduz a quantidade de radiação solar que chega à superfície do solo, em relação à quantidade de radiação solar que chega no topo da cultura (BERGAMASCHI et al., 2010). Essas condições podem ser formadas também, pelo manejo da cultura e/ou tipo de planta utilizada na formação das lavouras. Por exemplo, uma cultivar de porte baixo e com folhas eretas facilita a entrada de radiação solar no dossel e também os movimentos de trocas térmicas e gasosas, entre o dossel e a camada de ar acima. Esse processo também ocorre pela mudança no arranjo de plantas (espaçamento e população de plantas) (KUNZ et al., 2007). O aumento da população de plantas, ou redução do espaçamento entre linhas, favorece a formação de uma camada estanque de ar e área foliar rapidamente extingue a radiação solar, que chega ao solo, mantendo o ar do interior do dossel com maior umidade relativa, o que aumenta o potencial de doenças. A modificação do padrão dos dosséis pode ser causada também pelo uso da adubação nitrogenada e pelo uso de redutores de crescimento de planta.

Outra forma de se obter microclimas diferenciados dentro de uma lavoura é por meio do cultivo em faixas, com diferentes espécies, que apresentem estatura final de planta diferente, como, por exemplo, milho e soja ou milho e feijão. Neste caso, o milho funciona como uma espécie de quebra vento para a cultura de porte menor. Isso reduz a força de arraste do vento reduzindo as trocas gasosas da espécie de menor tamanho, especialmente, as trocas hídricas, demorando mais tempo para entrar em déficit hídrico. O tamanho de faixa varia para cada integração de espécies, mas como regra geral, quanto maior a diferenças de estatura entre espécies, mais ampla poderá ser a faixa da espécie de menor porte. No entanto, o efeito será maior ou menor dependendo da velocidade do vento e da direção que o mesmo sopra.

O uso de quebra-vento com espécies florestais é outra estratégia que pode ser utilizada para criar microclimas dentro de uma lavoura de grãos (CASTILHO; SENTÍS, 1996). A implantação de linhas de árvores, perpendicular a direção predominante dos ventos, protege a cultura de grãos que está à jusante. Embora possa reduzir a disponibilidade de radiação solar, devido ao sombreamento, há relatos de pesquisa que mostram redução da perda de água pelas plantas, mantendo-as por mais tempo sob uma condição hídrica favorável à produção biológica. A redução da velocidade do vento pelo quebra-vento ajuda também a reduzir o transporte de inóculo de algumas doenças nas plantas protegidas. A forma como pode ser construído um quebra vento pode ser observada em Pereira, Angelocci e Sentelhas (2002).
Além dos fatores geradores de microclimas em lavouras de grãos, já citados anteriormente, existem outros em potencial. A variabilidade de tipos de solos, que existe em uma lavoura, pode ocasionar diferenças no desenvolvimento de plantas, principalmente, quando ocorrem eventos meteorológicos extremos. Solos compactados ou com outros tipos de impedimentos físicos ou químicos na subsuperfície, também podem causar variabilidade no estande de plantas e no crescimento das mesmas. Ataques de pragas e/ou doenças em áreas concentradas dentro de uma lavoura causam estresse nas plantas e podem reduzir o estande de plantas e da área foliar das culturas. Essas e outras ações bióticas ou abióticas geram bolsões de microclimas que podem influenciar o desempenho produtivo das culturas de grãos.

4. Variáveis micrometeorológicas e de resposta de planta que podem ser monitoradas

A caracterização de microclimas pode ser realizada a partir de dados de medição ou do monitoramento de variáveis ambientais ao longo do tempo. Entre essas variáveis destacam-se: balanço de radiação, balanço de energia, temperatura e umidade do ar, velocidade do vento, molhamento foliar, precipitação pluvial, umidade do solo, fluxo de calor para o solo e temperatura do solo, entre outras. Algumas dessas variáveis são medidas no solo ou apenas dentro do dossel e outras podem ser medidas acima do dossel, especialmente as variáveis ligadas às trocas gasosas, as quais permitem identificar, por exemplo, a demanda evaporativa da atmosfera. Também, podem ser medidas respostas ecofisiológicas das plantas, como a interceptação de radiação solar, temperatura das folhas, condutância estomática e potencial da água nas folhas, as quais integram as relações no sistema solo-planta-atmosfera.

A radiação solar é o principal elemento meteorológico relacionado à produção biológica, por afetar diretamente a fotossíntese das plantas e por fornecer a energia para outros processos no sistema solo-planta-atmosfera (CASTILHO; SENTÍS, 1996; PEREIRA; ANGELOCCI; SENTELHAS, 2002). Em uma comunidade vegetal a importância deste elemento é melhor reconhecida quando é feito o balanço de radiação. As variáveis que podem ser obtidas para auxiliar na interpretação dos resultados de uma cultura de grãos são a radiação solar interceptada e/ou absorvida pela cultura e a radiação solar refletida pelo dossel, as quais possibilitam estimar a eficiência de interceptação e o coeficiente de extinção de luz pela cultura (MONTEITH; UNSWORTH, 1990). Esses resultados podem ser relacionados com o índice de área foliar e com a matéria seca das plantas (KUNZ et al., 2007) e inferir o potencial produtivo de cada local de medição, uma vez que, quanto maior a biomassa, maior é o potencial de produção de grãos. O monitoramento da radiação solar dentro do dossel é importante também para avaliar momentos de estresse da cultura, como o que ocorre, em dias de alta demanda evaporativa da atmosfera. Nestas condições as plantas, por exemplo, de milho, enrolam as folhas permitindo maior incidência de radiação na superfície do solo.

Juntamente com o balanço de radiação solar (HECKLER et al., 2007) é possível determinar o balanço de energia no sistema solo-planta-atmosfera, ou seja, definir para que é utilizada a energia presente no ambiente (COMIRAN et al., 2007). Desprezada a energia para a fotossíntese, o restante é utilizado para o aquecimento do solo (5 a 10%), e para as trocas de calor latente (evaporação da água do solo e a transpiração das plantas) e calor sensible (aquecimento do ar), entre a atmosfera e o conjunto solo-planta. Quando há água disponível no solo a maior parte do saldo de radiação é utilizada para a evapotranspiração, mas quando o ambiente é seco, a maior parte da energia é utilizada para o aquecimento do ar. Desta forma, a determinação do balanço de energia e suas componentes, em uma lavoura de grãos, podem auxiliar na compreensão das diferenças de perda de água entre pontos.

A temperatura e a umidade do ar são duas variáveis de grande importância agrícola para monitoramento em lavouras, dentro e acima do dossel. Em separado, ambas apresentam aplicações na caracterização do microambiente, dando ideia da disponibilidade térmica e hídrica. No caso da temperatura do ar, talvez, a aplicação direta mais importante seja o monitoramento da ocorrência de geada dentro da lavoura,
em áreas onduladas, onde, normalmente, se observa maior intensidade do fenômeno nas baixadas, em relação a áreas de maior elevação. Para a umidade relativa do ar, a aplicação de maior impacto é como indicador do potencial de desenvolvimento de doenças. No entanto, quando avaliadas conjuntamente a temperatura e a umidade relativa do ar permitem avaliações integradas do sistema solo-planta-atmosfera, especialmente na avaliação da dinâmica hídrica a partir da estimaativa do déficit de saturação de ar (PEREIRA; ANGELOCCI; SENTELHAS, 2002), que expressa a capacidade do ar de absorver vapor d'água e, portanto, o potencial de perda de água do sistema, se o mesmo tiver água disponível.

A variação da temperatura e da umidade relativa do ar, durante a noite, é responsável pela formação do orvalho, cuja intensidade dependerá da intensidade de redução da temperatura do ar e da quantidade de vapor d'água presente no ar. Após a formação do orvalho, as condições da atmosfera determinarão o tempo de duração do mesmo sobre as plantas, o que define o período de molhamento foliar. O molhamento foliar e o período de duração, também ocorrem com a precipitação pluvial e pelas condições atmosféricas que se estabelecem após a precipitação pluvial. Com a presença de vento, o orvalho normalmente não se forma, ou é rapidamente removido pelas trocas de ar junto às plantas, reduzindo o período de molhamento foliar. Após a precipitação pluvial, o vento também reduz o tempo em que as folhas ficam molhadas. O molhamento foliar, independente da causa, tem forte influência sobre o estabelecimento e a progressão de doenças. Por isso, em áreas mais expostas do terreno, como na parte alta, onde o efeito do vento é maior, em comparação com áreas de baixadas ou menos expostas, tendem a apresentar menor probabilidade de ocorrência de doenças.

A precipitação pluvial é, provavelmente, a variável meteorológica com maior variabilidade espacial, no Rio Grande do Sul durante o verão, em relação às demais estações do ano. A variabilidade da precipitação pluvial é observada inclusive dentro de uma lavoura e/ou propriedade agrícola. Por isso, a estimaativa do balanço hídrico adequado deve levar em conta a precipitação pluvial medida em cada ponto dentro da lavoura, uma vez que a diferença espacial de distribuição pode levar a diferenças de disponibilidade de água no solo às plantas e, consequentemente, influenciar o estado hídrico das plantas e a resposta produtiva.

O monitoramento da variabilidade hídrica de uma lavoura, feito com base na condição hídrica da planta, permite a compreensão integrada do sistema, uma vez que a planta responde, ao mesmo tempo, à disponibilidade de água no solo e à demanda evaporativa da atmosfera. Essa estratégia é mais segura do que a avaliação apenas da disponibilidade de água no solo, por contemplar também o efeito do crescimento e da distribuição do sistema radicular das plantas, pois não basta apenas ter água disponível no solo se as plantas não conseguem absorver. Entre os indicadores para esse monitoramento tem-se o potencial da água na folha, a condutância estomática e a temperatura da folha (BERGONCI; PEREIRA, 2002), os quais representam o estado hídrico momentâneo da planta. A medida que a água do solo é extraída e não é reposta a planta entra em déficit e o potencial da água na folha e a condutância estomática se reduzem, enquanto a temperatura da folha aumenta, devido à redução da dissipação do calor pela transpiração. No caso de distribuição irregular da precipitação pluvial ou diferenças em termos de retenção de água no solo e disponibilidade às plantas, esses indicadores acusariam distintos estados hídricos das plantas e poderiam auxiliar no entendimento das respostas das culturas. A utilização, em áreas de agricultura de precisão, que normalmente são bem maiores do que área de experimentos é complexa devido à necessidade de vários conjuntos de equipamentos e uma equipe grande de pessoas para operacionalização, implicando em custos elevados. No caso da temperatura da folha, a medição é facilitada pela automação do sistema de coleta de dados, via termômetros infravermelhos acoplados a dataloggers.

5. Considerações finais

A Agricultura de Precisão é uma filosofia de produção agrícola que contribui na busca de uma agricultura mais sustentável. O avanço que foi feito até o momento trouxe um conjunto muito grande de informações e conhecimentos, que permitiram avanços significativos em conceitos
de produção agrícola e, principalmente, no desenvolvimento de áreas como a mecanização agrícola e o manejo das culturas, com o objetivo de potencializar rendimentos de grãos e obter redução de custos. Embora, em alguns casos, isso tenha sido possível é também muito evidente que, em outros, não foram obtidos avanços, especialmente quanto à busca de explicações para determinadas respostas das culturas, sejam elas esperadas ou não. Nesse contexto, é compreensível a necessidade de novos olhares sobre a Agricultura de Precisão, integrando-a, cada vez mais, dentro de um sistema, para potencializar sua efetividade, quanto à potencialização de rendimentos de grãos e redução de custos, mas também melhorar sua inserção em outros campos do conhecimento agrícola. Entre as áreas que podem ser integradas a Agricultura de Precisão e que podem contribuir no avanço do entendimento dos processos está a área da agrometeorologia, especialmente com a subárea da micrometeorologia, a qual contribuir para o entendimento de microclimas, que existem dentro das lavouras.

Referências

Suplementação nitrogenada para o algodoeiro usando dados hiperespectrais obtidos por espectroradiometria e imagens do sensor AWiFs do ResourceSat-1**

Ziany Neiva Brandão*1, Valdinei Sofiatti*2, Ronei Sandri Sana*3, Álvaro Villela de Resende*4, José da Cunha Medeiros*5

1DSc. em Recursos Naturais: Sistema Água-Solo-Planta-Atmosfera, Embrapa Algodão, CEP 58.428-095, Campina Grande, PB
2DSc. em Agronomia: Fitotecnia, Embrapa Algodão
3MSc. em Agronomia: Ciência do Solo, Assessor Técnico de Planejamento Agrícola, SLC Agrícola, CEP 90.620-010 - Porto Alegre, RS
4DSc. em Agronomia: Ciência do Solo, Embrapa Milho e Sorgo
5PhD. em Agronomia: Ciência do Solo. Embrapa Algodão

*E-mails: ziany.brandao@embrapa.br, valdinei.sofiatti@embrapa.br, ronei.Sana@slcagricola.com.br, gilvan.ferreira@embrapa.br, jose.medeiros@embrapa.br

** Apoio técnico e financiamento indireto da SLC Agrícola, numa parceria com a Embrapa Algodão dentro do projeto MP-1: Projeto de Agricultura de Precisão da Embrapa

Resumo: O objetivo deste trabalho foi estudar o comportamento de quatro índices de vegetação (IVs) obtidos tanto por imagens do sensor AWiFS, como por dados de espectroradiometria de campo, avaliando a sensibilidade destes para distinguir o teor de N foliar no algodoeiro em Cristalina, GO. A refletância hiperespectral foi medida a 0,4 m acima do dossel do algodão em duas datas: 08 de fevereiro e 01 de abril de 2011, através de um espectrorradiômetro PAR-NIR da Apogee®. Estimativas dos teores de clorofila com o SPAD-502® da Minolta, também foram realizadas nessas datas. Dados hiperespectrais foram obtidos para comparar o desempenho dos IVs, sendo esses: o NDVI, RDVI, MSAVI e o MTVI2. Os resultados mostraram que os dados de refletância hiperespectral atingiram níveis significativos de precisão na estimativa de teores de nitrogênio para ambas as datas de avaliação, onde o NDVI e MTVI2 apresentaram os melhores desempenhos. A resolução de 56 m do sensor AWiFS não permitiu a identificação da variabilidade espacial do teor de nitrogênio em plantas de algodão no início do florescimento. Na fase de frutificação, todos os IVs hiperespectrais obtidos por imagens de satélite apresentaram-se como bons estimadores do N foliar. O NDVI e MTVI2 obtidos por espectroradiometria podem ser usados como uma alternativa econômica e rápida para recomendar a suplementação da adubação nitrogenada para o algodoeiro no cerrado brasileiro.

Palavras-chave: espectroradiômetro portátil, imagens de satélite, índices de vegetação, nutrição de plantas, variabilidade espacial

Nitrogen supplementation for cotton plants using hyperspectral data and images from sensor AWiFs of ResourceSat-1

Abstract: The objective of this work was to study the behavior of four vegetation indices obtained by both AWiFS satellite images as by field spectroradiometry data and evaluate their sensitivity to distinguish the cotton leaf N content in Cristalina, Goiás state. Hyperspectral reflectance was measured at 0.4 m above the cotton canopy on February 08 and April 01, 2011 using a PAR-NIR Apogee® spectroradiometer. Corresponding data to estimate chlorophyll content through the SPAD-502® readings were also measured on these dates. Hyperspectral data were carried out to compare performances of vegetation indices as: NDVI (Normalized Difference Vegetation Index),
1. Introdução

Depois da água, o nitrogênio (N) é frequentemente o fator que mais afeta a produtividade das culturas, sendo um componente essencial de proteínas, ele é considerado um macronutriente essencial e plantas com deficiência desse nutriente em geral apresentam clorose das folhas e redução no crescimento, podendo eventualmente levar a necrose (BRANDÃO et al., 2012).

O nitrogênio aplicado pode ser perdido por diversas formas como por volatilização, lixiviação, desnitrificação e imobilização. Assim, nem todo o nitrogênio aplicado torna-se disponível às plantas e dessa forma o estudo da variabilidade do nitrogênio não deve ser feito exclusivamente por seu conteúdo no solo, mas também por seu teor foliar.

O monitoramento da fertilização nitrogenada é uma das mais importantes práticas na cultura do algodoeiro, pois a qualidade da pluma pode ser afetada negativamente pela sua deficiência (ROSOLEM; MELLIS, 2010). Apesar das perdas, a aplicação indiscriminada de N não é uma solução, pois se a falta de nitrogênio pode provocar a redução da produtividade e uma baixa qualidade de fibra no algodoeiro (REDDY et al., 2004), seu excesso não será aproveitado pelas plantas, podendo provocar danos ao meio ambiente, além de aumentar os custos de produção, não só com fertilizante, mas também com o controle de pragas e aplicação de redutores de crescimento. A otimização da recomendação desse nutrienté vem sendo realizada através da avaliação da reflectância espectral das culturas usando sensores orbitais e de solo com bons resultados (BRONSON et al., 2011; YANG; EVERITT, 2012), tornando imprescindível a rapidez na avaliação temporal e espacial do nitrogênio disponível, uma vez que a suplementação desse nutriente deve ser realizada até a frutificação, fase de maior consumo pelo algodoeiro.

Os índices de vegetação (IVs) são transformações lineares da refletância do dossel, que podem utilizar algumas faixas do espectro eletromagnético relacionadas às características que se quer avaliar (BRANDÃO, 2009). Os IVs podem ser determinados tanto com dados de um espectroradiômetro em campo, onde as medições são feitas em comprimentos de ondas distintos, como também por sensores orbitais ou suborbitais, cujas faixas espectrais são largas. A escolha do melhor índice para estimativa do estado nutricional da cultura vem sendo objeto de estudo há três décadas e depende da avaliação da sensibilidade desses índices espectrais às variáveis biofísicas e bioquímicas da planta (ZHAO et al., 2007; BRANDÃO, 2009).

O objetivo deste trabalho foi o estudo do comportamento de três índices de vegetação obtidos tanto por imagens de satélite de média resolução como por dados de espectroradiometria de campo e avaliar suas sensibilidades ao nitrogênio foliar durante o ciclo do algodoeiro em plantio comercial no cerrado de Goiás.

2. Material e Métodos

Esse trabalho foi desenvolvido numa área experimental de 57,6 ha, situada na Fazenda Pamplona, localizada no município de Cristalina, GO, cujas coordenadas centrais são 16°10’16” S,

Keywords: portable spectroradiometer, satellite images, vegetation indices, plant nutrition, spatial variability.

Os dados foram coletados tomando como base uma grade amostral preparada antes da instalação do experimento contendo 90 pontos de 80x80m. Os pontos centrais foram previamente marcados e georreferenciados com um GPS 76CSx da Garmin.

A emergência do algodão ocorreu dia 02 de dezembro de 2010 e a colheita foi realizada em agosto de 2011. A adubação nitrogenada foi feita em quatro épocas (pré-plantio, semeadura, emergência e aos 45 DAE) totalizando 160 kg ha\(^{-1}\).

A escolha das datas de avaliação levou em conta as datas de passagem do satélite e o estádio fenológico em que as plantas se encontravam. Nas datas de avaliação foram coletadas amostras do tecido foliar simultaneamente às medidas espectrais obtidas em campo com um espectroradiômetro portátil da Apogee Instruments Inc., que opera na faixa de 350 nm até 1.100 nm, com precisão de 0,5 e resolução de 1,5 nm. Para as análises do tecido foliar foram coletadas folhas em 30 plantas aleatórias por ponto da grade amostral, tendo sido colhida a folha da 5ª posição do caule principal, contada a partir do ápice (CARVALHO; FERREIRA, 2006).

Medidas da refletância foram feitas a aproximadamente 0,40 m da superfície da folha. Os comprimentos de onda utilizados na determinação dos índices de vegetação foram 550, 670 e 800 nm (HABOUDANE et al., 2004), aqui denominados \(\rho_x\) onde \(x\) é o comprimento de onda.

Imagens geradas pelo sensor AWiFS (Advanced Wide Field Sensor) do satélite ResourceSat-1 foram utilizadas, em duas datas: sendo a primeira aos 70 DAE, dia 08-02-2011 com órbita 331 e ponto 089, e a segunda imagem aos 120 DAE no dia 01-04-2011 com órbita 327 e ponto 087. Cada data representa uma fase fenológica distinta do algodoeiro, com a primeira registrando o início da floração e a segunda a frutificação.

O sensor AWiFS possui resolução espacial de 56 m, quatro bandas espectrais, tempo de revisita de 5 dias e largura de faixa imagemada de 740 km (SESHADRI et al., 2005). As bandas espectrais desse sensor usadas nesse trabalho correspondem aos canais 2, na faixa de 520-590 nm, cuja refletância nesse trabalho associamos à denominação de \(\rho_{550}\), canal 3 operando em 620-680 nm (\(\rho_{670}\)) e 4, 770-860 nm (\(\rho_{800}\)).

Após a correção do georreferenciamento, foi feita a calibração radiométrica das imagens, e posteriormente avaliada a precisão dos pontos marcados com o GPS Garmin 76CSx. Foram então determinadas as refletâncias nas regiões do visível e infravermelho próximo, que serviram para determinação do Índice de Área Foliar (IAF) e dos Índices de Vegetação (IVs). Os índices de vegetação NDVI (Normalized Difference Vegetation Index), RDVI (Renormalized Difference Vegetation Index), MSAVI (Modified Soil Ajusted Vegetation Index) e MTVI2 (Modified second Triangular Vegetation Index) foram estimados pelas seguintes expressões:

\[
NDVI = \frac{(\rho_{800} - \rho_{670})}{(\rho_{800} + \rho_{670})} \quad \text{Eq. 1}
\]

\[
RDVI = \left[\frac{(\rho_{800} - \rho_{670})}{\sqrt{\rho_{800} + \rho_{670}}}\right] \quad \text{Eq. 2}
\]

\[
MSAVI = 1.5 \left[\frac{1}{2} \rho_{800} + 1 - \sqrt{(2 \rho_{800} + 1)^2 - 8(\rho_{800} - \rho_{670})}\right] \quad \text{Eq. 3}
\]

\[
MTVI2 = 1.5 \left[\frac{1}{5} \rho_{800} - 0.5(\rho_{670} - \rho_{550})\right] \quad \text{Eq. 4}
\]

Ao final do ciclo da cultura foi realizada a colheita mecanizada do algodão em caroço sendo a produção convertida em quilos por hectare. Os dados foram submetidos à análise estatística descritiva. Foram determinadas as correlações entre os dados de nitrogênio foliar, SPAD e índices de vegetação obtidos por espectrorradiometria de campo e por satélite.
de média resolução. A análise geoestatística foi realizada através da construção e ajuste de semivariogramas e interpolação por krigagem ordinária utilizando o pacote geoestatístico Vesper (WHELAN; McBRATNEY; MINASNY, 2001). Os resultados foram apresentados na forma de mapas bidimensionais, representativos da distribuição espacial dos valores de N foliar e dos IVs obtidos pelos dois métodos e através da matriz de correlação.

3. Resultados e Discussão

O exame dos mapas de N foliar obtidos por krigagem nas duas épocas de avaliação revelam a grande variabilidade espacial na absorção desse nutriente, mesmo em uma área com aplicação uniforme do fertilizante (Figura 1).

Os mapas da krigagem mostraram que a parte noroeste da área apresentou menores teores foliares de N nas duas épocas de avaliação (Figura 1). Equações de regressão foram obtidas nos dois estádios fenológicos estudados para avaliar a capacidade dos índices de vegetação (IVs) como estimadores do nitrogênio foliar. A Figura 2 apresenta esses resultados onde os IVs foram obtidos através de dados hiperespectrais (Figura 2(a) e 2(c)) e por imagens do sensor AWiFS (Figura 2(b) e 2(d)).

A resposta espectral do algodoeiro acompanhou a elevação dos teores foliares de N. Na Figura 2(a) observa-se o aumento do NDVI no início da floração, onde os IVs obtidos por espectroradiometria cresceram linearmente com o aumento do teor de N na folha.

O NDVI e o MTVI2 apresentaram-se como os melhores estimadores, com coeficientes de determinação de 0,57 e 0,55, respectivamente, seguidos pelo RDVI e MSAVI com R²=0,52 e 0,49, respectivamente. Como pode ser visto na Tabela 1, as correlações entre os IVs hiperespectrais e o N foliar nessa época foram superiores a 70%. Ainda nessa tabela é possível verificar que quando comparados aos índices obtidos pelo clorofilômetro SPAD, os IVs obtidos pelo espectrorradiômetros ainda são melhores para estimativa do N no tecido foliar aos 70 DAE.

Os IVs obtidos por satélite apresentaram desempenho bem inferior aos IVs por espectrorradiometria nessa época de avaliação (Figura 2(b)). O NDVI apresentou o pior desempenho, com R²=0,25. O RDVI e o MSAVI, ambos com resposta polinomial quadrática, mostraram-se um pouco melhor que o NDVI, mas ainda com baixos coeficientes de determinação, sendo de 0,49 e 0,46, respectivamente. O melhor desempenho dos IVs por satélite observado para essa data foi o MTVI2, que é um índice que reduz o efeito da pouca cobertura do solo quando o índice de área foliar ainda era pequeno e traduz melhor o conteúdo de clorofila, uma vez que possui comprimento de onda na região do verde. Esse IV apresentou comportamento linear com R²=0,50 e correlação de 0,71 (Tabela 1). Para os outros IVs obtidos por imagens do AWiFS, a média resolução do sensor não permitiu a adequada identificação da cobertura vegetada nessa data.

Os teores foliares de N variaram de 41,0 a 51,7 g kg⁻¹, na avaliação realizada em abril. As plantas estavam bem nutridas uma vez que, de acordo com Silva e Raij (1996), o algodoeiro deve chegar ao estádio de máximo florescimento com

Tabela 1. Correlações dos índices de vegetação (IVs) obtidos através de espectroradiometria de campo e por imagens AWiFS, para 70 DAE no algodoeiro em Goiás na safra 2011.

<table>
<thead>
<tr>
<th></th>
<th>NDVI</th>
<th>RDVI</th>
<th>MSAVI</th>
<th>MTVI2c</th>
<th>NDVI sat</th>
<th>RDVI sat</th>
<th>MSAVI sat</th>
<th>MTVI2 sat</th>
<th>N (g kg⁻¹)</th>
<th>Prod (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAD</td>
<td>0.53**</td>
<td>0.63**</td>
<td>0.59**</td>
<td>0.61**</td>
<td>0.62**</td>
<td>0.52**</td>
<td>0.61**</td>
<td>0.32**</td>
<td>0.56**</td>
<td>0.15**</td>
</tr>
<tr>
<td>N (g kg⁻¹)</td>
<td>0.75**</td>
<td>0.72**</td>
<td>0.70**</td>
<td>0.74**</td>
<td>0.50*</td>
<td>0.68**</td>
<td>0.59**</td>
<td>0.71**</td>
<td>1</td>
<td>0.20*</td>
</tr>
<tr>
<td>Prod (kg ha⁻¹)</td>
<td>0.33*</td>
<td>0.34*</td>
<td>0.06**</td>
<td>0.09**</td>
<td>0.17**</td>
<td>0.29*</td>
<td>0.18*</td>
<td>0.34*</td>
<td>0.20**</td>
<td>1</td>
</tr>
</tbody>
</table>

**, *, significativo a 1% e 5% pelo teste t, respectivamente. **, não significativo.
Figura 1. Mapas de krigagem para o teor foliar de N coletados em plantio comercial do algodoeiro na Fazenda Pamplona, GO, na safra 2011, e obtidos em dois estádios fenológicos: (a) aos 70 DAE, e (b) aos 110 DAE.

Figura 2. Equações de regressão para o teor foliar de N no algodoeiro como função dos índices de vegetação obtidos através de espectrorradiometria de campo e dos imagens do sensor AWIFS, em dois estádios fenológicos, para o NDVI, RDVI, MSAVI e MTVI2. (a) e (b) aos 70 DAE, e (c) e (d) aos 110 DAE.
os teores foliares desse nutriente na faixa entre 35 e 43 g kg⁻¹, sendo assim considerados adequados.

Todos os índices de vegetação na segunda avaliação apresentaram comportamento linear e mostraram-se como bons estimadores do N foliar, com o MTVI2 superando o NDVI nas duas formas de medição. Esses índices, usados para avaliação do vigor das culturas, não apresentaram efeitos de saturação mesmo com o algodoeiro em florescimento pleno e mostraram-se adequados para estimativa do N foliar nesta fase, onde os IVs hiperespectrais apresentaram coeficientes de determinação 0,60, 0,60, 0,44 e 0,63, para o NDVI, RDVI, MSAVI e MTVI2, respectivamente, como pode ser visto na Figura 2(c), com coeficientes de correlação acima de 0,66 (Tabela 2). Esse efeito também foi observado por Brandão (2009) num estudo de avaliação do crescimento do algodoeiro irrigado no semiárido, onde obteve correlação de 0,88 e 0,96 entre os teores foliares de N e os IVs NDVI e MTVI2, respectivamente, quando analisados no período de máximo florescimento.

O índice SPAD, que é reconhecido por sua alta correlação com os teores foliares de nitrogênio, representou melhor os teores de N nessa fase, que foi comparável ao desempenho dos IVs obtidos por espectroradiometria de campo. Para os IVs obtidos por imagens de satélite, apesar de baixas correlações aos 70 DAE, os valores SPAD melhoraram a correlação aos 110 DAE, mas ainda inferiores àquelas observadas para os IVs obtidos por espectroradiometria.

As imagens do sensor AWiFS representam bem os teores de nitrogênio foliar aos 110 DAE. Nessa data os IVs obtidos através de imagens do sensor AWiFS tiveram comportamento similar aos IVs obtidos por espectroradiometria, com R² de 0,61, 0,57, 0,46 e 0,62, para o NDVI, RDVI, MSAVI e MTVI2, respectivamente (Figura 2(d)). Para o MTVI2 o coeficiente de correlação foi de 0,79 quando obtido por satélite, mostrando que esse índice é um bom estimator do N foliar nessa fase. A Tabela 2 mostra as correlações entre os IVs e o N foliar, onde o NDVI apresentou correlação de 0,78 para os dois modos de medição e o MSAVI apresentou correlações inferiores a 70% nos dois casos.

Particularmente interessante é observar a distribuição das variáveis analisadas dentro da área em estudo. Com altas correlações, se os IVs podem representar o status do nitrogênio foliar com distribuição similar é possível à aplicação na recomendação da suplementação da adubação nitrogenada, quando consideradas áreas de manejo. Assim, foram gerados semivariogramas e feitas as krigagens para os IVs obtidos tanto por dados hiperespectrais como por imagens do sensor AWiFS.

O NDVI e o MTVI2 obtidos por espectroradiometria (Figura 3) apresentaram uma distribuição similar nas duas datas de avaliação. É importante observar que a distribuição do N foliar (Figura 1) verificada em campo pode ser bem comparada à distribuição do NDVI e MTVI2. Com a alta correlação desses índices e a similaridade nos mapas krigados é possível então inferir sobre a suplementação da adubação nitrogenada utilizando esses dois índices hiperespectrais. Esses resultados corroboram com estudos como o publicado por Bronson et al. (2011) que relataram que o NDVI poderia ser usado para estimar o N foliar no algodoeiro com grande precisão desde o florescimento até a frutificação. Yang and Everitt (2012) encontraram altas correlações entre o

Tabela 2. Correlações dos índices de vegetação (IVs) obtidos através de espectroradiometria de campo e por imagens AWiFS, para 120 DAE no algodoeiro em Goiás na safra 2011.

<table>
<thead>
<tr>
<th></th>
<th>NDVIc</th>
<th>RDVlc</th>
<th>MSAVlc</th>
<th>MTVI2c</th>
<th>NDVI1sat</th>
<th>RDVI1sat</th>
<th>MSAVI1sat</th>
<th>MTVI21sat</th>
<th>N (g kg⁻¹)</th>
<th>Prod (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAD</td>
<td>0,73**</td>
<td>0,70**</td>
<td>0,72**</td>
<td>0,75**</td>
<td>0,68**</td>
<td>0,58**</td>
<td>0,52*</td>
<td>0,58**</td>
<td>0,69**</td>
<td>0,49*</td>
</tr>
<tr>
<td>N (g kg⁻¹)</td>
<td>0,78**</td>
<td>0,78**</td>
<td>0,66**</td>
<td>0,80**</td>
<td>0,78**</td>
<td>0,75**</td>
<td>0,68**</td>
<td>0,79**</td>
<td>1</td>
<td>0,43*</td>
</tr>
<tr>
<td>Prod (kg ha⁻¹)</td>
<td>0,46*</td>
<td>0,37*</td>
<td>0,50*</td>
<td>0,54**</td>
<td>0,53**</td>
<td>0,45*</td>
<td>0,43*</td>
<td>0,56**</td>
<td>0,43*</td>
<td>1</td>
</tr>
</tbody>
</table>

**, * significativo a 1% e 5% pelo teste t, respectivamente, **, não significativo.
Figura 3. Mapas da krigagem dos IVs NDVI, RDVI, MSAVI e MTVI2 obtidos por espectrorradiometria. Aos 70 DAE (a), (b), (c) e (d). Aos 110 DAE (e), (f), (g) e (h).

Figura 4. Mapas da krigagem dos IVs NDVI, RDVI, MSAVI e MTVI2 obtidos através de imagens do sensor AWiFS. Aos 70 DAE (a), (b), (c) e (d). Aos 110 DAE (e), (f), (g) e (h).
crescimento de 15 culturas estudadas com os índices de vegetação hiperespectrais usando as bandas de 670 e 800 nm conforme proposta de Haboudane et al. (2004). Nesse trabalho o índice que melhor representou a variabilidade no campo foi o MTVI2, apresentando consistência nas épocas estudadas.

A variabilidade espacial dos teores foliares de N (Figura 1) não pode ser representada pelos índices de vegetação obtidos por satélite aos 70 DAE (Figura 4). Nessa data a altura média das plantas de algodão era de 0,61m, deixando muito solo exposto e assim influenciando na discriminação da vegetação. A melhor correlação foi observada para o MTVI2 e pode ser constatada quando comparados os mapas krigados do N foliar (Figura 1(a)), com o mapa desse IV (Figura 4(d)).

Apesar do fraco desempenho do NDVI obtido por imagens do sensor AWiFS aos 70 DAE e o algodoeiro ainda não apresentava boa cobertura do solo, aos 110 DAE quando a altura média das plantas era de 1,15m, foi possível identificar a variabilidade espacial do N foliar através desse IV. Esse índice quando analisado por espeletrrradiometria de campo se mostrou como um dos melhores estimadores desde a primeira avaliação, sendo superado apenas pelo MTVI2 nas duas épocas estudadas. A estimativa do N foliar pode ser obtida pelo MTVI2 obtido por satélite aos 110 DAE que apresentou R²=0,62 enquanto que para o NDVI foi de 0,61. As boas correlações nessa data puderam ser observadas em todos nos mapas krigados de todos os IVs, especialmente na porção nordeste da área do experimento, onde ocorreram os menores valores de N foliar aos 110 DAE (Figura 1(b)).

Provablemente pela extensão da área com menores teores de N no tecido foliar, o sensor com resolução espacial de 56m tenha representado melhor a área. Entretanto, o fraco desempenho dos índices obtidos através do sensor AWiFS aos 70 DAE, compromete a acurácia de avaliações quando não se possui todas as variáveis controladas, como nas condições reais de campo. Caso a cobertura foliar do algodoeiro não estivesse tão intensa no máximo florescimento, ou houvesse a infestação de plantas daninhas, a avaliação por esse sensor necessitaria de comprovação em campo dos dados obtidos.

4. Conclusões

Quando consideradas as avaliações por espectrorradiometria, tanto o NDVI como o MTVI2 obtidos em campo apresentaram-se como bons estimadores do N foliar desde o início do florescimento até a floração completa e podem ser utilizados como uma alternativa econômica e rápida para a recomendação da suplementação da adubação nitrogenada em plantio de algodão no cerrado.

A média resolução das imagens do sensor AWiFS não permitiu identificação da variabilidade espacial dos teores de nitrogênio nas plantas de algodão no início do florescimento, provavelmente devido a pouca cobertura do solo.

No estádio de máximo florescimento, os índices espetrais obtidos por espectrorradiometria são bons estimadores dos teores de nitrogênio foliar. Agradecimentos

A Rede de Agricultura de Precisão da Embrapa que nos apoiou e deu suporte aos trabalhos e a SLC Agrícola pela excelente parceria, sem a qual esse trabalho não teria êxito.

Referências

AGRICULTURA DE PRECISÃO PARA CULTURAS PERENES E SEMI-PERENES
Agricultura de Precisão para culturas perenes e semi-perenes
Agricultura de precisão em fruticultura

Luís Henrique Bassoi¹, Alberto Miele², Carlos Reisser Júnior³, Luciano Gebler⁴, Carlos Alberto Flores⁵, José Maria Filippini Alba⁶, Célia Regina Grego⁶, Viviane Santos Silva Terra⁷, Luís Carlos Timm⁸, Patricia dos Santos Nascimento⁹

¹Embrapa Semiárido, Dr., BR 428 Km 152, CEP 56302-970, Petrolina, PE
²Embrapa Uva e Vinho, Dr., Rua Livramento, 315, CEP 95700-000, Bento Gonçalves, RS
³Embrapa Clima Temperado, Dr., BR 392, Km 78, CEP 96010-971, Pelotas, RS
⁴Embrapa Uva e Vinho, Dr., BR 285, Km 4, Vacaria, RS
⁵Embrapa Clima Temperado, M. Sc., BR 392, Km 78, CEP 96010-971, Pelotas, RS
⁶Embrapa Monitoramento, Dr., Av. Soldado Passarinho, 303, CEP 13070-115, Campinas, SP
⁷Instituto Federal Sul-rio-grandense, Campus Pelotas-Visconde da Graça, Av. Dr. Ildelfonso Simões Lopes, 2791, CEP 96060-290, Pelotas, RS
⁸FAEM/UFPel, Depto. Engenharia Rural, Dr, Campus Universitário s/n, CEP 96001-970, Capão do Leão, RS
⁹FCA UNESP Depto. Engenharia Rural, Dr, Rua José Barbosa de Barros, 1780, CEP 18610-307, Botucatu, SP

*E-mails: luis.bassoi@embrapa.br, alberto.miele@embrapa.br, carlos.reisser@embrapa.br, jose.filippini@embrapa.br, luciano.gebler@embrapa.br, carlos.flores@embrapa.br, celia.grego@embrapa.br, vssterra@yahoo.com.br, lcartimm@yahoo.com.br, patyysn@yahoo.com

Resumo: Os sistemas de produção atualmente existentes na fruticultura brasileira caracterizam-se pela execução de diversas práticas agrícolas durante o ciclo da cultura, tendo como preocupação a quantidade e a qualidade da produção, e a rentabilidade da atividade agrícola. Nesse contexto, cria-se uma oportunidade para a aplicação de agricultura de precisão, como forma de auxiliar a gestão do sistema de produção e a tomada de decisão pelo produtor. Nesse capítulo, são apresentados quatro estudos de caso em que a realização de procedimentos e o uso de ferramentas, característicos de agricultura de precisão, permitem aos produtores e técnicos a compreensão da variabilidade de atributos do solo e da planta e de suas relações, bem como o estabelecimento de zonas homogêneas de atributos que podem ser utilizadas como zonas de manejo.

Palavras-chave: uva, pêssego, maçã, geoestatística, análise multivariada, sensor

Precision agriculture in fruit crops

Abstract: Fruit cropping systems currently existing in Brazil are characterized by the use of various agricultural practices throughout the growing season, with concerns to quantity and quality of production, and profitability of agriculture. In this context, an opportunity for the application of precision agriculture shows up as a way to assist the management of the cropping system and decision-making by the grower. In this chapter, we present four case studies in which the performing of procedures and the use of tools typically from precision agriculture allow growers and technicians the understanding of the variability of soil and plant attributes, their relations, and the establishment of homogeneous zones that can be used as management zones.

Keywords: grape, peach, apple, geostatistics, multivariate analysis, sensor
1. Introdução

A agricultura de precisão (AP) pode ser definida como uma estratégia na qual o agricultor pode variar o uso de insumos e as práticas de cultivo de acordo com a variabilidade do solo e da cultura em uma área agrícola. A AP pode envolver coleta e compilação de dados, planejamento de gestão e procedimentos que contribuam para um melhor entendimento e manejado dos recursos naturais, de modo que o uso de insumos e a realização de práticas agrícolas sejam mais eficientes. Ainda, a AP pode se valer dos uso intenso de informações, para entender a variação dos recursos naturais em uma área, associado com os aspectos da produção. Essas considerações levam à pelo menos três elementos importantes para a adoção da AP de modo satisfatório: informação, tecnologia e gerenciamento (Srinivasan, 2009).

A tecnologia da informação (TI) diz respeito à aquisição, registro e comunicação de informação, e diferentes maneiras de aplicá-las nas mais variadas tomadas de decisão de um sistema de produção agrícola, bem como a possibilidade de automação de determinadas operações, também fazem parte do conceito de AP (COX, 2002).

O sistema de produção agrícola é baseado na aplicação de diversas práticas tendo como referência uma unidade de produção de pequena escala, a parcela, onde geralmente são feitos levantamentos e registros de informações agronômicas e ambientais, para variadas áreas da Ciência aplicadas à agricultura. No entanto, devido a crescente complexidade envolvendo um sistema de produção, incluindo abordagens de ordem sócio-econômica, ambiental e de saúde humana, os fatores externos passaram a ser considerados, pois podem influenciar o que ocorre em uma parcela de produção. Os sistemas de produção de frutas são um exemplo típico dessa situação. Como as pessoas, em geral, consomem uma fruta individualmente, há uma forte preocupação pelo produtor com a grande variabilidade existente em uma mesma planta ou árvore, e isso diz respeito a fatores internos da parcela. Mas por outro lado, a variabilidade existente entre as plantas ou árvores está relacionada a fatores externos. Por muitos anos, o foco dos produtores era maior para a produtividade que a qualidade, o que fez com que a variação da produção na planta e entre plantas fosse ignorada. Atualmente, a variabilidade da qualidade da fruta em uma mesma planta e entre plantas é considerada. Assim, a parcela de produção deve levar em conta fatores internos e externos, e a agricultura de precisão pode auxiliar nessa abordagem (NESME et al., 2010).

Para reduzir o impacto ambiental e financeiro das atuais práticas de produção agrícola, é necessário um redirecionamento na tecnologia agrícola para criar estratégias de gestão mais sustentáveis, e que preservem, a longo prazo, a produtividade das terras utilizadas em pequenas, médias e grandes explorações agrícolas. Tecnologias como a agricultura de precisão, biotecnologia, software de apoio à decisão, melhoramento de plantas e práticas de gestão da paisagem, se redirecionadas, e juntamente com o conhecimento das interações e dos mecanismos que ocorrem dentro dos vários componentes de um agroecossistema, podem ser melhoradas e utilizadas como parte de uma abordagem holística e de uma estratégia de gestão sustentável. No entanto, e especificamente à agricultura de precisão, as tecnologias atuais baseiam-se em estratégias baseadas na adição de insumos ao sistema de produção. A abordagem múltipla em solo, pragas, doenças, fisiologia, etc., juntamente com o desenvolvimento de sensores para as medidas referentes a cada um deles, podem compor o redirecionamento da agricultura de precisão para o manejo integrado e sustentável de um agroecossistema (RAINS; OLSON; LEWIS, 2011).

No caso da viticultura, a aplicação da AP iniciou-se na Austrália (Bramley & Proffitt, 1999) e Estados Unidos (Wample et al., 1999), mas desenvolve-se em países vitivinícolas da Europa e Américado Sul. As tecnologias de AP proporcionam condições para melhorar a habilidade de se manejado o vinhedo, considerando-se que há variabilidade espacial do solo que, com frequência, ocorre em espaços diminutos. Para atingir esse objetivo, há equipamentos que proporcionam aos vitivinicultores oportunidade de direcionar a produção de uva e de vinho de acordo com o desempenho do vinhedo para harmonizar sua produtividade e a qualidade da uva e causar o menor impacto negativo ao meio ambiente (BRAMLEY et al., 2001).

As tecnologias utilizadas fundamentam-se em vários aspectos, especialmente em sensores...
2. Aplicação de agricultura de precisão na produção de uva de mesa

Em uma área de produção comercial de uva apirência, cv. Thompson Seedless, localizada em Petrolina, PE, constituída por diversas parcelas de produção, produtor e técnicos vinham observando ao longo dos anos diferenças ou variabilidade em algumas dessas parcelas. Em uma delas, com 3,2 ha, parte da área apresenta uma drenagem mais lenta, a qual trazia consequências no manejo da cultura, particularmente quando se desejava interromper ou diminuir o fornecimento de água pela irrigação, para controle de vigor vegetativo e aumento do teor de sólidos solúveis nas bagas durante a maturação do fruto. Quatro válvulas derivavam a água de irrigação para essa área, sendo uma para cada 10 fileiras de plantas. A diferença entre datas de poda de produção das plantas nas fileiras do início e do final da área total faz com que os estádios fenológicos da videira nesses pontos ocorram com considerável diferença de dias, devido ao rápido desenvolvimento da videira graças à alta disponibilidade de radiação solar e insolação no Semiárido. Assim, foi escolhida a metade da área (1,6 ha) para a avaliação do uso da AP, pois as plantas foram podadas em um intervalo de três dias, o que confere maior uniformidade à fenologia da cultura, bem como pelo fato da aplicação de água pelo sistema de irrigação ser efetuado em duas válvulas de irrigação (NASCIMENTO, 2013).

O sistema de irrigação localizada dispunha de um difusor de vazão de 30 L.h\(^{-1}\), espaçado em 5 m entre fileiras e 2,5 m na fileira e entre duas videiras. Por iniciativa do próprio produtor, foram instalados registros de linha nas mangueiras de polietileno de cada fileira, entre as videiras 22 e 23 e 62 e 63, para que a aplicação de água pudesse ser dividida em três partes ou terços de cada área correspondente a 10 fileiras (Figura 1). Assim, procedeu-se à irrigação de modo diferenciado na área em questão, por meio do fechamento dos registros, fazendo com que um ou dois terços da área fossem irrigados ao invés de toda a área em determinados momentos do ciclo de produção em que isso era desejado, para evitar um maior acúmulo de água no solo. Criou-se assim, e de modo instintivo, uma oportunidade de uso da AP (NASCIMENTO, 2013).

2.1. Determinação das zonas de manejo do solo

A caracterização dos atributos físico-hídricos do solo (textura, densidade e retenção de água no solo a 0,2 e 0,4 m de profundidade) foi realizada em laboratório, por meio de coleta de amostras em quatro transeções na área total de 3,2 ha (uma por válvula de derivação), no sentido das fileiras de plantas, pois o monitoramento da água do solo na zona radicular da cultura é, nesse caso, um critério a ser adotado para o manejo de irrigação nessa área. O solo da área, Neossolo Quartzarênico, apresenta, dependendo da profundidade, de 1% a 9% de argila, 4% a 18% de silte, e 79% a 90% de areia. O simples procedimento de tradagem em diversos pontos da área, em intervalos de 0,2 m, a partir da superfície e até 1 m de profundidade, mostrou alguns pontos com presença de seixos e gradiente textural (estimado pelo manuseio de amostras de solo úmido) a partir de 0,8 m. Ainda, por meio de levantamento planaltimétrico, determinou-se o sentido da declividade de 1,2% da área, da planta 82 para a planta 1 e da fileira 40 para a fileira 1 (NASCIMENTO, 2013).
As zonas homogêneas de manejo, definidas nesse caso como porções da superfície que apresentavam comportamento semelhante quanto à distribuição dos atributos físico-hídrico do solo, foram determinadas por meio de técnicas geoestatísticas. Pela Figura 1 (inferior), observa-se o local de instalação de tensiômetros a 0,2, 0,4 e 0,6 m de profundidade (zona efetiva do sistema radicular da videira), considerando-se a zona de manejo de maior extensão em cada terça parte da área de abrangência de cada válvula de derivação (NASCIMENTO, 2013).

Esse procedimento adotado não implicou em nenhuma alteração ou substituição de componentes do sistema de irrigação utilizado pelo produtor. Essa questão pode ser particularmente importante quando o produtor, interessado em adoção da AP, não deseja ou não pode dispor de recurso financeiro para efetuar modificações no sistema de irrigação.

2.2. O manejo diferenciado da irrigação

De acordo com Nascimento et al. (2013), em dois ciclos de produção avaliados (abril a agosto de 2011 e março a julho de 2012), o manejo de irrigação foi realizado com base na evapotranspiração da cultura (ETc), obtida pelo produto entre evapotranspiração de referência.
Agricultura de precisão: resultados de um novo olhar

Agricul tur A
de precisão: resultados de um novo olh
A
de (ETo) e coeficientes de cultivo (Kc) para a videira adotados pelo produtor. A ETo foi estimada de uma esta
tação agrometeorológica automática localizada na fazenda. Após os 70 dias da poda de produção, quando as bagas de uva já estavam em fase de crescimento, a avaliação do armazenamento de água na camada de solo de 0-0,4 m orientava a manutenção ou redução da lâmina de irrigação, estimada com base na ETc. Dessa forma, as zonas 2, 3, 4 e 5, situadas na parte em que havia a constatação de drenagem mais lenta, apresentaram maior quantidade de água armazenada e por isso tiveram sua lâmina de irrigação reduzida, ao passo que as zonas 1 e 6, localizadas na parte mais alta da área, receberam a lâmina de irrigação calculada com base na ETc (Tabela 1).

3. Aplicação de agricultura de precisão na produção de uva para vinho

Em Bento Gonçalves, RS, três vinhedos do cv. Merlot, clone 347, com 2,42 ha, foram georreferenciados com estação total e GPS geodésico, a qual foi a base para a criação das cartas de altimetria, declividade e malha (10 × 10 m) de coordenadas para o mapeamento dos solos.

A descrição morfológica de quatro perfis do solo e sua classificação de acordo com o Sistema Brasileiro de Classificação de Solos (Santos et al., 2006) evidenciaram a existência de três classes taxonômicas e 10 unidades de mapeamento dos solos.

A análise dos componentes principais é um método estatístico multivariado simples, que pode ser usado para compressão de relação entre diversas variáveis. Assim sendo, foram identificados os principais fatores do solo que afetaram a composição mineral da videira cv. Merlot, a composição físico-química do mosto da uva e do vinho.

Em relação ao vinho, o que foi produzido com as uvas oriundas do Argissolo (PBACal 3+2) caracterizou-se por valores elevados de DO 420, DO 620, intensidade de cor, índice de polifenóis totais, antocianinas, taninos, extrato seco, extrato seco reduzido, acetato de etila, Na, Mg, Mn e Li, e menores da relação álcool em peso/extrato seco.

Tabela 1.
Volume de água (m³) aplicado por videira nos ciclos de produção de 2011 e 2012. Valores referem-se ao volume aplicado até e após 70 dias da poda de produção.

<table>
<thead>
<tr>
<th>Ciclo de produção - abril a agosto de 2011</th>
<th>Ciclo de produção - março a agosto de 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Válvula 1</td>
<td>Válvula 2</td>
</tr>
<tr>
<td>Zona 1</td>
<td>3,5 + 1,44</td>
</tr>
<tr>
<td>Zona 3</td>
<td>3,5 + 1,28</td>
</tr>
<tr>
<td>Zona 2</td>
<td>3,5 + 1,28</td>
</tr>
</tbody>
</table>

Fonte: Nascimento et al. (2013).
4. Aplicação de agricultura de precisão na produção de pêssego

Em um pomar de 1,8 ha em Morro Redondo, RS, com 1450 plantas de três anos, fatores do sistema de produção de pêssego foram avaliados quanto a sua variabilidade espacial, por meio da geoestatística, com o intuito de encontrar as que mais se relacionam com a produtividade e qualidade da cultura, e assim subsidiar o manejo da área (TERRA, 2012). O referenciamento da área foi baseado nos números das fileiras de plantas e das plantas dentro de cada fileira.

A textura do solo foi o atributo utilizado para determinar, por meio de técnicas geoestatísticas, duas zonas homogêneas do solo. A área 1, mais arenosa, foi separada da área 2, com mais argila (Figura 4).

A análise da condutividade elétrica do solo apresentou uma configuração semelhante com a textura, confirmando a adequação desta metodologia para separar áreas com diferentes classes texturais. Também se observou a relação entre a microporosidade, matéria orgânica e a umidade do solo no momento da coleta das amostras, com as áreas de maior teor de argila e maior condutividade elétrica. No entanto,
o padrão de produtividade de cada ano não apresentou relação com as variáveis estudadas.

Utilizando-se de análises por relações canônicas, observou-se que a produtividade do pomar, na primeira colheita, apresentou melhores relações com umidade do solo, microporosidade e teor de argila. Visualmente se pode verificar que a espacialização com a produção acumulada dos três anos mostra mais facilmente semelhanças entre a distribuição espacial de algumas variáveis. A área 1 (Figura 4) apresentou maior produtividade e maior índice de vegetação por diferença normalizada (NDVI). Visualmente, nesse mesmo local foram menores a umidade relativa do ar no período de máxima demanda atmosférica (13 às 14 h), e o teor de sólidos solúveis totais. Estas duas variáveis também podem estar relacionadas à condição hídrica do solo, pois a umidade relacionada com a transpiração e os sólidos solúveis é reduzida, em algumas fruteiras com maior disponibilidade hídrica.

5. Aplicação de agricultura de precisão na produção de maçã

A variabilidade espacial do solo e da planta em um sistema de produção de maçã em Vacaria, RS,

Figura 3. Distribuição especial dos teores de P, K e Ca de acordo com a classe taxonômica do solo. Legenda: CXve 1, 2 e 3 = Cambissolo; RRh 3 e 4 = Neossolo; PBA1C2 = Argissolo.

Figura 4. Espacialização da textura do solo, zonas homogêneas e indicação das plantas avaliadas e dos locais de monitoramento da umidade do solo em pomar de pessegueiro (Fonte: TERRA, 2012).
foi analisada em um pomar de 3,5 ha de macieira cv. Fuji, com 13 anos de idade. O mapa da área foi obtido pelo georreferenciamento com o auxílio de um receptor DGPS.

Durante o trabalho, transcorrido na safra de 2012, foram realizadas amostras aleatórias representativas dos frutos em 40 pontos, coletando-se três frutas de cada lado da planta, em um total de seis, sendo divididos dois a dois nos terços inferior, médio e superior de cada lado da árvore. Em 10 dos 40 pontos, foram contados todos os frutos da planta para posterior cálculo de produtividade, e coletadas amostras de solo para a determinação do teor de argila. Além disso, foi feito o levantamento da condutividade elétrica aparente do solo (CEa), utilizando-se o sensor por indução magnética (condutivímetro) acoplado a uma grade tracionada por trator, na entrelinha, e com coleta de dados a cada 1 segundo. Os dados de solo e planta então foram analisados pela geoestatística.

Os valores de argila e CEa (Figura 5) apresentaram variabilidade espacial. A informação mais importante fornecida pela geoestatística é o alcance da variabilidade do parâmetro avaliado, que indica quais pontos devem ser avaliados de maneira comum entre si e aqueles diferentes, eliminando o tratamento pela média. Uma vez estabelecida a existência de variabilidade espacial na área, apenas a análise visual dos mapas gerados, pode ser considerada uma ferramenta valiosa no planejamento do manejo do ambiente produtivo visando à qualidade.

Figura 5. Semivariogramas e mapas para expressão da variabilidade do ambiente (Fonte: Luciano Gebler).
A partir da geração de mapas de variáveis de qualidade como diâmetro de frutos, coloração da epiderme, sólidos solúveis, firmeza de polpa e mesmo de produtividade, pode-se detectar, com detalhes, o que ocorre no âmbito do pomar, como a localização das frutas de melhor ou pior qualidade para determinada variável, e uma possível vinculação de qual foi a variável ambiental ou agronômica que contribuiu para isso.

Foram gerados índices de qualidade de frutos, com a normalização de todos os indicadores de qualidade numa escala de 1 (pior situação) até 4 (melhor situação). Isso permitiu a sobreposição, gerando um mapa resultante do índice empírico de qualidade de frutos com valores adimensionais possíveis entre 5 (péssimo) e 20 (ótimo). Esse procedimento tem um caráter empírico, devendo ser ainda aperfeiçoado a fim de permitir a introdução de uma escala intermediária segundo padrões comerciais de qualidade de frutos (Figura 6).

6. Considerações finais

A agricultura de precisão (AP) baseia-se na aplicação de procedimentos e equipamentos que descrevem a variabilidade no espaço e no tempo, de fatores bióticos (pragas e doenças), do solo, da planta e do clima, que influenciam um sistema de produção agrícola. A razão da adoção da AP, cuja abrangência de aplicação vai do plantio até a pós-colheita, consiste no auxílio da tomada de decisão pelo produtor quanto à utilização de práticas de manejo que levem em consideração as diferenças existentes quanto à quantidade, intensidade, presença ou ausência de um ou mais fatores do sistema de produção agrícola. De maneira simplificada, a AP é uma estratégia holística e ambientalmente amigável, na qual os agricultores podem variar as entradas de insumos e os métodos de cultivo, baseados na variabilidade do solo e das condições da cultura ao longo do
tempo. O objetivo da adoção da AP é melhorar, em termos quantitativos e qualitativos, a produção agrícola como também minimizar a degradação do meio ambiente.

A compreensão pelo produtor e técnicos de que a área de produção agrícola em que trabalham apresenta variabilidade espacial e temporal de um ou mais atributos da planta e/ou do solo; o emprego de modo operacional de procedimentos de coleta e compilação de informações, equipamentos e técnicas; e a obtenção de uma ação gerencial ou de manejo factível, podem ser considerados como etapas para a utilização com sucesso da AP em um sistema de produção agrícola.

O valor da informação gerada pela adoção da AP, quer seja pela qualidade ou quantidade, está no aperfeiçoamento da decisão pelo produtor ou técnico envolvido no sistema de produção agrícola. No entanto, os benefícios obtidos resultantes de sua prática devem ser maiores que os custos envolvidos quando da sua utilização. Deve-se, portanto, buscar métodos de fácil operacionalização e baixo custo.

Em alguns sistemas de produção de frutas na agricultura brasileira, áreas de pequenas extensões, a variabilidade espacial do solo e da planta (fatores internos da parcela) foi observada, por meio da geostatística e da análise multivariada (relações canônicas). Outra técnica de análise multivariada, a de componentes principais, permitiu também o conhecimento de quais fatores do solo têm maior ou menor contribuição em aspectos qualitativos do produto agrícola obtido.

Em alguns casos, o referenciamento da área cultivada não foi realizado por sistema de posicionamento global, mas pela numeração de fileiras e de plantas. Apesar da existência de equipamentos específicos para a agricultura de precisão, outros comumente utilizados, como o trado, podem também consistir em uma ferramenta de agricultura de precisão por meio da adoção de amostragem em malha, e permitir a observação da variabilidade espacial da profundidade do solo.

Também é evidente que a percepção, por produtores e técnicos, da variabilidade na área cultivada dos fatores no sistema de produção, por meio da observação em campo ou análise visual de mapas, pode auxiliar na compreensão das diferentes zonas de manejo que a área pode apresentar, e assim realizar a prática da agricultura de precisão.

Referências

Efeito da variabilidade espacial de solos do Vale dos Vinhedos na composição do vinho Merlot - Safra 2012

Alberto Miele*1, Carlos Alberto Flores*2, José Maria Filippini Alba*1

1Pesquisador, Dr., Embrapa Uva e Vinho, CEP 95700-000 Bento Gonçalves, RS, Brasil
2Pesquisador, M.Sc., Embrapa Clima Temperado, CEP 96010-971, Pelotas, RS, Brasil
3Pesquisador, Dr., Embrapa Clima Temperado, CEP 96010-971, Pelotas, RS, Brasil

*E-mails: alberto.miele@embrapa.br, carlos.flores@embrapa.br, jose.filippini@embrapa.br

Abstract: The presence of imported wines has caused difficulties to the commercialization of national products. With the objective to mitigate this effect, it is necessary to improve the competitiveness of Brazilian wines, which can be achieved by costs reduction and increased product quality. The use of technologies of precision agriculture could help to increase competitiveness. With this objective, the effect of five soil mapping unities on the composition of Merlot wine from Vale dos Vinhedos, RS, Brazil, was evaluated in 2012. Thirty nine variables were analyzed and their parameters submitted to principal component analysis. Three components accounted for 91.49% of the total variation, discriminating wines made from grapes grown in Ultisol and Entisol soils. Main results show that the wine from grapes grown in Ultisol was especially characterized by high values of color-related variables, tannins and dry extract. Wine from Entisol grapes was characterized by high ash alkalinity, amyl alcohols and sum of higher alcohols values. These results show the effect of distinct soil mapping unities on the composition and quality of wine, demonstrating the importance of soil studies concerning the rational use of inputs in vineyards and production of wines with differentiated quality and typicality.

Keywords: precision agriculture, precision viticulture, grape, grapevine, vitiviniculture
1. Introdução

A produção e comercialização de vinhos finos brasileiros têm sofrido séria concorrência de produtos importados, especialmente de países da América do Sul e europeus. A fim de mitigar essa situação, o setor vitivinícola nacional tem desenvolvido ações nas mais diversas áreas. Dessa forma, tem-se verificado um empenho acendrado das instituições ligadas ao setor e de algumas empresas líderes na busca de uma melhor qualidade, através da adoção de tecnologias vitícolas e enológicas modernas. Dentre as tecnologias vitícolas, há preocupação com o manejo dos solos. Na Serra Gaúcha, eles têm estrutura, textura e composição físico-química que podem variar em espaços diminutos, as quais podem ter efeito considerável na produtividade e na qualidade da uva e do vinho. E esse é um tópico abordado pela agricultura de precisão (AP), que pode ser definido como o manejo de uma cultura numa área com escala espacial e temporal menor que a área dessa cultura como um todo (PLANET; PETTYGROVE; REINERT, 2000).

O emprego da AP é uma tecnologia relativamente nova no cultivo da videira, então denominada de viticultura de precisão (VP), destacando-se os trabalhos pioneiros conduzidos nos Estados Unidos (WAMPLE; MILLS; DAVENPORT, 1999) e na Austrália (BRAMLEY; PROFFITT, 1999). Portanto, a utilização de tecnologias de VP constitui-se em importante ferramenta para melhorar a qualidade e a competitividade do vinho brasileiro.

No Brasil, estão sendo conduzidas pesquisas em duas diferentes áreas geográficas, i.e., no Rio Grande do Sul, a região vitivinícola mais austral do país, especialmente na Serra Gaúcha (29° S), onde predominam uvas destinadas à elaboração de vinho e de suco de uva, e no Nordeste (9° S), especialmente nos estados de Pernambuco e Bahia, onde se destaca a produção de uva de mesa. Até o momento, entretanto, não há resultados finais sobre essas pesquisas, mas resultados parciais têm sido apresentados e publicados em eventos científicos (FLORES et al., 2010; MIELE et al., 2010; FILIPPINI et al., 2011; MIELE; FLORES; FILIPPINI ALBA, 2011, 2012; NASCIMENTO et al., 2011a, b).

Devido à importância que podem exercer as tecnologias de agricultura de precisão na qualidade da uva e do vinho, conduziu-se este trabalho visando a determinar o efeito de cinco unidades de mapeamento de solos do Vale dos Vinhedos nas características físico-químicas do vinho Merlot.

2. Material e Métodos

O trabalho foi realizado em vinhedos do cv. Merlot, clone 347, enxertado sobre o porta-enxerto Paulsen 1103, localizados no Vale dos Vinhedos, município de Bento Gonçalves, RS. Esses vinhedos, inclusive plantas e fileiras de videiras, foram georreferenciados com estação total (Sokkia SET 610) e GPS geodésico (Sokkia GSR 2600). Foram feitos perfis dos solos e coleta de amostras para análises físico-químicas, as quais mostraram que nesses vinhedos há três classes taxonômicas e 10 unidades de mapeamento de solo (Figura 1) (FLORES et al., 2010).

Colheram-se amostras de 40 kg de uva de cinco ‘agrupamentos’ de unidades de mapeamento de solo em março de 2012, ou seja: *amostra 1* - ARG1 (PBACal 3 - Argissolo Bruno Acinzentado Alítico abrúptico, A proeminente, textura franco-argilosa/argilosa, relevo ondulado, 13% a 20%) + PBACal 2 (Argissolo Bruno Acinzentado Alítico abrúptico, A proeminente, textura franco-argilosa/argilosa, relevo moderadamente ondulado, 8% a 13%); *amostra 2* - CXve 3 (Cambissolo Háplico Ta Eutrófico típico, A moderado, textura franco-argilosa/argilosa, relevo forte ondulado, 20% a 45%) + CXve 2 (Cambissolo Háplico Ta Eutrófico típico, A moderado, textura franco-argilosa/argilosa, fase pedregosa, relevo forte ondulado, 20% a 45%); *amostra 3* - RRh 4 (Neossolo Regolítico Húmico típico, textura franco-argilo-arenosa cascalhenta/franca cascalhenta, fase pedregosa, relevo forte ondulado, 20% a 45%); *amostra 3* – RRh 4 (Neossolo Regolítico Húmico típico, textura franco-argilo-arenosa cascalhenta/franca cascalhenta, fase pedregosa, relevo forte ondulado, 20% a 45%); *amostra 4* – RRh 4 (Neossolo Regolítico Húmico típico, textura franco-argilo-arenosa cascalhenta/franca cascalhenta, fase pedregosa, relevo forte ondulado, 20% a 45%).
textura franco-argilo-arenosa cascalhenta/franca cascalhenta, fase pedregosa, relevo ondulado, 13% a 20%); amostra 5 - PBA Cal 1 (Argissolo Bruno Acinzentado Alítico típico, A moderado, textura argilosa, relevo suave ondulado, 3% a 8%).

Transportada ao Laboratório de Microvinificação, a uva foi esmagada, separada da ráquis e transferida para recipientes de vidro de 20 L, adicionando-se 50 mg L⁻¹ de SO₂ em cada um deles. A seguir, adicionou-se 0,20 g L⁻¹ de levedura seca ativa (Saccharomyces cerevisiae), fechando-se os recipientes com rolhas de borracha e válvulas de Müller. Após oito dias de fermentação alcoólica, os vinhos foram deburbados e transferidos para recipientes de vidro de 9 L, também fechados com tampa de borracha e válvulas de Müller, os quais foram armazenados a 24 °C±1 °C até que a concentração de açúcar fosse menor que 4 g L⁻¹.

A fermentação maloláctica ocorreu naturalmente e seu término foi verificado por cromatografia de papel. Adicionou-se, então, SO₂ até a concentração de 50 mg L⁻¹, transferindo os vinhos para garrafas de 750 mL, as quais foram fechadas com rolhas de coriça e armazenadas a 15 °C±1 °C em sala com temperatura controlada.

As análises físico-químicas foram realizadas no segundo semestre de 2012. As variáveis avaliadas foram: densidade, álcool, pH, acidez titulável, acidez volátil, açúcares redutores, extrato seco, relação álcool em peso/extrato seco reduzido, relação álcool em peso/extrato seco reduzido, cinzas, alcalinidade das cinzas, ácido tartárico, ácido lático, DO 420 nm, DO 520 nm, DO 620 nm, intensidade de cor, matiz, antocianinas, taninos, polifenóis totais, acetaldeído, acetato de etila, metanol, 1-propanol, 2-metil-1-propanol, alcoóis amílicos, soma dos alcoóis superiores, P, K, Ca, Mg, Na, Mn, Cu, Fe, Zn, Li e Rb.

As variáveis clássicas foram determinadas por métodos físico-químicos (RIBÉREAU-GAYON et al., 1982); as antocianinas, por diferença de pH; os taninos, por hidrólise ácida; as DO 420 e DO 520 nm, por espectrofotometria UV/VIS usando célula de 1 mm de percurso ótico e a

O CP1 discriminou as variáveis (Figura 2A) - valores entre parênteses representam o coeficiente de correlação \(r \) entre as variáveis e os componentes principais - índice de polifenóis totais (IPT) (-0,95), lítio (Li) (-0,94), magnésio (Mg) (-0,94), DO 420 (420) (-0,91), extrato seco (EXS) (-0,91), ferro (Fe) (0,91), extrato seco reduzido (ESR) (-0,90), metanol (MET) (0,88), ácido tartárico (ACT) (0,81), DO 620 (620) (-0,81), antocianinas (ANT) (-0,80), relação álcool em peso/extrato seco reduzido (AER) (0,77), taninos (TAN) (-0,78), manganês (Mn) (-0,78), acetato de etila (AET) (-0,75), sódio (Na) (-0,73), álcool (ALC) (-0,72) e intensidade de cor (INC) (-0,70).

O CP2 discriminou (Figura 2A) alcalinidade das cinzas (ACI) (0,99), 2-metil-1-propanol (MEP) (0,98), soma dos alcoóis superiores (SAS) (0,96), alcoóis amílicos (AAM) (0,95), 1-propanol (PRO) (0,95), acidez volátil (AVO) (0,91), potássio (K) (0,87), densidade (DEN) (0,84), cinzas (CIN) (0,83), ácido lático (ACL) (0,80), DO 520 (520) (-0,80) e pH (PH) (0,78).

O CP3 (Figura 2C) discriminou acetaldeído (ACE) (0,96), açúcares redutores (ARE) (0,96), fosfato (P) (0,74), matiz (MAT) (-0,74), cálcio (Ca) (0,72), zinco (Zn) (-0,56) e rubídio (Rb) (-0,56).

A acidez titulável (ATI) e o cobre (Cu) não foram discriminados por nenhum dos componentes principais (Figuras 2A e 2C).

Constataram-se efeitos discriminantes do CP1 no vinho ARG1 (Argissolo: PBACal 3+2) e, menos intensamente, no CAMB (Cambissolo: CXve 3+2); do CP2, que discriminou o vinho NEO2 (Neossolo: RRh 1+2+3) e, menos intensamente, o NEO1 (Neossolo: RRh 4) (Figura 2B); e do CP3, que discriminou o ARG2 (PBACal 1) e, menos intensamente, o ARG2 (Argissolo: PBACal 1) (Figura 2D).

Os principais resultados mostram que o vinho ARG1 caracterizou-se por valores elevados de DO 420, DO 620, intensidade de cor, índice de polifenóis totais, antocianinas, taninos, extrato seco, extrato seco reduzido, acetato de etila, Na, Mg, Mn e Li, e menores da relação álcool em peso/extrato seco reduzido, ácido tartárico, metanol e Fe. O vinho CAMB (Figura 2B), em geral, teve valores opostos ao do ARG1. O vinho NEO2 caracterizou-se por valores elevados de densidade, pH, cinzas, alcalinidade das cinzas, ácido lático, 1-propanol, 2-metil-1-propanol, alcoóis amílicos,
A agricultura de precisão para culturas perenes e semi-perenes | 365

4. Conclusões

A análise de componentes principais discrimina cinco vinhos elaborados de diferentes...
agrupamentos de unidades de mapeamento de solo pela sua composição físico-química. Esses agrupamentos são resultado de três classes taxonômicas, i.e., Argissolo, Cambissolo e Neossolo, e de 10 unidades de mapeamento de solo. A discriminação desses vinhos permite sua classificação hierárquica e orienta os enólogos a preparar cortes de vinhos com tipicidades diferenciadas e que visem a consumidores que tenham paladares distintos.

Agradecimentos

À Vinícola Miolo, pela parceria e colaboração em ceder os vinhedos que fizeram parte deste trabalho; aos engenheiros agrônomos Ciro Pavan e Mário Fochesato, dessa empresa, que, quando solicitados, colaboraram com a logística necessária à realização das atividades; aos colegas da Embrapa Uva e Vinho, pela sua participação na elaboração e análise dos vinhos, especialmente à Dra. Gisele Perissuti, Sra. Leticia Flores, Sra. Magda Beatriz Gatto Salvador, Sr. Celso Guarani Ruiz de Oliveira e Sr. Irineo Dall’Agnol; ao Sr. Henrique F. Levien à bolsista do CNPq, Srta. Cristiane Bárbara Badalotti, pela participação nas atividades de registro e amostragem de solos; e à Sra. Daiane H. Zarnott, pela participação nas atividades de registro e amostragem de solos; e Sr. Irineo Dall’Agnol; ao Sr. Henrique F. Levien à bolsista do CNPq, Srta. Cristiane Bárbara Badalotti, pela participação nas atividades de execução e registro de dados; e a todas as pessoas que, anonimamente, auxiliaram na execução das atividades durante a realização deste trabalho.

Referências

SIG para a gestão vitivinícola no Vale dos Vinhedos, RS

José Maria Filippini Alba*1, Carlos Alberto Flores*2, Alberto Miele*3, Lucas Malheiros Villani*4

1Pesquisador, Laboratório de Planejamento Ambiental/Embrapa Clima Temperado
2Pesquisador, Recursos Naturais/Embrapa Clima Temperado
3Pesquisador, Embrapa Uva e Vinho
4Acadêmico de Engenharia Agrícola, Universidade Federal de Pelotas

*E-mails: jose.filippini@embrapa.br, carlos.flores@embrapa.br, alberto.miele@embrapa.br, lucasvillani_92@hotmail.com

Resumo: Processaram-se dados dos atributos físicos e químicos dos solos superficiais de três vinhedos localizados no Vale dos Vinhedos, Bento Gonçalves, RS, de acordo com procedimentos de viticultura de precisão, levantamento de solos e geotecnologias. A aplicação combinada de métodos estatísticos multivariados, geoestatística e SIG permitiu caracterizar três grupos principais de amostras onde os atributos edáficos se mantêm aproximadamente uniformes. A transformação da área ocupada por esses grupos em zonas de manejo dependerá da estratégia produtiva e de mercado da gestão vitícola. Considerando também trabalhos pretéritos, espera-se influenciar a qualidade da uva em cada zona, resultando em vinhos de características específicas com potencial para agregação de valor.

Palavras-chave: viticultura de precisão, solos, geotecnologias, SIG, sistemas de informação geográfica

Viticulture management through GIS in the “Vale dos Vinhedos”, Rio Grande do Sul State, Brazil

Abstract: Data of the physical and chemical properties of soils from three vineyards located in “Vale dos Vinhedos”, Bento Gonçalves, RS, Brazil, were processed according to precision viticulture techniques. Sampling oriented by a regular grid, soil survey and several geotechnologies were applied. The combination of multivariate statistical methods, geostatistics and GIS allowed to characterize three main groups of samples where the soil attributes were approximately uniform. The transformation of the area occupied by these groups in managing zones will depend on the wine production and the strategy of market. Anyway, the comparison with previous results confirmed some influence on grape quality in each zone, resulting in wines of specific features with potential for aggregation of value.

Keywords: precision viticulture, PA, soils, geotechnologies, GIS, geographic information system
1. Introdução

Conforme Goswami, Saxena e Bairagi (2012), os sistemas de posicionamento global orientados por satélites, as técnicas de sensoriamento remoto e os sistemas de informação geográfica (SIG) são ferramentas reconhecidas no contexto de agricultura de precisão; conceito também válido para a especialização vitícola, a viticultura de precisão (VP). Alguns métodos de estatística multivariada, em particular análise de clusters (classificação), se apresentam como opção de integração dos dados (BERRY, 2013), permitindo uma visão globalizada da informação disponível. Ainda assim, verificam-se poucos trabalhos que exploram a integração de informações para definição de zonas de manejo, seja por meio de fusão de camadas em SIG ou de métodos estatísticos multivariados (INAMASU et al., 2011).

Neste trabalho se discute a definição de zonas de manejo por meio do agrupamento (clusters) de dados multivariados dos atributos do solo, na Unidade Piloto de Uva para Vinho, Vale dos Vinhedos, no contexto do projeto “Agricultura de Precisão para a Sustentabilidade de Sistemas Produtivos do Agronegócio Brasileiro”. Do ponto de vista qualitativo, as zonas de manejo poderão estar associadas com características específicas dos grãos da uva, em consequência com a produção de vinhos tipificados (TONIETTO; SOTÉS RUIZ; GÓMEZ-MIGUEL, 2012).

2. Material e Métodos

Os trabalhos de pesquisa em VP se realizaram em três vinhedos do cv. Merlot, clone 347, enxertado sobre o porta-enxerto Paulsen 1103, dois deles formados em 2005 (Vinhedos 1 e 3) e um em 2006 (Vinhedo 2), que pertencem à vitícola Miolo (Vale dos Vinhedos, Bento Gonçalves, RS). No total são 2,42 hectares de videiras conduzidas em espaldeira e podadas em cordão esporonado.

As ações de pesquisa relativas ao presente trabalho foram:

1. As áreas foram georreferenciadas com estação total (Sokkia SET 610) e GPS Geodésico (Sokkia GSR 2600), sendo criadas as cartas de altimetria, declividade e a malha de amostragem para o mapeamento dos solos (10m x 10m). As linhas de videiras foram georreferenciadas, sendo destacadas 257 plantas.

2. Os perfis dos solos foram determinados abrindo-se quatro trincheiras, com coleta de amostras em todos os horizontes até a profundidade de 150 cm. Os solos foram classificados segundo Santos et al. (2006). Realizaram-se as seguintes determinações analíticas (Laboratório de Solos/UFRGS): a) P_2O_5, Fe_2O_3, MnO, TiO_2, Al_2O_3, SiO_2 (ataque sulfúrico) e b) pH, Ca^{2+}, Na^+, K^+, fração da amostra total (calhau, cascalho e terra fina), composição granulométrica (areia grossa, areia fina, silte e argila), argila dispersa em água, grau de flocação, carbono orgânico e nitrógenio.

3. Coleta e análise físico-química de amostras do solo: no Vinhedo 1 coletaram-se 28 amostras de solo; no 2, 54; e no 3, 26. Essas amostras foram coletadas em janeiro de 2011, próximas às videiras georreferenciadas, e na profundidade de 0 a 20 cm. Realizaram-se as seguintes determinações analíticas sem ataque sulfúrico (Laboratório de Solos/UFRGS): N, pH, Al^{3+}, Ca^{2+}, Mg^{2+}, Na^+, K^+, Po^{5+}, H^+, (H^++Al^{3+}), P^{5+}, capacidade de troca catiônica (CTC), soma de cátions trocáveis (T), saturação de bases (V), saturação por Al, fração da amostra total (calhau, cascalho e terra fina), composição granulométrica (areia grossa, areia fina, silte e argila), argila dispersa em água, grau de flocação, relação silte/argila, C orgânico e relação C/N.

4. Microvinificação: colheram-se 50 kg de uva de cada unidade de mapeamento: (i) PBACal 2 e 3 (Argissolo - Vinhedo 1); (ii) CXve 2 e 3 (Cambissolo - Vinhedo2); (iii) RRh 4 (Neossolo - Vinhedo 2); (iv) RRh 1, 2 e 3 (Neossolo - Vinhedo 3) e, (v) PBACal 1 (Argissolo - Vinhedo 3). De cada unidade de mapeamento, separaram-se 40 kg de uva, das quais se fizeram duas microvinificações de 20 kg cada, em recipientes de vidro. Após a conclusão das fermentações alcoólica e malolática, estabilizaram-se os vinhos e adicionou-se SO2. Logo depois, eles foram engarrafados e rotulados. A análise físico-química foi realizada no segundo semestre de 2011.
5. Os dados relacionados às amostras superficiais de solos foram processados com a assistência de métodos estatísticos multivariados: (i) análise de agrupamentos (Método Hierárquico): permite classificar as amostras de solo por proximidade, segundo a distância euclidiana, resultando grupos de variância interna homogênea (VICINI, 2005; R FOUNDATION..., 2006); (ii) análise de componentes principais: utilizada para reduzir o número de variáveis, sendo estabelecidas associações entre os atributos do solo; (iii) Krigagem: interposição por médias móveis, ou seja, transformação de dados conforme malha regular para superfície contínua, considerando os pontos próximos a cada célula da malha, enquanto considerados como interdependentes por uma função denominada semivariograma (LANDIN; STURARO, 2002). Consideraram-se dois aplicativos específicos (ENVIRONMENTAL..., 2008; GAMMA..., 2008).

3. Resultados e Discussão

Na Figura 1 esquematizam-se as unidades de solo consideradas na microvinificação (MIELE; FLORES; FILIPPINI ALBA, 2011). Algumas das unidades de solo foram agrupadas por classe, dependendo da área de abrangência. No Vinhedo 1, localizado ao norte da coordenada vertical de número 6771150, ocorrem as unidades CXve 1 e 3 (Cambissolo) nas bordas com a parte central dominada pela classe Argissolo, unidades PBACal 2 e 3. Essas unidades possuem continuidade no setor norte do Vinhedo 2, de forma retangular e maior extensão no eixo sul - norte, que na parte central apresenta a transição para a classe Cambissolo, unidades CXve 1, 2 e 3, com a classe Neossolo, unidades RRh 3 e 4. Já o Vinhedo 3 apresenta características próprias, a exceção de uma pequena extensão à NW, com as unidades RRh 1, 2 e 3 (Neossolo) e a unidade PBACal 1 (Argissolo). Do ponto de vista geomorfológico, o Vinhedo 1 está localizado na parte de menor altitude (550 a 560 m), com declividade dominante de 13% a 20% que diminui para 8% a 12% na parte central, condição que se mantém no setor norte do Vinhedo 2, que apresenta transição para declividade de 20% a 45% ao avançar no sentido sul (Neossolo), alcançando altitude de 600 a 610 m. Finalmente, o Vinhedo 3 conserva altitude elevada com declividade relativamente plana (<13%).

A análise de agrupamento foi realizada considerando os teores de nutrientes (Ca+2, C orgânico, K+, Mg+2, Na+, N e P+5), a concentração de H+, a T e a CTC por serem as variáveis que apresentaram resposta mais significativa (Tabela 1). O centróide do grupo 1 localiza-se abaixo da média geral, para todas as variáveis, mostrando clara diferenciação com o grupo 4. Para facilitar a interpretação, considerou-se o gráfico de linhas dos dados anteriores (Figura 2); o grupo 3 apresenta médias intermediárias para quase todas as variáveis, sendo o grupo 1 o mais empobrecido. O grupo 2 apresenta elevada acidez (concentração de H+) e soma de cátions trocáveis (T), valores correlacionados, sendo superado nos teores de nutrientes pelo grupo 4.

Para espacializar os dados dos grupos definidos aplicou-se o semivariograma conforme o modelo exponencial, que apresentou bom ajuste ($R^2 = 0.8$).

Tabela 1. Médias estandardizadas (variáveis sem unidades) resultantes da análise de agrupamento para os atributos químicos dos solos (1 = 32 amostras; 2 = 7 amostras; 3 = 54 amostras; e 4 = 12 amostras). Fonte: Laboratório de Planejamento Ambiental/Embrapa Clima Temperado.

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>H</th>
<th>CORG</th>
<th>T</th>
<th>N</th>
<th>P</th>
<th>CTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.80</td>
<td>-0.89</td>
<td>-0.14</td>
<td>-1.02</td>
<td>-0.23</td>
<td>-0.54</td>
<td>-0.72</td>
<td>-0.65</td>
<td>-0.50</td>
<td>-0.87</td>
</tr>
<tr>
<td>2</td>
<td>-0.35</td>
<td>-0.46</td>
<td>-0.20</td>
<td>-0.40</td>
<td>3.28</td>
<td>-0.13</td>
<td>2.16</td>
<td>0.06</td>
<td>-0.75</td>
<td>-0.40</td>
</tr>
<tr>
<td>3</td>
<td>0.02</td>
<td>0.23</td>
<td>-0.15</td>
<td>0.43</td>
<td>-0.32</td>
<td>-0.11</td>
<td>-0.18</td>
<td>-0.07</td>
<td>-0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>4</td>
<td>1.86</td>
<td>1.45</td>
<td>0.37</td>
<td>0.75</td>
<td>-0.15</td>
<td>1.70</td>
<td>1.06</td>
<td>1.69</td>
<td>1.11</td>
<td>1.83</td>
</tr>
</tbody>
</table>

CORG = C orgânico. Nota: Retiraram-se os símbolos de carga das variáveis para simplificar.
com consequente validação cruzada para a krigagem ($R^2 = 0,52$) (Figura 3). Os grupos 1, 3 e 4 predominam de forma significativa nos vinhedos 1, 2 e 3, respectivamente. Variações locais estão associadas ao grupo 1 (centro-norte do Vinhedo 2 e noroeste do Vinhedo 3) e com o grupo 2, de pouca abrangência (7 amostras). Do ponto de vista de solos, o grupo 1 se associou à classe Argissolo, unidades PBACal 2 e 3; o grupo 3 ao Cambissolo, unidade CXve 2 e 3, ao Neossolo, unidade RRh 3 e 4 e ao Argissolo, unidade PBACal 1; e, finalmente, o grupo 4 está vinculado de forma predominante aos Neossolos das unidades RRh 1, 2 e 3.

A análise de componentes principais contribuiu para a interpretação dos resultados anteriores (Tabela 2). A componente principal 1 (CP1) acumulou 76,3% da variância e se relacionou ao teor de H^+ e a CTC com o teor de Ca^{2+} em oposição. Isso se explicaria pela diminuição no teor de Ca^{2+} em locais ácidos e com CTC elevada ou pela presença do nutriente na situação contrária. A CP2 possui menor significação em termos de variância explicada, 19,6%, sendo relacionada ao teor de K^+ em oposição ao Ca^{2+}, Na^+ e, em menor grau, ao H^+ e ao C orgânico, vinculando-se provavelmente aos processos de adubação na área.

Na Figura 4 apresentam-se os escores dos quatro grupos definidos pela análise de agrupamentos. A CP1 discriminou os grupos 1 e 3 do grupo 2 e a CP2 discriminou o grupo 3 dos outros três. Miele, Flores e Filippini Alba (2011) aplicaram o mesmo método para amostras de mosto de uva e pecíolo associadas às unidades de solos, com discriminação marcante pelos escores, envolvendo os quatro quadrantes. A comparação resulta complexa, pois o grupo 3 integra várias unidades que foram consideradas isoladamente no caso comentado. No entanto, o processo como um todo sugere que as feições das unidades de solo, ou zonas homogêneas em relação aos atributos do mesmo, controlam as características da uva e, em consequência, dos produtos dela derivados, sendo o clima um agente de dispersão em função da sua variabilidade temporal.

Em relação às zonas de manejo, será necessário aprimorar a relação área ocupada versus produção, de maneira a estabelecer o padrão mais adequado.
Agricul tur

de precisão: resultados de um novo olhar

4. Considerações finais

Foram considerados três vinhedos no contexto de viticultura de precisão, onde a aplicação combinada de métodos estatísticos multivariados, geoestatística e SIG permitiu caracterizar três grupos principais de amostras com resposta aproximadamente uniforme dos atributos edáficos. Um grupo empobrecido em nutrientes, outro intermediário e o terceiro enriquecido e com boa capacidade de troca de cátions. Os processos de troca catiónica e a acidez do solo controlam 76% da variância dos dados; o outro fator de controle se relaciona aos processos de adição de nutrientes na área (adubação) com cerca de 20% de participação.

A transformação da área ocupada pelos grupos mencionados em zonas de manejo dependerá da estratégia produtiva e de mercado da gestão vitícola, mas, em função da comparação com trabalhos pretéritos, espera-se influenciar a qualidade da uva, resultando em vinhos de características específicas em cada zona. Destaca-se, ainda, o potencial desses vinhos do ponto de vista de qualidade, inseridos no contexto de vinhos finos do Brasil.

Agradecimentos

Os autores agradecem ao grupo gestor do Projeto “Agricultura de Precisão para a Sustentabilidade de Sistemas Produtivos do Agronegócio Brasileiro” pelo apoio e colaboração nas atividades de pesquisa desenvolvidas. Estende-se o agradecimento à Vinícola Miolo, de Bento Gonçalves, RS, com destaque para os

Tabela 2. Cargas (loadings) da análise de componentes principais sobre os grupos obtidos na análise de agrupamentos. Fonte: Laboratório de Planejamento Ambiental/Embrapa Clima Temperado.

<table>
<thead>
<tr>
<th>CP</th>
<th>VEX</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>H</th>
<th>CORG</th>
<th>T</th>
<th>N</th>
<th>P</th>
<th>CTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76,3%</td>
<td>-0,36</td>
<td>-0,03</td>
<td>0,05</td>
<td>0,00</td>
<td>0,65</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,66</td>
</tr>
<tr>
<td>2</td>
<td>19,6%</td>
<td>-0,36</td>
<td>0,01</td>
<td>-0,24</td>
<td>0,86</td>
<td>-0,16</td>
<td>-0,15</td>
<td>0,13</td>
<td>0,02</td>
<td>-0,12</td>
<td>-0,02</td>
</tr>
</tbody>
</table>

engenheiros-agrônomos Ciro Pavan e Mário L. Fochesato, consultor e responsável pelos vinhedos dessa empresa, respectivamente, pela disponibilização da área de pesquisa e informações para o desenvolvimento do projeto.

Referências

Contagem de cachos para estimativa da produtividade em pomar de videira de mesa

Eliel Ferreira do Nascimento*1, Patricia dos Santos Nascimento*2, Juliano Athayde Silva*3, Bruno Ricardo Silva Costa*3, Luis Henrique Bassoi*4

1Pós-graduando, Bolsista do CNPq, Departamento de Engenharia Rural, FCA/UNESP, CP 237, CEP 18603-970, Botucatu, SP, Brasil
2Doutora em Agronomia, UNESP/FCA campus de Botucatu, SP
3Pós-graduando, UNIVASF, Juazeiro, BA
4Pesquisador, Embrapa Semiárido, CP 23, CEP 56302-970, Petrolina, PE, Brasil

*E-mails: elielpet@gmail.com, patyysn@yahoo.com.br, julianoathayde@hotmail.com, bruno.ricardo.silva@hotmail.com, luis.bassoi@embrapa.br

Resumo: A contagem do número de cachos por planta auxilia na estimativa da produção em pomar de videira de mesa, propiciando ao produtor tomadas de decisões importantes quanto ao gerenciamento agrícola. Este trabalho foi desenvolvido em Petrolina - PE com o objetivo de analisar as zonas homogêneas resultantes da contagem de número de cachos, obtidas em função de várias intensidades amostrais (1620, 820, 410, 180, 90 e 45 pontos), em um pomar de videira de mesa cv. Thompson Seedless, irrigada por microaspersão. A contagem de números de cachos foi realizada em três ciclos de produção (2011, 2012 e 2013) em uma área com 20 linhas e 81 plantas por linha de cultivo, com o total de 1620 plantas (1,6 ha). Os dados foram submetidos à análise geoestatística, interpolação por krigagem e geração de mapas de contorno. Foi possível definir o número mínimo de plantas (820 em 2011, 410 em 2012 e 180 em 2013) necessários para contagem de cachos no pomar, podendo ser utilizado com razoável confiança pelo produtor.

Palavras-chave: Vitis vinífera L., variabilidade espacial, semiárido

Accounting of cluster for yield estimation in a table grape vine orchard

Abstract: The accounting of number of cluster per plant helps on the estimation of yield in a vine orchard. This work was carried out in Petrolina, State of Pernabuco, Brazil, to analyze the homogeneous zones based on the cluster accounting, obtained as function of several sampling grids (1620, 820, 410, 180, 90 and 45 points), in an orchard with vine cv. Thompson Seedless and irrigated by microsprinklers. The accounting of cluster was performed in three growing seasons (2011, 2012, and 2013) in an area with 20 rows and 81 plants per row, which makes a total of 1620 plants (1.6 ha). Data were analyzed according geostatistics, interpolation by kriging and generation of contour maps. The minimum number of plants to be accounted was defined (820 in 2011, 410 in 2012 and 180 in 2013), which gives reasonable confidence to be applied by the grower.

Keywords: Vitis vinífera L., spatial variability, semiárido
1. Introdução

A agricultura de precisão tem se tornado uma ferramenta importante no gerenciamento agrícola. Um dos problemas enfrentados pelos produtores de uva de mesa está relacionado ao manejo do parreiral realizado de forma homogênea, sem considerar a variabilidade espacial que nela existe e tornando irrelevante a existência de sitios específicos. De acordo Sort e Ubalde (2005), localizar essas áreas específicas permite ajustar o manejo de acordo com a necessidade do local, de forma precisa em cada ponto, otimizando o manejo, melhorando a qualidade da uve e incrementando o rendimento da videira.

A contagem do número de cachos por planta auxilia na estimativa da produção e o uso de ferramentas geoestatísticas fornece ao produtor, por meio de mapas de contorno, uma real situação do campo, auxiliando na delimitação e avaliação das diferentes zonas homogêneas quanto ao número de cachos por planta.

Assim, a definição do número de amostras necessárias para representar adequadamente a variabilidade espacial dos atributos da planta é importante para aplicação da agricultura de precisão. Segundo Carvalho, Silveira e Vieira (2002), uma vez definida a população objeto de estudo, necessita-se escolher a melhor maneira de estudar algumas de suas características. Nesse caso, delimita-se a observação a uma amostra da população, a qual deve reproduzir, o mais fielmente possível, suas características, com um número mínimo de amostras para estimar o valor médio com determinada exatidão.

Dessa forma, este estudo foi desenvolvido para avaliar a variabilidade espacial de diferentes intensidades amostrais de número de cachos em um parreiral de videira de mesa irrigada e definir o número de amostras necessário a ser aplicado em campo em Petrolina - PE.

2. Material e Métodos

O estudo foi realizado no Perímetro Irrigado Senador Nilo Coelho, Núcleo 5, em Petrolina-PE, cujas coordenadas geográficas são 9º 23’ 12.8” de latitude sul, 40º 39’ 13.8” longitude oeste e altitude média de 394 m. A área apresenta um solo classificado como Neossolo Quartzarenico (EMBRAPA, 2006). O pomar de videira cv. Thompson Seedless sobre o porta-enxerto SO4 foi plantado em abril de 2004 no espaçamento de 4 x 2,5 m, e as plantas foram conduzidas no sistema de latada. O sistema de irrigação utilizado foi o de microaspersão. A contagem de números de cachos foi realizada em três ciclos de produção (abril a agosto de 2011, março a julho de 2012 e abril a agosto de 2013) em uma área com 20 fileiras e 81 plantas por fileira, com o total de 1620 plantas (1,6 ha). Os dados foram analisados pela técnica de interpolação geoestatística por krigagem e submetidos a análise por meio do software GS+ 7,0 determinando-se a dependência espacial. O índice de dependência espacial (IDE) dos atributos, que é dado por \[\frac{C}{(C+0+C)}*100\], foi determinado e classificado, segundo Zimback (2001), como baixo (IDE < 25%), moderado (25% < IDE< 75%) e forte (IDE >75%). Posteriormente, as zonas homogêneas quanto ao número de cachos foram determinadas. Para as análises dos dados foram considerados seis intensidades de amostragem de números de cachos (1620, 810, 410, 180, 90 e 45 pontos).

3. Resultados e Discussão

Na tabela 1 estão apresentados os parâmetros geoestatísticos para os três períodos de avaliação e das diferentes intensidades amostrais de número de cachos na cultura da videira. O modelo matemático que melhor se ajustou aos dados coletados foi o exponential. Houve efeito pepita pura (EPP) nos anos de 2011 e 2012, indicando ausência de dependência espacial a partir dos 410 e 180 pontos, respectivamente. A análise geoestatística dos períodos e intensidades amostrais avaliados, de acordo com os critérios de Zimback (2001), mostrou que todas as variáveis apresentaram moderada dependência espacial, com valores entre 32,4 e 63,1%, exceto para o ano de 2013 onde houve baixa dependência espacial para a intensidade amostral de 90 pontos.

O alcance variou de 24,0 a 25,5 m para o ano de 2011, de 71,3 a 84,3 m para o ano de 2012 e de 42,0 a 80,0 m para o ano de 2013 (Tabela 1). O alcance indica a distância até onde os pontos amostrais estão correlacionados entre
Figura 1. Croqui das diferentes intensidades de contagem do número de cachos: A (1620), B (820), C (410), D (180), E (90) e F (45).

si (SOUZA et al., 1997; VIEIRA, 1997), ou seja, o limite da dependência espacial do atributo estudado. Com o conhecimento disso, define-se o raio de amostragem, para garantir em uma amostragem futura, a dependência espacial da intensidade amostral, diminuindo assim o número de amostras e o trabalho que se tem na coleta de informações da área em questão.

Em 2011, os mapas da distribuição espacial do número de cachos apresentaram semelhança entre as intensidades amostrais de 1620 e 820 pontos, únicos do período que tiveram dependência espacial (Figura 2). As intensidades amostrais de 410, 180, 90 e 45 pontos não apresentaram dependência espacial para o período avaliado (Tabela 1). Dessa forma, é possível a redução do número de amostras no campo para 820 pontos, mantendo o IDE próximos ao alcançado com intensidade amostral de 1620 pontos. Assim, foi possível uma redução equivalente a 50% do número de plantas amostradas inicialmente, e que correspondiam ao total de plantas na área.

Em 2012, os mapas da distribuição espacial do número de cachos apresentaram semelhança

<table>
<thead>
<tr>
<th>Ano</th>
<th>Pontos</th>
<th>Modelo</th>
<th>A (m)</th>
<th>Co</th>
<th>Co + C</th>
<th>IDE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>1620</td>
<td>Exponencial</td>
<td>24,0</td>
<td>40,60</td>
<td>70,80</td>
<td>42,7</td>
</tr>
<tr>
<td></td>
<td>820</td>
<td>Exponencial</td>
<td>25,5</td>
<td>39,88</td>
<td>65,85</td>
<td>39,4</td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>EPP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>EPP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>EPP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>EPP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>1620</td>
<td>Exponencial</td>
<td>73,5</td>
<td>73,00</td>
<td>157,90</td>
<td>50,0</td>
</tr>
<tr>
<td></td>
<td>820</td>
<td>Exponencial</td>
<td>82,6</td>
<td>79,45</td>
<td>165,10</td>
<td>42,9</td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>Exponencial</td>
<td>84,3</td>
<td>79,50</td>
<td>159,10</td>
<td>50,0</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>EPP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>EPP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>Esférico</td>
<td>71,3</td>
<td>52,6</td>
<td>142,4</td>
<td>63,1</td>
</tr>
<tr>
<td>2013</td>
<td>1620</td>
<td>Exponencial</td>
<td>42,0</td>
<td>123,50</td>
<td>247,80</td>
<td>50,2</td>
</tr>
<tr>
<td></td>
<td>820</td>
<td>Exponencial</td>
<td>42,3</td>
<td>132,20</td>
<td>264,50</td>
<td>50,0</td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>Exponencial</td>
<td>42,0</td>
<td>130,20</td>
<td>269,50</td>
<td>51,7</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>Exponencial</td>
<td>47,1</td>
<td>126,90</td>
<td>255,2</td>
<td>50,3</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>Esférico</td>
<td>44,0</td>
<td>194,68</td>
<td>254,0</td>
<td>23,4</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>Esférico</td>
<td>80,0</td>
<td>140,62</td>
<td>208,0</td>
<td>32,4</td>
</tr>
</tbody>
</table>

A - alcance; Co - efeito pepita; Co + C - patamar; IDE - índice de dependência espacial; EPP: efeito pepita puro.

entre todas as intensidades amostrais que tiveram dependência espacial (Figura 2). As intensidade amostrais de 180 e 90 pontos não apresentaram dependência espacial para o período avaliado (Tabela 1). Dessa forma, é possível a redução do número de amostras no campo para 410 pontos, mantendo o IDE próximo ao alcançado com intensidade amostral inicial de 1620 pontos, e que corresponde à contagem de todas as plantas da área. Assim, no segundo ano, foi possível uma redução equivalente a 75% do número de amostragem. Ainda, para a intensidade amostral de 45 pontos houve dependência espacial. Pode-se deduzir que a forma como as amostragens são espaçadas no campo pode influenciar nos ajustes do variograma e consequentemente nos resultados dos mapas gerados. Nesse caso, não somente o número de amostras é o ponto crucial para um bom ajuste variográfico, mas a forma também como as amostras estão dispostas no campo. Em 2013, os mapas da distribuição espacial do número de cachos apresentaram semelhança entre todas as intensidades amostrais. Porém os mapas da distribuição espacial das intensidades amostrais 1620, 820, 410 e 180 pontos apresentaram maior semelhança. A partir da intensidade amostral de 90 pontos houve redução da semelhança entre os mapas, e devido ao baixo IDE, não foi considerado para fins de contagem. Dessa forma, é possível a redução do número de amostragens no campo para 180 pontos, mantendo o IDE próximo ao alcançado com intensidade amostral inicial de 1620 pontos, e que corresponde à contagem de todas as plantas da área. Assim, no terceiro ano, foi possível uma redução equivalente a 89% do número de amostragem.

Deve ser destacado também que no sistema de produção de uva de mesa no Vale do Submédio São Francisco, é comum a prática do desbaste de cachos, evitando um possível excesso de
cachos em uma mesma videira. Isso contribui para a obtenção de cachos com peso e bagas com diâmetro desejados pelo mercado. Dessa forma, existe uma interferência na capacidade natural de produção de cachos por uma planta, o que também pode ter contribuído para a variação de um ciclo para outro.

4. Conclusões

A estimativa da produtividade em um parreiral de videira de mesa pode ser obtida com confiabilidade por meio da contagem de cachos em, pelo menos, metade das plantas presentes na área.
Agradecimentos

À Fazenda Sasaki, pela cessão da área para a realização do trabalho, e à FACEPE, pelo financiamento do projeto.

Referências

Variabilidade espacial da fertilidade de solo em pomar de uva de mesa em Petrolina - PE

Alessandra Monteiro Salviano Mendes¹, Davi José Silva¹, Luís Henrique Basso²

¹DSc. em Solos e Nutrição de Plantas
² DSc. em Ciências

*E-mails: alessandra.mendes@embrapa.br, luis.bassoi@embrapa.br; davi.jose@embrapa.br

Resumo: O conhecimento da variabilidade dos atributos químicos do solo é uma importante etapa para a definição de zonas de manejo da fertilidade do solo, permitindo à aplicação de fertilizantes a taxa variável. O objetivo deste estudo foi caracterizar a variabilidade espacial de atributos químicos do solo em um pomar de videira de mesa cultivada sob irrigação, em Petrolina, PE. As amostras de solo foram coletadas em um grid de 3,5 × 4 m, totalizando 168 pontos de amostragem e uma área de 1820 m² (42 × 60 m). Determinaram-se os seguintes atributos: teores de P, K, Ca, Mg, e calcularam-se as relações Ca/Mg, K/Mg, Ca/Mg e (Ca+Mg)/K. Os dados foram analisados utilizando estatística descritiva, a fim de verificar os parâmetros de tendência central e dispersão. A variabilidade espacial foi determinada pelo cálculo do semivariograma, e a construção de mapas de contorno foi feita com valores obtidos na interpolação por krigagem ordinária. A dependência espacial dos teores de K, Ca e Mg no solo nas duas profundidades avaliadas foi caracterizada, sendo possível a construção de mapas com zonas homogêneas quanto à essas variáveis.

Palavras-chave: bases trocáveis, características químicas do solo, geostatística.

Spatial variability of soil fertility in a table grape orchard, in Petrolina, Brazil

Abstract: The knowledge of the variability of soil chemical properties is an important step for the definition of management zones of soil fertility, allowing the application of variable rate fertilizer. The aim of this study was to characterize the spatial variability of soil chemical properties in an table grape orchard grown under irrigation in Petrolina, State of Pernambuco, Brazil. Soil samples were collected on a grid of 3.5 × 4 m, totaling 168 sampling points and an area of 1820 m² (42 × 60 m). The following attributes were determined: P, K, Ca, Mg, and the Ca/Mg, K/Mg, Ca/Mg and [Ca + Mg]/K ratios. Data were analyzed using descriptive statistics in order to verify the central tendency and dispersion of data. The spatial variability was determined by semivariograms, and contour maps were made with values obtained by ordinary kriging interpolation. The spatial dependence of K, Ca and Mg in two depths evaluated was observed, and then maps with homogeneous zones regarding these variables were constructed.

Keywords: exchangeable cations, soil chemical attribute, geostatistics.
1. Introdução

A agricultura de precisão (AP) é uma plataforma tecnológica extremamente importante para garantir a competitividade e sustentabilidade do agronegócio brasileiro, permitindo uma exploração mais racional dos sistemas produtivos (CARVALHO FILHO, 2012). De acordo com Caon e Genú (2013) a AP utiliza, de forma mais eficiente, a quantidade de calcário e de fertilizantes do que a agricultura convencional. Para isso, utiliza-se do conceito de espacialização dos fatores de produção, sendo imprescindível o conhecimento da sua variabilidade.

Nos últimos anos, a geostatística tornou-se uma importante ferramenta no auxílio do melhor entendimento da variabilidade espacial de diversos parâmetros de interesse nas ciências agrárias, permitindo a interpretação de dados baseados na estrutura de sua variabilidade natural, considerando a dependência espacial no espaço a ser estudado (BATISTA; ZIMBACK, 2010).

O conhecimento detalhado da variabilidade espacial dos atributos do solo apresenta-se como ferramenta vantajosa para aperfeiçoar o manejo em áreas agrícolas por meio do estabelecimento de zonas de manejo (CORÁ et al. 2004; NASCIMENTO et al., 2011, 2012) que possibilitam por exemplo, a aplicação de insumos com taxa variada (RAGAGNIN; SENA JUNIOR; SILVEIRA NETO, 2010; GUEDES FILHO, 2009; CAON; GENÚ, 2013). O uso dessas zonas de manejo, segundo Luchiarri Júnior et al. (2012), é uma estratégia válida para aumentar a eficiência do uso dos recursos naturais e reduzir o impacto da agricultura no ambiente.

O solo naturalmente apresenta heterogeneidade, tanto vertical como horizontalmente em consequência das interações que ocorrem entre os fatores e processos envolvidos na sua formação.

Além disso, práticas culturais e de manejo do solo podem alterar atributos químicos do solo, com impacto principalmente nas suas camadas superficiais (NAJAFIAN et al., 2012) sendo causas adicionais de variabilidade (CORÁ, 1997). Umali et al. (2012) avaliaram o efeito do terreno e do manejo sobre a variabilidade espacial das propriedades do solo em um pomar de maçã e concluíram que as práticas de manejo em uma área intensamente utilizada impõe marcante variabilidade de curto alcance nas propriedades do solo.

Assim, o objetivo deste estudo foi caracterizar a variabilidade espacial da fertilidade do solo em um pomar de videira de mesa cultivada sob irrigação, em Petrolina, PE.

2. Material e Métodos

O experimento foi conduzido na Fazenda Alpha Vale, localizada em Petrolina-PE, em um parreiral de videira (Vitis vinifera L.), cv Sugraone, enxertada sobre o porta-enxerto SO4, com área de 7,31 ha, implantado em 2002, no espaçamento de 3,5 x 4 m, com duas plantas por cova, e irrigado por microaspersão. As coordenadas geográficas da área são de 9° 21’ 07” de latitude Sul e 40° 27’05” de longitude Oeste, com altitude média de 380 metros. O solo da área foi classificado como Neossolo Quartzarenico (SANTOS et al., 2006).

Foram aplicados durante o ciclo de cultivo 135,9; 106,0; 268,0; 120; 50,8; 29,7; 0,5 e 4 kg ha⁻¹ de N, P₂O₅, K₂O, S, Ca, Mg, B, Cu, Fe e Zn, respectivamente. As fontes utilizadas foram sulfato de amônio, nitratos de potássio e de cálcio, Amiorgan®, fosfatos monoamônicos e monopotássios, cloretos de potássio e de cálcio, sulfatos de potássio e de magnésio, nitrato de ferro, sulfatos de zinco e de cobre e ácido bórico.

Na área de amostragem (42 x 60 m), composta por 12 fileiras, cada uma com 15 plantas, cada planta foi considerada um ponto amostral perfazendo 168 amostras, coletadas em um grid regular de 3,5 x 2 m. As amostras foram coletadas nas camadas de 0-0,20 e 0,20-0,40 m de profundidade.

As amostras de solo foram submetidas às análises químicas de rotina de acordo com os procedimentos descritos em Claessen (1997) para determinação dos seguintes atributos químicos: K, Ca e Mg trocáveis (cmol, dm⁻³) e P disponível (mg dm⁻³). A partir dos resultados obtidos, calcularam-se as seguintes relações: Ca/Mg, Ca/K, Mg/K e (Ca+Mg)/K.

Os dados foram, inicialmente, analisados por meio da estatística descritiva e a hipótese de normalidade dos dados foi avaliada pelo teste de Kolmogorov-Smirnov (KS) ao nível de 5% de probabilidade, por meio do programa computacional STATISTIC 5.0. A dependência espacial das variáveis foi avaliada nos pressupostos de estacionariedade da hipótese intrínseca, conforme instruções de Vieira (2000), analisando-se os semivariogramas ajustados pelo
software GS+ - GAMMA DESIGN SOFTWARE (ROBERTSON, 1998), e estimados conforme a equação 1:
\[\gamma(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} [Z(x_i) - Z(x_i + h)]^2 \]

Eq. 1

sendo: \(\gamma(h) \) - valor da semivariância para uma distância \(h \); em que \(N(h) \) é o número de pares de valores medidos \(Z(x_i), Z(x_i + h) \), separados por um vetor \(h \); \(Z(x_i) \) - valor do atributo \(Z \) na posição \(x_i \); \(Z(x_i + h) \) - valor do atributo \(Z \) separado por uma distância \(h \) da posição \(x_i \).

A escolha dos modelos experimentais baseou-se no maior valor do coeficiente de determinação e no menor valor da raiz quadrada do erro médio, a partir dos quais foram definidos os parâmetros dos semivariogramas:

a) efeito pepita \((C_0) \), que é o valor de \(\gamma \) quando \(h = 0 \);

b) alcance da dependência espacial \((a) \), que é a distância em que \(\gamma(h) \) permanece aproximadamente constante, após aumentar com o aumento de \(h \);

c) patamar \((C_0 + C_1) \), que é o valor de \(\gamma(h) \) a partir do alcance e que se aproxima da variância dos dados, se ela existe.

A dependência espacial de uma variável foi expressa utilizando-se o grau de dependência espacial \((GD) \), calculado pela equação 2, e que mede a proporção da variância estruturada \((C_\gamma) \) em relação ao patamar \((C_0 + C_1) \).

\[GD = \frac{C_\gamma}{(C_0 + C_1)} \times 100 \]

Eq. 2

O GD pode ser usado para classificar a dependência espacial em fraca \((GD < 25%) \), moderada \((25% \leq GD < 75%) \) e forte \((GD \geq 75%) \) (ZIMBACK, 2001). Após a comprovação da autocorrelação espacial entre as amostras foram elaborados mapas de isolinhas utilizando-se a krigagem ordinária como técnica de interpolação e o software GS+ - GAMMA DESIGN SOFTWARE (ROBERTSON, 1998).

3. Resultados e Discussão

Pelos limites de coeficiente de variação \((CV) \) propostos por Warrick e Nielsen (1980), os valores para a classificação de variáveis do solo \((CV < 12%) \), \((12% < CV > 60%) \) e \((CV > 60%) \), indicam variabilidade baixa, moderada e alta, respectivamente (Tabela 1). Nenhuma das variáveis avaliadas apresentou baixa variabilidade. Na camada de 0-0,20 m, todas as variáveis apresentaram variabilidade média, enquanto na camada de 0,20-0,40 m as variáveis Ca/K, Mg/K e (Ca+Mg)/K apresentaram elevada variabilidade.

Os resultados da análise descritiva (Tabela 1), indicaram ajuste à distribuição normal apenas para \(P \), Ca/K e [(Ca+Mg)/K] na camada de 0-0,20 m de profundidade e \(P \), Ca e Mg, na camada de 0,20-0,40 m. Todavia, essa não é uma exigência da geoestatística, mas é conveniente que a distribuição não apresente caudas muito longas, de forma a não comprometer as análises, pois a estimação por krigagem apresenta melhores resultados quando a normalidade dos dados é satisfeita.

Os teores de \(P \) no solo (Tabela 1) merecem destaque, apresentando médias de 689,42 e 451,40 mg kg\(^{-1}\) nas camadas de 0-0,20 e 0,20-0,40 m, com valores máximos alcançando 1750,00 e 1027,00 mg kg\(^{-1}\), respectivamente. Esses teores estão extremamente elevados e são resultados do manejo da adubação fosfatada, frequentemente empregada na região. Para esta mesma área, Mendes, Bassoi e Silva (2011) avaliando o uso do método da krigagem indicatriz como ferramenta para mapear a probabilidade de resposta à adubação, observaram que a área do pomar apresentou-se em grande parte com teores foliares excessivos de \(P \). Além de prejuízos econômicos causados pelo excesso de fertilizantes utilizados, vale ressaltar também os riscos de se causar danos ambientais devido à movimentação de \(P \) no perfil do solo, considerando-se a sua textura extremamente arenosa e os baixos teores de MO. Costa (2009) estudando alterações na fertilidade do solo em pomares de videira na região de Petrolina-PE observou que o manejo adotado quanto às fertilizações fosfatadas provocou aumento elevado na concentração de \(P \) disponível no solo e relatou que os teores de \(P \) encontrados possibilitam a ocorrência de desequilíbrios nutricionais e de contaminação de aquíferos com o elemento.
dessas propriedades, o que só é possível por meio de técnicas geoestatísticas.

A partir dos parâmetros das análises geoestatísticas (Tabela 2), observa-se que houve dependência espacial para a maioria das variáveis na camada de 0-0,20 m.

Quando não foi possível identificar a estrutura da variância, como no caso do teor de P disponível e da relação Ca/Mg (0-0,20 m), diz-se que os semivariogramas apresentaram efeito pepita puro (EPP) (Tabela 2). Assim, pode-se assumir que a distribuição é completamente ao acaso, há independência entre amostras e os métodos da estatística clássica podem ser aplicados, sendo a média aritmética um valor que representa bem o conjunto de dados. Provavelmente, nesses casos, a dependência espacial ocorre em uma distância menor do que à distância entre os pontos de amostragem utilizada (VIEIRA, 2000). Na camada de 0,20-0,40 m, as variáveis que apresentaram maior variabilidade dos dados avaliada pelo CV, também não apresentaram estrutura de dependência espacial.

As variáveis apresentaram ajuste aos modelos esférico, exponencial e gaussiano (Tabela 2).

Todavia, nos estudos sobre variabilidade espacial de características químicas do solo, é mais comum o ajuste dos dois primeiros modelos citados (SILVA et al., 2003; CORÁ et al., 2004; CARVALHO; VILAS BOAS; FADIGAS, 2010).

Os semivariogramas ajustados às variáveis na camada de 0-0,20 m, de acordo com Zimback (2001), revelaram forte dependência espacial (Tabela 2), exceto para o teor de Ca que apresentou dependência moderada. Na camada de 0,20-0,40 m, os teores de K e Mg apresentaram forte dependência espacial enquanto os teores de Ca e a relação Ca/Mg dependência moderada. O GD indica também se a malha de amostragem foi adequada ou se há necessidade de um adensamento dessa malha, ideal quando a dependência espacial é fraca, por exemplo.

As variáveis estudadas apresentaram diferentes valores de alcance, mas com pouca variação, exceto para o teor de Ca trocável e a relação Ca/Mg (Tabela 2), sendo estes superiores ao valor de espaçamento utilizado na malha de amostragem. Segundo Vieira (2000) isto indica que as amostras estão espacialmente relacionadas e assim, apresentam uma maior continuidade.

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Ca/Mg</th>
<th>Ca/K</th>
<th>Mg/K</th>
<th>(Ca+Mg)/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0,20 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mínimo</td>
<td>1,33</td>
<td>0,11</td>
<td>2,90</td>
<td>0,40</td>
<td>1,00</td>
<td>5,18</td>
<td>1,38</td>
<td>7,55</td>
</tr>
<tr>
<td>Máximo</td>
<td>1750,00</td>
<td>1,10</td>
<td>9,70</td>
<td>4,80</td>
<td>18,25</td>
<td>45,00</td>
<td>27,86</td>
<td>56,25</td>
</tr>
<tr>
<td>Média</td>
<td>689,42</td>
<td>0,28</td>
<td>5,11</td>
<td>1,92</td>
<td>2,93</td>
<td>21,24</td>
<td>7,85</td>
<td>29,09</td>
</tr>
<tr>
<td>Desvio padrão</td>
<td>309,00</td>
<td>0,13</td>
<td>1,14</td>
<td>0,67</td>
<td>1,46</td>
<td>8,34</td>
<td>3,78</td>
<td>10,88</td>
</tr>
<tr>
<td>Coeficiente de variação</td>
<td>45</td>
<td>47</td>
<td>22</td>
<td>35</td>
<td>50</td>
<td>39</td>
<td>48</td>
<td>37</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov</td>
<td>0,07</td>
<td>0,14</td>
<td>0,12</td>
<td>0,17</td>
<td>0,18</td>
<td>0,06</td>
<td>0,14</td>
<td>0,09</td>
</tr>
<tr>
<td>0,20-0,40 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mínimo</td>
<td>8,40</td>
<td>0,01</td>
<td>1,90</td>
<td>0,70</td>
<td>1,00</td>
<td>6,67</td>
<td>2,38</td>
<td>9,05</td>
</tr>
<tr>
<td>Máximo</td>
<td>1027,00</td>
<td>0,49</td>
<td>12,00</td>
<td>5,60</td>
<td>8,67</td>
<td>540,00</td>
<td>140,00</td>
<td>680,00</td>
</tr>
<tr>
<td>Média</td>
<td>451,40</td>
<td>0,22</td>
<td>5,17</td>
<td>1,70</td>
<td>3,25</td>
<td>28,87</td>
<td>9,16</td>
<td>38,03</td>
</tr>
<tr>
<td>Desvio padrão</td>
<td>194,35</td>
<td>0,08</td>
<td>1,81</td>
<td>0,65</td>
<td>1,28</td>
<td>41,57</td>
<td>11,00</td>
<td>51,97</td>
</tr>
<tr>
<td>Coeficiente de variação</td>
<td>43</td>
<td>38</td>
<td>35</td>
<td>38</td>
<td>39</td>
<td>144</td>
<td>120</td>
<td>137</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov</td>
<td>0,07</td>
<td>0,12</td>
<td>0,10</td>
<td>0,11</td>
<td>0,17</td>
<td>0,31</td>
<td>0,31</td>
<td>0,31</td>
</tr>
</tbody>
</table>

Valores em negrito não se ajustam a distribuição normal pelo teste de K-S a 5% de probabilidade.
Agricul tur
A
de precisão: result
A
dos de um novo olh
A

precisam de um número maior de amostras para representar adequadamente a média de uma área. O teor de Ca do solo apresentou valor de alcance superior (71 m), na camada de 0-0,20 m, e muito próximo (39 m), na camada de 20-40 cm, das dimensões escolhidas para compor os lados do polígono onde foi realizada a amostragem sistemática (39 × 52 m). De acordo com Carvalho, Vilas Boas e Fadigas (2010), nesse caso, para otimização do resultado obtido seria necessário uma maior extensão espacial da amostragem, ou um redimensionamento da malha, para se estimar essa variável com maior confiabilidade.

Nos mapas de isolinhas (Figuras 1 e 2), as linhas fechadas e próximas caracterizam a área com maior variabilidade, enquanto a presença de linhas espaçadas é condição de uma menor variabilidade. O conhecimento dos valores de

na distribuição espacial das propriedades do solo estudado, o que permite que se façam interpolações.

De um modo geral, os valores de alcance obtidos para os diferentes semivariogramas variaram de 2 a 71 metros, sendo o menor valor observado para a relação [(Ca+Mg)/K], e o maior para o teor de Ca, ambos na camada de 0-0,20 m. Esses valores de alcance correspondem aos raios das áreas consideradas homogêneas para cada variável estudada, por isso, ao se utilizar à estatística clássica, onde se faz necessária a total independência entre as amostras, essa deve ser a distância mínima utilizada para coleta entre estas. Além disso, segundo Carvalho, Vilas Boas e Fadigas (2010) o conhecimento do alcance tem efeito prático na intensidade de amostragem, pois variáveis com pequeno alcance e CV elevado precisam de um número maior de amostras para representar adequadamente a média de uma área.

O teor de Ca do solo apresentou valor de alcance superior (71 m), na camada de 0-0,20 m, e muito próximo (39 m), na camada de 20-40 cm, das dimensões escolhidas para compor os lados do polígono onde foi realizada a amostragem sistemática (39 × 52 m). De acordo com Carvalho, Vilas Boas e Fadigas (2010), nesse caso, para otimização do resultado obtido seria necessário uma maior extensão espacial da amostragem, ou um redimensionamento da malha, para se estimar essa variável com maior confiabilidade.

Nos mapas de isolinhas (Figuras 1 e 2), as linhas fechadas e próximas caracterizam a área com maior variabilidade, enquanto a presença de linhas espaçadas é condição de uma menor variabilidade. O conhecimento dos valores de

<table>
<thead>
<tr>
<th>Variável</th>
<th>Modelo</th>
<th>Co (^{(1)})</th>
<th>Co+Mg (^{(2)})</th>
<th>Ao (^{(3)})</th>
<th>(\frac{[C/(Co+C)] \times 100}{(Co+C)})</th>
<th>R(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0,20 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>EPP(^{(3)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Guassiano</td>
<td>0,002</td>
<td>0,02</td>
<td>3</td>
<td>88</td>
<td>0,46</td>
</tr>
<tr>
<td>Ca</td>
<td>Esférico</td>
<td>0,85</td>
<td>1,85</td>
<td>71</td>
<td>54</td>
<td>0,92</td>
</tr>
<tr>
<td>Mg</td>
<td>Guassiano</td>
<td>0,05</td>
<td>0,46</td>
<td>4</td>
<td>89</td>
<td>0,84</td>
</tr>
<tr>
<td>Ca/Mg</td>
<td>EPP(^{(3)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca/K</td>
<td>Exponencial</td>
<td>5,90</td>
<td>69,76</td>
<td>3</td>
<td>92</td>
<td>0,59</td>
</tr>
<tr>
<td>Mg/K</td>
<td>Esférico</td>
<td>1,76</td>
<td>16,12</td>
<td>6</td>
<td>89</td>
<td>0,23</td>
</tr>
<tr>
<td>(Ca+Mg)/K</td>
<td>Exponencial</td>
<td>11,40</td>
<td>120,80</td>
<td>2</td>
<td>91</td>
<td>0,57</td>
</tr>
<tr>
<td>0,20-0,40 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>EPP(^{(3)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Esférico</td>
<td>0,0004</td>
<td>0,007</td>
<td>3</td>
<td>94</td>
<td>0,83</td>
</tr>
<tr>
<td>Ca</td>
<td>Exponencial</td>
<td>2,01</td>
<td>4,61</td>
<td>39</td>
<td>56</td>
<td>0,94</td>
</tr>
<tr>
<td>Mg</td>
<td>Guassiano</td>
<td>0,05</td>
<td>0,44</td>
<td>3</td>
<td>88</td>
<td>0,62</td>
</tr>
<tr>
<td>Ca/Mg</td>
<td>Exponencial</td>
<td>0,67</td>
<td>2,51</td>
<td>25</td>
<td>73</td>
<td>0,97</td>
</tr>
<tr>
<td>Ca/K</td>
<td>EPP(^{(3)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg/K</td>
<td>EPP(^{(3)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ca+Mg)/K</td>
<td>EPP(^{(3)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\)Efeito pepita, \(^{(2)}\)patamar, \(^{(3)}\)alcance, \(^{(4)}\)contribuição do efeito pepita, em percentagem, para a variância total dos dados, \(^{(5)}\)efeito pepita puro.
Agricultura de precisão para culturas perenes e semi-perenes

...alcança e as localizações das áreas onde estão concentrados os maiores e/ou menores valores de determinada variável química são importantes para o planejamento do manejo da fertilidade do solo, tanto na agricultura convencional como na agricultura de precisão, podendo-se assim definir zonas homogêneas de manejo.

A partir dos mapas de distribuição espacial dos teores de K no solo, em ambas as profundidades, observa-se que esse elemento variou entre baixo e muito elevado, sendo possível estabelecer quatro zonas de manejo (<0,16; 0,16-0,30; 0,31-0,45 e >0,45 cmol/dm³) que apresentam diferentes recomendações de K₂O para a cultura da videira de acordo com Silva, Faria e Albuquerque (2010).

Os teores de Ca e Mg no solo, em toda a área do pomar, apresentam-se bem acima dos mínimos exigidos para a cultura da videira (2,0 e 0,8 cmol/dm³, respectivamente) e normalmente encontrados em Neossolos Quartzarênicos, cuja CTC é baixa apresentando variações entre 0,8 a 3,9 cmol/dm³ (CUNHA et al., 2010). Isso se deve, ao intenso manejo da área com aplicação de elevadas quantidades de matéria orgânica, fertilizantes químicos e o uso de gesso agrícola, prática comum na região, com intuito de aumentar a relação Ca/Mg do solo.

Figura 1. Mapas de distribuição espacial da fertilidade do solo em pomar de videira, na camada de 0-0,20 m do solo, Petrolina, PE.
Segundo Prado (2008), as interações que se estabelecem entre nutrientes são de natureza complexas e seus efeitos refletem na composição mineral das plantas, assim para o alcance da máxima produção das culturas o equilíbrio entre os nutrientes no sistema solo-planta passa a ser um dos fatores limitantes. Em consequência, a relação entre K, Ca e Mg, tem sido tomada como um parâmetro para analisar as respostas das culturas a adubação potássica (BÜLL; VILLAS BOAS; NAKAGAWA, 1998). A partir dos mapas de distribuição espacial, na camada de 0-20 cm, das relações Ca/K, Mg/K e (Ca+Mg)/K observa-se uma semelhança no padrão de distribuição do K e do Mg.

A relação Ca/K, na camada de 0-0,20 m de profundidade, variou de médio (7-14) a alto (> 25), sendo a faixa de 15-25 considerada adequada, segundo Souza e Lobato (2004). As áreas onde a relação Ca/K encontra-se acima da considerada adequada (> 25), coincide com as zonas de excesso de Ca ou baixos teores de K, mostrando o desbalanço entre esses cátions no solo do pomar. Nessas áreas poderá ocorrer deficiência de K, pois com o aumento gradativo na concentração do Ca, esse efeito diminui até o momento em que ocorre antagonismo entre esses cátions a níveis mais altos de Ca e, consequente redução na absorção de K pelas plantas (Prado, 2008; Malavolta, 2006).

O mapa de distribuição espacial da relação Mg/K mostra três áreas distintas de manejo. A primeira apresenta pequena extensão, onde a relação varia de 2-5, e maior probabilidade de haver deficiência de Mg devido à interação negativa com K. A segunda abrange a maior parte da área e apresenta valores considerados adequados (5-15) (SOUZA; LOBATO, 2004), não ocorrendo interação negativa entre esses nutrientes quanto a absorção pelas plantas. Enquanto a terceira área, de menor extensão, apresenta relação Mg/K acima de 15 e apresentando grande probabilidade de ocorrência de deficiência de K.

Já a relação [(Ca+Mg)/K] apresenta-se, em grande parte da área, diferente da faixa considerada adequada (20-30) por Souza e Lobato (2004). Os coeficientes de correlação de Pearson entre esta relação no solo e os teores de K (-0,15*) e de Mg (-0,19*) foram mostram que há um desequilíbrio entre esses nutrientes no solo. Para esta mesma área, Mendes, Bassoi e Silva (2011) avaliando o uso do método da krigagem indicatriz como ferramenta para mapear a probabilidade de resposta à adubação com macronutrientes pela...
cultura da videira observaram que a área do pomar apresentou-se em grande parte com teores foliares deficientes de Ca, Mg e K.

A relação Ca:Mg no solo, na camada de 0,20-0,40 m (Figura 2) apresenta-se a baixa considerada adequada por Souza & Lobato (2004) (1,5-7,0). Todavia, vale salientar que a relação ideal depende da cultura que se pretende conduzir. De acordo com Salvador, Carvalho & Lucchesi, (2011) desequilíbrios nos teores foliares de Ca, Mg, fósforo (P) e potássio (K) em soja, cultivada em Latossolo, foram provocadas por relações Ca:Mg acima de 3:1. Silva et al. (2012), também na cultura da soja, observaram que a relação Ca:Mg de 1:1 proporcionou um maior produção de matéria seca da parte aérea da soja. Por outro lado, a maioria dos trabalhos considera relações Ca:Mg entre 4:1 e 8:1 como as mais adequadas para as plantas (MEDEIROS et al., 2008).

4. Conclusão

A dependência espacial dos teores de K, Ca e Mg no solo nas duas profundidades avaliadas foi caracterizada, sendo possível a construção de mapas com zonas homogêneas quanto a essas variáveis.

No manejo da fertilidade do solo no pomar estudado deve ser considerado o desbalanço entre os teores de Ca, Mg e K no solo que podem acarretar prejuízos à produção.

Agradecimentos

Ao CNPq e a EMBRAPA pelo apoio financeiro e a Fazenda Alpha Vale, pela disponibilização da área para realização do experimento.

Referências

Variabilidade espacial dos teores foliares de nutrientes e produtividade da videira em ambiente semiárido

Alessandra Monteiro Salviano Mendes*1, Davi José Silva*1, Luis Henrique Basso*2

1Dsc. em Solos e Nutrição de Plantas, Embrapa Semiárido
2Dsc. em Ciência, Embrapa Semiárido

*E-mails: alessandra.mendes@embrapa.br, davi.jose@embrapa.br, luis.basso@embrapa.br

Resumo: O conhecimento da variabilidade da nutrição de plantas e da produtividade em áreas cultivadas pode fornecer importantes subsídios na racionalização do uso de insumos e auxiliar no manejo da fertilidade do solo. O objetivo deste estudo foi caracterizar a variabilidade espacial dos teores foliares de nutrientes e da produtividade da videira de mesa cultivada sob irrigação em um Neossolo Quartzarenico, em Petrolina, PE. As amostras de folhas e os dados de produtividade foram coletados em 2006 em um grid de 3,5 × 4 m, totalizando 144 pontos de amostragem e uma área de 1820 m² (35 × 52 m). Os teores de N, P, K, Ca, Mg, S, B, Cu, Fe, Mn e Zn foram determinados analisando-se a folha completa (folha + pecíolo) oposta ao cacho, em planta referente a um dos pontos de amostragem. A produtividade foi estimada pelo produto do número de cachos e o peso médio de cachos. Esse último parâmetro foi estimado em uma área de 14 m² no grid. Os dados foram analisados utilizando estatística descritiva, a fim de verificar os parâmetros de tendência central e dispersão. A variabilidade espacial foi determinada pelo cálculo do semivariograma, e a construção de mapas de contorno foi feita com valores obtidos na interpolação por krigagem ordinária. Houve dependência espacial para os teores foliares de P, K, Ca, Mg, S, Cu, Zn, Fe, Mn e B e para a produção de cachos por planta.

Palavras-chave: manejo sítio-específico, geoestatística, uva de mesa.

Spatial variability of leaf nutrient content and yield of vine in semi-arid region

Abstract: The knowledge of the plant nutrition and yield variability in cultivated areas may provide important insights for the rational use of supplies and assist in the soil fertility management. The objective of this study was to characterize the spatial variability of the foliar nutrient concentration and yield of the irrigated vine in a Typic Quartzpisanmt in Petrolina, Pernambuco State, Brazil. In 2006, leaves in an opposite position to the cluster (leaf blades and petioles) were collected at full bloom, on grid 4 × 3.5 m, totaling 144 sampling points, in a 1820 m² (35 × 52 m), and nutrient concentrations (N, P, K, Ca, Mg, S, B, Cu, Fe, Mn and Zn) were determined in laboratory. Yield was determined by the product of cluster number per plant and average cluster weight. This last parameter was measured in an area of 14 m² inside the grid. Data were analyzed by descriptive statistics in order to verify the parameters of central tendency and dispersion. The spatial variability was determined by calculating the semivariogram and construction of contour maps with values obtained through interpolation by ordinary kriging. There was spatial dependence for the leaf contents of P, K, Ca, Mg, S, Cu, Zn, Fe, Mn and B, and for the plant production.

Keywords: site-specific management, geostatistics, table grape.
1. Introdução

Uma das vantagens da agricultura de precisão (AP) é o uso mais eficiente dos insumos agropecuários com objetivo de alavancar a produção de alimentos, proporcionando ao produtor, vários benefícios econômicos e ambientais. Segundo Ragagnin et al. (2010), entre as expectativas a serem atendidas com o uso da AP podem-se citar a redução de gastos com possíveis superdosagens, que podem trazer danos à cultura e ao meio ambiente, redução de perdas por subdosagens, que limitam a produção a quantidades menores que o potencial da cultura, além da exploração mais intensa de porções do terreno com maior capacidade de produção.

Considerando os altos custos de produção nas áreas de produção de uvas no Vale do Submédio São Francisco e a crise financeira enfrentada pelos fruticultores em 2008 e 2009 (Silva, 2009; São Francisco e a crise financeira enfrentada serem atendidas com o uso da Agricola, bem como a redução dos custos de produção são fatores que servem de estímulo ao uso da AP na região. No entanto, para que este objetivo seja alcançado, é necessário conhecer-se a variabilidade espacial do solo da propriedade, para que seja possível realizar um manejo mais eficiente da sua fertilidade.

Aliado a isso, a AP também é uma opção de manejo que pode ser utilizada para minimizar os efeitos da variabilidade espacial de atributos do solo e, consequentemente, do estado nutricional das plantas na produtividade das culturas.

Segundo Montezano, Corazza e Muraoka (2008) o conhecimento da variabilidade da nutrição de plantas e da produtividade em áreas cultivadas pode fornecer importantes subsídios na racionalização do uso de insumos e auxiliar no manejo da fertilidade do solo, tornando-se fundamental no diagnóstico de possíveis carências ou excessos de nutrientes na cultura, seja em locais específicos, seja em área total. De acordo com os mesmos autores, este tipo de diagnóstico permite uma avaliação da resposta da cultura às fertilizações realizadas e ao histórico de manejo da área avaliada, além de esclarecer possíveis problemas ocasionados por diferentes fatores que influenciam na produtividade.

Para isso, a utilização da geoestatística, ferramenta essencial na análise de dados espacial e temporalmente correlacionados (Souza et al., 2007; Cavalcante et al., 2007; Lemos Filho, 2010), pode auxiliar na identificação de padrões espaciais de distribuição de nutrientes (Montezano; Corazza; Muraoka, 2008; Vieira et al., 2010) e fornecer informações importantes quanto ao planejamento e manejo das áreas cultivadas (Souza; Vieira; Cogo, 1997; Bernardi et al., 2002; Resende et al., 2005).

O objetivo deste estudo foi caracterizar a variabilidade espacial dos teores foliares de nutrientes e da produtividade da cultura da videira de mesa cultivada sob irrigação em um Neossolo Quartzarênico, em Petrolina, PE.

2. Material e Métodos

O experimento foi conduzido na Fazenda Alpha Vale, localizada em Petrolina-PE, em um parreiral de videira (Vitis vinifera L.), cv Sugraone, enxertado sobre o porta-enxerto SO4, com área de 7,31 ha, implantado em 2002, no espaçamento de 3,5 × 4 m, com duas plantas por cova, e irrigado por microaspersão. As coordenadas geográficas da área são de 9° 21’ 07” de latitude Sul e 40° 27’ 05” de longitude Oeste, com altitude média de 380 metros. O solo da área foi classificado como Neossolo Quartzarênico (Embrapa, 2006). Nos meses de julho a outubro de 2006, foram observados pela estação agrometeorológica automática da Embrapa Semiárido, em Petrolina - PE (localizada a 30 km da fazenda), respectivamente, valores médios mensais de 18,4, 18,5, 20,0 e 22,2°C para temperatura máxima do ar; 23,4, 24,6, 26,3 e 27,8°C para temperatura média do ar; 29,4, 31,3, 33,1 e 34,4°C para temperatura máxima do ar; 41,1, 31,8, 28,9 e 30,8% para umidade relativa mínima; 66,9, 59,4, 55,4 e 54,4% para umidade relativa média, 91,2, 88,0, 84,3 e 79,9% para umidade relativa máxima; e valores totais de 461,5, 582,4, 624,9 e 621,8 mm para precipitação pluvial; e 122,7, 160,9, 177,8 e 184,2 mm de evapotranspiration de referência.

Os autores utilizados foram sulfato de amônio, nitratos de potássio e de cálcio, Amorgan®, fosfatos monoamônico e monopotássico, cloretos de potássio e de cálcio, ferramenta essencial na análise de dados espacial e temporalmente correlacionados (Souza et al., 2007; Cavalcante et al., 2007; Lemos Filho, 2010), pode auxiliar na identificação de padrões espaciais de distribuição de nutrientes (Montezano; Corazza; Muraoka, 2008; Vieira et al., 2010) e fornecer informações importantes quanto ao planejamento e manejo das áreas cultivadas (Souza; Vieira; Cogo, 1997; Bernardi et al., 2002; Resende et al., 2005).

O objetivo deste estudo foi caracterizar a variabilidade espacial dos teores foliares de nutrientes e da produtividade da cultura da videira de mesa cultivada sob irrigação em um Neossolo Quartzarênico, em Petrolina, PE.
sulfatos de potássio e de magnésio, nitrito de ferro, sulfatos de zinco e de cobre e ácido bórico.

Na área de amostragem (35 × 52 m), composta por 11 fileiras, cada uma com 14 plantas, cada planta foi considerada um ponto amostral perfazendo 144 amostras, coletadas em um grid regular de 3,5 × 4 m. No mês de agosto de 2006, época de florescimento da cultura, foram retiradas 12 folhas inteiras (limbo + pecíolo) opostas a inflorescência (Terra et al., 2003) para compor a amostra, sendo 4 folhas em cada um dos quatro quadrantes da cobertura foliar (14 m²).

Após a coleta, as folhas foram levadas ao laboratório, lavadas e colocadas em estufa de circulação forçada para secagem a 65°C por 72 h e em seguida foram moidas. Para as determinações dos teores de macro e micronutrientes, a exceção do N e do B, o material vegetal foi submetido à digestão nitrico-perclórica. A concentração de P foi determinada por método espectrofotométrico da azometina dissolvida das cinzas provenientes da incineração terminal, por turbidimetria do extrato, pelo peso médio de cachos por planta.

O método espectrofotométrico da azometina + metavanadato + molibdato; a concentração de P foi determinada por método micro-Kjeldahl. O extrato vegetal para a dissolução das cinzas provenientes da incineração foi obtido pela digestão nítrico-perclórica.

A produtividade da área foi estimada pelo número de cachos em cada planta, calculado pelo peso médio de cachos por planta. Esse último parâmetro foi obtido em 14 m², onde todos os cachos foram pesados e contados para a obtenção de um valor médio de cacho.

Os dados foram, inicialmente, analisados por meio da estatística descritiva, utilizando-se os parâmetros média, variância, coeficiente de variação (CV), assimetria e curtose, com objetivo de verificar a existência de tendência central. A hipótese de normalidade dos dados foi avaliada pelo teste de Kolmogorov-Smirnov a 5 %, por meio do programa computacional STATISTIC 5.0. A dependência espacial dos teores foliares de nutrientes e da produtividade foi avaliada nos pressupostos de estacionariedade da hipótese intrínseca, conforme instruções de Vieira (2000), analisando-se os semivariogramas ajustados pelo software GS+ - GAMMA DESIGN SOFTWARE (ROBERTSON, 1998), e estimados conforme a equação 1:

$$\gamma(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} \left[Z(x_i) - Z(x_i + h) \right]^2$$

Eq. 1

sendo: γ(h) - valor da semivariância para uma distância h; em que N(h) é o número de pares de valores medidos Z(x_i), Z(x_i+h), separados por um vetor h.; Z(x_i) - valor do atributo Z na posição xi; Z(x_i+h) - valor do atributo Z separado por uma distância h da posição xi.

O cálculo da equação 1 gera valores de γ(h) correspondentes a distâncias h. Espera-se que medições realizadas em locais próximos sejam mais parecidas entre si do que aquelas separadas por grandes distâncias (VIEIRA, 2000). Dessa forma, a γ(h) aumenta com a distância até um valor máximo, a partir do qual se estabiliza em um patamar correspondente à distância-limite de dependência espacial, que é o alcance. Os ajustes dos modelos experimentais ao semivariograma basearam-se no maior valor do coeficiente de determinação e no menor valor da raiz quadrada do erro médio.

Do ajuste de um modelo matemático aos dados, foram definidos os parâmetros do semivariograma:

a) efeito pepita (C_0), que é o valor de γ quando h = 0;

b) alcance da dependência espacial (a), que é a distância em que γ(h) permanece aproximadamente constante, após aumentar com o aumento de h;

c) patamar (C_0+ C_1), que é o valor de γ(h) a partir do alcance e que se approxima da variância dos dados, se ela existe.

A dependência espacial de uma variável foi expressa utilizando-se o grau de dependência espacial (GD), calculado pela equação 2, e que mede a proporção da variância estruturada (C_1) em relação ao patamar (C_0 + C_1).

$$GD = C_1 / (C_0 + C_1) \times 100$$

Eq. 2

O GD pode ser usado para classificar a dependência espacial em fraca (GD < 25 %),
moderada (25 % ≤ GD < 75 %) e forte (GD ≥ 75 %) (ZIMBACK, 2001). Após a comprovação da autocorrelação espacial entre as amostras foram elaborados mapas de isolinhas, para os teores foliares de nutrientes e produtividade, utilizando-se a krigagem ordinária como técnica de interpolação e o software SURFER 7.0 (GOLDEN..., 1999).

3. Resultados e Discussão

Os teores de N e B foram classificados como de baixa variabilidade e todos os demais nutrientes como de média variabilidade (Quadro 1), de acordo com o critério de classificação do coeficiente de variação (CV) proposto por Warrick e Nielsen (1980), que ordena como baixa (CV < 12%), média (12 < CV < 62%) e alta (CV > 62%) variabilidade. A classificação do grau de variabilidade dos dados encontrados nesse trabalho foram semelhantes aos obtidos por Vieira et al. (2010), Bernardi et al. (2002) e Montezano, Corazza e Muraoka (2008); no entanto os valores de CV foram mais elevados quando comparados aos resultados encontrados pelos referidos pesquisadores. Segundo Vieira et al. (2010) isso indica que os teores nutrientes no tecido vegetal mantém-se dentro de uma determinada faixa de variação para a mesma espécie.

A maioria das variáveis estudadas apresentou ajuste do tipo normal, de acordo com o teste de Kolmogorov-Smirnov (K-S), exceto os teores de S e Mn e a produtividade. Todavia, os valores da média e mediana destes são próximos (Quadro 1), o que indica que os dados não apresentam assimetria acentuada. Segundo Folegatti (1996), para o ajuste de semivariogramas a normalidade dos dados não é necessária, apenas desejável, e de acordo com Vieira e Lombardi Neto (1995) os cálculos utilizados em geostatística não requerem o conhecimento da distribuição de frequência da variável analisada. Além disso, Isaias e Isrivastava (1989) afirmam que a krigagem ordinária pode ser considerada uma estimativa baseada em médias móveis ponderadas, com pesos calculados a partir de semivariogramas, caso a distribuição não seja normal, mas razoavelmente simétrica. Assim, podem-se admitir as hipóteses necessárias à construção do semivariograma.

Os teores médios (n = 144) dos micronutrientes encontram-se acima das faixas de referência, tidos como adequados para o crescimento e desenvolvimento da cultura segundo Bataglia e Santos (2001). No caso do teor de Cu, isso se deve, principalmente, a um dos principais fungicidas utilizados na região para a cultura da videira, a calda bordalesa, aplicado, geralmente, várias vezes durante o ciclo de cultivo. Além da calda bordalesa, são aplicados também vários outros fungicidas cárpicos, além de adubos foliares que contêm este micronutriente em sua composição. O excesso desse elemento no tecido foliar pode reduzir a produtividade, pois estudos comprovam a sua fitotoxidez na videira (BRUNETTO et al., 2007), mostrando como ele afeta a integridade das membranas celulares e subcelulares, e reduz a taxa fotossintética devido ao colapso dos cloroplastos (BRUNETTO et al., 2007; PANOU-FILOTHEOU; BOSABALIDIS; KARATAGLIS, 2001; SANTOS et al., 2004; URIBE; STARK, 1982).

A contaminação dos solos de vinhedos por micronutrientes, e especialmente por Cu, é extremamente preocupante (MIHALJEVIC et al., 2006), devido as maciças aplicações de defensivos agrícolas na busca do controle das doenças que afetam essa cultura. Estudos promovidos para averiguação do grau de contaminação por metais pesados dos solos de vinhedos do Vale do Submêdio São Francisco, realizados por Costa (2009), verificaram que os teores de Cu e Zn, na maioria das áreas cultivadas, apresentaram aumento com os anos de cultivo, sendo o fato atribuído à influência antrópica.

Entre os macronutrientes, apenas o P apresentou-se em excesso com teor médio 2,5 vezes maior que o valor de referência proposto por Bataglia e Santos (2001). O excesso de P em tecido foliar de videira também foi observado por Faria, Silva e Pereira (2004) na maioria dos pomares avaliados em estudo realizado com objetivo de analisar o estado nutricional da videira cultivada no Vale do Submêdio São Francisco. Isso se deve, provavelmente, a grande quantidade de fertilizantes químicos e orgânicos fontes deste nutriente que são utilizados tanto na adubação de plantio quanto via fertirrigação nos parreirais.

Costa (2009) estudando as alterações na fertilidade dos solos cultivados com videira no Vale do Submêdio São Francisco observou que o manejo adotado na região quanto às fertilizações
fosfatadas provocou um aumento elevado na concentração de P disponível no solo, com valores até 178 vezes superiores aos teores observados nos solos das respectivas áreas de referência (sob Caatinga). O mesmo autor afirma que os teores de P encontrados possibilitam a ocorrência de desequilíbrios nutricionais e de contaminação de aquíferos com o elemento, devido aos elevados teores observados em camadas mais profundas do solo, demonstrando mobilidade desse nutriente no perfil.

Os teores médios de N, K e Ca apresentam-se dentro da faixa de referência, enquanto os de Mg e S apresentam-se abaixo da faixa de referência, sendo considerados, portanto, como insuficientes para o crescimento da cultura. Isso, provavelmente, se deve ao fato de não existirem doses recomendadas desses elementos definidas para a maioria das culturas.

No entanto, o fornecimento do S é realizado, normalmente, como elemento acompanhante nas adubações fosfatadas e nitrogenadas, além de estar presente em produtos para controle fitossanitário. Por isso não é comum a observação de problemas de deficiências nutricionais deste nutriente na cultura da videira no Vale do Submédio São Francisco. Quando esse fornecimento é reduzido, sua deficiência pode ocorrer devido à baixa fertilidade do solo associada à pequena quantidade de matéria orgânica, características comuns dos solos na região. Para a maioria dos solos, mais de 90% do S disponível, de acordo com Solomons et al. (2005), está na forma orgânica, sendo esta importante reserva deste nutriente no solo. Em áreas com produtividades elevadas, por causa da grande quantidade de nutrientes exportadas pelos frutos, essa deficiência pode tornar-se mais severa.

Normalmente o Mg é fornecido junto com o Ca na calagem, como MgSO₄, em aplicação no solo e também foliar, e ainda, em menor proporção, como MgO aplicado no solo. São comuns os sintomas de deficiência de Mg devido ao excesso de adubação com K, podendo ocorrer em casos mais extremos um desequilíbrio nutricional conhecido como dissecamento da ráquis (SILVA; LEÃO, 2005).

Somente o teor foliar de N não apresentou estrutura de dependência espacial, caracterizando o que se denomina “efeito pepita puro” (EPP) ou variação aleatória. Vieira et al. (2010) e Oliveira et al. (2010) também não observaram dependência espacial para os teores foliares de N em soja e café, respectivamente.

Com exceção do Mn, todas as variáveis apresentaram estrutura de dependência espacial expressa por semivariogramas dos modelos esférico ou exponencial (Quadro 2). Outros pesquisadores estudando variabilidade espacial de teores foliares de nutrientes em citros (LEÃO et al., 2010; SOUZA; VIEIRA; COGO, 1997), soja (VIEIRA et al., 2010; BERNARDI et al., 2002) e café (OLIVEIRA et al. 2010) também observaram ajustes de semivariogramas a esses modelos, indicando que esses se adequam à explicação do comportamento espacial de atributos de plantas.

Vieira et al. (2010) avaliando a variabilidade espacial dos teores foliares de nutrientes na cultura da soja destacaram que, nas condições estudadas, há indicativo que existe, para a maioria dos nutrientes, uma estrutura de variabilidade dependente da localização espacial mesmo para uma área cuja adubação é manejada da mesma forma, e utilizando-se as mesmas fontes de nutrientes. Os autores ressaltaram que isso indica que outros fatores estão interagindo, entre eles a variabilidade das características do solo, condicionando uma absorção diferenciada dentro da área experimental. Os resultados dessa pesquisa também permitem essa inferência. Nesse caso, segundo os mesmos pesquisadores, a utilização da média aritmética não representa adequadamente o estado nutricional da cultura. Assim, para o monitoramento do estado nutricional do pomar, a utilização dos procedimentos amostrais para coleta de tecido vegetal, baseados na estatística clássica, produziriam resultados que não o representariam adequadamente. Pois esta, utiliza os parâmetros média e desvio padrão para representar uma população e se baseia na hipótese principal de que as variações de um local para outro são aleatórias, ou seja, não leva em consideração a variabilidade espacial das características a serem estudadas.

A análise do grau de dependência espacial permitiu classificar os teores foliares da maioria dos nutrientes como apresentando GD forte ou moderado (Quadro 2). Resultados semelhantes foram observados para os teores foliares de nutrientes nas culturas da soja (VIEIRA et al., 2010),
citros (LEÃO et al., 2010) e café (OLIVEIRA et al., 2010).

O menor valor de alcance da dependência espacial foi de 2,63 m para o P e o maior de 61,71 m para o teor de Ca (Quadro 2). Esse é um parâmetro importante para a interpretação dos semivariogramas porque indica a distância limite na escolha do tipo de estatística a ser aplicada.

Quadro 1. Estatística descritiva do teor foliar de nutrientes e da produtividade da videira

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Média</th>
<th>Mediana</th>
<th>DP</th>
<th>CV</th>
<th>CV</th>
<th>Valor D</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (g kg⁻¹)</td>
<td>32,50</td>
<td>32,48</td>
<td>2,57</td>
<td>8,00</td>
<td>-0,02</td>
<td>-1,02</td>
</tr>
<tr>
<td>P (g kg⁻¹)</td>
<td>7,21</td>
<td>6,99</td>
<td>1,21</td>
<td>17,00</td>
<td>-0,05</td>
<td>1,12</td>
</tr>
<tr>
<td>K (g kg⁻¹)</td>
<td>15,67</td>
<td>15,00</td>
<td>6,77</td>
<td>43,00</td>
<td>0,15</td>
<td>-1,03</td>
</tr>
<tr>
<td>Ca (g kg⁻¹)</td>
<td>14,17</td>
<td>13,77</td>
<td>3,11</td>
<td>22,00</td>
<td>0,95</td>
<td>1,24</td>
</tr>
<tr>
<td>Mg (g kg⁻¹)</td>
<td>3,97</td>
<td>3,95</td>
<td>0,83</td>
<td>21,00</td>
<td>2,17</td>
<td>14,20</td>
</tr>
<tr>
<td>S (g kg⁻¹)</td>
<td>1,48</td>
<td>1,29</td>
<td>0,63</td>
<td>42,00</td>
<td>1,47</td>
<td>2,04</td>
</tr>
<tr>
<td>B (mg kg⁻¹)</td>
<td>66,61</td>
<td>65,62</td>
<td>8,34</td>
<td>12,00</td>
<td>-0,40</td>
<td>2,77</td>
</tr>
<tr>
<td>Cu (mg kg⁻¹)</td>
<td>85,29</td>
<td>79,50</td>
<td>32,31</td>
<td>38,00</td>
<td>0,65</td>
<td>0,13</td>
</tr>
<tr>
<td>Fe (mg kg⁻¹)</td>
<td>177</td>
<td>170</td>
<td>68,36</td>
<td>39,00</td>
<td>0,92</td>
<td>0,64</td>
</tr>
<tr>
<td>Mn (mg kg⁻¹)</td>
<td>161,6</td>
<td>149,50</td>
<td>51</td>
<td>31,00</td>
<td>1,53</td>
<td>3,98</td>
</tr>
<tr>
<td>Zn (mg kg⁻¹)</td>
<td>26,4</td>
<td>27,0</td>
<td>13,6</td>
<td>51,00</td>
<td>1,19</td>
<td>4,14</td>
</tr>
<tr>
<td>Produtividade (kg planta⁻¹)</td>
<td>11,2</td>
<td>9,44</td>
<td>7,2</td>
<td>64,30</td>
<td>3,30</td>
<td>17,37</td>
</tr>
</tbody>
</table>

DP: Desvio-padrão; CV: coeficiente de variação (%); Valor D: estatística do teste de Kolmogorov-Smirnov a 5%, para ajuste à distribuição normal; valor crítico de K-S (p = 0,05 = 0,12067). C₅: coeficiente de simetria; C₆: coeficiente de curtose.

Quadro 2. Modelos e parâmetros estimados dos semivariogramas experimentais dos teores de nutrientes (g kg⁻¹) no tecido foliar na época do florescimento e da produtividade (kg ha⁻¹) da videira cv. Sugarone irrigada, em Petrolina, PE.

<table>
<thead>
<tr>
<th>Variável</th>
<th>Modelo</th>
<th>Co</th>
<th>Co+C</th>
<th>Ao (m)</th>
<th>GD (%)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (g kg⁻¹)</td>
<td>EPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (g kg⁻¹)</td>
<td>Exponencial</td>
<td>0,052</td>
<td>1,37</td>
<td>2,63</td>
<td>96</td>
<td>0,78</td>
</tr>
<tr>
<td>K (g kg⁻¹)</td>
<td>Esférico</td>
<td>0,30</td>
<td>51,48</td>
<td>15,29</td>
<td>99</td>
<td>0,97</td>
</tr>
<tr>
<td>Ca (g kg⁻¹)</td>
<td>Esférico</td>
<td>4,91</td>
<td>12,70</td>
<td>61,71</td>
<td>61</td>
<td>0,97</td>
</tr>
<tr>
<td>Mg (g kg⁻¹)</td>
<td>Esférico</td>
<td>0,001</td>
<td>0,65</td>
<td>6,14</td>
<td>100</td>
<td>0,85</td>
</tr>
<tr>
<td>S (g kg⁻¹)</td>
<td>Exponencial</td>
<td>0,024</td>
<td>0,44</td>
<td>12,99</td>
<td>95</td>
<td>0,96</td>
</tr>
<tr>
<td>B (mg kg⁻¹)</td>
<td>Exponencial</td>
<td>0,0245</td>
<td>0,243</td>
<td>4,77</td>
<td>90</td>
<td>0,81</td>
</tr>
<tr>
<td>Cu (mg kg⁻¹)</td>
<td>Exponencial</td>
<td>38,00</td>
<td>980,00</td>
<td>3,10</td>
<td>96</td>
<td>0,91</td>
</tr>
<tr>
<td>Fe (mg kg⁻¹)</td>
<td>Esférico</td>
<td>0,0001</td>
<td>0,2382</td>
<td>7,36</td>
<td>100</td>
<td>0,94</td>
</tr>
<tr>
<td>Mn (mg kg⁻¹)</td>
<td>Gaussiano</td>
<td>1040</td>
<td>5190</td>
<td>60,00</td>
<td>80</td>
<td>0,95</td>
</tr>
<tr>
<td>Zn (mg kg⁻¹)</td>
<td>Esférico</td>
<td>65</td>
<td>211,7</td>
<td>23,58</td>
<td>69</td>
<td>0,93</td>
</tr>
<tr>
<td>Produtividade (kg planta⁻¹)</td>
<td>Esférico</td>
<td>0,022</td>
<td>0,394</td>
<td>1,53</td>
<td>94</td>
<td>0,49</td>
</tr>
</tbody>
</table>

C₅: efeito peptita; C₆: patamar, Aₒ: alcance; GD: grau de dependência espacial; EPP: efeito peptita puro.
Para as distâncias menores que o alcance, as variáveis são dependentes espacialmente podendo utilizar-se técnicas geostatísticas para tratamento dos dados. Já a distâncias maiores que o alcance, há independência entre as variáveis, podendo ser aplicada a estatística clássica (SILVA, 1988). O alcance também é utilizado para definir o raio de ação (“range”) máximo de interpolação por krigagem, onde os pesos utilizados na ponderação podem afetar os valores estimados (SOUZA, 1992). Assim, no período de coleta amostragem de tecido foliar para monitoramento do estado nutricional das plantas, as mesmas devem ser coletadas com, no mínimo 62 m de distância entre elas para que a média aritmética represente a população. Os valores de alcance maiores que 2,63 m (Quadro 2) encontrados mostram que o grid de amostragem utilizado foi suficiente para expressar a variabilidade espacial de teores foliares de nutrientes e da produtividade da videira.

O mesmo padrão de dependência espacial foi observado com o modelo exponencial, com valores de alcance próximos para P (2,63 m), Cu (3,10 m) e B (4,77 m) indicando uma associação espacial entre eles. Resultados semelhantes foram observados por Oliveira et al. (2010) para os teores de K e B.

Nas Figuras 1, 2 e 3 são apresentados os mapas interpolados por krigagem referentes ao teor de nutrientes e produtividade do pomar de videira. No mapa para o teor foliar de P pode-se observar que toda a área do pomar apresentou valores considerados excessivos para a cultura (BATAGLIA; SANTOS, 2001). Mesmo assim é possível identificar duas manchas distintas, uma com valores entre 3 e 5 g kg⁻¹ e a outra, de maior extensão, com valores que variam de 5 a 10 g kg⁻¹. Isso se deve ao manejo da adubação no pomar, cuja aplicação de nutrientes é realizada de forma localizada, por meio da fertirrigação. Além disso, indica a disponibilidade diferencial do P no solo, sendo este, um dos elementos do solo que apresenta maior variabilidade espacial (CAVALCANTE et al., 2007; MARQUES JUNIOR et al., 2008), devido a baixa solubilidade de seus compostos e, consequentemente, sua baixa mobilidade no solo. Fica evidente também a aplicação excessiva deste nutriente no pomar. Essa prática é comum na região e também foi observada por Costa (2009) e Faria, Silva e Pereira (2004) e Faria, Silva e Silva (2007).

Para os teores foliares de K também se observa manchas distintas que dividem a área do pomar em faixas que apresentam deficiência, valores excessivos e valores suficientes para o desenvolvimento da cultura (BATAGLIA; SANTOS, 2001). Todavia, a área que apresenta problema nutricional, seja por excesso ou por deficiência, é predominante no pomar.

Os teores foliares de Ca apresentaram distribuição espacial irregular, porém com predomínio de valores de 13 a 18 g kg⁻¹ considerados adequados para a cultura (BATAGLIA; SANTOS, 2001). No caso dos teores de Mg e S, a distribuição espacial foi mais regular e, em praticamente toda a área do pomar, as plantas apresentaram teores foliares insuficientes para o desenvolvimento da cultura (BATAGLIA; SANTOS, 2001).

Para os micronutrientes, os mapas de distribuição espacial permitiram observar que a maioria deles apresentou teores excessivos em todas de grande parte da área do pomar. Isso é reflexo da filosofia de prevenção utilizada na região para prescrição destes elementos na cultura. Geralmente, não se leva em consideração os resultados de análises foliares e de solo. Além disso, não há níveis críticos no solo definidos para esses elementos na região, e, muitas vezes, são utilizadas tabelas de recomendação produzidas em outras condições edafoclimáticas, o que dificulta o manejo da adubação. Não são levadas em consideração também as quantidades de micronutrientes adicionadas ao solo por meio dos fertilizantes orgânicos e minerais, principalmente nos adubos fosfatados e das aplicações de produtos fitossanitários e corretivos, como o calcário e o gesso agrícola.

Da mesma forma, grande parte da área do pomar apresentou teores excessivos de Zn. O uso de insumos e agroquímicos, que além do Cu possuem o Zn em sua composição, pode levar a contaminação do solo pelos dois elementos (PAOLETTI et al., 1998; RAMOS; LOPEZ-ACEVEDO, 2004; GAW et al., 2006; RAMOS, 2006) e, consequentemente, sua transferência para as plantas, principalmente em solos arenosos e com baixo teor de matéria orgânica, características comumente encontradas nos solos dessa região do Semiárido Brasileiro.
Figura 1. Mapas de distribuição espacial dos teores foliares de P, K, Ca e Mg em pomar de videira cv. Sugraone irrigada, em Petrolina, PE.

Figura 2. Mapas de variabilidade espacial dos teores foliares de B e S e da produtividade em pomar de videira cv. Sugraone irrigada, em Petrolina, PE.
4. Conclusão

A dependência espacial dos teores foliares de P, K, Ca, Mg, S, Cu, Zn, Fe, Mn e B e da produtividade em videira de mesa foi identificada, sendo possível a construção de mapas com zonas homogêneas quanto às essas variáveis.

Agradecimentos

Ao CNPq e a EMBRAPA pelo apoio financeiro e a Fazenda Alpha Vale, pela disponibilização da área para realização do experimento.

Referências

Definição da malha de amostragem do teor foliar de nitrogênio em videira para obtenção de zonas de manejo**

Patricia dos Santos Nascimento*², Juliano Athayde Silva*³, Bruno Ricardo Silva Costa³, Luís Henrique Bassoi*⁴

¹Doutora, Agronomia pela UNESP FCA, Botucatu
²Pós-graduandos, Engenharia Agrícola, Univasf, Juazeiro
³Pesquisador, Embrapa Semiárido Petrolina (PE)

*E-mails: patyysn@yahoo.com.br, julianoathayde@hotmail.com, bruno.ricardo.silva@hotmail.com, luis.bassoi@embrapa.br
**Parte da Tese de Doutorado da primeira autora apresentada ao Programa de Pós-graduação em Agronomia (Irrigação e Drenagem), da FCA/UNESP campus de Botucatu

Resumo: Um dos fatores limitantes ao emprego da agricultura de precisão consiste na necessidade de uma alta densidade amostral para detecção da variabilidade existente na área de cultivo, para uma posterior delimitação de zonas homogêneas. Esta pesquisa foi desenvolvida com o objetivo de delimitar malhas amostrais quanto ao teor foliar de nitrogênio total ao longo do ciclo de cultivo da videira. O estudo foi realizado no município de Petrolina-PE, no Vale do Submédio São Francisco, em um pomar de videira cv. Thompson Seedless irrigado por microaspersão. Para a avaliação do teor foliar de N total foi utilizado um medidor portátil de clorofila. As leituras foram realizadas em folhas completamente expandidas e com bom aspecto fitossanitário em 4 momentos durante o ciclo da cultura (29/30; 36/37; 43/44 e 91/92 dias após a poda de produção). Em cada uma das épocas analisadas foram testadas diferentes densidades amostrais para avaliar as mudanças na distribuição espacial de N em relação à amostragem original. Os dados das diferentes épocas e densidades amostrais foram analisados pela geostatística, interpolação por krigagem e geração de mapas de contorno, os quais auxiliaram na identificação das zonas de manejo. A aplicação da ferramenta geoestatística possibilitou a visualização da evolução do teor de nitrogênio total ao longo do ciclo da videira. A redução da densidade amostral possibilitou a identificação de correspondência comportamental nas diferentes épocas avaliadas.

Palavras-chave: geoestatística, clorofila, semiárido

Definition of the sampling grid of foliar nitrogen content in grapevine to obtain management zones

Abstract: One of the limiting factors to the use of precision agriculture is the need of a high sampling density to detect variability in an agricultural area, for further delineation of homogeneous zones. This research was carried out to define the sampling grid of relative chlorophyll content throughout a grapevine growing cycle. The study was carried out in the Lower Middle São Francisco Valley, Petrolina, State of Pernambuco, Brazil, in an orchard of grapevine cv. Thompson Seedless irrigated by microsprinklers. A portable chlorophyll meter was used to evaluate the total foliar N content. The readings were taken on fully expanded leaves and good phytosanitary conditions in 4 times during the 2011 growing season (29/30, 36/37, 43/44 and 91/92 days after pruning). In each of the time different sampling grids were analyzed to evaluate the changing on N spatial distribution in relation to the original sampling. Data from different sampling times and intensities were analyzed by geostatistical kriging interpolation and generation of contour maps, which aided in the identification of management zones. The application of geostatistics tool allowed the visualization of the evolution of the total N concentration throughout the growing cycle. The reduction in sampling grid allowed the identification of a matching behavior in different periods evaluated.

Keywords: geostatistic, chlorophyll, semi-arid
Introdução

A compreensão da variabilidade de parâmetros que se correlacionam com a produtividade e a qualidade dos produtos agrícolas têm trazido bons resultados para o setor agrícola. Nesse contexto, a agricultura de precisão (AP) surge como uma aliada dos produtores, auxiliando na tomada de decisão em relação às práticas agrícolas realizadas em uma unidade de produção. O emprego das técnicas de agricultura de precisão pode auxiliar na identificação de áreas com potencial para produção de frutos com melhor qualidade e, até mesmo, na compreensão dos fatores que a determinam.

Um dos fatores limitantes ao emprego da agricultura de precisão consiste na necessidade de uma extensa grade amostral, a qual é necessária para a representação espacial da distribuição do parâmetro avaliado. Isso muitas vezes inviabiliza a aplicação da AP em função da elevação dos custos com amostragem. Nesse contexto, foi desenvolvido o conceito de zonas de manejo que consiste na identificação de áreas menores, mas que sejam dependentes espacialmente, permitindo assim um manejo mais localizado nos pontos em que seja necessário tal tratamento.

Segundo Rodrigues Junior et al. (2011), uma zona de manejo é definida como uma sub-região do campo que apresenta uma combinação de fatores limitantes de produtividade e de qualidade para a qual se pode aplicar uma dose uniforme de insumos, facilitando a aplicação das técnicas de AP.

O nitrogênio (N) é um importante indicativo nutricional da videira, estando correlacionado inclusive ao teor de clorofila no tecido foliar. Estudos com várias espécies indicam que os índices obtidos com os medidores portáteis do teor foliar de clorofila apresentaram correlação positiva com a suficiência de N, podendo este ser considerado um índice apropriado para avaliar o estado de N das culturas (BLACKMER; SCHEPERS, 1995; GIL et al., 2002; FONTES; ARAÚJO, 2007). De acordo com Rodrigues Junior et al. (2011), zonas de manejo obtidas por meio dos valores do medidor portátil de clorofila e concentrações de nutrientes foliares, podem levar a um entendimento melhor da variabilidade nutricional da cultura e tais zonas de manejo podem ser utilizadas como orientação para futuras amostragens, facilitando a otimização desta operação. Assim o objetivo deste trabalho foi a identificação de zonas homogêneas quanto ao teor foliar de N total em diferentes intensidades amostrais ao longo do ciclo de cultivo da videira de mesa em Petrolina - PE.

Material e Métodos

O estudo foi realizado em Petrolina-PE, no Vale do Submédio São Francisco. A área experimental foi instalada no lote 180 do Perímetro Irrigado Senador Nilo Coelho, Núcleo 5 (latitude S 9º 23' 12,8", longitude W 40º 38' 13,8", altitude 394 m). O solo foi classificado como Neossolo Quartzarênico (EMBRAPA, 2006). Para a realização do estudo foi selecionada uma área com 20 fileiras de plantas e 82 plantas por fileira, em um pomar de videira cv. Thompson Seedless sobre o porta-enxerto SO4, plantada em maio de 2004 no espaçamento de 4 x 2,5 m, irrigada por microaspersão, com 1 difusor por planta, e conduzida no sistema de latada. Não foi necessário o georreferenciamento das plantas, pois as fileiras e a plantas em cada fileira eram numeradas pelo próprio produtor, o que viabilizou o referenciamento das mesmas.

Para a avaliação do teor foliar de N total foi utilizado um clorofilômetro portátil KONICA SPAD 502 Plus. O medidor de clorofila fornece leituras que correspondem ao teor do pigmento clorofila presente na folha. Os valores são calculados com base na quantidade de luz transmitida pela folha em duas regiões de comprimento de onda (650nm e 940nm), nas quais a absorção pela clorofila é diferente (MINOLTA, 1989).

As leituras foram realizadas durante o ciclo de produção da videira com início da poda de produção em 18 de abril de 2011 e início da colheita em 9 de agosto de 2011, em folhas completamente expandidas e com bom aspecto fitossanitário em 4 momentos durante o ciclo da cultura: 29/30; 36/37; 43/44 e 91/92 dias após a poda de produção (dapp). As leituras foram realizadas sempre no período da manhã em todos os dias de observação. Para cada par de dias de avaliação foram coletadas informações nas 20
3. Resultados e Discussão

A Tabela 1 apresenta os parâmetros geoestatísticos para os diferentes períodos de avaliação e intensidades amostrais. De maneira geral, o modelo matemático que melhor se ajustou aos dados coletados foi o exponencial nas diferentes datas de avaliação e intensidade amostral. Exceções foram observadas ao utilizar a densidade amostral de 45 pontos, a qual obteve melhor ajuste ao modelo esférico aos 36/37, 43/44 e 91/92 dapp. Aos 36/37 dapp foi observado efeito pepita puro para as intensidades amostrais iguais a 180 e 90 pontos. A variação na intensidade amostral realizada aos 29/30 dapp apresentou ajuste ao modelo exponencial em todas as intensidades avaliadas com dependência espacial variando de média a forte. As avaliações realizadas aos 43/44 e 91/92 dapp apresentaram correspondência quanto ao ajuste matemático nas diferentes intensidades amostrais e períodos de avaliação variaram entre moderado e forte.

A grade amostral utilizada para a condução desse estudo constitui-se numa técnica bastante laboriosa para o dia a dia do produtor rural, inviabilizando, portanto seu uso de forma corriqueira na propriedade. Com o objetivo de dar maior praticidade ao usuário de tais técnicas, foram realizadas simulações utilizando um menor número de pontos amostrais, por meio de um maior espaçamento entre as plantas analisadas, para verificar a permanência ou não das zonas de manejo selecionadas quando utilizada a grade efetivamente coletada no campo. Para tanto foram eliminados alguns pontos de amostragem da planilha tida como testemunha (820 pontos) e refeito todos os procedimentos estatísticos e geoestatísticos. Assim foram gerados mapas de distribuição espacial com os 820 pontos de amostragem e simulações com 410, 180, 90 e 45 pontos (respectivamente Figuras 1 a, b, c, d, e).
Figura 1. Croqui das diferentes densidades de amostragem 820(a); 410(b); 180(c); 90(d) e 45(e).
Agricultura de precisão: resultados de um novo olhar (COELHO et al., 2009). O número de pontos considerados interfere na análise geoestatística e na interpolação por krigagem (SOUZA; SOUZA, 2011). A não utilização da krigagem é sugerida quando os variogramas calculados forem oriundos de pontos muitos espaçados, caso contrário os mapas dos atributos do solo utilizados para determinar as taxas variáveis de fertilizantes e de defensivos não irão refletir os principais padrões de variação presente (KE; OLIVE, 2008).

A diminuição do número de amostras corresponde a mapas mais dissimilares em relação a referência (COELHO et al., 2009). O número de pontos considerados interfere na análise geoestatística e na interpolação por krigagem (SOUZA; SOUZA, 2011). A não utilização da krigagem é sugerida quando os variogramas calculados forem oriundos de pontos muitos espaçados, caso contrário os mapas dos atributos do solo utilizados para determinar as taxas variáveis de fertilizantes e de defensivos não irão refletir os principais padrões de variação presente (KERRY; OLIVER, 2008).

Tabela 1. Parâmetros do variograma para o teor foliar de N total aos 29/30; 36/37; 43/44 e 91/92 dias após a poda de produção (dapp) da videira de mesa, nas respectivas densidades amostrais de 820, 410, 180, 90 e 45.

<table>
<thead>
<tr>
<th>Pontos</th>
<th>Modelo</th>
<th>Alcance (m)</th>
<th>C₀</th>
<th>C₀+C</th>
<th>IDE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29/30 dapp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>Exponencial</td>
<td>10.5</td>
<td>0.8317</td>
<td>3.4030</td>
<td>75</td>
</tr>
<tr>
<td>410</td>
<td>Exponencial</td>
<td>19.2</td>
<td>1.1370</td>
<td>3.3480</td>
<td>66</td>
</tr>
<tr>
<td>180</td>
<td>Exponencial</td>
<td>11.10</td>
<td>0.4177</td>
<td>3.0390</td>
<td>87</td>
</tr>
<tr>
<td>90</td>
<td>Exponencial</td>
<td>55.20</td>
<td>1.4130</td>
<td>2.8270</td>
<td>50</td>
</tr>
<tr>
<td>45</td>
<td>Exponencial</td>
<td>41.1</td>
<td>0.7113</td>
<td>2.9590</td>
<td>76</td>
</tr>
<tr>
<td>36/37 dapp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>Exponencial</td>
<td>11.5</td>
<td>0.6772</td>
<td>2.8160</td>
<td>76</td>
</tr>
<tr>
<td>410</td>
<td>Exponencial</td>
<td>9.6</td>
<td>0.6686</td>
<td>2.7770</td>
<td>76</td>
</tr>
<tr>
<td>180</td>
<td>EPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>EPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Esférico</td>
<td>85.3</td>
<td>1.0270</td>
<td>2.7600</td>
<td>63</td>
</tr>
<tr>
<td>43/44 dapp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>Exponencial</td>
<td>61.2</td>
<td>1.6619</td>
<td>2.9510</td>
<td>44</td>
</tr>
<tr>
<td>410</td>
<td>Exponencial</td>
<td>86.1</td>
<td>1.7290</td>
<td>3.4590</td>
<td>50</td>
</tr>
<tr>
<td>180</td>
<td>Exponencial</td>
<td>16.05</td>
<td>0.4060</td>
<td>2.9020</td>
<td>86</td>
</tr>
<tr>
<td>90</td>
<td>Exponencial</td>
<td>76.2</td>
<td>1.5920</td>
<td>3.1850</td>
<td>50</td>
</tr>
<tr>
<td>45</td>
<td>Esférico</td>
<td>91.2</td>
<td>1.0060</td>
<td>2.9720</td>
<td>66</td>
</tr>
<tr>
<td>91/92 dapp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>Exponencial</td>
<td>65.7</td>
<td>1.5180</td>
<td>3.0370</td>
<td>50</td>
</tr>
<tr>
<td>410</td>
<td>Exponencial</td>
<td>57.6</td>
<td>1.5080</td>
<td>3.0170</td>
<td>50</td>
</tr>
<tr>
<td>180</td>
<td>Exponencial</td>
<td>99.6</td>
<td>1.6370</td>
<td>3.2750</td>
<td>50</td>
</tr>
<tr>
<td>90</td>
<td>Exponencial</td>
<td>69.3</td>
<td>1.6700</td>
<td>3.3410</td>
<td>50</td>
</tr>
<tr>
<td>45</td>
<td>Esférico</td>
<td>84.9</td>
<td>1.2870</td>
<td>3.9840</td>
<td>67</td>
</tr>
</tbody>
</table>

Alcance em m; C₀: efeito pepita; C₀+C: patamar; IDE: índice de dependência espacial; EPP: efeito pepita puro.
Figura 2. Variogramas escalonados do teor foliar de N total aos 29/30; 36/37; 43/44 e 91/92 dapp da videira nas diferentes densidades amostrais.

4. Conclusões

A densidade amostral influenciou no padrão de distribuição espacial dos dados coletados. A utilização da malha contendo 410 pontos amostrais apresentou um padrão de distribuição similar ao de 820 pontos, validando assim a utilização da menor densidade amostral.

Agradecimentos

À fazenda Sasaki pela concessão da área experimental, fornecimento de dados e apoio, e à FACEPE, pelo apoio financeiro para a realização do trabalho.

Referências

Aplicação dos conceitos geoestatísticos para o manejo da irrigação em videira no Vale do Submédio São Francisco**

Patricia dos Santos Nascimento*1, Juliano Athayde Silva*2, Bruno Ricardo Silva Costa*2, Luís Henrique Bassoi*3

1Doutora em Agronomia pela UNESP FCA campus de Botucatu
2Pós-graduandos em Engenharia Agrícola, Univasf campus de Juazeiro
3Pesquisador da Embrapa Semiárido Petrolina (PE)

*E-mails: patyyn@yahoo.com.br, julianosathayde@hotmail.com, bruno.ricardo.silva@hotmail.com, luis.bassoi@embrapa.br
**Parte da Tese de Doutorado da primeira autora apresentada ao Programa de Pós-graduação em Agronomia (Irrigação e Drenagem), da FCA/UNESP campus de Botucatu

Resumo: A otimização na aplicação dos recursos hídricos constitui uma das preocupações da agricultura irrigada. Nesse sentido, esta pesquisa foi desenvolvida com o objetivo de aplicar o conceito de zonas homogêneas do solo para a realização do manejo diferenciado da irrigação em um pomar de videira. O experimento foi conduzido em área de produção comercial, localizada no Perímetro Irrigado Senador Nilo Coelho, em Petrolina-PE. Foi selecionada uma área com 40 fileiras de plantas e 82 plantas por fileira, em um pomar de videira cultivar Thompson Seedless sobre o porta-enxerto SO4, com 1 difusor por planta e conduzida no sistema de latada. Amostras de solo foram coletadas nas profundidades de 0,0-0,2 e 0,2-0,4 m para a determinação da curva de retenção de água no solo. A visualização da distribuição espacial da água disponível na profundidade de 0,2-0,4 m possibilitou a seleção de 6 zonas homogêneas para a característica avaliada, as quais nortearam a instalação de equipamentos para a medida da umidade do solo. Durante os ciclos de cultivo (2011 e 2012) foram quantificados o número de cachos produzidos na área de produção. Com base nos resultados foi possível observar as diferenças quanto a quantidade de água armazenada no solo, o que auxiliou o ajuste das láminas de irrigação aplicada em cada uma das zonas. Assim, o volume de água aplicado foi reduzido em algumas dessas zonas sem prejuízo à produtividade da cultura.

Palavras-chave: água disponível no solo, geoestatística, dependência espacial

Application of geostatistical concepts for irrigation scheduling in grapevine in the Lower Middle São Francisco Valley

Abstract: The optimization in the water resources use is a major concern of irrigated agriculture. In this sense, this research was developed with the goal of applying the concept of soil homogeneous zones to perform a differential management of irrigation in a vineyard. The experiment was carried out in a commercial production area, located in the Senador Nilo Coelho Irrigation Scheme, in Petrolina, State of Pernambuco, Brazil. It was selected an area with 40 rows of plants and 82 plants per row. The grapevine cv. Thompson Seedless grafted on SO4 was irrigated by one microsprinkler per plant, and vines were conducted in the overhead trellis system. Soil samples were collected in 0.0-0.2 and 0.2-0.4 m depths for the determination of soil water retention curve. The visualization of the spatial distribution of the available soil water at 0.2-0.4 m depth enabled the definition of 6 homogeneous zones which guided the installation of soil moisture sensors. In 2011 and 2012 growing seasons, the number of cluster per vine were counted in the cropped area. It was possible to observe the differences in the soil water stored in all zones, which helped the adjustment of irrigation depth applied in each zone. Thus, the volume of water applied was reduced in some of them without reduction of crop yield.

Keywords: available soil water, geostatistics, spatial dependence
1. Introdução

Um dos princípios para o correto manejo do solo e da água consiste no prévio conhecimento acerca da variabilidade espacial dos atributos físico-hídricos do solo. Conhecer a variabilidade espacial de atributos do solo que controlam a produtividade das culturas, os riscos de contaminação do ambiente e investigar as causas dessa variabilidade são fatores importantes em um sistema de produção que vise sustentabilidade por meio do manejo regionalizado de insumos e práticas agrícolas, como é o sistema de agricultura de precisão - AP (CORÁ et al, 2004). As aplicações dos conceitos associados à AP imprimiram um novo paradigma na cadeia produtiva de alimentos, num momento em que a necessidade por técnicas mais precisas e sustentáveis são imprescindíveis para a conservação do meio ambiente.

O conhecimento de características físico-hídricas do solo como a capacidade de retenção de água, densidade do solo e granulometria, dentre outras, é muito importante na escolha do sistema de irrigação a ser utilizado, no cálculo da quantidade de água a ser aplicada na irrigação, bem como sua frequência de aplicação, tornando-se óbvio que o conhecimento da variabilidade destas propriedades dentro da área a ser irrigada é de extrema importância (SOUZA; QUEIROZ; GHEYI, 1999). O conhecimento da localização de áreas onde estão concentrados os maiores e/ou menores valores de determinada característica físico-hídrica, são importantes para o planejamento do manejo da irrigação, tanto na agricultura convencional como na AP (LIMA et al., 2006). Essa nova forma de visualização da área de produção tem sido facilitada graças aos avanços das tecnologias, que possibilitaram o estudo da variabilidade espacial dos atributos do solo e a geração de mapas de rendimento georreferenciados.

A utilização da descrição espacial de variáveis mais importantes no manejo de irrigação auxilia um manejo mais racional de água na área e o controle local pode ser realizado após a subdivisão da área, em zonas mais homogêneas (COELHO FILHO; COELHO; GONCALVES, 2001). A racionalização do uso da água tem sido o alvo de muitas investigações na agricultura, por meio de sistemas que possibilitem uma maior eficiência, procurando explorar os recursos naturais de uma forma mais direcionada e consciente (BATISTA, 2006).

A irrigação é uma prática agrícola que quando bem manejada contribui para a rentabilidade das cadeias produtivas em diferentes regiões. Nesse contexto, o objetivo desse trabalho foi a aplicação de zonas homogêneas do solo para a realização do manejo diferenciado da irrigação em um pomar de videira em Petrolina-PE.

2. Material e Métodos

O estudo foi realizado no Vale do Submédio São Francisco, em Petrolina-PE, no lote 180 do Perímetro Irrigado Senador Nilo Coelho, Núcleo 5, em um Neossolo Quartzarênico (EMBRAPA, 2006). Foi selecionada uma área com 40 fileiras de plantas e 82 plantas por fileira, em um pomar de videira cv. Thompson Seedless sobre o porta-enxerto SO4, plantada em maio de 2004 no espaçamento de 4 × 2,5 m, irrigada por microaspersão, com 1 difusor por planta com vazão aferida de 30 L.h⁻¹. Registros de linha foram instalados entre as videiras 22 e 23 e 62 e 63 para que a aplicação de água pudesse ser dividida em três partes, pois foi constatada pelo produtor ao longo dos anos a presença de drenagem mais lenta em partes da área, compreendidas entre as plantas 1 a 22 (Figura 1b). Quatro válvulas derivavam a água de irrigação para a área, sendo uma para cada 10 fileiras. Para avaliar a variabilidade espacial da água disponível (AD) na área de 3,2 ha e a delimitação de zonas homogêneas de manejo, foram coletadas amostras deformadas de solo a 0,0-0,20 e 0,20-0,40 m de profundidade, em 4 transeções (fileiras 5, 15, 25 e 35), totalizando 40 amostras por fileira de plantas e camada de solo avaliada (Figura 1b). As amostras foram analisadas no Laboratório de Análise de Solo, Água e Planta da Embrapa Semiárido, onde foi obtida a relação entre o potencial mátrico e a umidade do solo por meio do método da centrífuga (SILVA; AZEVEDO, 2002), sendo considerada como umidade a capacidade de campo (θe) e o ponto de murcha permanentemente a umidade retida à 1,5 MPa (θpmp). A água disponível (AD, mm) foi obtida a partir da diferença entre θe e θpmp em cada camada.
de solo analisada. O programa GS+, versão 7.0 (ROBERTSON, 1998) foi utilizado para avaliar a variabilidade e a dependência espacial entre as amostras coletadas no campo. Uma vez ajustado um modelo matemático ao variograma, utilizou-se a técnica de krigagem para realizar a interpolação dos dados para os locais não amostrados sem tendência e com variância mínima (VIEIRA, 2000). Para a construção dos mapas de isolinha da AD foi utilizado o programa SURFER 7.0 (GOLDEN...,..., 1999). A água disponível da camada 0,2-0,4 m foi considerada para a delimitação das zonas homogêneas (Figura 1a), pois essa apresentou um alcance de 188 m, maior que o alcance de 101 m obtido para a camada de 0-0,2 m. Selecionaram-se então 3 zonas homogêneas para o atributo avaliado, entre as fileiras 1 e 20, correspondentes as 2 primeiras válvulas de derivação de água do sistema de irrigação (1,6 ha), de modo que cada uma das zonas representasse um ponto dentro de zona com alta, média e baixa AD (respectivamente zonas 3, 5 e 6). Também foi intenção desse estudo que cada zona estivesse inserida em uma das subáreas originadas pela instalação pelo produtor dos registros de linhas nas mangueiras de irrigação (zonas 1, 2 e 4). Assim, em cada uma das 6 zonas de manejo foi instalada 1 bateria composta tensiómetros nas profundidades de 0,20, 0,40 e 0,60 m, os quais foram utilizados para o monitoramento de θ durante dois ciclos de produção da videira (18 de abril a 5 de agosto de 2011 e 19 de março a 7 de julho de 2012). O manejo de irrigação foi realizado com base na evapotranspiração da cultura (ETc, mm), estimada pelo produto entre a evapotranspiração de referência (ETO, mm), medida em estação agrometeorológica instalado na fazenda, e os coeficientes de cultura (kc) em cada uma das fases fenológicas adotadas pelo produtor. A lâmina bruta de irrigação (LB, mm) foi estimada pela relação entre a ETc e a eficiência de aplicação de água (Ea), considerada como sendo de 90%. A diferenciação da lâmina de irrigação ocorreu mediante o monitoramento de θ para o cálculo da AD, e foi feito com base na abertura ou fechamento dos registos de linhas instalados pelo produtor, e que dividia cada válvula de irrigação em três partes. O volume de água por planta (V, m³) correspondente à LB aplicada por planta, foi calculado pelo produto entre o tempo de irrigação (TI, h), número de emissores por planta (n) e vazão aferida do difusor (30 L.h⁻¹). O produto foi dividido por 1000 para obtenção do volume em metros cúbicos.

Em ambos os ciclos, o número de cachos por planta foi contabilizado em toda a área submetida ao manejo diferenciado da irrigação.

3. Resultados e Discussão

No ciclo de produção de uva de 18 de abril a 5 de agosto de 2011, a aplicação da lâmina de irrigação ocorreu sem diferenciação entre as zonas homogêneas até os 70 dias após a poda de produção - dapp. Os volumes de água aplicado por planta correspondem a 3,5 m³ na válvula 1 (fileiras 1 a 10) e 3,3 m³ na válvula 2 (fileiras 11 a 20). Os altos valores de volume de água no início do ciclo são decorrentes da elevação da umidade do solo antes da poda de produção, por meio de irrigação excessiva. Essa é uma prática comum no sistema de produção de uva no Vale do Submédio São Francisco, pois uma vez que as folhas são removidas na poda (transpiração é cessada temporariamente), o umedecimento na profundidade do solo onde se encontram as raízes se faz necessário para que a absorção de água pelas raízes ocorra pela interceptação radicular.

De acordo com a Figura 2, a umidade do solo da zona 1 (AD intermediária) apresentou-se mais baixa entre 71 e 109 dapp, quando comparada as zonas 2 (AD alta) e 4 (AD intermediária), as quais apresentaram valores de umidade mais próximos entre si. Nas zonas homogêneas 3 e 5, caracterizadas por valores intermediários de AD, o comportamento da umidade do solo foi semelhante. A zona 6 (AD baixa), apresentou variações umidades variadas ao longo do ciclo de cultivo. O volume total de água aplicado por planta entre 71 e 109 dapp nas zonas 1 e 6, foi de 1,44 m³, ao passo que nas zonas 2, 3, 4 e 5, esse valor foi de 1,28 m³.

O segundo ciclo de cultivo avaliado (19 de março a 7 de julho de 2012) caracterizou-se pela maior aplicação da proposta de manejo diferenciado da irrigação pelos técnicos da fazenda. O manejo de irrigação baseou-se na aplicação da lâmina de água sem diferenciação em todas as zonas até 69 dapp. As zonas 1, 2 e 3,
Figura 1. Mapa de distribuição da água disponível (AD) na profundidade de 0,2-0,4 m em pomar de videira cv. Thompson Seedless (a); Croqui da área experimental, com as transeções para as coletas de amostras de solo (fíleiras 5, 15, 25 e 35), e os 6 pontos de monitoramento da umidade do solo (b).

Figura 2. Umidade do solo (θ, m³.m⁻³) medida por tensiómetros a partir dos 70 dias após a poda de produção (dapp) na camada 0,0-0,60 m durante o ciclo de 2011, nas zonas homogêneas.
A Agricultura de Precisão para culturas perenes e semi-perenes | 411

Presentes na válvula de derivação 1 (fileiras 1 a 10) receberam, respectivamente, um total de 4,4 m³ por planta, enquanto as zonas 4, 5 e 6, presentes na válvula 2 (fileiras 11 a 20), receberam 5,0 m³ por planta. A partir de 70 dapp (Figura 3), as láminas de irrigação foram diferenciadas entre as 6 zonas de manejo. O comportamento da umidade do solo nas zonas 1, 2 e 4 no segundo ciclo de produção assemelhou-se ao observado durante o ciclo anterior (2011), onde a zona 1 manteve menores valores de umidade; no entanto, no ciclo de 2012 houve uma maior proximidade nos valores de umidade coletados entre as zonas de manejo avaliadas. Os volumes de água aplicados por videira entre 70 e 110 dapp foram maiores nas zonas 1 e 6 (1,8 m³ em cada uma delas), enquanto que nas zonas 3 e 4, as videiras receberam 1,5 m³ por planta, e nas zonas 2 e 5, 1,6 m³ por planta. As zonas homogêneas quanto ao número de cachos por planta está apresentado na Figura 4, onde observa-se um comportamento similar entre ambos os anos.

Figura 3. Umidade do solo (θ, m³.m⁻³) medida por tensiômetros a partir dos 70 dias após a poda de produção (dapp) na camada 0,0-0,60 m durante o ciclo de 2012, nas 6 zonas homogêneas.

4. Conclusões

O conhecimento da distribuição espacial da água disponível, em uma área de produção de uva de mesa no Vale do Submédio São Francisco, por meio da análise geoestatística, possibilitou a identificação de zonas de manejo. O manejo diferenciado da irrigação com base no monitoramento da umidade do solo em cada uma dessas zonas permitiu que aquelas que apresentaram maiores valores recebessem um menor volume de água.

Agradecimentos

À fazenda Sasaki, pela concessão da área, fornecimento de dados e apoio, e à FACEPE, pelo apoio financeiro para a realização do trabalho.

Referências

Definição da malha de amostragem da condutividade elétrica do solo para obtenção de zonas de manejo em pomar de videira

Eliel Ferreira do Nascimento¹, Luis Henrique Bassoi², Ladislau Marcelino Rabello³

¹Pos-graduando, Bolsista do CNPq, FCA/ UNESP, Depto. Engenharia Rural, CP 237, CEP 18603-970, Botucatu, SP, Brasil
²Pesquisador, Embrapa Semiárido, CP 23, CEP 56302-970, Petrolina, PE, Brasil
³Pesquisador, Embrapa Instrumentação, CP 1452, CEP 13560-970, São Carlos, SP, Brasil

*E-mails: elielpet@gmail.com, luis.bassoi@embrapa.br, ladislau.rabello@embrapa.br

Resumo: Para a aplicabilidade da agricultura de precisão, torna-se imprescindível o desenvolvimento de metodologias capazes de reduzir o número de amostragens no campo, de forma que possa garantir a confiabilidade dos mapas gerados sobre a variabilidade espacial dos atributos do solo. Esta pesquisa foi desenvolvida com o objetivo de analisar as diferentes zonas homogêneas da condutividade elétrica aparente do solo (CEa), obtidas em função das várias densidades amostrais e sua relação com a umidade do solo. O estudo foi realizado em um pomar de 1,6 ha de videira cv. Thompson Seedless irrigado por microaspersão no município de Petrolina-PE. Para a avaliação da CEa foi utilizado um medidor portátil, que possibilitou a avaliação nas camadas de solo de 0-0,40 m e 0-0,80 m. Os dados das coletas realizadas em 2012 e 2013 foram submetidos à análise geoestatística, interpolação por krigagem e geração de mapas de contorno, os quais auxiliaram na delimitação e avaliação das diferentes zonas homogêneas, geradas a partir de diferentes densidades de amostragem (820, 410, 180, 90 e 45 pontos). Os resultados mostram que foi possível definir o número de amostras necessárias para delimitar com confiabilidade as zonas homogêneas e auxiliar o produtor na tomada de decisão quanto ao manejo de solo.

Palavras-chave: semiárido, geoestatística, solo arenoso

Definition of sampling grid of soil electric conductivity to obtain management zones in a vine orchard

Abstract: The development of methodologies that can reduce the number of samples in the field is essential for the applicability of precision agriculture. Then, the reliability of the generated maps of spatial variability of soil attributes can be ensured. This research was carried out in order to analyze the different homogenous zones of apparent soil electrical conductivity (CEa), obtained according to the different sampling grids and its relation to soil moisture. The study was performed in a 1.6 ha orchard of vine cv. Thompson Seedless irrigated by microsprinkle in Petrolina, state of Pernambuco, Brazil. A portable meter was used for the measurement of CEa at 0 to 0.40 and 0 to 0.80 m soil layers. Data from samples collected in 2012 and 2013 were analyzed by geostatistics, kriging interpolation and generation of contour maps, which guided the delineation and evaluation of different homogeneous zones, obtained from different sampling grids (820, 410, 180, 90, and 45 points). The results showed that it was possible to set the number of samples required to delineate with reliability the homogeneous zones and assist the grower in making the decision as to soil management.

Keywords: semi-arid, geostatistics, sandy soil
1. Introdução

Um dos fatores limitantes ao emprego da agricultura de precisão consiste na necessidade de uma alta densidade amostral para detecção da variabilidade existente na área de cultivo, para uma posterior delimitação de zonas homogêneas (NASCIMENTO, 2013). A técnica de se amostrar intensamente o solo na obtenção de informação da variabilidade dos seus componentes físicos e químicos tem sido alvo de críticas pelo seu elevado custo, tornando-se, por vezes, economicamente inviável em sistemas produtivos (FAULIN, 2005).

Dessa forma, para a aplicabilidade da agricultura de precisão, torna-se imprescindível o desenvolvimento de metodologias capazes de reduzir o número de amostragens no campo, garantindo a confiabilidade dos mapas gerados da variabilidade espacial dos atributos do solo.

A medida da condutividade elétrica aparente do solo (CEa) se tornou valiosa para identificar as características físico-químicas do solo que influenciam os padrões de rendimento das culturas e para estabelecer a variação espacial dessas propriedades do solo (CORWIN et al., 2003).

Ao se fazer medidas da CEa e de posse das ferramentas geoestatísticas, pode-se gerar mapas que possibilitam a observação de zonas características que podem variar espacialmente dentro de uma área. Uma vez definida a população objeto de estudo, necessita-se escolher a melhor maneira de avaliar algumas de suas características.

Nesse caso, delimita-se a observação a uma amostra da população, a qual deve reproduzir, o mais fielmente possível, suas características, com um número mínimo de amostras para estimar o valor médio com determinada exatidão (CARVALHO et al., 2002). O uso de equipamentos portáteis e a redução da densidade amostral podem permitir a determinação rápida da CEa em campo, com maior praticidade e menor custo. Dessa forma, é possível dividir a área em zonas de manejo e tomar decisões principalmente relacionadas à aplicação de insumos e irrigação.

Em face da análise da variabilidade espacial do solo no campo necessitar de grande número de observações, pesquisas para o desenvolvimento de procedimentos, a fim de minimizar o número de observações sem prejuízo das informações, tornaram-se prioritárias (MORETI et al., 2007). Dessa forma, este trabalho foi desenvolvido para avaliar a variabilidade espacial de diferentes densidades de amostragem de solo em um pomar de videira de mesa irrigada no Vale do Submédio São Francisco, em Petrolina - PE.

2. Material e Métodos

O estudo foi realizado numa área de produção de uva de mesa, localizada no Perímetro Irrigado Senador Nilo Coelho, Núcleo 5, em Petrolina-PE (lat.: 9º 23' 12,8" S, long.: 40º 39' 13,8" O, alt.: 394 m). A área apresenta um solo classificado como Neossolo Quartzarênico (EMBRAPA, 2006). Para a realização do trabalho foi selecionada uma área com 20 fileiras de plantas e 82 plantas por fileira (1,6 ha), em um parreiral de videira cultivar Thompson Seedless sobre o porta-enxerto SO4, plantada em maio de 2004 no espaçamento de 4 × 2,5 m, conduzida no sistema de latada e irrigada por microaspersão. Para a medição da condutividade elétrica aparente do solo (CEa, dS⁻¹) foi utilizado um medidor portátil (RABELLO, 2009), o qual possibilita determinações nas camadas de solo de 0-0,40 m e 0-0,80 m (Figura 1a).

As leituras foram realizadas a cada duas plantas em todas as linhas de cultivo, originando uma malha de amostragem de 5 × 4 m (820 pontos). As leituras foram realizadas durante o ciclo de produção de uva em 2012 (27 e 28 de junho), e após o ciclo de produção, durante a formação das plantas (22 de janeiro de 2013). Nesses dias, a umidade do solo (Θ, m³.m⁻³) foi medida pela técnica de moderação de neutrons, de 0,15 a 0,75 m e em intervalos de 0,15 m (Figura 1b).

Os dados de CEa foram submetidos a análise por meio do software GS+ 7,0 com o objetivo de...
determinar a dependência espacial. O índice de dependência espacial dos atributos (IDE), que é dado por \[\frac{C}{(C_0+C)} \times 100 \], foi determinado e classificado, segundo Zimback (2001), como baixo (IDE < 25%), moderado (25% < IDE < 75%) e forte (IDE > 75%). Posteriormente, as zonas homogêneas quanto a CEa foram determinadas. Para as análises dos dados foram considerados a densidade de amostragem de 820 pontos e, simulando uma redução da quantidade de leituras com o equipamento, também foram analisadas as densidades de 410, 180, 90 e 45 pontos (Figura 2).

3. Resultados e Discussão

Estão apresentados na Tabela 1, as análises geoestatísticas das diferentes densidades de amostragens, profundidades e períodos de avaliação para a CEa. Observa-se que os modelos matemáticos que melhor se ajustaram aos dados coletados nas duas datas avaliadas foram o esférico, o exponencial e o gaussiano. No entanto, o modelo esférico foi o que melhor se ajustou aos períodos avaliados, representando 55% dos ajustes. O modelo exponencial foi o que permitiu o melhor ajuste dos dados da CEa para profundidade 0-0,40 m para o ano de 2012, e o esférico na profundidade 0-0,80 m para os dois anos avaliados, corroborando com Leão et al. (2009).

Os valores de alcance variaram de 35,9 a 106,9 m conforme a Tabela 1, sendo que no ano de 2013 os alcances foram superiores aos de 2012, indicando uma menor continuidade espacial no primeiro ano. Os valores de alcance observados nos dois anos indica que as grades amostrais empregadas foram adequadas, conseguindo-se obter a dependência espacial da CEa. Dessa forma o alcance mínimo para todos os períodos e densidades amostrais utilizadas foi de 35,9 m, suficiente para que se detecte a variabilidade espacial na menor densidade amostral. Neste estudo observou-se que a CEa apresentou moderado grau de dependência espacial para as duas profundidades e períodos avaliados. No entanto, no ano de 2013, o grau de dependência espacial foi um pouco maior que no ano de 2012, podendo ser atribuída a umidade do solo (Θ). O valor médio de Θ na camada de solo de 0-0,45 m e 0-0,75 m, na primeira e segunda medida, foi de 0,094 m³.m⁻³ e de 0,096 m³.m⁻³, e de 0,108 m³.m⁻³.

Fig. 1. Medidor portátil da condutividade elétrica aparente do solo (A) e a sonda de neutrons utilizada para o monitoramento da umidade do solo (B).
Figura 2. Croqui das diferentes densidades de amostragem da condutividade elétrica aparente do solo: A (820), B (410), C (180), D (90) e E (45).
As densidades amostrais não interferiram negativamente no IDE, pois para todos os valores do IDE foram semelhantes e proporcionais. Segundo Costa (2011), na análise de variogramas, o efeito pepita (Co) representa a descontinuidade do variograma atribuída a erros de amostragens ou variações locais, não explicados pela variabilidade dos dados para distâncias amostradas. De uma forma geral, a redução do número de amostragens para 90 pontos no campo não interferiu no IDE, podendo o produtor utilizar, com confiabilidade, os mapas gerados para a aplicabilidade da agricultura de precisão.

<table>
<thead>
<tr>
<th>Camada e Ano</th>
<th>Pontos</th>
<th>Modelo</th>
<th>Alcance (m)</th>
<th>Co</th>
<th>Co + C</th>
<th>IDE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0,40 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>820</td>
<td>Exponencial</td>
<td>55,20</td>
<td>2,30</td>
<td>4,61</td>
<td>48,0</td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>Exponencial</td>
<td>35,90</td>
<td>2,53</td>
<td>5,19</td>
<td>51,2</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>Exponencial</td>
<td>70,00</td>
<td>2,81</td>
<td>5,17</td>
<td>45,7</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>Exponencial</td>
<td>66,30</td>
<td>2,20</td>
<td>4,41</td>
<td>50,0</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>Efeito pepita puro</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0-0,80 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>820</td>
<td>Exponencial</td>
<td>45,40</td>
<td>1,94</td>
<td>3,88</td>
<td>50,0</td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>Exponencial</td>
<td>38,90</td>
<td>2,03</td>
<td>4,07</td>
<td>50,0</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>Exponencial</td>
<td>65,00</td>
<td>1,74</td>
<td>4,22</td>
<td>58,8</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>Exponencial</td>
<td>43,60</td>
<td>1,91</td>
<td>3,57</td>
<td>46,6</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>Exponencial</td>
<td>64,88</td>
<td>2,49</td>
<td>4,96</td>
<td>49,7</td>
</tr>
<tr>
<td>0-0,40 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>820</td>
<td>Exponencial</td>
<td>79,30</td>
<td>3,00</td>
<td>6,01</td>
<td>50,0</td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>Exponencial</td>
<td>90,80</td>
<td>3,05</td>
<td>6,97</td>
<td>56,2</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>Gaussiano</td>
<td>76,21</td>
<td>3,83</td>
<td>7,66</td>
<td>50,0</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>Gaussiano</td>
<td>92,14</td>
<td>5,52</td>
<td>9,91</td>
<td>44,2</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>Gaussiano</td>
<td>90,75</td>
<td>2,90</td>
<td>8,47</td>
<td>65,8</td>
</tr>
<tr>
<td>0-0,80 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>820</td>
<td>Exponencial</td>
<td>71,60</td>
<td>2,6</td>
<td>5,39</td>
<td>51,5</td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>Exponencial</td>
<td>81,80</td>
<td>2,49</td>
<td>6,17</td>
<td>59,7</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>Exponencial</td>
<td>86,40</td>
<td>3,40</td>
<td>6,78</td>
<td>49,9</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>Exponencial</td>
<td>106,90</td>
<td>4,68</td>
<td>9,56</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>Exponencial</td>
<td>99,80</td>
<td>2,79</td>
<td>6,73</td>
<td>58,6</td>
</tr>
</tbody>
</table>

A - alcance; Co - efeito pepita; Co + C - patamar; IDE - índice de dependência espacial.
Agricul
tura

Pelos mapas apresentados na Figura 3, pode-se observar maiores valores de CEa no lado esquerdo e direito da área, o qual é evidenciado pela escala de tonalidades azul mais escuro. Na região central da área os valores de CEa são menores, evidenciado pela escala de tonalidades azul mais clara. Em 2012, os mapas da distribuição espacial da CEa apresentaram semelhança entre camadas e densidades amostrais, porém ela foi menor a medida que reduziram-se os pontos. Na camada de 0-0,40 m, o mapa com 45 pontos não foi gerado pois não houve dependência espacial (Tabela 1).

Pelos mapas apresentados na Figura 4, pode-se observar maiores valores de CEa no lado esquerdo e central da área, o qual é evidenciado pela escala de tonalidades azul mais escuro. Na região direita da área os valores de CEa é menor, evidenciado pela escala de tonalidades azul mais clara. Os mapas de CEa gerados em 2013 também apresentaram semelhanças entre as duas camadas e em todas as densidades de amostragem. Nessa medida, a umidade do solo foi superior à observada em 2012. Assim, os mapas de 2013 gerados apresentaram, em geral, maior IDE e melhor semelhança entre os mesmos gerados com diferentes densidades amostrais. Pode-se observar que a redução do número de pontos amostrais não interferiu na qualidade visual do mapa, confirmando uma estabilidade de semelhanças dos mapas à medida que se aplicou as diferentes densidades amostrais da CEa.
Figura 4. Distribuição espacial da condutividade elétrica aparente do solo medida em 22 de janeiro 2013, nas camadas de 0-0,40 m e 0-0,80 m e em cinco densidades amostrais.

4. Conclusões

Para a área em questão é possível reduzir o número de medidas da condutividade elétrica aparente do solo de 820 para 90 pontos, com bom ajuste variográfico.

Os melhores ajustes na interpolação e geração de mapas ocorreram quando a umidade do solo foi maior.

Agradecimentos

À Fazenda Sasaki, pela cessão da área para a realização do trabalho, e à FACEPE, pelo financiamento do projeto.

Referências

Avaliação do comportamento espacial e temporal de alguns atributos da planta de pessegueiro, durante três anos de observações**

Viviane Santos Silva Terra*1, Carlos Reisser Júnior*2, Luís Carlos Timm*3, José Francisco Martins Pereira*2, Flávio Luiz Carpena Carvalho*2, Henrique Oldoni*4

1Doutora, Agronomia pelo PPGSPAF/UFPel-Pelotas, RS
2Pesquisadores, Embrapa Clima Temperado, Pelotas, RS
3Professor Associado, Departamento de Engenharia Rural/FAEM/UFPel-Pelotas-RS, Bolsista CNPq
4Acadêmico, Engenharia Agrícola, CENG/UFPel-Pelotas-RS. Bolsista PIBIC-CNPq

*E-mails: vssterra@yahoo.com.br, carlos.reisser@embrapa.br, lctimm@ufpel.edu.br, jose.fm.pereira@embrapa.br, flavio.carvalho@embrapa.br, lctimm@ufpel.edu.br, henriqueoldoni@gmail.com

**Parte da tese de doutorado do primeiro autor no programa de Pós-Graduação em Sistemas de Produção Agrícola Familiar/FAEM/UFPel

Palavras-chave: geoestatística, prunus pérsica, variabilidade

Evaluation of spatial and temporal behavior of some attributes of the plant peach, during three years of observations

Abstract: The peach orchard is of fundamental importance to the economy of Rio Grande do Sul (RS). In the state one of the main problems faced by producers is the peach orchard management, which in most cases is carried out homogeneously, without considering the spatial and temporal variability exists in the orchard. The study of the spatial and temporal variability of the attributes of the plant can lead to more appropriate management techniques. This study aimed at mapping and assessment of the spatial and temporal attributes of the plant in three seasons (2010/2011, 2011/2012 and 2012/2013). The work was conducted in an experimental area, located in Morro Redondo-RS, in a peach orchard, cv. Esmeralda, where he established a mesh of 101 experimental plants. We evaluated the following attributes of the plant: number of fruits per plant (NFP), average fruit weight per plant (PMFP) and productivity (P). The data set was subjected to exploratory analysis
1. Introdução

A fruticultura é um importante componente do agronegócio brasileiro assumindo destaque na economia do estado do Rio Grande do Sul (RS). Os pomares que geram renda nas pequenas, médias e grandes propriedades, além de originarem empregos diretos e indiretos, também diversificam a economia do RS. No Estado a cultura do pessegueiro se destaca, dentre as fruteiras de clima temperado, pelo fato de ser de alta rentabilidade e também uma alternativa para geração de renda e emprego (NAKASU, 2003).

Um dos principais problemas enfrentados pelos produtores de pêssego é o manejo do pomar, que tem sido, na maioria das vezes, realizado de forma homogênea, sem considerar a variabilidade espacial dentro da área e a existência de áreas específicas (ESSER, 2002).

Desta forma, alguns aspectos merecem atenção da pesquisa, dentre os quais, pode-se destacar o conhecimento do ambiente físico no qual o pessegueiro se desenvolve. Neste sentido, o estudo da variabilidade espacial e temporal dos atributos da planta poderá conduzir a técnicas de manejo mais apropriadas, buscando a racialização do uso da água, a aplicação de fertilizantes e corretivos e a preservação dos recursos naturais disponíveis.

Nesse contexto, a gestão de sítios específicos nas unidades produtivas é uma abordagem recente, oriunda do conceito de Agricultura de Precisão (AP). A AP apresenta-se com o objetivo de aplicar os insumos no local exato, no momento oportuno e na quantidade necessária às necessidades das plantas, buscando um aumento na sua produtividade. Desta forma, o estudo da variabilidade espacial e temporal, bem como das interações e influências dos inúmeros fatores relacionados com a produtividade da cultura, têm-se mostrado um grande desafio para os pesquisadores.

Este trabalho teve por objetivo mapear e avaliar o comportamento espacial das variáveis, número de frutos por planta (NFP), peso médio de frutos por planta (PMFP) e produtividade (P), em um pomar de pessegueiro, cv. Esmeralda, nas safras de 2010/2011, 2011/2012 e 2012/2013 no município de Morro Redondo-RS.

2. Material e Métodos

A área experimental possui aproximadamente 1,8ha, sendo composta por 18 linhas, num total de 1.450 plantas, com espaçamento entre plantas de 1,5m e entre linhas de 6,0m. Para o estabelecimento da malha experimental foram selecionadas, aleatoriamente, 102 plantas, na qual uma encontrava-se morta, totalizando 101 plantas (Figura 1).

Analisaram-se os atributos das 101 plantas de pessegueiro nas safras de 2010/2011, 2011/2012 e 2012/2013. Os principais atributos analisados foram: i) número de frutos por planta (NFP); os frutos colhidos foram colocados dentro de caixas plásticas, onde foram realizadas as contagens de...
Para a análise geoestatística foi utilizado o pacote GEOEST descrito em Vieira et al. (2002), que permite o ajuste dos modelos e a elaboração dos mapas, por meio da krigagem. A manipulação e a visualização espacial dos mapas foram realizadas utilizando o software SURFER (GOLDEN..., 1999). Todos os modelos de semivariograma foram submetidos à validação pelo método “Jack-Knifing” (VIEIRA et al., 2002). O grau de dependência espacial (GD) foi classificado segundo Zimback (2001), como: GD≤25%; 25%<GD≤75% e GD>75%, em baixo, moderado e alto, respectivamente.

3. Resultados e Discussão

A Tabela 1 apresenta as estatísticas descritivas para os dados referentes aos atributos da planta, nas safras de 2010/2011, 2011/2012 e 2012/2013. Pode-se observar nas safras, que os valores da média e mediana das variáveis PMFP, NFP e P são próximas. A dispersão dos dados em torno da média, expressa pelo coeficiente de variação (CV), foi baixa (CV≤15%) para a variável PMFP.
em todas as safras, de acordo com a classificação proposta por Wilding e Drees (1983). As variáveis NFP e P apresentaram uma dispersão classificada como moderada (15%<CV≤35%) as safras de 2011/2012 e 2012/2013. Já os valores do CV foram altos (CV>35%) para NFP (CV=54,6%) e P (CV=55,7%) para o ano de 2010 (Tabela 1). Essa diminuição na variabilidade dos dados de NFP e P pode ser atribuída a ocorrência de vento de elevada velocidade (72,4Km h⁻¹) na área experimental na data de 31 de outubro de 2010, o qual causou uma grande queda de frutos e com isso uma heterogeneidade na distribuição do número de frutos por planta ao longo do pomar. Balastreire (2001) e Konopatzki (2008) também verificaram alta variabilidade da produtividade para a cultura do café e da pereira, mostrado pelo alto coeficiente de variação. As distribuições de NFP e P não seguiram a tendência de normalidade na safa de 2010/2011 pelo teste de Shapiro e Wilk (p ≤ 0,05), entretanto, já na safra de 2011/2012 elas apresentaram tendência de normalidade (Tabela 1).

Na Tabela 2 são apresentados os modelos matemáticos ajustados aos semivariogramas experimentais e os respectivos parâmetros de ajustes para os atributos da planta de pessegueiro avaliados nas safras de 2010/2001, 2011/2012 e 2012/2013. Analisando a Tabela 2, observa-se que o modelo exponencial foi o que melhor se ajustou as variáveis da planta. A faixa de dependência espacial (a) variou de 43,22m (produtividade- P) a 77,55m (número de frutos/planta- NFP) na mesma safra (2012/2013), enquanto que o GD foi classificado como alto para variável NFP (safra 2012/2013) e moderado para as demais variáveis nas 3 safras (Tab. 2).

Como esperado, os mapas de distribuição espacial dos atributos NFP e P são similares já que no cálculo da produtividade o número de frutos por planta é levado em consideração (Figura 2). Analisando a Figura 2, verifica-se que as zonas de maior produtividade do pessegueiro ocorreram na parte norte e leste da área experimental nas safras

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Média</th>
<th>Mediana</th>
<th>DP</th>
<th>CV</th>
<th>C_s</th>
<th>C_k</th>
<th>SW (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMFP (kg)</td>
<td>0,11</td>
<td>0,11</td>
<td>0,014</td>
<td>13,6</td>
<td>-0,44</td>
<td>0,78</td>
<td>>0,100 (N)</td>
</tr>
<tr>
<td>NFP (*)</td>
<td>57,53</td>
<td>54,00</td>
<td>31,398</td>
<td>54,6</td>
<td>0,40</td>
<td>-0,76</td>
<td>0,025 (NN)</td>
</tr>
<tr>
<td>P (kg)</td>
<td>6,41</td>
<td>5,86</td>
<td>3,566</td>
<td>55,7</td>
<td>0,53</td>
<td>-0,33</td>
<td>0,034 (NN)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Média</th>
<th>Mediana</th>
<th>DP</th>
<th>CV</th>
<th>C_s</th>
<th>C_k</th>
<th>SW (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMFP (kg)</td>
<td>0,11</td>
<td>0,11</td>
<td>0,009</td>
<td>8,3</td>
<td>0,29</td>
<td>-0,19</td>
<td>>0,100 (N)</td>
</tr>
<tr>
<td>NFP (*)</td>
<td>180,54</td>
<td>178,00</td>
<td>48,341</td>
<td>26,8</td>
<td>-0,01</td>
<td>-0,11</td>
<td>>0,100 (N)</td>
</tr>
<tr>
<td>P (kg)</td>
<td>20,11</td>
<td>20,12</td>
<td>5,327</td>
<td>26,5</td>
<td>-0,17</td>
<td>-0,39</td>
<td>>0,100 (N)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Média</th>
<th>Mediana</th>
<th>DP</th>
<th>CV</th>
<th>C_s</th>
<th>C_k</th>
<th>SW (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMFP (kg)</td>
<td>0,10</td>
<td>0,10</td>
<td>0,013</td>
<td>12,7</td>
<td>0,82</td>
<td>1,76</td>
<td><0,010 (N)</td>
</tr>
<tr>
<td>NFP (*)</td>
<td>161,47</td>
<td>157,00</td>
<td>43,500</td>
<td>26,9</td>
<td>0,31</td>
<td>0,20</td>
<td>>0,100 (N)</td>
</tr>
<tr>
<td>P (kg)</td>
<td>15,96</td>
<td>15,34</td>
<td>4,250</td>
<td>26,6</td>
<td>0,20</td>
<td>-0,31</td>
<td>>0,100 (N)</td>
</tr>
</tbody>
</table>
Tabela 2. Parâmetros da análise semivariográfica dos atributos da planta nos anos de 2010 e 2011

<table>
<thead>
<tr>
<th>Variável</th>
<th>Modelo</th>
<th>C₀</th>
<th>C</th>
<th>a</th>
<th>GD</th>
<th>Classe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010/2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMFP (kg)</td>
<td>Exp.</td>
<td>0,0001</td>
<td>0,0014</td>
<td>40</td>
<td>58,1</td>
<td>Moderado</td>
</tr>
<tr>
<td>NFP (*)</td>
<td>Exp.</td>
<td>380</td>
<td>610</td>
<td>48</td>
<td>61,6</td>
<td>Moderado</td>
</tr>
<tr>
<td>P (kg)</td>
<td>Exp.</td>
<td>3,3</td>
<td>9,6</td>
<td>40</td>
<td>74,42</td>
<td>Moderado</td>
</tr>
<tr>
<td>2011/2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMFP (kg)</td>
<td>Exp.</td>
<td>0,00003</td>
<td>0,000046</td>
<td>50,01</td>
<td>57,91</td>
<td>Moderado</td>
</tr>
<tr>
<td>NFP (*)</td>
<td>Exp.</td>
<td>1350,46</td>
<td>1145,87</td>
<td>65,69</td>
<td>45,9</td>
<td>Moderado</td>
</tr>
<tr>
<td>P (kg)</td>
<td>Exp.</td>
<td>10,01</td>
<td>19,59</td>
<td>37,55</td>
<td>66,17</td>
<td>Moderado</td>
</tr>
<tr>
<td>2012/2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMFP (kg)</td>
<td>Exp.</td>
<td>0,00006</td>
<td>0,00011</td>
<td>68</td>
<td>64,7</td>
<td>Moderado</td>
</tr>
<tr>
<td>NFP (*)</td>
<td>Exp.</td>
<td>439,9</td>
<td>1519,28</td>
<td>29,43</td>
<td>77,55</td>
<td>Alto</td>
</tr>
<tr>
<td>P (kg)</td>
<td>Exp.</td>
<td>10</td>
<td>8</td>
<td>55</td>
<td>43,22</td>
<td>Moderado</td>
</tr>
</tbody>
</table>

PMFP= peso médio fruto/planta (Kg); DT= diâmetro do tronco (cm); NFP= número de frutos/planta; TFP= tamanho do fruto/planta (cm); F= firmeza de polpa/planta (Lb); Brix= teor de brix/planta (*) e P= produção (Kg)

de fertilizantes, de água e nutrientes no solo, dentre outras.

Também pode ser constatado que, dentre as variáveis ligadas a planta, o mapa de distribuição espacial da produtividade do pessegueiro nas 3 safras (2010/2011, 2011/2012 e 2012/2013) (Fig. 2) seguiu o mapa de distribuição da variável número de frutos/planta (Fig. 2) em ambos as safras.

4. Conclusão

O modelo teórico de semivariograma exponencial é o que melhor descreve a estrutura de variabilidade espacial das variáveis da planta.

As variáveis da planta estudadas apresentam a mesma classe de dependência espacial.

Referências

Variabilidade espacial e temporal dos atributos da planta em um pomar de pessegueiro no município do Morro Redondo-RS**

Viviane Santos Silva Terra*1, Carlos Reisser Júnior*2, Luis Carlos Timm*3, José Francisco Martins Pereira*2, Flávio Luiz Carpena Carvalho*2, Henrique Oldoni*4

1Doutora, Agronomia pelo PPGSPAF/UFPel, Pelotas, RS
2Pesquisadores, Embrapa Clima Temperado, Pelotas, RS
3Professor Associado, Departamento de Engenharia Rural/FAEM/UFPel, Pelotas, RS, Bolsista CNPq
4Acadêmico de Engenharia Agrícola, CENIG/UFPeI, Pelotas, RS, Bolsista PIBIC-CNPq

*E-mails: vssterra@yahoo.com.br, carlos.reisser@embrapa.br, lctimm@ufpel.edu.br, jose.fm.pereira@embrapa.br, flavio.carvalho@embrapa.br, lctimm@ufpel.edu.br, henniqueoldoni@gmail.com
**Parte da tese de doutorado do primeiro autor no programa de Pós-Graduação em Sistemas de Produção Agrícola Familiar/FAEM/UFPeI.

Resumo: O município de Pelotas no Sul do Rio Grande do Sul possui condições adequadas de clima e solo para o desenvolvimento da cultura do pêssego, porém existe a necessidade de pesquisas com inovações tecnológicas que visem o aumento da produtividade e da qualidade da sua produção. Por isso, o estudo da variabilidade espacial e temporal dos atributos da planta é importante, pois poderá conduzir a técnicas de manejo mais apropriadas, buscando a racionalização do uso da água, a aplicação de fertilizantes e corretivos. O trabalho teve por objetivo mapear e avaliar o comportamento espacial e temporal dos atributos da planta nos anos de 2010 e 2011, através da geoestatística. O experimento foi conduzido em um pomar de pessegueiro, cultivar Esmeralda. Foram selecionadas aleatoriamente 101 plantas para a formação da malha experimental. Foram analisados atributos da planta como: diâmetro do tronco; número, tamanho e peso do fruto por planta; firmeza de polpa; teor de brix e produtividade. Os semivariogramas experimental e teóricos foram obtidos através da análise geoestatística. O modelo teórico do semivariograma exponencial é o que melhor descreve a estrutura de variabilidade espacial das variáveis da planta. As variáveis da planta estudadas apresentam a mesma classe de dependência espacial.

Palavras-chave: geoestatística, prunus persica, variabilidade

Spatial and temporal variability of the attributes of the plant in a peach orchard in the city of Morro Redondo-RS

Abstract: The municipality of Pelotas in southern RS has adequate conditions of soil and climate for the development of the culture of peach, but there is a need for research on technological innovations aimed at increasing the productivity and quality of their production. Therefore, the study of spatial and temporal variability of the attributes of the plant is important because it could lead to more appropriate management techniques, seeking rationalization of water use, the application of fertilizers. The study aimed to map and assess the spatial and temporal behavior of the attributes of the plant in the years 2010 and 2011, using geostatistics. The experiment was conducted in a peach orchard, cultivate Esmeralda. 101 plants were randomly selected for forming the experimental grid. Plant attributes were analyzed as trunk diameter, number, size and weight of fruit per plant, fruit firmness, brix content and productivity. The experimental and theoretical semivariograms were obtained by geostatistical analysis. The theoretical model of exponential semivariogram is what best describes the structure of spatial variability of the variables of the plant. The variables studied plant have the same kind of spatial dependence.

Keywords: geostatistics, prunus persica, variability
1. Introdução

O Rio Grande do Sul é o primeiro produtor nacional de uva, pêssego, figo, nectarina e kiwi, e possui expressiva participação no mercado de ameixa, maçã, morango, caqui, banana e abacaxi (ASSOCIAÇÃO..., 2005). Segundo Nakasu (2003) dentre as fruteiras de clima temperado o pêssego é o que se destaca devido a sua alta rentabilidade e por ser uma alternativa para geração de renda em pequenas propriedades.

A região de Pelotas no Sul do RS possui condições adequadas de clima e solo para o desenvolvimento da cultura do pêssego, porém existe a necessidade de pesquisas com inovações tecnológicas que visem o aumento da produtividade e da qualidade da sua produção (HERTER et al., 2003).

Um dos principais problemas enfrentados pelos produtores de frutas é o manejo do pomar. Por isso, que a delimitação de áreas homogêneas através do estudo da variabilidade espacial e temporal permitirá um manejo adequado, de acordo com a necessidade de cada local, de forma precisa em cada ponto, melhorando assim a qualidade do fruto e aumentando a produtividade do pomar (TERRA, 2012).

O estudo da variabilidade espacial e temporal dos atributos da planta poderá conduzir a técnicas de manejo mais apropriadas, buscando a racionalização do uso da água, a aplicação de fertilizantes e corretivos e a preservação dos recursos naturais disponíveis. O presente trabalho teve por objetivo mapear e avaliar o comportamento espacial e temporal dos atributos da planta nos anos de 2010 e 2011, através de técnicas geoestatísticas.

2. Material e Métodos

A área experimental possui aproximadamente 1,8ha, sendo composta por 18 linhas de planta, totalizando 1.450 plantas. Deste total, foram selecionadas aleatoriamente 101 plantas para a formação da malha experimental, conforme Figura 1.

Os atributos da planta analisados foram identificados da seguinte forma: DT10 (diâmetro do tronco), TFP10 (tamanho do fruto por planta), NFP10 (número total de frutos por planta), PMFP10 (massa fresca dos frutos), F10 (firmeza de polpa), B10 (teor de brix) e P10 (produtividade) para o ano de 2010 e DT11, TFP11, NFP11, PMFP11, F11, B11 e P11 para o ano de 2011.

Foi utilizado o software estatístico SAS (SCHLOTZHAVER; LITTELL, 1997) para a análise descritiva dos dados. O coeficiente de variação (CV) foi classificado, segundo Wilding e Drees (1983), como: CV≤15%; 15%<CV≤35%; CV>35%, como baixo, médio e alto, respectivamente. Para testar a hipótese de normalidade da distribuição dos dados em cada conjunto, aplicou-se o teste de Shapiro e Wilk (1965) ao nível de 5% de probabilidade.

A análise geoestatística foi aplicada aos atributos avaliados utilizando o pacote GEOEST (VIEIRA et al., 2002), calculando os semivariogramas experimental e teóricos e os respectivos parâmetros de ajustes. Quando necessário, também foi efetuada a retirada de tendência das variáveis. Logo após, identificada a estrutura de dependência espacial por meio do semivariograma, foram construídos os mapas de isolinhas dos atributos avaliados aplicando a krigagem.

\[\hat{\gamma}(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} (Z(x_i) - Z(x_i + h))^2 \]

onde: N(h) é o número de pares de observações Z(xi) e Z(xi+h) separados por uma distância h. Ao semivariograma experimental foi ajustado um modelo teórico, onde são obtidos os seus parâmetros de ajuste (C0 = efeito pepita; Cx+C = patamar; A = alcance).

Para a manipulação e visualização dos mapas foi utilizado o software SURFER (GOLDEN..., 1999). Todos os modelos de semivariograma foram submetidos à validação pelo método “Jack-Knifing” (VIEIRA et al., 2002). O grau
de dependência espacial (GD) foi classificado segundo Zimback (2001), como: GD≤25%; 25%<GD≤75% e GD>75%, em baixo, moderado e alto, respectivamente.

3. Resultados e Discussão

A Tabela 1 apresenta as estatísticas descritivas para os dados referentes aos atributos da planta, nos anos de 2010 e 2011. Pode-se observar que, para ambos os anos, os valores da média e mediana das variáveis PMFP, DT, TFP, F, B e P são próximos. Entretanto, este comportamento não pode ser verificado para a variável NFP. A dispersão dos dados em torno da média, expressa pelo coeficiente de variação (CV), foi baixa (CV≤15%) para as variáveis PMFP, DT, TFP, B e F para os anos de 2010 e 2011, de acordo com Wilding e Drees (1983). As variáveis NFP e P apresentaram uma dispersão moderada (15%<CV≤35%) no ano de 2011. Já os valores do CV foram altos (CV>35%) para NFP (CV = 54,6%) e P (CV = 55,7%) para o ano de 2010 (Tabela 1). Essa diminuição na variabilidade dos dados de NFP e P pode ser atribuída a ocorrência de vento de elevada velocidade (72,4Km h⁻¹) na área experimental na data de 31 de outubro de 2010, o qual causou uma grande queda de frutos e com isso uma heterogeneidade na distribuição do número de frutos por planta ao longo do pomar.

As distribuições de NFP e P não seguiram a tendência de normalidade no ano de 2010 pelo teste de Shapiro e Wilk (p≤0,05), entretanto, para o ano de 2011 elas apresentaram tendência de normalidade (Tabela 1). Para as outras variáveis não ocorreu alteração quanto a sua distribuição, apresentando a mesma tendência nos dois anos.

Na Tabela 2 são apresentados os modelos matemáticos ajustados aos semivariogramas experimentais e os respectivos parâmetros de ajustes para os atributos da planta nos anos de 2010 e 2011. Analisando a Tabela 2, observa-se que somente o semivariograma teórico da variável tamanho do fruto por planta (modelo esférico) no ano de 2010 foi diferente do modelo exponencial que foi o ajustado para as demais variáveis. A faixa de dependência espacial (a) variou de 30m (TFP em 2010) a 65,7m (NFP em 2011), enquanto que

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Unidade</th>
<th>Média</th>
<th>Mediana</th>
<th>DP</th>
<th>CV</th>
<th>Cs</th>
<th>Ck</th>
<th>SW (p-valor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMFP</td>
<td>kg</td>
<td>0,11</td>
<td>0,11</td>
<td>0,014</td>
<td>13,6</td>
<td>-0,44</td>
<td>0,78</td>
<td>>0,10 (NS)</td>
</tr>
<tr>
<td>DT</td>
<td>cm</td>
<td>7,13</td>
<td>7,26</td>
<td>0,748</td>
<td>10,5</td>
<td>-0,04</td>
<td>-0,52</td>
<td>>0,10 (NS)</td>
</tr>
<tr>
<td>NFP</td>
<td>*</td>
<td>57,53</td>
<td>54,00</td>
<td>31,398</td>
<td>54,6</td>
<td>0,40</td>
<td>-0,76</td>
<td>0,025 (NS)</td>
</tr>
<tr>
<td>TFP</td>
<td>cm</td>
<td>57,54</td>
<td>57,42</td>
<td>2,941</td>
<td>5,1</td>
<td>-0,19</td>
<td>-0,11</td>
<td>>0,10 (NS)</td>
</tr>
<tr>
<td>F</td>
<td>Lb</td>
<td>7,19</td>
<td>7,20</td>
<td>0,978</td>
<td>13,6</td>
<td>0,22</td>
<td>0,29</td>
<td>>0,10 (NS)</td>
</tr>
<tr>
<td>B</td>
<td>%</td>
<td>13,08</td>
<td>13,15</td>
<td>1,124</td>
<td>8,6</td>
<td>0,10</td>
<td>0,62</td>
<td>>0,10 (NS)</td>
</tr>
<tr>
<td>P</td>
<td>kg</td>
<td>6,41</td>
<td>5,86</td>
<td>3,566</td>
<td>55,7</td>
<td>0,53</td>
<td>-0,33</td>
<td>0,034 (NS)</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMFP</td>
<td>kg</td>
<td>0,11</td>
<td>0,11</td>
<td>0,009</td>
<td>8,3</td>
<td>0,29</td>
<td>-0,19</td>
<td>>0,10 (NS)</td>
</tr>
<tr>
<td>DT</td>
<td>cm</td>
<td>8,38</td>
<td>8,28</td>
<td>1,111</td>
<td>13,3</td>
<td>-0,43</td>
<td>0,80</td>
<td>>0,10 (NS)</td>
</tr>
<tr>
<td>NFP</td>
<td>*</td>
<td>180,54</td>
<td>178,00</td>
<td>48,341</td>
<td>26,8</td>
<td>-0,01</td>
<td>-0,11</td>
<td>>0,10 (NS)</td>
</tr>
<tr>
<td>TFP</td>
<td>cm</td>
<td>50,40</td>
<td>50,35</td>
<td>2,667</td>
<td>5,3</td>
<td>0,55</td>
<td>0,80</td>
<td>0,080 (NS)</td>
</tr>
<tr>
<td>F</td>
<td>Lb</td>
<td>7,85</td>
<td>7,84</td>
<td>0,995</td>
<td>12,7</td>
<td>0,03</td>
<td>0,74</td>
<td>>0,10 (NS)</td>
</tr>
<tr>
<td>B</td>
<td>%</td>
<td>12,46</td>
<td>12,47</td>
<td>0,964</td>
<td>7,7</td>
<td>0,01</td>
<td>0,07</td>
<td>>0,10 (NS)</td>
</tr>
<tr>
<td>P</td>
<td>kg</td>
<td>20,11</td>
<td>20,12</td>
<td>5,327</td>
<td>26,5</td>
<td>-0,17</td>
<td>-0,39</td>
<td>>0,10 (NS)</td>
</tr>
</tbody>
</table>

s = desvio padrão; C.V. = coeficiente de variação (%); Cs = coeficiente de assimetria; Ck = coeficiente de curtose; N* = número de observações; DN = Distribuição Normal (pelo Teste Shapiro e Wilk) não significativo a 5%.

<table>
<thead>
<tr>
<th>Variável</th>
<th>Modelo</th>
<th>C s</th>
<th>C</th>
<th>a</th>
<th>GD</th>
<th>Classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMFP</td>
<td>Exp.</td>
<td>0,0001</td>
<td>0,00014</td>
<td>40</td>
<td>58,10</td>
<td>Moderado</td>
</tr>
<tr>
<td>DT</td>
<td>Exp.</td>
<td>0,28</td>
<td>0,32</td>
<td>43</td>
<td>53,33</td>
<td>Moderado</td>
</tr>
<tr>
<td>NFP</td>
<td>Exp.</td>
<td>380</td>
<td>610</td>
<td>48</td>
<td>61,60</td>
<td>Moderado</td>
</tr>
<tr>
<td>TFP</td>
<td>Esf.</td>
<td>3,70</td>
<td>4,60</td>
<td>30</td>
<td>55,42</td>
<td>Moderado</td>
</tr>
<tr>
<td>F</td>
<td>Exp.</td>
<td>0,4</td>
<td>0,47</td>
<td>42</td>
<td>54,02</td>
<td>Moderado</td>
</tr>
<tr>
<td>B</td>
<td>Exp.</td>
<td>1,36</td>
<td>0,67</td>
<td>59</td>
<td>33,10</td>
<td>Moderado</td>
</tr>
<tr>
<td>P</td>
<td>Exp.</td>
<td>3,30</td>
<td>9,60</td>
<td>40</td>
<td>74,42</td>
<td>Moderado</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMFP</td>
<td>Exp.</td>
<td>0,00003</td>
<td>0,00005</td>
<td>50,01</td>
<td>57,91</td>
<td>Moderado</td>
</tr>
<tr>
<td>DT</td>
<td>Exp.</td>
<td>0,80</td>
<td>0,45</td>
<td>44</td>
<td>36</td>
<td>Moderado</td>
</tr>
<tr>
<td>NFP</td>
<td>Exp.</td>
<td>1350,46</td>
<td>1145,87</td>
<td>65,69</td>
<td>45,90</td>
<td>Moderado</td>
</tr>
<tr>
<td>TFP</td>
<td>Exp.</td>
<td>5</td>
<td>2,5</td>
<td>55</td>
<td>33,33</td>
<td>Moderado</td>
</tr>
<tr>
<td>F</td>
<td>Exp.</td>
<td>0,40</td>
<td>0,56</td>
<td>54</td>
<td>58,33</td>
<td>Moderado</td>
</tr>
<tr>
<td>B</td>
<td>Esf.</td>
<td>0,43</td>
<td>0,49</td>
<td>54</td>
<td>53,26</td>
<td>Moderado</td>
</tr>
<tr>
<td>P</td>
<td>Exp.</td>
<td>10,01</td>
<td>19,59</td>
<td>37,55</td>
<td>66,17</td>
<td>Moderado</td>
</tr>
</tbody>
</table>

PMFP = peso médio fruto/planta (Kg); DT = diâmetro do tronco (cm); NFP = número de frutos/planta; CF = crescimento do fruto/planta (cm); F = firmeza de polpa/planta (Lb); Brix = teor de brix/planta (º) e P = produção (Kg)
o GD foi classificado como moderado para todas as variáveis avaliadas em ambos os anos (Tabela 2).

Nas Figuras 2 e 3 são apresentados os mapas de distribuição espacial dos atributos da planta nos anos de 2010 e 2011. Como esperado, os mapas de distribuição espacial dos atributos NFP e P são similares, já que no cálculo da produtividade o número de frutos por planta é levado em consideração. Também na Figura 3 verifica-se que as zonas de maior produtividade ocorreram na parte norte da área experimental no ano de 2011, visto que no ano de 2010 a presença de um vento de elevada velocidade mudou a distribuição espacial dos valores de maiores produtividade para o centro da área, região mais protegida do pomar (Figura 3). Estas informações poderão nortear o produtor com relação à aplicação de práticas diferenciadas no pomar com relação a aplicação de fertilizantes, de água e nutrientes no solo, dentre outras.

Também pode ser constatado que, dentre as variáveis ligadas a planta, o mapa de distribuição espacial da produtividade do pessegueiro em 2010 e 2011 (Figura 3) seguiu o mapa de distribuição espacial dos valores de maiores produtividade para o centro da área, região mais protegida do pomar (Figura 3). Estas informações poderão nortear o produtor com relação à aplicação de práticas diferenciadas no pomar com relação a aplicação de fertilizantes, de água e nutrientes no solo, dentre outras.

Também pode ser constatado que, dentre as variáveis ligadas a planta, o mapa de distribuição espacial da produtividade do pessegueiro em 2010 e 2011 (Figura 3) seguiu o mapa de distribuição espacial dos valores de maiores produtividade para o centro da área, região mais protegida do pomar (Figura 3). Estas informações poderão nortear o produtor com relação à aplicação de práticas diferenciadas no pomar com relação a aplicação de fertilizantes, de água e nutrientes no solo, dentre outras.

Também pode ser constatado que, dentre as variáveis ligadas a planta, o mapa de distribuição espacial da produtividade do pessegueiro em 2010 e 2011 (Figura 3) seguiu o mapa de distribuição espacial dos valores de maiores produtividade para o centro da área, região mais protegida do pomar (Figura 3). Estas informações poderão nortear o produtor com relação à aplicação de práticas diferenciadas no pomar com relação a aplicação de fertilizantes, de água e nutrientes no solo, dentre outras.

Também pode ser constatado que, dentre as variáveis ligadas a planta, o mapa de distribuição espacial da produtividade do pessegueiro em 2010 e 2011 (Figura 3) seguiu o mapa de distribuição espacial dos valores de maiores produtividade para o centro da área, região mais protegida do pomar (Figura 3). Estas informações poderão nortear o produtor com relação à aplicação de práticas diferenciadas no pomar com relação a aplicação de fertilizantes, de água e nutrientes no solo, dentre outras.

Também pode ser constatado que, dentre as variáveis ligadas a planta, o mapa de distribuição espacial da produtividade do pessegueiro em 2010 e 2011 (Figura 3) seguiu o mapa de distribuição espacial dos valores de maiores produtividade para o centro da área, região mais protegida do pomar (Figura 3). Estas informações poderão nortear o produtor com relação à aplicação de práticas diferenciadas no pomar com relação a aplicação de fertilizantes, de água e nutrientes no solo, dentre outras.
da variável número de frutos/planta (Figura 2) em ambos os anos. O tamanho dos frutos/planta (Figura 2), que também é uma variável componente da produtividade, se distribuiu sem um padrão espacial definido, fato este observado nos dois anos. A Figura 2 ainda mostra que o tamanho dos frutos foi maior no ano de 2010, devido ao menor número de frutos/planta no ano de 2010.

4. Conclusão

O modelo teórico de semivariograma exponencial é o que melhor descreve a estrutura de variabilidade espacial das variáveis da planta. As variáveis da planta estudadas apresentam a mesma classe de dependência espacial.

Referências

Correlação linear e espacial entre os atributos da planta de um pomar de pessegueiro e os atributos físico-hídricos do solo**

Viviane Santos Silva Terra*1, Carlos Reisser Júnior*2, Luís Carlos Timm*3, José Francisco Martins Pereira*2, Flávio Luiz Carpena Carvalho*2, Henrique Oldoni*4

1Doutora, Agronomia, PPGSPAF/UFPel, Pelotas, RS
2Pesquisadores, Embrapa Clima Temperado, Pelotas, RS
3Professor Associado, Departamento de Engenharia Rural/FAEM/UFPel, Pelotas, RS, Bolsista CNPq,
4Acadêmico, Engenharia Agrícola, CENG/UFPel, Pelotas, RS, Bolsista PIBIC-CNPq

*E-mails: vssterra@yahoo.com.br, carlos.reisser@embrapa.br, lctimm@ufpel.edu.br, jose.fm.pereira@embrapa.br, flavio.carvalho@embrapa.br, ctimm@ufpel.edu.br, henriqueoldoni@gmail.com

**Parte da tese de doutorado do primeiro autor no programa de Pós-Graduação em Sistemas de Produção Agrícola Familiar/FAEM/UFPel.

Resumo: Na região de Pelotas-RS a produção de pêssego vem sofrendo com as práticas de manejo inadequadas. O pessegueiro para o seu desenvolvimento depende de alguns atributos do solo, que de certa forma interferem no aumento da produtividade. Por isso, o estudo da variabilidade espacial desses atributos é essencial para o refinamento das práticas de manejo. O objetivo do estudo foi determinar a variabilidade espacial e a correlação linear simples entre os atributos físico-hídricos do solo e da planta, em um pomar de pessegueiro. O trabalho foi realizado em um pomar de pessegueiro, cv. Esmeralda, onde foi estabelecida uma malha experimental de 101 plantas. Foram avaliados os atributos do solo nas camadas de 0,00-0,10m e 0,10-0,20m como: areia, silte, argila, densidade do solo, macroporosidade, microporosidade e porosidade total. E os atributos da planta como: número, tamanho e peso médio de frutos por planta, diâmetro do tronco, firmeza, brix e produtividade para o ano de 2010. Foi montada uma matriz de correlação, objetivando efetuar as regressões lineares simples para as combinações, duas a duas, entre todos os atributos estudados. Procurando selecionar aqueles de maior correlação linear; portanto, aqueles que poderiam apresentar semivariograma cruzado e a consequente cokrigagem. A geoestatística foi aplicada para avaliar a estrutura de dependência espacial. O modelo teórico de semivariograma exponencial é o que melhor descreve a estrutura de variabilidade espacial das variáveis físico-hídricas do solo e das variáveis da planta.

Palavras-chave: prunus pérsica, regressão linear, geoestatística

Linear correlation between the attributes and spatial plant an orchard of peach and physical attributes of the soil-water

Abstract: In the region of Pelotas peach production has suffered from inadequate management practices. The peach for its development depends on some attributes of the soil, which somehow interfere in increasing productivity. Therefore, the spatial variability of these attributes is essential for the refinement of management practices. The aim of the study was to determine the spatial variability and simple linear correlation between the physical attributes of the soil and water the plant, in a peach orchard. The study was conducted in a peach orchard, cv. Esmeralda, where he established a mesh of 101 experimental plants. The soil in the soil layers 0.00-0.10m and 0.10-0.20m as: sand, silt, clay, bulk density, macroporosity, microporosity and total porosity. And the attributes of the plant as number, size and weight of fruits per plant, stem diameter, firmness, brix and productivity for the year 2010. Has assembled a correlation matrix, aiming to make the linear regressions for the combinations,
two by two, of all the attributes studied. Looking select those most linear correlation, so those who could present cross semivariogram and the consequent cokriging. Geostatistical analysis was applied to assess the spatial dependence structure. The theoretical model of exponential semivariogram is what best describes the structure of spatial variability of physical and hydrological variables of soil and plant variables.

Keywords: prunus persica, linear regression, geostatistics

1. Introdução

A fruticultura no Rio Grande do Sul é uma das atividades agrícolas que vem se destacando nos últimos anos, principalmente na região de Pelotas-RS que é responsável pela grande produção de frutíferas de Clima Temperado, em especial a cultura do pessegueiro.

A produção da Região sofre com as práticas de manejo inadequadas, sendo um dos principais problemas enfrentados pelos produtores de pêssego. A produtividade das plantas depende de vários fatores do solo, dentre eles da densidade do solo e de sua granulometria. Além de outros aspectos como a sua porosidade total é tão importante quanto o entendimento do significado da dimensão das suas partículas primárias (areia, silte e argila) e, de certa forma, ambos são importantes para o estudo do aumento da produtividade (KONOPATZKI, 2003).

Para Cambardella et al. (1994), o conhecimento da variabilidade espacial desses atributos é essencial para o refinamento das práticas de manejo. Por isso, que o conhecimento detalhado da variabilidade espacial dos atributos do solo e da planta, poderá servir de subsídio para a determinação de estratégias específicas de manejo que otimizem a produtividade. Essa variabilidade poderá mostrar ao produtor a localização exata das áreas de maior produção (TERRA, 2012). Tais áreas poderão ser observadas através de mapas de produtividade, indicando a localização de áreas críticas em termo de rentabilidade.

Este trabalho teve por objetivo o estudo da correlação linear simples e variabilidade espacial entre os atributos do físico-hídricos do solo e da planta, em um pomar de pessegueiro no município de Morro Redondo-RS.

2. Material e Métodos

A amostragem dos atributos físico-hídricos do solo foi realizada, nas camadas de 0,00-0,10m e 0,10-0,20m, com estrutura deformada e preservada em uma trincheira aberta ao lado de cada uma das 101 plantas. Os atributos foram identificados da seguinte forma: 0,00-0,10m - ARE1 (areia), SIL1 (silte), ARG1 (argila), DS1 (densidade do solo), MA1 (macroporosidade), MI1 (microporosidade) e PT1 (porosidade total); e de 0,10-0,20m - ARE2, SIL2, ARG2, DS2, MA2, MI2, PT2. Já os atributos das plantas foram identificados da seguinte forma: DT10 (diâmetro do tronco), TFP10 (tamanho do fruto por planta), NFP10 (número total de frutos por planta), PMFP10 (massa fresca dos frutos), F10 (firmeza de polpa), B10 (teor de brix) e P10 (produtividade) para o ano de 2010.

Foi utilizado o software estatístico SAS (SCHLOTZHAVER; LITTELL, 1997) para a análise descritiva dos atributos. A dispersão dos dados em torno da média foi calculada pelo coeficiente de variação (CV) e classificada segundo Wilding e Drees (1983) como: baixa (CV≤15%); moderada (15%<CV≤35%) e alta (CV>35%). Para testar a hipótese de normalidade
da distribuição, realizou-se o Teste de Shapiro e Wilk (1965) a 5% de probabilidade. Foi montada uma matriz de correlação, objetivando efetuar as regressões lineares simples para as combinações, duas a duas, entre todos os atributos estudados. Assim, procurou-se selecionar aqueles de maior correlação linear; portanto, aqueles que poderiam apresentar semivariograma cruzado e a consequente cokrigagem. Seguindo os níveis de correlação descritos por Hopkins (2000) (Tabela 1).

Para a análise geostatística foi utilizado o pacote GEOEST descrito em Vieira et al. (2002). O grau de dependência espacial (GD) foi classificado segundo Zimback (2001), como: GD≤25%; 25%<GD≤75% e GD>75%, em baixo, moderado e alto, respectivamente.

3. Resultados e Discussão

A Tabela 2 apresenta as estatísticas descritivas para os dados referentes aos atributos da planta, no ano de 2010. Pode-se observar que os valores da média e mediana das variáveis PMFP, DT, TFP, F e B são próximos. Também observa-se na Tabela 2, que a dispersão dos dados em torno da média, expressa, pelo coeficiente de variação (CV), foi considerada baixa (CV≤15%) para as variáveis PMFP, DT, TFP, F e B. Já as variáveis NFP e P apresentaram altos valores de dispersão (CV>35%), de acordo com a classificação de Wilding e Drees (1983). Na Tabela 2, observa-se que as distribuições de NFP e P não seguiram a tendência de normalidade, pelo teste de Shapiro e Wilk (p≤0,05). Para as outras variáveis não ocorreu alteração quanto a sua distribuição.

Na Tabela 3 são apresentados os valores da estatística descritiva para os dados referentes aos atributos físico-hídricos do solo. Observa-se que, em ambas as camadas, os valores da média e mediana das variáveis DS e PT são próximos. Verifica-se na Tabela 3, que a dispersão dos dados em torno da média foi baixa (CV≤15%) para as variáveis DS, MI, PT e UV nas duas camadas, e para ARE na camada de 0,10-0,20m. No entanto, as distribuições das variáveis SIL, ARG e MA

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Unidade</th>
<th>Média</th>
<th>Mediana</th>
<th>Variância</th>
<th>CV</th>
<th>Cs</th>
<th>Ck</th>
<th>SW (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMFP</td>
<td>kg</td>
<td>0,11</td>
<td>0,11</td>
<td>0,0002</td>
<td>13,6</td>
<td>-0,44</td>
<td>0,78</td>
<td>>0,100 (n)</td>
</tr>
<tr>
<td>DT</td>
<td>cm</td>
<td>7,13</td>
<td>7,26</td>
<td>0,5597</td>
<td>10,5</td>
<td>-0,04</td>
<td>-0,52</td>
<td>>0,100 (n)</td>
</tr>
<tr>
<td>NFP</td>
<td>cm</td>
<td>57,53</td>
<td>54,00</td>
<td>985,81</td>
<td>54,6</td>
<td>0,40</td>
<td>-0,76</td>
<td>0,025 (n)</td>
</tr>
<tr>
<td>TFP</td>
<td>cm</td>
<td>57,54</td>
<td>57,42</td>
<td>8,6510</td>
<td>5,1</td>
<td>-0,19</td>
<td>-0,11</td>
<td>>0,100 (n)</td>
</tr>
<tr>
<td>F</td>
<td>Lb</td>
<td>7,19</td>
<td>7,20</td>
<td>0,9571</td>
<td>13,6</td>
<td>0,22</td>
<td>0,29</td>
<td>>0,100 (n)</td>
</tr>
<tr>
<td>B</td>
<td>%</td>
<td>13,08</td>
<td>13,15</td>
<td>1,2640</td>
<td>8,6</td>
<td>0,10</td>
<td>0,62</td>
<td>>0,100 (n)</td>
</tr>
<tr>
<td>P</td>
<td>kg</td>
<td>6,41</td>
<td>5,86</td>
<td>12,7170</td>
<td>55,7</td>
<td>0,53</td>
<td>-0,33</td>
<td>0,034 (n)</td>
</tr>
</tbody>
</table>

s = desvio padrão; CV = coeficiente de variação (%); Cs = coeficiente de assimetria; Ck = coeficiente de curtose; Np = número de observações; DN = Distribuição Normal (pelo Teste Shapiro e Wilk) não significativo a 5%.
Agricultura de Precisão para culturas perenes e semi-perenes

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Variáveis</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Profundidade 0,00-0,10 m</td>
</tr>
<tr>
<td>ARE1</td>
</tr>
<tr>
<td>ARG1</td>
</tr>
<tr>
<td>SIL1</td>
</tr>
<tr>
<td>UV1</td>
</tr>
<tr>
<td>DS1</td>
</tr>
<tr>
<td>MA1</td>
</tr>
<tr>
<td>MI1</td>
</tr>
<tr>
<td>PT1</td>
</tr>
<tr>
<td>Profundidade 0,10-0,20 m</td>
</tr>
<tr>
<td>ARE2</td>
</tr>
<tr>
<td>ARG2</td>
</tr>
<tr>
<td>SIL2</td>
</tr>
<tr>
<td>UV2</td>
</tr>
<tr>
<td>DS2</td>
</tr>
<tr>
<td>MA2</td>
</tr>
<tr>
<td>MI2</td>
</tr>
<tr>
<td>PT2</td>
</tr>
</tbody>
</table>

ARE = areia, SIL = silte, ARG = argila, UV = umidade volumétrica, DS = densidade do solo, MA = macroporosidade, MI = microporosidade, PT = porosidade total, 1 = camada de 0,00-0,10m, 2 = camada de 0,10-0,20m, DP = desvio padrão; CV = coeficiente de variação (%), C₃ = coeficiente de assimetria, C₅ = coeficiente de curtose, SW = Teste Shapiro e Wilk, significativo a 5%, N = segue a distribuição normal, NN = não segue a distribuição normal.

(em ambas as camadas), ARE (camada de 0,00-0,10m) e PHA foram classificadas como moderada (WILDING; DREES, 1983). As distribuições das variáveis DS, MA e PT em ambas as camadas, UV (0,00-0,10m) e SIL (0,10-0,20m) seguiram a tendência de normalidade pelo teste de Shapiro e Wilk (p≤0,05). As distribuições de ARE, ARG e MI, nas duas camadas, SIL (0,00-0,10m), UV (0,10-0,20m) e PHA não apresentaram tendência de normalidade dos dados (Tabela 3).

Na Tabela 4 é apresentada a matriz de correlação linear simples entre os atributos físico-hídricos do solo e da planta. Os valores extremos do coeficiente de correlação foram de 0,9786 (ARE2xARE1), 0,9399 (P10xNFP), 0,9194 (F10xNFP10) e 0,8873 (MI1xUV1) sendo considerados perfeitos (0,8≤ r ≤1,0) de acordo com Hopkins (2000). Segundo a mesma classificação os valores de -0,0007 (F10xPT1), -0,0019 (MI1xUV1) e -0,0022 (MA1xDS2) foram considerados muito baixos (0,0≤ r <0,1). Dos 276 níveis de coeficientes de correlação apresentados no ano de 2010, 90 foram considerados muito baixos, 107 baixos, 18 moderados, 22 altos, 11 muito altos e 28 perfeitos de acordo com Hopkins (2000) (Tabela 1).
438

|

Agricultura de precisão: resultados de um novo olhar

0
0,1
0,3
0,5
0,7
0,8

≤
≤
≤
≤
≤
≤

R
R
R
R
R
R

<
<
<
<
<
≤

0,1
0,3
0,5
0,7
0,8
1

PHA ARG1 ARE1 SIL1 ARG2
PHA
1
ARG1
-0,2662
1
ARE1
0,260 -0,8592
1
SIL1
-0,1771 0,527 -0,868
1
ARG2
-0,1993 0,880 -0,857 0,5755
1
ARE2
0,258 -0,8535 0,9786 -0,839 -0,8646
SIL2
-0,210 0,559 -0,802 0,8518 0,448
DS1
-0,230 -0,070 0,0893 -0,110 -0,0583
DS2
0,068 -0,1313 0,1087 -0,111 -0,0927
UV1
-0,0939 0,766 -0,791 0,639 0,737
UV2
-0,230 0,762 -0,778 0,6066 0,748
MA1
0,275 -0,6123 0,655 -0,500 -0,6132
MI1
-0,1764 0,794 -0,866 0,6892 0,811
PT1
0,198 0,065 -0,091 0,1055 0,086
MA2
0,144 -0,394 0,4374 -0,357 -0,4185
MI1
-0,1922 0,756 -0,828 0,6767 0,766
PT2
-0,0128 0,249 -0,221 0,190 0,186
PMFP10 -0,0754 0,041 0,050 -0,079 -0,0161
DT10
0,079 0,197 -0,123 -0,018 0,228
NFP10
0,043 -0,160 0,2475 -0,249 -0,1834
TFP10
0,124 -0,1612 0,1987 -0,169 -0,2367
F10
0,008 -0,100 0,1577 -0,150 -0,1314
B10
0,068 -0,0719 0,055 -0,024 -0,0891
P10
0,019 -0,1241 0,2461 -0,284 -0,1554
Níveis de correlação de acordo com Hopkins (2000)
1
-0,142
-0,197
0,661
0,611
-0,505
0,695
0,106
-0,273
0,648
0,256
-0,052
0,046
-0,178
-0,090
-0,081
-0,030
-0,203

1
-0,8229
0,121
0,163
-0,8106
-0,8019
0,637
-0,873
-0,1275
0,409
-0,8359
-0,264
0,04
-0,1465
0,222
0,188
0,138
0,080
0,219
M. Baixa
Baixa
Moderada
Alta
M. Alta
Perfeita

SIL2

ARE2

1
0,213
-0,374
-0,1859
-0,437
-0,0417
-0,7194
-0,0877
-0,120
-0,229
-0,1144
-0,1376
0,055
0,006
0,051
0,148
0,056

DS1

1
-0,2528
-0,3888
-0,0022
-0,131
-0,1683
-0,6575
0,033
-0,8234
-0,172
-0,086
-0,0019
0,071
0,012
0,137
-0,0094

DS2

1
0,8181
-0,503
0,8873
0,3508
-0,360
0,8137
0,3589
0,1613
0,1872
-0,140
-0,170
-0,088
-0,022
-0,090

UV1

1
-0,5112
0,810
0,240
-0,212
0,812
0,519
0,098
0,130
-0,1323
-0,1921
-0,0914
-0,0542
-0,093

UV2

1
-0,758
0,571
0,411
-0,585
-0,031
-0,040
-0,050
0,096
0,177
0,048
-0,042
0,042

MA1

PT1

MA2

MI1

1
0,1029
1
-0,424 0,092
1
0,8738 0,208 -0,619
1
0,2852 0,312 0,640 0,177
0,0605 0,015 0,059 0,012
0,1879 0,161 0,068 0,073
-0,112 0,005 0,096 -0,183
-0,178 0,046 0,105 -0,242
-0,059 -0,00065 0,041 -0,125
-0,029 -0,100 -0,147 -0,015
-0,062 -0,015 0,076 -0,147

MI1

1
0,181
0,919
0,065
0,940

1
0,088
-0,148
0,291

DT10 NFP10 TFP10

1
0,1732
1
0,1307 0,286
1
-0,031 -0,035 -0,211
-0,084 0,319 0,033
-0,044 -0,119 -0,139
-0,185 -0,226 -0,325
-0,015 0,233 -0,081

PT2

1
0,118
0,825

F10

1
-0,038

B10

1

P10


Observa-se que ocorreu a retirada de tendência das variáveis ARE, ARG, UV e Mi, em ambas as camadas avaliadas. O grau de dependência espacial (GD), de acordo com a classificação proposta por Zimback (2001), indica que as variáveis ARG, SIL, DS, MA e PT, em ambas as camadas, MI (0,10-0,20m) e PHA apresentaram GD classificado como moderado (25%<GD≤75%). Os valores de GD foram altos (GD>75%) para ARE e UV (em ambas as camadas) e MI na camada de 0,00-0,10m (Tabela 5). Essas variações no grau de dependência espacial dos atributos físico-hídricos do solo podem ser influenciadas pelos fatores intrínsecos (fatores de formação do solo, material de origem, relevo e organismos) e pelos fatores extrínsecos que, normalmente, são ligados às práticas de manejo do solo.

4. Conclusão

O modelo teórico de semivariograma expomencial é o que melhor descreve a estrutura de variabilidade espacial das variáveis físico-hídricas do solo e das variáveis da planta. Dentre as variáveis físico-hídricas do solo, a areia e a umidade volumétrica são as que apresentam maior grau de dependência espacial.

Tabela 5. Modelos teóricos de semivariogramas e respectivos parâmetros de ajustes dos atributos da planta no ano de 2010.

<table>
<thead>
<tr>
<th>Variável</th>
<th>Modelo</th>
<th>C₀</th>
<th>C</th>
<th>a</th>
<th>GD</th>
<th>Classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMFP</td>
<td>Exp.</td>
<td>0,0001</td>
<td>0,0014</td>
<td>40</td>
<td>58,1</td>
<td>Moderado</td>
</tr>
<tr>
<td>DT</td>
<td>Exp.</td>
<td>0,28</td>
<td>0,32</td>
<td>43</td>
<td>53,33</td>
<td>Moderado</td>
</tr>
<tr>
<td>NFP</td>
<td>Exp.</td>
<td>380</td>
<td>610</td>
<td>48</td>
<td>61,6</td>
<td>Moderado</td>
</tr>
<tr>
<td>TFP</td>
<td>Esf.</td>
<td>3,70</td>
<td>4,60</td>
<td>30</td>
<td>55,42</td>
<td>Moderado</td>
</tr>
<tr>
<td>F</td>
<td>Exp.</td>
<td>0,4</td>
<td>0,47</td>
<td>42</td>
<td>54,02</td>
<td>Moderado</td>
</tr>
<tr>
<td>B</td>
<td>Exp.</td>
<td>1,36</td>
<td>0,67</td>
<td>59</td>
<td>33,1</td>
<td>Moderado</td>
</tr>
<tr>
<td>P</td>
<td>Exp.</td>
<td>3,3</td>
<td>9,6</td>
<td>40</td>
<td>74,42</td>
<td>Moderado</td>
</tr>
</tbody>
</table>

C₀ = efeito pepita, C = variância estruturada, a = alcance (m), GD = grau de dependência espacial (%), Exp = expomencial, Esf = esférico, Gaus = gaussiano, r = resíduo, PMFP = peso médio fruto/planta (kg), DT = diâmetro do tronco (cm); NFP = número de fruto/planta, TFP = tamanho do fruto/planta (cm), F = firmeza de polpa (Lb), B = teor de brix (º) e P = produtividade (kg), no ano de 2010.
Tabela 6. Modelos teóricos de semivariogramas e respectivos parâmetros de ajustes dos atributos físico-hídricos do solo.

<table>
<thead>
<tr>
<th>Variável</th>
<th>Unidade</th>
<th>Modelo</th>
<th>C₀</th>
<th>C</th>
<th>a</th>
<th>GD</th>
<th>Classe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidade 0,00-0,10 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARE₁ᵣ</td>
<td>g kg⁻¹</td>
<td>Esf.</td>
<td>353,72</td>
<td>3658,32</td>
<td>32,40</td>
<td>91,18</td>
<td>Alto</td>
</tr>
<tr>
<td>ARG₁ᵣ</td>
<td>g kg⁻¹</td>
<td>Exp.</td>
<td>559,15</td>
<td>909,96</td>
<td>76,37</td>
<td>61,81</td>
<td>Moderado</td>
</tr>
<tr>
<td>SIL₁ᵣ</td>
<td>g kg⁻¹</td>
<td>Esf.</td>
<td>480,00</td>
<td>950,00</td>
<td>35,00</td>
<td>66,43</td>
<td>Moderado</td>
</tr>
<tr>
<td>DS₁</td>
<td>g cm⁻³</td>
<td>Gaus.</td>
<td>0,0027</td>
<td>0,0016</td>
<td>118,00</td>
<td>37,21</td>
<td>Moderado</td>
</tr>
<tr>
<td>UV₁ᵣ</td>
<td>%</td>
<td>Exp.</td>
<td>0,50</td>
<td>5,30</td>
<td>35,00</td>
<td>91,38</td>
<td>Alto</td>
</tr>
<tr>
<td>MA₁</td>
<td>%</td>
<td>Gaus.</td>
<td>9,00</td>
<td>14,00</td>
<td>99,00</td>
<td>60,87</td>
<td>Moderado</td>
</tr>
<tr>
<td>MI₁ᵣ</td>
<td>%</td>
<td>Exp.</td>
<td>1,54</td>
<td>5,85</td>
<td>37,69</td>
<td>79,21</td>
<td>Alto</td>
</tr>
<tr>
<td>PT₁</td>
<td>%</td>
<td>Exp.</td>
<td>3,00</td>
<td>4,60</td>
<td>34,00</td>
<td>60,53</td>
<td>Moderado</td>
</tr>
<tr>
<td>PHA</td>
<td>cm</td>
<td>Exp.</td>
<td>19,64</td>
<td>29,70</td>
<td>97,07</td>
<td>60,20</td>
<td>Moderado</td>
</tr>
<tr>
<td>Profundidade 0,10-0,20 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARE₂ᵣ</td>
<td>g kg⁻¹</td>
<td>Exp.</td>
<td>630,29</td>
<td>3232,32</td>
<td>50,71</td>
<td>83,68</td>
<td>Alto</td>
</tr>
<tr>
<td>ARG₂ᵣ</td>
<td>g kg⁻¹</td>
<td>Esf.</td>
<td>459,07</td>
<td>639,54</td>
<td>29,67</td>
<td>58,21</td>
<td>Moderado</td>
</tr>
<tr>
<td>SIL₂ᵣ</td>
<td>g kg⁻¹</td>
<td>Esf.</td>
<td>550,00</td>
<td>840,00</td>
<td>43,00</td>
<td>60,43</td>
<td>Moderado</td>
</tr>
<tr>
<td>DS₂</td>
<td>g cm⁻³</td>
<td>Exp.</td>
<td>0,004</td>
<td>0,003</td>
<td>50,00</td>
<td>45,21</td>
<td>Moderado</td>
</tr>
<tr>
<td>UV₂ᵣ</td>
<td>%</td>
<td>Exp.</td>
<td>0,82</td>
<td>5,02</td>
<td>36,99</td>
<td>85,95</td>
<td>Alto</td>
</tr>
<tr>
<td>MA₂</td>
<td>%</td>
<td>Gaus.</td>
<td>12,00</td>
<td>11,00</td>
<td>95,00</td>
<td>47,83</td>
<td>Moderado</td>
</tr>
<tr>
<td>MI₂ᵣ</td>
<td>%</td>
<td>Esf.</td>
<td>4,75</td>
<td>3,26</td>
<td>86,30</td>
<td>40,68</td>
<td>Moderado</td>
</tr>
<tr>
<td>PT₂</td>
<td>%</td>
<td>Exp.</td>
<td>3,70</td>
<td>8,00</td>
<td>35,00</td>
<td>68,38</td>
<td>Moderado</td>
</tr>
</tbody>
</table>

C₀ = efeito pepita, C = variância estruturada, a = alcance (m), GD = grau de dependência espacial (%), Esf = esférico, Exp = exponencial, Gaus = gaussiano, r = resíduo, areia (ARE), argila (ARG), silte (SIL), umidade volumétrica (UV), densidade do solo (DS), macroporosidade (MA), microporosidade (MI), porosidade total (PT), 1 = camada de 0,00-0,10m, 2 = camada de 0,10-0,20m e a profundidade do horizonte ‘A’ (PHA).

Referências

Agricultura de precisão em cana-de-açúcar

Resumo: No cenário atual de grande expansão e evolução tecnológica do setor canavieiro, o interesse pela agricultura de precisão é crescente. Contudo, para a adequada adoção da agricultura de precisão é necessário o domínio dos conhecimentos básicos para se coletar as informações sobre as variações espaciais do campo seguido da interpretação correta dos resultados. Neste capítulo são apresentadas teoricamente as relações entre a tecnologia de agricultura de precisão e a cana-de-açúcar quanto a aplicação da tecnologia no plantio e na colheita; a colheita da cana cru e seus efeitos no solo e na planta; o mapeamento de áreas de cana-de-açúcar utilizando imagens de satélite; a dinâmica do uso e cobertura das terras em áreas com cana-de-açúcar e as relações entre as áreas cultivadas e as usinas de cana-de-açúcar no estado de São Paulo. Os estudos indicam que a agricultura de precisão é compatível quando aplicada à cana-de-açúcar, porém sua aplicação ainda é incipiente frente a realidade dos produtores de cana-de-açúcar. A adoção da tecnologia pode ser fortemente favorecida com o uso de geotecnologias onde é possível obter respostas cada vez mais rápidas e precisas frente aos novos desafios de expansão e tecnificação do setor canavieiro em suas diferentes escalas. A incorporação da agricultura de precisão na cultura da cana-de-açúcar desempenha papel fundamental no sistema de gerenciamento da propriedade agrícola e consequentemente no aprimoramento da produtividade das usinas e destilarias sacroalcooleiras brasileiras, com vistas a atender o aumento da demanda interna e externa de etanol e açúcar, o que se traduz numa nova filosofia de trabalho que representa a otimização da produção gerenciada de acordo com a variabilidade espacial.

Palavras-chave: Setor canavieiro, geotecnologias, variabilidade espacial, colheita de cana cru

Precision agriculture in sugarcane crops

Abstract: The current scenario of great expansion and technological evolution in the sugarcane industry produces a growing interest in precision agriculture. Nevertheless, basic knowledge on how to collect information on spatial variation of the field and for the correct interpretation of the results is necessary for an adequate use of precision agriculture. In this chapter we present the theory behind the relationships established between the technology involved in precision agriculture and sugarcane in terms of the use of this technology in planting and in harvesting; the harvest of green sugarcane and its effects on soil and plant; the mapping of sugarcane areas using satellite images; the dynamics of land use and land cover in sugarcane areas; and the relationships between crop areas and sugarcane mills in the state of São Paulo. Studies indicate precision agriculture’s compatibility with sugarcane, but its use is still incipient due to the reality faced by sugarcane producers. The adoption of this technology may be strongly favored by the use of geotechnologies, which enable obtaining, ever more quickly and precisely, answers to the new challenges posed by the expansion and technification of the sugarcane industry in its different scales. The incorporation of precision agriculture in sugarcane crops plays an essential role in the agricultural properties’ management.
system, and consequently in increasing the productivity of Brazilian sugarcane mills and distilleries with the aim of addressing the increase in national and international demand for ethanol and sugar, and thus translates itself in a new production philosophy represented by production optimization managed according to spatial variability.

Keywords: Sugarcane industry, geotechnologies, spatial variability, green sugarcane harvest

1. **Introdução**

Os produtores do setor canavieiro buscam cada vez mais tecnologias agrícolas competitivas, tanto para maiores retornos financeiros, quanto para menores impactos no ambiente.

Hoje com a evolução do setor canavieiro, observamos que o produtor passa a ter preocupação crescente com o meio ambiente, forçado pela necessidade de comprovar a viabilidade do etanol como fonte de energia alternativa viável economicamente e ambientalmente. Neste cenário surge o interesse crescente pela agricultura de precisão. A agricultura de precisão, de uma forma geral, tem por objetivo otimizar os usos de insumos no setor, focando o aumento de produtividade por área e a diminuição de impactos ambientais. Contudo a adoção da tecnologia de agricultura de precisão não pode ser realizada adequadamente sem o domínio dos conhecimentos básicos necessários para se coletar as informações necessárias sobre as variações locais do campo, e a interpretação correta dos resultados. O grande desafio da agricultura de precisão está primeiramente na medição de parâmetros de solo, planta e clima com suficiente frequência espacial e temporal nas áreas de produção e em segundo lugar na determinação da correlação desses parâmetros com a produtividade.

Embora altamente mecanizada, a cultura da cana-de-açúcar ainda requer sistemas de produção amparados por técnicas baseadas em agricultura de precisão. Ainda que no final dos anos 1990 se observe no setor sucoalcooleiro tanto no Brasil como na Austrália um interesse crescente pelo uso de monitores para obtenção de mapas de produtividade de cana-de-açúcar, não se tem registro de usinas que tenham realmente implementado um conjunto amplo de recursos de agricultura de precisão. Em meados dos anos 2000 aumentou o interesse das usinas por aplicação de fertilizantes a taxas variadas, contudo esta aplicação era realizada com base em análises simplificadas de agricultura de precisão subsidiadas por baixo número de amostras de solos e sem correlação com a produtividade real da área. Mais recentemente observa-se uma grande demanda pela tecnologia de piloto automático, alavancada pela disponibilidade de sistemas de posicionamento de alta precisão com erros inferiores a 20 mm quanto ao posicionamento cinemático em tempo real (RTK), que permitiram ganhos reais no gerenciamento do sistema, através do plantio preciso viabilizando a redução de perdas durante a colheita, principalmente noturna, e melhor rendimento operacional.

Nos anos 2000, portanto, tem-se uma retomada do crescimento da produção de cana-de-açúcar sob uma nova égide de tecnificação, dirigida por exigências de (i) alta produtividade, (ii) desenvolvimento biotecnológico de novas variedades de plantas, (iii) certificação ambiental visando o mercado internacional, (iv) necessidade de substituição da matriz energética, (v) regulação ambiental para a extinção da queima na fase de colheita. Esse novo conjunto de demandas abre espaço para a efetiva busca da otimização de produção proporcionada pelos métodos e técnicas da Agricultura de Precisão.
Procurou-se apresentar teoricamente neste capítulo as relações entre a agricultura de precisão e a cana-de-açúcar quanto: a aplicação de agricultura de precisão no plantio a na colheita; a colheita da cana crua e seus efeitos no solo e na planta frente a agricultura de precisão; o mapeamento de áreas de cana-de-açúcar utilizando imagens de satélite; a dinâmica do uso e cobertura das terras em áreas com cana-de-açúcar e as relações entre as áreas cultivadas e as usinas de cana-de-açúcar no estado de São Paulo.

2. Agricultura de precisão aplicada a cana-de-açúcar no plantio e na colheita

Um dos passos essenciais para a implementação do sistema de agricultura de precisão é a obtenção de dados de produtividade da cultura. Para cultivos como cereais, de grande expressão econômica no mundo, existem vários monitores de produtividade disponíveis, produzidos por diferentes fabricantes, contudo para culturas como a cana-de-açúcar são ainda poucas as opções disponíveis comercialmente para o monitoramento da produtividade. Diversas técnicas já foram descritas para determinar a variabilidade espacial da produtividade, entre elas o uso de transbordos instrumentados com células de carga, GPS e um sistema de aquisição de dados (WHEELER et al., 1997). O sistema mostrou precisão razoável, porém exige a instrumentação de todos os transbordos da usina tornando esta solução economicamente inviável. Um dos primeiros modelos de monitor de produtividade que se tem registro foi apresentado por Cox, Harris e Pax (1997). O sistema era baseado na determinação da pressão hidráulica dos rolos alimentadores, na variação do fluxo hidráulico e velocidade de deslocamento da colhedora. Devido ao desgaste dos componentes hidráulicos e mudança de viscosidade do fluido em função da temperatura este monitor não apresentou um bom desempenho. Uma busca pela literatura permite verificar que existem hoje uma grande variabilidade de dispositivos que foram propostos e avaliados para serem utilizados para o monitoramento da produtividade da cana (MOLIN; MENEGATTI, 2004; PRICE; LARSEN; PETERS, 2007; MAGALHÃES; CERRI, 2007) sendo que cada um deles apresenta vantagens e desvantagens operacionais. O princípio de medição que apresentou melhor resultado entre os descritos na literatura está o sistema baseado em determinar o fluxo mássico que passa pelo elevador da colhedora. Este é o princípio de medição utilizado pelo sistema de mapeamento de produtividade de cana-de-açúcar (SIMPROCANA) um dos poucos monitores disponíveis comercialmente, que é baseado no dispositivo desenvolvido por Magalhães e Cerri (2007). O sistema inclui um conjunto sensor de fluxo de massa montado no final do elevador da colhedora, receptor DGPS, e um sistema de aquisição de dados. Este sistema tem sido utilizado com sucesso por alguns pesquisadores no Brasil (CERRI; MAGALHÃES, 2012; RODRIGUES JUNIOR; MAGALHãES; FRANCO, 2012; RODRIGUES JUNIOR et al., 2013), e comercialmente na Colômbia onde 5.000 mil hectares são monitorados anualmente e os mapas de produtividade utilizados no manejo da cultura, servindo de base para recomendação de adubação à taxa variada, tratos culturais diferenciados e no preparo da logística de corte carregamento e transporte. Os benefícios apresentados pela usina incluem redução do gasto total com fertilizantes e incremento de produtividade na ordem de 4 toneladas por hectare.

O SIMPROCANA ao longo destes anos sofreu várias modificações e a versão atual tem mostrado se tratar de um equipamento robusto e confiável para o fim que se destina. Um bom exemplo de seu desempenho são os resultados obtidos por Rodrigues Junior, Magalhães e Franco (2012) em experimento conduzido na Usina São João de Araras, SP. A área experimental sofreu um incêndio acidental que afetou aproximadamente 3 ha, cerca de 30% da área. Nesta região a cana voltou a brotar, mas nitidamente apresentou resultados de produtividade bem inferiores, que foram registrados com precisão pelo monitor (Figura 1).

O plantio de precisão ainda está muito distante da realidade dos produtores de cana-de-açúcar. Nos últimos anos o plantio mecanizado cresceu significativamente e atinge hoje cerca de 30% da área plantada na região centro-sul (IDEAONLINE, 2013). Contudo estas máquinas são ainda de baixa
eficiência e fazem uma distribuição de rebolos no sulco de forma imprecisa (Figura 2a).

Existem algumas iniciativas de grupos de pesquisa como do CTBE/CNPEM de investigar o desempenho de produtividade oriundos de sistemas de plantio de precisão (Figura 2b e 2c). Os resultados embora incipientes são promissores, e justificam o investimento em projetos de desenvolvimento em plantadoras que consigam realizar o plantio de cana de forma precisa a exemplo do que acontece já há muitos anos com cereais. O plantio de precisão poderá ser feito através de mudas pré-brotadas, ou “MPB”, como é chamado o sistema desenvolvido pelo Programa Cana do Instituto Agronômico (IAC). Esse sistema aumenta a uniformidade nas linhas de plantio e, consequentemente, a redução de falhas, diminui o número de gemas e de toneladas de colmos na operação de plantio mecanizado, viabilizando o que será o plantio de precisão no futuro próximo em cana-de-açúcar (LANDELL et al., 2012)

3. Colheita da cana crua e seus efeitos no solo e na planta frente a agricultura de precisão

Diante das proporções das mudanças que vem ocorrendo no cultivo da cana-de-açúcar e também da sua importância econômica, a
agricultura de precisão passa a ser uma ferramenta imprescindível para o gerenciamento deste setor. Contudo, para que isso ocorra, as alterações no sistema solo-plantatmosfera, resultantes da colheita da cana sem queima e manejos derivados, precisam ser entendidos e mapeados de acordo com as prerrogativas das técnicas de agricultura de precisão.

Em decorrência da colheita mecânica da cana crua, uma espessa camada de palha fica depositada sobre o solo (Figura 3). Segundo Christoffoleti et al. (2007), esta camada de palha pode atingir valores de 8 até 20 Mg ha\(^{-1}\), oscilando em razão da variedade e idade do canavial.

No entanto, pouco se conhece a respeito da distribuição espacial desta cobertura na superfície após a colheita da cana-de-açúcar mecanizada. A análise geoestatística é uma ferramenta de grande auxílio na identificação desta variabilidade espacial por considerar que amostras vizinhas são mais parecidas do que as mais distantes e para dados dependentes espacialmente permite estimar valores nos locais não amostrados sem tendência e com variância mínima (VIEIRA; XAVIER; GREGO, 2008). Com o objetivo de avaliar a variabilidade espacial na distribuição da cobertura vegetal, no sistema de colheita mecanizada da cana-de-açúcar, Ferreira et al. (2013) identificaram que a variedade RB85-5113 produziu em média 9,81 t ha\(^{-1}\) de cobertura vegetal seca e apresentou variabilidade espacial na distribuição da cobertura vegetal sobre o solo, após a colheita mecanizada e consequentemente na brotação da cana soca. Com a espacialização também foi possível detectar que onde ocorreu maiores quantidades de cobertura vegetal, também foi observada maior incidência de brotação.

A palhada, esse novo componente no sistema de cultivo da cana-de-açúcar, tem acarretado alterações na escolha dos cultivares, na forma de renovação do canavial (preparo do solo), no manejo de adubação da cana planta e cana soca, assim como no controle de invasoras, pragas e doenças (e.g. tratos culturais, práticas de cultivo). Procurou-se detalhar a seguir estas possíveis alterações frente a mudança no sistema de colheita para os principais aspectos fitotécnicos da cultura da cana-de-açúcar.

Escolha do cultivar: A maioria das variedades de cana-de-açúcar disponíveis atualmente foram desenvolvidas em sistema de cana queimada, e cada variedade pode apresentar resposta diferente quanto à adaptabilidade, não apenas em aspectos físicos, mas também quanto às particularidades do manejo (SOUZA et al., 2005). Frequentemente a existência de variabilidade espacial do solo não é considerada para o estudo de testes de novas cultivares, contudo, a uniformidade do solo raramente existe e não pode ser pressuposta sem uma adequada averiguação (VIEIRA; XAVIER; GREGO, 2008). Grego, Vieira e Xavier (2010) encontraram dependência espacial para a maioria dos atributos do solo em área teste de desenvolvimento da variedade de cana no Centro do Cana do Instituto Agronômico (IAC). A amostragem permitiu boa representatividade da dependência espacial do solo e das plantas sendo descartada a hipótese de aleatoriedade para disposição de parcelas para estudo de variedade na área estudada.

Preparo do solo e colheita: A manutenção da palha sobre o solo implica em etapas de preparo do solo similares ao sistema de plantio direto (MARTINS et al., 1999). Isso resulta na eliminação do preparo do solo para efetuar o plantio. Contudo, para se reformar uma área com cana-de-açúcar, é necessária a destruição da cultura anterior, operação que pode ser realizada com herbicida, seguida da sulcação na entrelinha, oferecendo melhores resultados, porque o solo não fica descoberto (ORLANDO FILHO; ZAMBELLO, 1983). O sistema radicular da cana-de-açúcar contribui com o conteúdo de

Figura 3. Palha em cultivo de cana-de-açúcar após sistema de colheita de cana crua. Catanduva, SP. Foto: Célia Grego
Os resíduos culturais que permanecem sobre o solo após a colheita mecanizada promovem a ciclagem de alguns nutrientes, com destaque para o N, S e C, que irão provocar mudanças significativas no manejo da cultura e influenciar a adubação de soqueiras (URQUIAGA et al., 1997; RESENDE et al., 2006). A manutenção da palhada sobre o solo proporciona melhoria em suas propriedades físicas, químicas e biológicas, além de favorecer a sua conservação (CANELLAS et al., 2003). A produtividade da cana-de-açúcar está relacionada diretamente à adubação nitrogenada, uma vez que o N é um dos nutrientes limitantes à produtividade e longevidade das soqueiras de cana-de-açúcar (VITTI, 2003). Na cana crua são raros os relatos em que, no final de um ciclo agrícola, a cultura utiliza mais de 40% do nitrogênio do fertilizante (FRANCO et al., 2008). Esse aproveitamento reduzido é atribuído, em parte, à intensa imobilização microbiológica em solo que contém material vegetal de elevada relação C:N (GAVA et al., 2001). O N imobilizado, que pode ficar no solo, torna-se uma fonte residual potencial para a cultura nos ciclos subsequentes da cana-de-açúcar (VITTI et al., 2007).

Atualmente a adubação nitrogenada não vem sendo recomendada no plantio da cana-de-açúcar, ou, quando recomendada, ela é feita em pequenas doses (30 kg ha\(^{-1}\)). Segato et al. (2006) atribuem a ausência de resposta da cana-planta à adubação nitrogenada à mineralização da matéria orgânica que ocorre durante o preparo do solo, às reservas existentes no toleto e ao sistema radicular extenso e profundo. Além disso, a cana-de-açúcar forma associações com bactérias fixadoras de N\(_2\) do ar atmosférico (DÖBEREINER; DAY; DART, 1972; URQUIAGA; CRUZ; BODDEY, 1992). Na adubação nitrogenada de soqueiras, o principal fertilizante a ureia, quando aplicado sobre os resíduos culturais presentes no solo, apresenta elevadas taxas de perda por volatilização de NH\(_3\), variando de 20 a 40% do N aplicado (FRENEY et al., 1994; CANTARELLA et al., 2008), em decorrência da ação da urease do solo e da palha (TRIVELIN et al., 2002). Outras fontes de nitrogênio, como nitrato de amônio, nitrato de cálcio e sulfato de amônio, não estão sujeitas às perdas por volatilização de N-NH\(_3\) em solos ácidos (CANTARELLA, 1998).

Além do nitrogênio, o manejo da adubação potássica também sofre interferência da presença de palha sobre o solo. Estudos sobre a liberação do K presente na palhada, concluíram que o potássio foi o elemento mais liberado pela palhada de cana (média de 93%), de um ano para o outro. Sabe-se que os solos tropicais brasileiros apresentam baixo teor de potássio trocável (PROCHNOW; CASARIN; STIPP, 2010) e que a cana-de-açúcar responde de forma expressiva à aplicação do fertilizante potássico, nestas condições (KORNDÖRFER; OLIVEIRA, 2005).

Com relação ao fósforo, resultados apresentado por Busato et al. (2005) indicaram que o manejo da cana crua possibilitou maior conteúdo de P em todos os compartimentos analisados. A manutenção da palha e a adição de vinhaça alteraram a distribuição das frações de P no solo, com diminuição da participação das formas não-lábeis e aumento das formas lábeis. Canellas et al. (2003) observaram aumento significativo no conteúdo de P disponível em um Cambissolo cultivado com cana-de-açúcar que não efetuou a queima do canavial antes da colheita durante longo tempo.

Os procedimentos para coleta de amostras de solo em agricultura de precisão ainda representam uma dificuldade operacional para o agricultor. Não é fácil garantir que uma amostragem tenha boa representatividade espacial do estado de fertilidade de um talhão, a começar pelas interferências provocadas pela coleta de subamostras em linhas de adubação de safras anteriores. Segundo Anchieta (2012), nos moldes atuais, o dimensionamento da adubação utilizando a agricultura de precisão depende de amostras que são coletadas no intuito de representar áreas, dependendo da grade amostral empregada.
Obviamente, quanto mais densa a amostragem de um talhão, maior a fidedignidade dos mapas de fertilidade gerados, desde que os dados atípicos sejam eliminados. O autor ressalta ainda que a geração dos mapas depende de cuidados, desde a amostragem até a forma de calculo e interpretação, e na maioria das vezes, para se obter mapas confiáveis há necessidade de coletar grande quantidade de amostras, resultando em custos elevados de aplicação da técnica, no entanto, quanto maior a precisão do mapa diagnóstico, a adubação a taxa variável pode gerar mais economicidade ao produtor. Molin (2000), cita que a densidade amostral que vem sendo comumente utilizada para detectar a variabilidade espacial do solo por parte dos produtores brasileiros varia em torno de uma amostra de solo a cada 5 ha para áreas mais homogêneas, e uma amostra a cada 3 ha para áreas mais heterogêneas.

Manejo de invasoras: Espécies menos afetadas pela presença da palha podem ser selecionadas no tempo e no espaço, tornando-se problemáticas nos canavais. A agricultura de precisão pode ser uma ferramenta útil para determinar mapas de infestação de plantas daninhas. Monquero et al. (2008) identificaram as diferenças entre o banco de sementes de área cultivada com cana colhida mecanicamente e o de área colhida após a queima, utilizando-se técnicas de agricultura de precisão. O talhão de cana crua apresentou menor potencial de infestação de plantas daninhas em relação ao talhão de cana queimada, principalmente monocotiledôneas, portanto, a palha de cana-de-açúcar em sistemas de cana crua pode ser utilizada como fator de supressão de várias espécies.

Manejo de pragas: A manutenção da palhada sobre o solo apresenta consequências sobre as infestações de pragas, de modo que frequentemente são descritas áreas com aumento na infestação de cigarrinhas (*Mahanarva fimbriolata*), que se têm caracterizado como uma das principais pragas em áreas de cana colhida crua (GARCIA et al., 2007). A distribuição espacial de cigarrinha foi estudada espacialmente em campo de colheita mecanizada de cana crua, utilizando-se a geostatística por Dinardo-Miranda et al. (2007). A praga se distribuiu de forma agregada na cultura e esse padrão não se alterou ao longo do tempo, nem foi influenciado pelo nível de infestação. A análise geostatística revelou que seriam necessários até três pontos de amostragem por hectare para uma estimativa confiável da densidade populacional da área.

Reforma do canavial: O aporte de resíduos da cultura da cana é o principal responsável pela variabilidade espacial da palhada na superfície, pois quanto mais diversa a comunidade vegetal, mais heterogênea será a serrapilheira (o resíduo de plantas sobre o solo) em pontos adjacentes. Nos últimos anos, a reforma tem representado somente 8% do total de canaviais implantados, mas o potencial é para cerca de um milhão de hectares anuais somente na região Centro Sul. Bolonhezi, Mutton e Martins (2007) em mais de 10 anos pesquisas realizaram validações comerciais conduzidas sobre a viabilidade da adoção do plantio direto na reforma de cana crua, as quais apresentam resultados favoráveis para soja, amendoim, leguminosas, adubos verdes e para cana-de-açúcar plantada na sequência. Na reforma com soja, a escolha de variedades de ciclo curto, para coincidir com o período disponível para reforma do canavial, varia conforme a região e clima da localidade. Para isto, os usineiros e produtores de cana devem contar com o zoneamento de áreas de reforma de canavial para produção de soja, a partir do cruzamento do zoneamento agroecológico da cana-de-açúcar e o zoneamento de risco climático da cultura de soja.

4. Mapeamento de áreas de cana-de-açúcar utilizando imagens de satélite

As geotecnologias, definidas aqui como o conjunto de métodos e técnicas para aquisição, modelagem e análise de dados geoespaciais, por vezes obtidos através de sensoriamento remoto insere-se como suporte fundamental para a Agricultura de Precisão, seja no seu aspecto tradicional de acompanhamento da propriedade, no município ou no âmbito regional, reiterando a necessidade do mapeamento e monitoramento multiscale.

O mapeamento de alvos como a cana, de amplo crescimento, num quadro de heterogêneo uso da terra como é o Brasil continua desafiador, visto que envolve o monitoramento de diversos outros alvos agrícolas (e.g. soja, milho, pastagens). Este desafio...
permanece mesmo com iniciativas eficientes como a do projeto Canasat (RUDORFF et al., 2010), que desde 2003 mapeia as áreas cultivadas com cana-de-açúcar na região Centro Sul do Brasil. Os dados de área são gerados a partir de imagens dos satélites Landsat, CBERS e Resourcesat-I, com os resultados embasando a análise anual de colheita da cana. Os resultados do projeto mostram que entre as safras de 2003 e 2012 a expansão da área cultivada com cana-de-açúcar foi de 84%, sendo que nesta última safa a porcentagem média de área colhida sem uso do fogo foi de 72% (CANASAT, 2012).

Nesse sentido o uso de abordagens utilizando diferentes sensores aptos ao mapeamento em diversas escalas torna-se essencial. Atualmente tem-se uma gama considerável de sensores remotos com características espectrais, espaciais e temporais com potencialidades para gerar coberturas multiescalares, porém, com limitações inerentes ao custo de aquisição e características técnicas distintas, onde sensores de baixa resolução espacial (tamanho mínimo de área imageada) possuem alta resolução temporal (tempo de retorno ao mesmo ponto), numa conhecida relação inversamente proporcional do sensoriamento remoto (Figura 4).

Os procedimentos de Agricultura de Precisão já não podem mais restringir-se as escalas de mapeamento no nível propriedade, prescindindo sistemas de mapeamento de larga escala de uso integrado, ampliando o termo precisão em termos de otimização de processos, independente de sua dimensão, seja para: (i) input de dados climatológicos mesoregionais, vitais para previsão de safra; (ii) planejamento logístico de colheita considerando variação sazonal de variedades e uso cooperado de máquinas, já uma realidade ou (iii) colheita e escoamento produção, corroborando a necessidade de mapeamentos multiescala (Figura 4).

A superação de limites passa, portanto, pela excelência em atividades coadunadas em pesquisa-desenvolvimento-inovação em geotecnologias. No caso do mapeamento multiescala da cana-de-açúcar tem-se exemplos recentes desse encadeamento, especificamente quanto ao aprimoramento de algoritmos de classificação de imagens computacionalmente mais eficientes aplicados ao sensor SPOT-Vegetation (resolução espacial de 1 km), com resultados satisfatórios para grandes áreas (VICENTE et al., 2012a).

Figura 4. Escalas temporal e espacial em sensores remotos e suas diversas utilizações com destaque para a agricultura de precisão e sua relação com trabalhos multisensor. (Fonte: Adaptado de HEMPHILL, 2001).
5. Dinâmica do uso e cobertura das terras em áreas com cana-de-açúcar no estado de São Paulo

Na agricultura de precisão, informações detalhadas da área a ser manejada auxiliam na aplicação precisa de insumos e afins, de acordo com as características particulares e necessidades da cultura. Juntamente com informações de solo e manejo anteriores, o conhecimento do histórico de uso auxilia na identificação de zonas homogêneas e, assim, no gerenciamento agrícola. Informações históricas permitem ainda a compreensão das intensidades de uso da área e o possível reflexo na produtividade agrícola, exercendo um importante papel na aplicação das técnicas de agricultura de precisão.

Nos estudos para avaliação da paisagem, o uso de séries temporais de dados de sensoriamento remoto tornou-se fundamental no resgate do histórico da área, com produtos selecionados em função da necessidade de escala temporal e espacial do foco de análise. A partir das análises de uso e cobertura do solo ao longo de um período, é possível reconstruir a trajetória de uma determinada região e a dinâmica entre as classes de uso.

As atividades agrícolas têm importante papel na transformação ou dinâmica das paisagens, processo associado à variação histórica e temporal dos elementos de uma determinada região (FORMAN, 1995). No Estado de São Paulo, a expansão da cultura vem determinando novas configurações regionais das explorações agropecuárias, principalmente na região oeste do Estado (CAMARGO et al., 2008). Esses fatores ressaltam a importância de entendimento da dinâmica de uso e cobertura da terra e como a expansão da cana-de-açúcar reflete nas demais classes de uso, informações que seriam produtos auxiliares na identificação da variabilidade da área e na decisão pelo manejo adequado.

Trabalhando com imagens de satélite Landsat, adquiridas ao longo do tempo, associadas com dados auxiliares, as séries temporais de índices de vegetação EVI2/MODIS, Adami et al. (2013) mapearam o uso e cobertura da terra anterior à cana-de-açúcar plantada entre 2005 e 2011, visando analisar a expansão dessa atividade no estado de São Paulo. Os polígonos referentes à expansão da cana de 2005 a 2011 foram interpretados visualmente com base na imagem de 2003. Nessa região, a expansão a atividade ocorreu principalmente sobre pastagem (63%) e agricultura (33%), com o restante da expansão sobre as classes de citrus, vegetação arbórea e reflorestamento. De acordo com os autores, entre 2005 e 2011, a cana-de-açúcar estava principalmente concentrada na região centro-norte e oeste do Estado.

Na região nordeste do estado de São Paulo, importante pólo econômico, Quartaroli et al. (2006) realizaram o levantamento do uso e cobertura das terras de 125 municípios para os anos de 1988 e 2003, tendo como principais objetivos identificar, espacializar e quantificar as principais atividades agrossilvopastoris desenvolvidas na região e analisar as dinâmicas espaciais e temporais das principais culturas. Empregando imagens Landsat para os anos de 1988 e 2003 respectivamente, foi realizada uma classificação automática da imagem mais recente, que serviu de base para a edição digital da outra data. A partir dos mapas de uso das duas datas, foram quantificadas as alterações no período, considerando 14 classes de uso. Essa análise da dinâmica identificou áreas de retração, expansão e permanência das classes, incluindo as conversões entre elas. Em relação a área, a cana dobrou a ocupação das terras, tornando-se a classe dominante em 2003, abrangendo 44% da área de estudo, seguida da pastagem, com 15%. Nesse período de 1988 a 2003 (Figura 5), a atividade de cana expandiu em 25%, principalmente sobre áreas de culturas anuais e pastagens, com permanência em 19% da área, e a pequena área de retração, menor que 2%, relacionada às áreas de fruticultura e pastagem.

Posteriormente, um desdobramento deste trabalho de Quartaroli et al. (2006) buscou analisar a dinâmica florestal e identificar padrões que resultaram na regeneração nessa região nordeste do estado de São Paulo. Empregando os mapeamentos de 1988 e 2003 e dados secundários do Instituto Brasileiro de Geografia e Estatística (IBGE), Araujo et al. (2011) identificaram municípios...
O trabalho de Vicente et al (2012a) que teve como objetivo avaliar o mapeamento de área de cana-de-açúcar por meio de série temporal, de seis anos de dados do índice de vegetação por diferença normalizada (NDVI), oriundos do sensor Vegetation, a bordo do satélite “système pour l’observation de la Terre” (SPOT), apresentou desdobramentos por Vicente et al. (2012b) que utilizou escala de tempo mais abrangente, da ordem de 15 anos (1990-2005), escala espacial mais detalhada e inserção de um maior número de alvos, através do uso do sensor Landsat TM (Thematic Mapper) 5 (30m de resolução espacial). Os autores realizaram o mapeamento das mudanças de uso e cobertura da terra nos municípios que apresentaram maior índice de expansão (>100%) no cultivo de cana-de-açúcar no estado de São Paulo no período citado, bem como quais tipos de uso da terra (e.g. pastagem,

cultura permanente) apresentaram redução em relação a cana. Como resultado, foram mapeados os municípios com o aumento significativo de área plantada de cana entre 1990 e 2005 (Figura 7).

Dessa forma, através do uso de geotecnologias envolvendo imagens de satélite e mapeamentos de uso e cobertura das terras, é possível obter respostas cada vez mais rápidas e precisas frente aos novos desafios de expansão e tecnificação do setor canavieiro em suas diferentes escalas, bem como servir de aporte fundamental para a Agricultura de Precisão.

6. A agricultura de precisão e as usinas de cana-de-açúcar no estado de São Paulo

A agricultura de precisão desempenha papel fundamental no aprimoramento da produtividade das usinas e destilarias sucroalcooleiras brasileiras, com vistas a atender o aumento da demanda interna e externa de etanol e açúcar, de forma que o país possa expandir a participação no mercado internacional sem deixar de suprir o consumo nacional, e ao mesmo tempo, a minimizar os impactos ambientais que podem advir da expansão da produção.

Atualmente, para cada tonelada de cana processada uma usina produz cerca de 71 quilos de açúcar e 42 litros de etanol (LEITE, 2009). Considerando-se cenários de consumo futuro, a geração brasileira de etanol deveria saltar de cerca de 18 bilhões de litros por ano em 2012 para 205 bilhões de litros por ano em 2025 para substituir 10% da gasolina consumida mundialmente (LEITE, 2009). Como decorrência da perspectiva atual e futura de aquecimento do mercado, já são observados projetos para instalação de novas plantas, bem como uma elevação da escala de moagem das usinas e destilarias (BELIK et al., 2013), delineando a necessidade de aumento no fornecimento de matéria-prima.

Entre as 401 usinas e destilarias em operação no país, 42% por cento se concentram no estado

<table>
<thead>
<tr>
<th>UF</th>
<th>Nr. de usinas</th>
<th>Cana plantada (ha)</th>
<th>UF</th>
<th>Nr. de usinas</th>
<th>Cana plantada (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acre</td>
<td>01</td>
<td>964</td>
<td>Alagoas</td>
<td>24</td>
<td>439.250</td>
</tr>
<tr>
<td>Amazonas</td>
<td>01</td>
<td>4</td>
<td>Bahia</td>
<td>06</td>
<td>87.762</td>
</tr>
<tr>
<td>Rondônia</td>
<td>01</td>
<td>1.225</td>
<td>Mato Grosso</td>
<td>11</td>
<td>153.654</td>
</tr>
<tr>
<td>Roraima</td>
<td>0</td>
<td>436</td>
<td>Mato Grosso do Sul</td>
<td>21</td>
<td>146.191</td>
</tr>
<tr>
<td>Amapá</td>
<td>0</td>
<td>68</td>
<td>Goiás</td>
<td>34</td>
<td>224.000</td>
</tr>
<tr>
<td>Pará</td>
<td>01</td>
<td>8.579</td>
<td>Distrito Federal</td>
<td>0</td>
<td>402</td>
</tr>
<tr>
<td>Tocantins</td>
<td>01</td>
<td>5.421</td>
<td>São Paulo</td>
<td>172</td>
<td>2.986.433</td>
</tr>
<tr>
<td>Maranhão</td>
<td>04</td>
<td>32.267</td>
<td>Rio de Janeiro</td>
<td>04</td>
<td>160.959</td>
</tr>
<tr>
<td>Piauí</td>
<td>01</td>
<td>12.017</td>
<td>Espírito Santo</td>
<td>05</td>
<td>53.606</td>
</tr>
<tr>
<td>Ceará</td>
<td>02</td>
<td>40.888</td>
<td>Minas Gerais</td>
<td>43</td>
<td>382.649</td>
</tr>
<tr>
<td>R. G. do Norte</td>
<td>04</td>
<td>54.652</td>
<td>Paraná</td>
<td>30</td>
<td>365.674</td>
</tr>
<tr>
<td>Pernambuco</td>
<td>20</td>
<td>402.894</td>
<td>Santa Catarina</td>
<td>0</td>
<td>15.650</td>
</tr>
<tr>
<td>Paraíba</td>
<td>09</td>
<td>117934</td>
<td>Rio Grande do Sul</td>
<td>01</td>
<td>32.841</td>
</tr>
<tr>
<td>Sergipe</td>
<td>05</td>
<td>30.254</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: MAPA (BRASIL, 2012b); IBGE (INSTITUTO..., 2012).
de São Paulo (Tabela 1), coincidindo com a grande extensão de área plantada com cana.

Esta relação entre o número de usinas e área de cana plantada é explicada pela estreita dependência espacial existente neste setor. Diferentemente de outros mercados, no setor sucoalcooleiro as fases agrícola e industrial da produção têm um limite de distância máxima em virtude de fatores logísticos. Os gastos com corte, carregamento e transporte correspondem a 30% do custo global das usinas (CAIXETA FILHO et al., 1998), e por ser um produto de baixo valor agregado e não ter carga de retorno, a distância das frentes de colheita tem importante impacto na otimização dos custos nesta etapa. Deve ser mantido o fluxo constante e uniforme de matéria-prima alimentando as moendas, pois tanto a parada por falta de cana, quanto o funcionamento subutilizado por quantidade de cana insuficiente, resultam em elevação de custos e prejuízos (IANNONI; MORABITO, 2002). Com base nestes parâmetros, atualmente é adotado pelas usinas um raio médio de 25 a 30 km para garantir o transporte competitivo (CHIARINELLI, 2008).

Desta forma, regiões que apresentam condições edafoclimáticas favoráveis, sofrem grande pressão, como pode ser observado nas regiões canavieiras tradicionais do estado de São Paulo. A competição por matéria-prima é mais acentuada em regiões como Ribeirão Preto, Catanduva, Assis e Jaú (Figura 8).

É evidente a necessidade da utilização de técnicas de agricultura de precisão para elevar a produtividade média para além dos 80 t ha\(^{-1}\) nas áreas próximas às plantas industriais já instaladas, garantindo o constante e uniforme abastecimento do processo de beneficiamento.

Há também a tendência de instalação de usinas em regiões com ambientes de produção menos propícios, como Araçatuba e Presidente Prudente. Nestas áreas, a atuação da agricultura de precisão

Figura 8. Localização das usinas e destilarias sucoalcooleiras no estado de São Paulo. Os círculos representam as áreas de influência de cada planta, sendo que a sobreposição indica os níveis de competição sobre a região. Elaboração a partir de Belik et al. (2013) e Vicente et al. (2012).
será ainda mais essencial, devido, principalmente às restrições relativas às condições do solo.

7. Considerações finais

Os estudos demonstram que o pacote tecnológico da agricultura de precisão é abrangente e compatível quando aplicado à cana-de-açúcar, principalmente porque já despontam no Brasil produtos decorrentes deste pacote envolvendo principalmente as geotecnologias aplicadas em todo o setor produtivo.

Podemos inferir que a produção da cana-de-açúcar se encaixa adequadamente dentro dos conceitos de agricultura de precisão, contudo, devido às suas características agrícolas de manejo, produção verticalizada e integralizada, a adoção da tecnologia vai muito além do que temos observado na produção de cereais, que está fundamentada principalmente na manejo agronômico. O potencial de adoção da ferramenta de agricultura de precisão além de contribuir com a melhoria da qualidade e redução de custo da produção apresenta oportunidade também de ser utilizada como uma ferramenta de otimização de manejo, minimização de custos operacionais, e adequação ambiental.

Portanto, a incorporação da agricultura de precisão na cultura da cana-de-açúcar se traduz numa nova filosofia de trabalho que representa principalmente a otimização da produção agrícola gerenciada de acordo com a variabilidade espacial para potencializar a competitividade e a sustentabilidade da cadeia produtiva.

Referências

Integração espacial de dados para agricultura de precisão na Unidade Piloto com cana-de-açúcar, Mogi Mirim, SP

Célia Regina Grego*1, Cristina Aparecida Gonçalves Rodrigues*1, Carlos Manoel Pedro Vaz*2, Luiz Eduardo Vicente*1, Sandro Manuel Carmelo Hurtado*3, Ladislau Marcelino Rabello*2, Sandro Roberto Brancalião*4, Lúcio André de Castro Jorge*2, Ricardo Bernardo Afonso*5

1Pesquisadores, Embrapa Monitoramento por Satélite, Av. Soldado Passarinho, 303, Jardim Chapadão, Campinas, SP
2Pesquisadores, Embrapa Instrumentação, Rua XV de Novembro, 1452, São Carlos, SP
3Pós-doutorado, Instituto Agronômico, Av. Barão de Itapura, 1481, Campinas, SP
4Pesquisador, Instituto Agronômico, Centro de Cana, Rodovia Antonio Duarte Nogueira km 321, Ribeirão Preto SP
5Bolsista de Iniciação Científica, Embrapa Monitoramento por Satélite, Av. Soldado Passarinho, 303, Jardim Chapadão, Campinas, SP

*E-mails: celia.grego@embrapa.br, cristina.rodrigues@embrapa.br, luiz.vicente@embrapa.br, carlos.vaz@embrapa.br, ladislau.rabello@embrapa.br, lucio.jorge@embrapa.br, sandroelbat@gmail.com, brancalião@iac.sp.gov.br, ricardo.affonso1@gmail.com

Resumo: Uma das principais aplicações da agricultura de precisão na cana-de-açúcar é a identificação da variabilidade espacial dos fatores de produção. O objetivo do trabalho foi a integração de informações espaciais de solo e planta para identificação das zonas homogêneas na Unidade Piloto com cana-de-açúcar, Mogi Mirim, SP. Os dados foram coletados na área com cana-de-açúcar na safra 2011/2012 com grade mínima de 90 pontos. Foram coletadas amostras de solo e planta: granulometria (15 cm); densidade do solo (15 e 30 cm); resistência à penetração do solo (0-10, 10-20 e 20-30 cm); número de colmos (colmos m-2); índice de vegetação (NDVI) pelo sensor Crop Circle; condutividade elétrica do solo pelo sensor Veris (30 e 90 cm). De acordo com os resultados houve dependência espacial para a maioria dos atributos do solo e da planta, e a interpolação permitiu visualizar a divisão da área em duas partes, uma ao norte da área e outra ao sul, separadas pela pedreira identificada na imagem de satélite e na imagem do veículo aéreo não tripulado. Também foram identificadas duas regiões distintas quanto ao número de colmos e o índice de vegetação. A condutividade elétrica apresentou dependência espacial de fraqueza e nula em nível e não foi identificada relação espacial com os demais atributos. Assim, a partir da análise geoestatística, foi possível a identificação de duas zonas homogêneas, que pode vir a auxiliar na tomada de decisão quanto ao manejo localizado da propriedade agrícola estudada.

Palavras-chave: geoestatística, interpolação por krigagem, variabilidade espacial, zonas homogêneas

Spatial integration dataset for the sugar cane precision farming unit in Mogi Mirim, SP

Abstract: A major application of precision agriculture of sugar cane is the identification of the spatial variability of factors production. The aim was the integration of spatial information of soil and plant to identify homogenous zones in the Pilot with cane sugar, Mogi Mirim, SP. Data were collected in the area with cane sugar in the 2011/2012 season with a minimum grid of 90 points. Samples were collected from soil and plant: particle soil size (15 cm), soil density (15 and 30 cm), soil penetration resistance (0-10, 10-20 and 20-30 cm), number of culms (stems m-2); Normalized Difference Vegetation Index (NDVI) for the Crop Circle sensor; electrical conductivity sensor by Veris (30 and 90 cm). According
to the results there was spatial dependence for most soil properties and plant and view interpolation allowed the division of the area into two parts, one to the north and the other to the south, separated quarry identified on the satellite image and image Unmanned Aerial Vehicle. Were also identified two distinct regions on the number of stems and NDVI. The electrical conductivity showed weak spatial dependence of the null and was not identified spatial relationship with other attributes. Thus, with geostatistical, it was possible to identify two homogeneous zones, which can be useful in the decision making regarding the site specific management of the farm studied.

Keywords: geostatistical, homogeneous zones, kriging interpolation, spatial variability.

1. **Introdução**

No Brasil, a cultura da cana-de-açúcar (*Saccharum officinarum* L.) utiliza-se de tecnologia de ponta desde as décadas de 1940 e 1950, principalmente a partir de 1969 e 1975 com a criação dos órgãos Centro de Tecnologia Canavieira e do Proálcool respectivamente, voltadas para o setor da agroindústria da cana-de-açúcar (UNIÃO..., 2013). Mas o uso efetivo da agricultura de precisão, mesmo que, por poucos produtores, começou a partir de 2000 devido aos GNSS mais precisos (SERVIÇO..., 2012).

A agricultura de precisão tem como premissa que a variabilidade de espaço e de tempo influencia nos rendimentos da cultura, devido às diferenças naturais nas áreas de plantio quanto à fertilidade do solo, infiltração de água, nível de compactação e tipos de solo, e às superfícies geomorfológicas ou outros atributos relevantes. Assim, o emprego de geotecnologias na agroindústria canavieira de precisão apresenta-se como um modelo de manejo ou gerenciamento das propriedades canavieiras, sendo fundamental no controle e na organização das atividades, na economicidade e sustentabilidade do sistema, sempre procurando atender as demandas mundiais: maior produtividade e manutenção dos recursos naturais por meio de seu uso racional.

Uma das principais dificuldades nas lavouras de cana-de-açúcar de precisão é a obtenção de correlação da variabilidade espacial da produção com a variabilidade espacial dos atributos dos solos, das plantas e de outros, como a geomorfologia da paisagem (SOUZA; MARQUES JÚNIOR; PEREIRA, 2010) ou como a também existente variabilidade temporal da produção. Isso deve-se à existência de fatores potencialmente intrínsecos ao sistema, como exemplo, o nível de compactação do solo derivado do uso intenso de maquinários pesados na colheita.

Dentre as muitas tecnologias da agricultura de precisão utilizadas em campo para medição precisa da variabilidade espacial do solo juntamente com seu potencial de produção das culturas, temos: receptores GPS e sensores de propriedades físicas do solo acoplados aos tratores que reduzem o tempo e custo de análises, além do fornecimento de informações gráficas contínuas; sensor de umidade do solo TDR; penetrômetro hidráulico-eletrônico de acionamento manual com acoplamento no engate do veículo ou trator (MOLIN; DIAS; CARBONERA, 2012); sensor de mensuração da condutividade elétrica do solo que está associada e por conseguinte, é indicativa da salinidade, da variabilidade da textura do solo, do tamanho e distribuição de poros, da capacidade de troca catiónica, da matéria orgânica e do teor de umidade do solo (MOLIN; FAULIN, 2013). O equipamento como o sensor óptico ativo Crop Circle é utilizado para medição do NDVI das folhas (FRASSON et al., 2007) e estimativa da produtividade da cana-de-açúcar (AMARAL et al., 2012); as imagens remotas de satélite (multiespectrais) e de veículo aéreo não tripulado, são utilizadas principalmente, para verificação de manchas de produção nos talhões e correlação com os dados de campo.

O objetivo do trabalho foi a integração de informações espaciais de solo e planta de cana-de-açúcar para identificação das zonas de manejo e aplicação da agricultura de precisão na Unidade Piloto com cana-de-açúcar, Mogi Mirim, SP.

2. **Material e métodos**

O trabalho foi realizado na Unidade Piloto (UP) de cana-de-açúcar, um talhão experimental de 17 ha da Fazenda Aparecida em Mogi Mirim, SP conforme ilustrado na Figura 1 referente a imagem...
Figura 1. Visualização da imagem WorldView-2 do dia 30 de abril de 2011 referente: a) área da fazenda Aparecida, Mogi Mirim, SP e do talhão experimental da Unidade Piloto de cana-de-açúcar; b) 90 pontos georreferenciados de coleta de amostras de campo.
de satélite do dia 30 de abril de 2011 obtida pelo satélite WorldView-2.

Os dados de solo e planta foram coletados nas safras da cultura da cana-de-açúcar de 2011/2012 nos 90 pontos. O sistema de colheita foi o mecanizado sem queima e o manejo do solo, plantio direto.

Foram coletadas amostras de solo em fevereiro de 2012 para a determinação dos atributos físicos do solo:

- granulometria (15 cm de profundidade): argila (g g⁻¹), silte (g g⁻¹), areia (g g⁻¹) segundo método de (BOUYOCOS, 1927)
- densidade do solo: densidade (g cm⁻³) a 15 cm e a 30 cm de profundidade pelo método do anel volumétrico (CAMARGO et al., 1986)
- resistência à penetração: resistência do solo à penetração em MPa de 0-10, 10-20 e de 20-30 cm de profundidade segundo metodologia de Stolf (1991).

Para a estimativa de produção da cana-de-açúcar foi realizada a contagem do número de colmos (colmos m⁻²) em abril de 2012.

Após a colheita e início de desenvolvimento da cana soca em novembro de 2012, foi medido o índice de vegetação por diferença normalizada (NDVI) em campo nos 90 pontos de amostragem por meio do sensor Crop Circle ACS-430. O NDVI é calculado pela diferença entre a reflectância do infravermelho próximo e a reflectância do vermelho dividida, respectivamente, pela soma das duas reflectâncias. A condutividade elétrica (CE) do solo também foi medida neste período e o equipamento utilizado foi o sensor por contato direto Veris (acoplado no veículo tratorizado equipado com GPS e receptor de dados), composto de quatro sensores e dois eletrodos. Os sensores percorreram superficialmente o solo e transmitiram valores de CE (mS m⁻¹) de 0-30 e de 0-90 cm de profundidade. Na Figura 2 são visualizados os sensores utilizados.

Inicialmente os dados foram analisados pela estatística descritiva obtendo-se a média, variância, desvio padrão, coeficiente de variação, valor mínimo, valor máximo, assimetria e curtose. Para verificar a variabilidade espacial e identificação das zonas homogêneas os dados foram analisados pela geoestatística através da construção e ajuste de semivariogramas, krigagem para interpolação de dados e construção de mapas de isolinhas, descritos em Vieira (2000). Os programas utilizados para as análises foram desenvolvidos segundo Vieira et al. (2002).

Também foi realizada a tomada de imagem aérea por veículo aéreo não tripulado (VANT). Para a coleta de imagem no visível foi utilizada uma câmera RGB modelo GoPro Hero 2, obtendo imagens a 250m acima do nível do solo a cada 2 segundos, com qualidade de 8mp e seu relógio de satélite do dia 30 de abril de 2011 obtida pelo satélite WorldView-2.

Figura 2. Sensores de medição: a) condutividade elétrica do solo - Veris; b) índice de vegetação - Crop Circle

Foto: C. R. Grego
Os coeficientes de assimetria e curtose expressam a normalidade de frequência dos dados e os valores próximos de zero indicam distribuição de frequência normal (WEBSTER; OLIVER, 2007). Os dados apresentaram, em sua maioria, normalidade de distribuição de frequência e coeficiente de variação baixos, com exceção da condutividade elétrica do solo, que apresentou valores de assimetria e curtose distantes de 0 e coeficientes de variação maiores do que 100% (Tabela 1). Um fato que pode explicar esta anormalidade e alta variação foi que no momento da medição, a superfície estava coberta com grande quantidade de palha resultante da colheita mecanizada anterior o que dificultou grandemente o contato dos discos do sensor no solo.

Os dados foram submetidos a análise de variabilidade espacial, utilizando análise geoestatística, no intuito de contribuir para a identificação, nos locais não amostrados, das zonas homogêneas que podem auxiliar no manejo localizado da área. A aplicação da análise geoestatística é de grande utilidade neste processo, pois, segundo Vieira, Xavier e Grego (2008) utiliza o interpolador krigagem que considera a

Tabela 1. Estatística descritiva para as variáveis de solo e planta da cana-de-açúcar: areia, silte e argila (g g⁻¹) a 15 cm; densidade do solo (g cm⁻³) a 15 cm e a 30 cm; resistência do solo à penetração (RP) em MPa de 0-10, 10-20 e de 20-30 cm; número de colmos de cana (colmos m⁻²); índice de vegetação por diferença normalizada (NDVI); condutividade elétrica (CE) do solo (mS m⁻¹) de 0-30 e de 0-90 cm de profundidade.

<table>
<thead>
<tr>
<th>Variável</th>
<th>Pontos</th>
<th>Média</th>
<th>Variância</th>
<th>Desvio padrão</th>
<th>Coeficiente de Variação</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>Assimetria</th>
<th>Curtose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argila</td>
<td>80</td>
<td>49,47</td>
<td>16,460</td>
<td>4,06</td>
<td>8,20</td>
<td>35,90</td>
<td>60,80</td>
<td>-0,567</td>
<td>2,448</td>
</tr>
<tr>
<td>Silte</td>
<td>80</td>
<td>13,83</td>
<td>7,321</td>
<td>2,71</td>
<td>9,30</td>
<td>8,20</td>
<td>25,10</td>
<td>1,882</td>
<td>5,601</td>
</tr>
<tr>
<td>Areia</td>
<td>80</td>
<td>36,70</td>
<td>7,200</td>
<td>2,68</td>
<td>7,31</td>
<td>28,80</td>
<td>47,40</td>
<td>1,38</td>
<td>3,326</td>
</tr>
<tr>
<td>densidade (15 cm)</td>
<td>80</td>
<td>1,24</td>
<td>0,003</td>
<td>0,06</td>
<td>4,79</td>
<td>1,64</td>
<td>1,38</td>
<td>-0,126</td>
<td>-0,558</td>
</tr>
<tr>
<td>densidade (30 cm)</td>
<td>80</td>
<td>1,30</td>
<td>0,003</td>
<td>0,05</td>
<td>3,90</td>
<td>1,19</td>
<td>1,44</td>
<td>-0,222</td>
<td>-0,184</td>
</tr>
<tr>
<td>RP 0-10cm</td>
<td>80</td>
<td>0,84</td>
<td>0,026</td>
<td>0,16</td>
<td>19,35</td>
<td>0,56</td>
<td>1,19</td>
<td>-0,126</td>
<td>-0,558</td>
</tr>
<tr>
<td>RP 10-20cm</td>
<td>80</td>
<td>1,64</td>
<td>0,305</td>
<td>0,55</td>
<td>33,72</td>
<td>3,14</td>
<td>7,82</td>
<td>0,203</td>
<td>0,385</td>
</tr>
<tr>
<td>RP 20-30cm</td>
<td>80</td>
<td>2,65</td>
<td>0,364</td>
<td>0,60</td>
<td>77,82</td>
<td>4,56</td>
<td>0,65</td>
<td>0,423</td>
<td>0,221</td>
</tr>
<tr>
<td>N°. Colmos m²</td>
<td>90</td>
<td>2,08</td>
<td>0,024</td>
<td>0,15</td>
<td>7,40</td>
<td>2,39</td>
<td>4,50</td>
<td>0,221</td>
<td>0,221</td>
</tr>
<tr>
<td>NDVI</td>
<td>74</td>
<td>0,40</td>
<td>0,009</td>
<td>0,09</td>
<td>23,56</td>
<td>0,21</td>
<td>0,65</td>
<td>0,423</td>
<td>0,221</td>
</tr>
<tr>
<td>CE 30cm</td>
<td>1192</td>
<td>12,97</td>
<td>276,900</td>
<td>16,64</td>
<td>128,30</td>
<td>0,20</td>
<td>183,90</td>
<td>4,500</td>
<td>27,270</td>
</tr>
<tr>
<td>CE 90cm</td>
<td>1184</td>
<td>13,77</td>
<td>619,900</td>
<td>24,90</td>
<td>180,80</td>
<td>0,20</td>
<td>222,60</td>
<td>4,686</td>
<td>27,120</td>
</tr>
</tbody>
</table>
dependência espacial. Outros interpoladores não consideram a estrutura da variação espacial dos valores medidos e revelados pelo semivariograma, além de não determinar com exatidão a variação dos dados interpolados.

Os semivariogramas foram construídos e ajustados de acordo com o modelo esférico que melhor representou a dependência espacial para todos os atributos que apresentaram a dependência espacial. De acordo com Vieira (2000) os ajustes que melhor representam a variabilidade espacial para as variáveis de interesse agronômico são na maioria esféricos. Apenas a condutividade elétrica do solo medida com o sensor Veris a 30 cm de profundidade não apresentou dependência espacial, o que era de se esperar devido aos problemas de contato com o sensor no solo no momento da medição (devido a grande quantidade de palha na superfície).

De acordo com a figura 3 pode-se observar que o alcance de dependência espacial variou de 100 a 350 metros, ou seja, os dados são dependentes entre estes alcances de distâncias. O grau de dependência (GD %), segundo a classificação de Zimback (2001), na maioria, variou de moderado a forte e somente a condutividade elétrica (a 90 cm) apresentou dependência espacial fraca (<25%), provavelmente devido a alta variação nos dados obtidos. Após identificada a dependência espacial, os dados foram interpolados por krigagem ordinária, sem tendência e com variância mínima, para os locais não amostrados, utilizando os parâmetros de ajuste de dependência espacial (Co, C1 e alcance) como mostra a Figura 3. Após a interpolação foram construídos mapas de isolinhas para representar espacialmente os dados e permitir a identificação de zonas homogêneas.

A partir da análise dos mapas elaborados da Figura 3, foi possível estabelecer uma relação espacial entre os dados físicos do solo, textura, densidade do solo (15 cm) e resistência à penetração, pois a parte norte da área, comparada com a parte sul, possui maiores teores de argila (Figura 3 a), densidade (Figuras d, e) e resistência à penetração do solo (Figuras f, g, h). Com base nas análises dos mapas dos dados físicos do solo é possível visualizar a divisão em pelo menos duas áreas definidas como zonas homogêneas, uma na parte norte ao longo de toda a distância x da área e outra, na parte sul, separadas pela área da pedreira. A pedreira é a área não mapeada a esquerda e trata-se de uma mancha “pedregosa”, que pode ser identificada também na imagem de satélite (Figura 1a) e na imagem aérea obtida pelo VANT (Figura 4). As imagens obtidas pelo VANT também são importantes para a identificação das áreas para manejo localizados, principalmente pela facilidade de obtenção, alta precisão, alta resolução espacial e temporal. Além disso, com a imagem da Figura 4 também é possível a implementação de índices espectrais, como o NDVI a partir da combinação dos dados RGB e fotos com aplicação de filtros na região do Near Infra-Red (NIR).

Para os dados que envolvem a planta, como o número de colmos e o NDVI (Figuras 3 i, j) também são identificadas relações espaciais e pelo menos duas regiões distintas, onde na parte norte a esquerda da área ocorreram menores números de colmos na cana próxima a colheita e também menor índice de vegetação (NDVI) no início do desenvolvimento da cana soca seguinte, comparando com o sul da área.

Com o mapa de condutividade elétrica do solo (Figura 3 k) não se pôde identificar relação espacial com os demais mapas devido a fraça dependência espacial encontrada. Apesar da medição da condutividade elétrica do solo ser uma das mais usadas para caracterizar as variabilidades em agricultura de precisão, por ser fácil e confiável (CORWIN; LESCH, 2003), considerando as condições de campo do presente trabalho, o equipamento utilizado não foi o mais adequado. A medição foi realizada com umidade adequada do solo, aproximadamente na capacidade de campo, porém, a palhada depositada no solo impediu o equipamento de realizar grande parte das medidas. O contato dos discos com o solo foi dificultado mesmo com o rebaixamento total do engate do equipamento no trator. Uma opção nessa condição seria a adaptação pela empresa fornecedora do equipamento Veris, em aumentar o peso do equipamento ou acoplar limpadores de trilho para passagem dos discos. Outra opção seria medir somente nos 90 pontos georreferenciados utilizando o sensor portátil (ROCHA et al., 2011) de medição de condutividade elétrica do solo.

A variabilidade espacial encontrada para os dados físicos do solo e da planta, por meio da análise geoestatística permitiu identificar pelo
Figura 3. Mapas de isolinos dos atributos interpolados por krigagem ordinária: a) areia (g g⁻¹) 15 cm; b) silte (g g⁻¹) 15 cm; c) argila (g g⁻¹) a 15 cm; d) densidade do solo (g cm⁻³) a 15 cm; e) densidade do solo (g cm⁻³) a 30 cm; f) resistência do solo à penetração em MPa de 0-10; g) resistência do solo à penetração em MPa 10-20 cm; h) resistência do solo à penetração em MPa 20-30 cm; i) número de colmos de cana (colmos m⁻²); j) índice de vegetação por diferença normalizada (NDVI); k) condutividade elétrica do solo (mS m⁻¹) a 90 cm de profundidade.
A interpolação dos dados físicos do solo por krigagem permitiu dividir a área em duas partes definidas como zonas homogêneas, uma ao norte da área e outra ao sul, separadas pela área da pedreira identificada na imagem de satélite e na imagem do veículo aéreo não tripulado. Também foram identificadas duas regiões distintas quanto ao número de colmos e ao índice de vegetação, onde na parte norte a esquerda da área ocorreram menores valores em relação a parte sul da área.

4. Conclusões

Houve dependência espacial para a maioria dos atributos do solo e da planta, com alcance de dependência espacial variando de 100 a 350 metros.

A condutividade elétrica apresentou dependência espacial de fraca a nula e, portanto não foi identificada relação espacial com os demais atributos do solo e da planta.
Os resultados da análise de variabilidade espacial para os dados físicos do solo e da planta permitiram identificar duas zonas homogêneas para manejo localizado, o que pode subsidiar a tomada de decisão e o gerenciamento na propriedade da cana. Isto foi possível após a detecção da dependência espacial dos fatores envolvidos e a geoestatística mostrou ser a ferramenta adequada para esta detecção.

Referências

Silvicultura de precisão

Shizuo Maeda*1, Sérgio Ahrens*1, Susete do Rocio Chiarello*1, Edilson Batista de Oliveira*1, Lorena Stolle*2, João Antonio Pereira Fowler*1, Itamar Antonio Bognola*1

1Pesquisador, Embrapa Florestas, Estrada da Ribeira, km 111, Colombo, PR
2Engenheira Florestal, Florestalle Assessoria e Consultoria Florestal, Chapadão do Sul, MS

*E-mails: shizuo.maeda@embrapa.br, sergio.ahrens@embrapa.br, susete.penteado@embrapa.br, edilson.oliveira@embrapa.br, lorenastolle@yahoo.com.br, joão-antonio.fowler@embrapa.br, itamar.bognola@embrapa.br

Resumo: O desenvolvimento tecnológico nas áreas de informática e geoprocessamento vêm permitindo mudanças expressivas na gestão da informação para a tomada de decisão no gerenciamento das atividades florestais. O instrumental tecnológico disponível vem estimulando o desenvolvimento do manejo florestal sítio específico também conhecido como silvicultura de precisão. Com essa nova forma de manejo silvicultural objetiva-se tornar a atividade mais sustentável do ponto de vista economico, social e ambiental. Pretende-se com isso atender os requisitos para a certificação florestal atendendo as exigências de importantes mercados para os produtos florestais madeireiros. Define-se o tema e o analisa, resumidamente, nesse texto enfocando as possíveis aplicações no contexto do manejo florestal e as etapas de desenvolvimento da tecnologia. Menciona-se ainda questões relativas entre a silvicultura de precisão e a legislação relativas à exploração florestal e a certificação florestal. Finalmente exemplifica-se a aplicação relativa proteção florestal nos preceitos da silvicultura de precisão.

Palavras-chave: manejo florestal específico por sítio; sustentabilidade florestal

Precision silviculture

Abstract: Technological development in informatics and geoprocessing areas has allowed significant changes in the management of information for decision to management of forestry activities. The technological instrument available is encouraging the development of site-specific forest management also known as precision forestry. This new form of forest management, objective sustainable production. It is intended to meet the requirements for forest certification to strategic markets for timber. Sets up the theme and the analysis summarized in this paper focusing on the possible applications in the context of forest management and the development stages of technology. It also mentions issues between precision forestry and legislation relating to forestry and forest certification. Finally exemplified the application on forest protection with precepts of precision forestry.

Keywords: forest management, site-specific, forest sustainability
1. Introdução

O potencial de impacto econômico e ambiental da silvicultura de precisão (SP) no Brasil é diretamente proporcional à área de florestas plantadas passíveis de manejo. O país detém 14,5% da superfície florestal mundial, grande parte constituída pela floresta Amazônica. As plantações florestais no Brasil, em 2012, totalizaram 7,2 milhões de hectares, com um valor bruto da produção de R$ 56,3 bilhões e contribuição tributária de R$ 7,6 bilhões (ASSOCIAÇÃO..., 2013).

O aumento da demanda por produtos florestais, associados com os aumentos dos custos de produção e a exigência do mercado por produtos de origem certificada, tem requerido dos produtores maior eficiência no gerenciamento dos fatores de produção e no uso de insumos, para tornar a produção florestal sustentável. Para atendimento das exigências desse novo mercado, a SP vem sendo preconizada como uma alternativa à silvicultura tradicional como uma nova forma de manejo florestal. Esse novo enfoque de manejo silvicultural, sucede e complementa o enfoque de produção sustentável racionalizando a gestão dos fatores de produção em novos patamares (RIBEIRO, 2004).

Práticas silviculturais como o preparo do solo, controle da erosão, desbaste, desrama, adubação, controle de pragas, doenças e plantas invasoras e o plantio de materiais melhorados geneticamente têm sido responsáveis por elevados ganhos na produtividade e na melhoria da qualidade dos povoamentos florestais. Com o advento da tecnologia genômica, a identificação e a determinação do papel de cada gene vêm sendo buscadas em projetos conduzidos em centros de pesquisa, sendo possível, com isso, acelerar o processo de melhoramento genético visando resolver problemas apresentados pelas espécies florestais plantadas (RIBEIRO, 2004). É nesse contexto de produção sustentável e com rastreabilidade que a SP é inserida.

2. A Silvicultura de precisão

O termo silvicultura de precisão tem significados diferentes para diferentes especialidades. Para um melhorista florestal pode significar selecionar uma espécie/clone adequada para determinado ambiente, enquanto que para um industrial que processa a madeira, significa manejá-lo da floresta para a obtenção de madeira visando atender a qualidade requerida pelo mercado. Para um ambientalista significa ser capaz de manejá-la de forma que otimize os benefícios ambientais (DICK, 2003). Para um especialista em adubação significa aplicar nutrientes nas quantidades requeridas para o apropriado desenvolvimento da planta conforme a variabilidade na oferta dos mesmos nos locais de desenvolvimento das árvores.

Esses enfoques direcionam para a abordagem da silvicultura em diferentes níveis de precisão. Num nível mais amplo ou regional, a escolha da espécie/clone mais adequado depende do clima da região e do mercado a ser atendido. Numa região com clima temperado e ocorrência frequente de geadas o cultivo de espécies de eucalipto sensíveis ao frio tem levado ao insucesso. O plantio de espécie florestal que produza fibra curta, caso do eucalipto, em região em que a demanda do mercado seja para produção de celulose de fibra longa terá problemas para comercialização do produto colhido. Esses aspectos seriam abordados num zoneamento bioclimático e econômico, com a escolha da espécie/clone para atendimento de suas exigências bioclimática e comercial.

Num nível intermediário, como no caso de uma fazenda, o mapeamento do solo e de outras características importantes para o desenvolvimento das árvores e o agrupamento de áreas em unidades de manejo operacional, de acordo com características que requeiram níveis de manejo similares, pode ser mais adequado que os talhões florestais demarcados pela locação de estradas de acesso, baseados na topografia do terreno. Bognola (2007) correlacionou produtividade de Pinus taeda com variáveis físicas, físico-hídricas e químicas dos solos por meio de análise de agrupamento, onde foi possível realizar um mapeamento da produtividade florestal e definir unidades de manejo operacionais com base na interpolação geoestatística de algumas destas variáveis. A prática de uma silvicultura moderna requer um adequado conhecimento do meio físico, bem como da melhoria de suas características limitantes, o que implica na melhor utilização de cada unidade de manejo de acordo com a
sua capacidade de sustentação e produtividade econômica.

Num nível mais restrito, pode se considerar o manejo conforme a necessidade de cada árvore ou cada sítio/microsítio florestal, de acordo com a sua qualidade em um povoamento florestal, cabendo aqui a definição de silvicultura de precisão apresentada por Taylor et al. (2002): “planejar e conduzir atividades e operações de manejo florestal sítio específico para melhorar a qualidade e utilização da madeira, reduzir perdas e aumentar lucros e manter a qualidade do ambiente”. Ao se levar em conta árvore por árvore, trabalha-se em um nível refinado de silvicultura de precisão.

3. A prática da silvicultura de precisão

Apesar das altas produtividades das florestas plantadas para fins madeireiros no Brasil, na maioria dos plantios florestais as operações silviculturais são realizadas com equipamentos adaptados, não eficientes ou adequados às necessidades operacionais, resultando em baixa precisão do trabalho realizado. A exceção pode ser observada na qualidade da colheita florestal, normalmente realizadas em muitos talhões florestais com o uso de equipamentos importados altamente eficientes (BENEDETTI, 2012). Entende-se que o manejo florestal, nos preceitos da SP, deve ser precedido por grande acurácia nos controles de todos os processos envolvidos, ou seja, todas as intervenções executadas devem ser absolutamente exatas, sendo esse o principal foco das empresas florestadoras. Essa abordagem enfoca a necessidade de fazer a "lição de casa" (BENEDETTI, 2012), podendo também ser chamada de “boas práticas silviculturais”, ou executar com boa acurácia as práticas recomendadas para alta produtividade florestal, antes de adotar tecnologias sofisticadas de produção florestal, ainda em desenvolvimento para as condições brasileiras. O controle da qualidade das operações florestais é relativamente simples. Algumas empresas de tecnologia eletrônica vêm desenvolvendo equipamentos embarcados nas máquinas para o controle eletrônico de atividades de manejo como a de aplicação de insumos, os quais permitem o controle contínuo das quantidades de insumos aplicadas e que devem permitir a aplicação de insumos a taxas variáveis para a viabilização da silvicultura de precisão.

Em muitas empresas florestais, a maioria das operações silviculturais é realizada manualmente ou de forma parcialmente mecanizada, muito distante ainda da possibilidade de manejar a floresta nos preceitos da silvicultura de precisão. Embora isso ocorra, essa forma de manejo silvicultural se ajusta às necessidades e à capacidade técnica-financeira das empresas florestais que a adota.

As práticas de manejo sítio específico são recomendadas em situações em que existam variabilidade dos fatores de produção no talhão florestal (fertilidade do solo, ervas invasoras, pragas e doenças, água, etc.) e os rendimentos variam em função dos mesmos. Nessas condições, seriam aplicados manejos diferenciados em termos de adubação, controle de invasoras, pragas e doenças, etc., em lugar do tradicional manejo baseado na média.

Ribeiro (2004) menciona diversas áreas que podem ser beneficiadas pelo manejo florestal com base nos princípios da silvicultura de precisão: “avaliação do potencial produtivo do solo e de susceptibilidade à erosão, visando o delineamento de glebas homogêneas; aplicação de insumos (fertilizantes, corretivos e defensivos - herbicidas, fungicidas, inseticidas, etc); locação de estradas; inventário; monitoramento da saúde dos talhões e, ou, árvores individualmente; seleção dos indivíduos e da época ideal para operações de desbaste; otimização da seqüência de exploração, tendo em vista os mapas de produtividade e as condições climáticas e de piso; mapeamento dos talhões, possibilitando a redefinição de seus limites por desmembramento ou agregação; prevenção e combate a incêndios florestais; manejo de paisagens, com aprimoramento dos critérios para estabelecimento dos plantios, evitando-se a proximidade de talhões com mesmo clone e formação de corredores de corte raso; atendimento à legislação no que se refere ao mapeamento das áreas de preservação permanente e de reserva legal; e criação de corredores que conectam fragmentos florestais nativos”.
4. Fases para implantação

Para a adoção do manejo florestal com enfoque nos preceitos da silvicultura de precisão quatro fases podem ser mencionadas: a coleta de dados, o gerenciamento da informação, a intervenção localizada e a avaliação dos resultados (SARAIVA; CUGNASCA; HIRAKAWA, 2000).

Segundo Ribeiro (2000), “a tecnologia de precisão baseia-se na disponibilidade de uma base de dados confiável e atualizada, que reflita com fidelidade o estado atual das variáveis de decisão”, com destaque para dois aspectos: caracterização das propriedades permanentes dos solos como topografia e classe de solo e temporárias, como fertilidade, temperatura, umidade, biomassa florestal, estado fitossanitário, etc.

Conforme Saraiva, Cugnasca e Hirakawa (2000), para formação da base de dados, uma extensa coleta de informações da produção (no caso florestal de variáveis biométricas) e dos fatores de produção, principalmente de variáveis do solo e da incidência de pragas, doenças e ervas daninhas deve ser feita, sempre com um nível de detalhe que evidencie a possível variabilidade espacial em campo.

Segundo Molin (2000), o mapa de colheita é a informação mais completa para se visualizar a variabilidade espacial dos talhões, pois ela materializa a resposta da cultura aos fatores de produção e ao manejo aplicado. Dessa forma, na fase de coleta de dados, procura-se avaliar o terreno para identificar a variabilidade por ventura existente no talhão tanto na produtividade quanto nos fatores de produção envolvidos no crescimento das árvores.

A obtenção de dados pode ser realizada por meio de sensoriamento remoto, fotogrametria aérea ou amostragem direta no campo (BRANDELEIRO et al, 2007).

As florestas plantadas geralmente ocupam extensas áreas, muitas vezes de difícil acesso. No contexto da silvicultura de precisão, observa-se a busca por tecnologias que auxiliem o gestor florestal a obter informações da floresta de forma rápida, eficiente e de baixo custo, visando a maximização da produtividade. As empresas florestais mais tecnificadas, na busca do aumento da produtividade de suas áreas, têm investido na silvicultura de precisão, de modo que o levantamento de dados tem sido cada vez mais detalhado.

Atualmente, as geotecnologias, as quais incluem, por exemplo, detecção por imagens de satélite, fotografias aéreas e dados LiDAR (acrônimo do inglês Light Detection and Ranging), são ferramentas que apoiam o empreendedor florestal na aquisição destes dados, principalmente na área da silvicultura de precisão. A utilização de dados LiDAR, ou laser como é popularmente chamado devido ao tipo de energia utilizada, foi aplicada inicialmente sobre plataformas aéreas (laser aerotransportado) para elaboração de MDE (Modelos Digitais de Elevação) onde houve um acréscimo no tempo de aquisição de dados de altitude principalmente em áreas remotas. A aplicação deste tipo de tecnologia foi intensamente utilizada nas áreas da construção civil, estudos geológicos e planejamento costeiro. Não demorou muito para que pesquisadores observassem também a aplicação na área florestal.

O volume da floresta é uma das variáveis de maior interesse, pois dele depende o valor econômico da floresta e todo o planejamento florestal. Normalmente o volume da floresta é estimado em função de modelos matemáticos que utilizam as variáveis diâmetro a altura do peito e altura da árvore. A medição dessas variáveis está condicionada ao levantamento de algumas amostras em campo. Nesse aspecto, a aquisição de dados de altura e diâmetro com a tecnologia laser tem sido inovadoras no setor florestal por, disponibilizar rapidamente dados da floresta com economia de tempo nas atividades de inventário florestal além de possibilitar a medição de todas as árvores da floresta.

As primeiras aplicações florestais ocorreram na década de 1980 para detecção de variáveis como a altura e densidade da floresta (ALDRED; BONNOR, 1985) e para estimativa de volume florestal (MacLEAN; KRABILL, 1986). Nas décadas seguintes foram realizados diversos estudos da varredura a laser aerotransportado para detecção da altura de árvores ou do dossel (NAESSET, 1997; NILSSON, 1996; SUÁREZ et al., 2005; ROBERTS et al., 2005; ZANDONÁ; LINGNAU; NAKAJIMA; NAKAJIMA, 2008), volume de copa (KOH; HEYDER; WELNACKER, 2006; COOPS, et al., 2007), diâmetro de copa (ROBERTS et al., 2005), inventário florestal...
(ZONETE, 2009) e densidade do poçoamento florestal (OLIVEIRA et al., 2012). Atualmente, os estudos de aplicação com dados LiDAR tem sido evidenciados devido ao desenvolvimento de novas metodologias e implementação (software) para processamento dos dados para a área florestal.

No que se refere à obtenção de dados sobre a produtividade florestal, os equipamentos modernos de colheita podem avaliar o volume de madeira e o posicionamento geoespacializado de cada árvore abatida, fornecendo dados para avaliar a variabilidade espacial da produtividade, sem, contudo, informar sobre as causas da variação porventura existentes na produtividade de madeira.

Para o estabelecimento da relação de causa e efeito sobre a variabilidade na produtividade, a coleta geoespacializada de informações sobre todos os fatores envolvidos no crescimento das árvores deve se realizada, num nível de detalhe que permita evidenciar a possível variabilidade espacial no talhão de cada fator envolvido.

Os dados coletados devem ser processados, o que demanda uma estrutura computacional para execução, que se inicia com a correção de erros de coleta de dados e de posicionamento e se segue pela quantificação da variabilidade e sua relevância com o uso da geoestatística. A partir de mapas obtidos para cada variável (volume de madeira, características químicas e físicas do solo, incidência de pragas, doenças, ervas invasoras e outras), relaciona-se a variabilidade do volume de madeira, por exemplo, quando esse for o produto final do empreendimento florestal, com os fatores de produção buscando relações inequívocas de causa e efeito para se propor estratégias de manejo silvicultural que considerem a variabilidade encontrada. Finaliza-se essa etapa com a tomada de decisão sobre o manejo a ser adotado gerando mapas de aplicação de insumos em campo com as quantidades a serem aplicadas em cada ponto do solo, sendo os mapas transferidos para máquinas que realizem a operação programada (SARAIVA; CUGNASCA; HIRAKAWA, 2000).

A terceira etapa trata da implementação da prática para a aplicação localizada de insumos com o uso de equipamentos capazes de realizar essa operação a taxas variáveis no talhão florestal. A quarta etapa é a avaliação dos resultados, que está distribuída ao longo da rotação, sendo dinâmica, permanecendo em constante realimentação, o que permite que se avalie a adequação da estratégia utilizada e se promova ajustes em todo o processo.

Na Figura 1 é ilustrado um fluxograma do uso do manejo de precisão de um plantio florestal (RIBEIRO, 2004).

Na implantação do plantio florestal ou reforma possivelmente seja a fase em que a silvicultura de precisão possa ter maior impacto na produtividade florestal. As decisões de manejo silvicultural tomadas com base em mapas de variabilidade espacial da produtividade, possíveis no caso da reforma, e de fatores de produção (fertilidade do solo, controle de pragas, doenças e ervas daninhas; controle da qualidade da implantação; controle da qualidade da reforma) apresentam grande potencial de impacto no desenvolvimento da floresta implantada. Vettorazzi e Ferraz (2000) mencionam outras aplicações da silvicultura de precisão nessa fase: controle da qualidade da implantação (avaliação da mortalidade de mudas em decorrência de problemas climáticos como geadas, deficiência hídrica);

Na fase de floresta estabelecida Vettorazzi e Ferraz (2000) mencionam as seguintes aplicações possíveis: no monitoramento nutricional; levantamento e monitoramento de focos de pragas e doenças; detecção e mapeamento de áreas afetadas por geadas e incêndios; mapeamento sistemático de risco de incêndio (spacialização); estratificação da área para fim de inventário. Oliveira (2013), propõe manejar a floresta com base nos preceitos de silvicultura de precisão com a realização de desbastes baseado em Diagramas de Manejo da Densidade (DMD). Com base nos objetivos da produção de madeira, os DMD subsidiam a definição de regime de manejo ideal, adequando os níveis de competição entre os indivíduos de forma a promover um bom aproveitamento dos espaços disponíveis, reduzindo a variabilidade e evitando-se a formação de clareiras.

Na fase de pré-corte e corte o mapeamento de áreas não adequadas ao corte raso (seja por
critérios conservacionistas, estéticos ou funcionais, como exemplo no caso do estabelecimento de “corredores biológicos”; mapeamento detalhado para o corte, em florestas nativas, sob regime de manejo sustentável; mapeamento da produtividade de talhões (com destaque, por exemplo, para a avaliação de clones; estabelecimento do traçado de vias, para a otimização da exploração e do transporte em florestas nativas. Com relação ao último tópico, Braz et al. (2013) mencionam que, em função da menor heterogeneidade de microssítios em florestas nativas como um todo, a adequada definição dos microssítios permite o planejamento de áreas de florestas mais homogêneas. Isso possibilita o planejamento de uma malha otimizada de estradas e de trilhas de arrastes e o uso de equipamentos mais adequados a determinadas condições ambientais e de estoque de madeira e a aplicação de tratamentos silviculturais específicos. Segundo Figueiredo et al. (2007) o Modelo de Exploração Florestal - Modeflora, baseado em sistema de informação geográfica facilita este planejamento e se adequou às necessidades dos produtores do estado do Acre resultando em redução de custos e danos ambientais, e proporcionando maior eficácia no monitoramento da exploração.

5. Silvicultura de precisão, legalidade e certificação florestal

Além de contribuir para o melhor uso de insumos, como anteriormente examinado, a adoção de técnicas de silvicultura de precisão também possibilita aos proprietários e possuidores
rurais o atendimento à legislação pertinente ao uso de suas terras. Adicionalmente, as práticas de silvicultura de precisão constituem um importante diferencial por ocasião da realização de auditorias com vistas à obtenção de um certificado florestal. Estas duas importantes dimensões do tema serão brevemente examinadas como apresentado na sequência.

Após intenso e prolongado debate político, publicou-se a Lei n° 12.651/2012 instituindo-se, assim, uma profunda reforma no Código Florestal brasileiro. Além de consagrar diversas figuras jurídicas importantes como, por exemplo, as Áreas de Preservação Permanente (APPs) e a Reserva Legal (RL), a mencionada lei trouxe algumas inovações como o uso do módulo fiscal como critério relativo de área para a classificação de imóveis rurais em diferentes categorias, a recomposição parcial e escalonada de passivos ambientais, a instituição do Cadastro Ambiental Rural (CAR) e a obrigatoriedade de que todos os proprietários ou possuidores procedam à inscrição de seus imóveis rurais naquele registro público eletrônico. A inscrição no CAR é obrigatória para todos os imóveis rurais e tem a finalidade de integrar informações ambientais de propriedades e poses rurais, compondo uma base de dados para controle, monitoramento, planejamento ambiental e econômico e combate ao desmatamento. O Decreto n° 7.830/2012 trouxe um regulamento preliminar sobre a matéria aos estabelecer os seguintes elementos fundamentais que deverão compor o Sistema Cadastro Ambiental Rural: dados do proprietário ou possuidor do imóvel rural, a planta georreferenciada do perímetro do imóvel, das áreas de interesse social e das áreas de utilidade pública, e localização dos remanescentes de vegetação nativa, das APPs, das áreas de uso restrito, das áreas consolidadas e da RL (A Lei n° 12.651/2012 pode ser examinada acessando-se http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/Lei/L12651.htm; O Decreto n° 7.830/2012 encontra-se disponível em http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/Decreto/D7830.htm). Soares e Freitas (2013) analisam as necessidades para a efetiva implementação do CAR pela percepção da Engenharia Cartográfica e do Georreferenciamento.

Um conceito expandido de silvicultura de precisão deve considerar também os limites espaciais ao longo do terreno ou território a ser utilizado para o estabelecimento de um plantio florestal. Nesse sentido, a delimitação georreferenciada das APPs e da RL, conforme as métricas estabelecidas na referida lei, e o efetivo respeito a tais limites em campo, constituem providências fundamentais para que a produção florestal seja realizada conforme a legalidade vigente.

Registre-se, ainda, que para imóveis rurais localizados no bioma Mata Atlântica aplica-se, adicionalmente, o conteúdo normativo da Lei n° 11.428/2006 e do Decreto n° 6.660/2008 que a regulamenta. Aqueles dois diplomas legais determinam que plantios florestais estabelecidos com espécies nativas sejam inscritos no Cadastro de Espécies Nativas Plantadas ou Reflorestadas, mantido pelo órgão ambiental estadual competente. Nessa hipótese, requerem-se, também, as coordenadas geográficas dos vértices do imóvel e dos vértices da área em que se localiza o plantio florestal.

6. Silvicultura de precisão e a certificação florestal

Para fins meramente exemplificativos, apenas o Cerflor será brevemente considerado no que seja pertinente. Em especial, somente a norma NBR 14789 - Manejo florestal sustentável - princípios, critérios e indicadores para plantações...
florestais serão examinados na medida em que é particularmente relevante para esta análise. A referida norma é composta pelos seguintes princípios que constituem a referência para o manejo florestal sustentável (aos quais se encontram subordinados diversos critérios e indicadores verificáveis em campo):

1. Cumprimento da legislação
2. Racionalidade no uso dos recursos florestais a curto, médio e longo prazo;
3. Zelo pela diversidade biológica;
4. Respeito às águas, ao solo e ao ar; e,
5. Desenvolvimento ambiental, econômico e social das regiões em que se insere a atividade florestal.

O atendimento ao Princípio 4, acima indicado, implica que o manejo florestal e o programa de desenvolvimento tecnológico de um empreendimento florestal devem prever e adotar técnicas que considerem a conservação do solo, dos recursos hídricos e do ar. Obviamente, técnicas de silvicultura de precisão podem ser incorporadas ao planejamento florestal de modo a constituir um importante diferencial para o empreendimento. Dentre os critérios que devem ser considerados no cumprimento do Princípio 4 cita-se, pela sua densidade e relevância, os seguintes:

• Critério 4.1 - o manejo florestal deve basear-se em planejamento ambiental prévio à utilização da área.
 – Indicadores:
 a) evidência documentada da caracterização dos solos existentes na unidade de manejo florestal; A organização do empreendimento pode demonstrar o atendimento a esse indicador por meio da classificação e mapeamento dos solos que ocorrem na área, de tal forma a poder considerá-los no plano de manejo;
 b) evidência documentada de caracterização dos recursos hídricos, considerando-se a(s) microbacia(s) onde se insere a unidade de manejo florestal;
 c) existência de procedimentos para seleção e locação de áreas de plantio e da malha viária; Para o atendimento a este indicador é recomendável que a organização possua um procedimento documentado que estabeleça critérios técnicos para seleção e locação de áreas de plantio e da malha viária, com base na caracterização do uso do solo e dos recursos hídricos, no atendimento da legislação e na existência de áreas naturais e de relevante interesse ecológico;
 d) evidência de que as atividades silviculturais são planejadas e executadas levando em consideração os dados climáticos locais;
 e) evidência de que a identificação das áreas de importância ambiental leve em consideração as peculiaridades do solo e dos recursos hídricos da área.
 • Critério 4.2 - devem ser adotadas práticas de conservação, monitoramento e manutenção dos recursos hídricos e edáficos.
 – Indicadores:
 a) evidência de adoção de técnicas que visem a conservação do solo;
 b) existência de procedimentos de adubações de base ou de cobertura que considerem:
 – as exigências nutricionais das espécies plantadas,
 – os níveis de elementos essenciais existentes no solo,
 – as características intrínsecas de cada fertilizante,
 – as condições climáticas existentes.

Recomenda-se que a organização estabeleça procedimento documentado que defina diferentes zonas de manejo de solo, cada qual com recomendações nutricionais adequadas à necessidade da planta e à fertilização do solo, com vistas a manter a sustentabilidade do sítio a longo prazo.

• Critério 4.3 - o produtor florestal deve adotar uma política de uso racional de produtos químicos em geral.
 – Indicadores:
 a) evidência de que são observadas as recomendações técnicas para o manuseio, preparação e aplicação de produtos químicos necessários nas operações florestais;
 b) existência de registros da utilização de produtos químicos;
c) evidência de que não são utilizados produtos químicos banidos por acordos internacionais ou legislação vigente no país;
d) evidência de que os técnicos e os trabalhadores florestais que manuseiam ou aplicam produtos químicos são habilitados e o fazem utilizando os equipamentos de proteção individual apropriados;
e) evidência de que o armazenamento dos produtos químicos obedece às recomendações dos fabricantes e legislação vigente;
f) evidência de que o transporte dos produtos químicos entre os locais de armazenamento e o campo é feito com equipamentos ou veículos e licenças ou autorizações apropriadas;
g) existência de procedimentos de utilização de produtos químicos que considerem as condições climáticas, edáficas e topográficas;
h) existência de procedimentos de manutenção de equipamentos potencialmente geradores de poluentes;
i) existência de sistemas de controle e de destino de resíduos e de embalagens.

7. Silvicultura de precisão e a proteção florestal

As pragas são responsáveis por grandes perdas econômicas em plantios florestais e altos investimentos são feitos no intuito de controlá-las. Os plantios florestais no Brasil atingem uma área de aproximadamente sete milhões de hectares, constituídos principalmente pelos gêneros *Pinus* e *Eucalyptus* (ASSOCIAÇÃO..., 2012) e um número considerável de espécies de insetos e fungos, nativos e exóticos, estão associados a estas espécies, reduzindo sua produtividade e muitas vezes inviabilizando o empreendimento florestal.

Segundo Vettorazzi e Ferraz (2000), baseado no ciclo de desenvolvimento da floresta, três fases são citadas como momentos para intervenção com base nos preceitos da SP, sendo que, em duas delas, na implantação/primeiro ciclo ou reforma e na floresta estabelecida são citadas as atividades de controle de pragas.

O Manejo Integrado de Pragas (MIP) o qual, segundo Gallo et al. (2002) “implica na utilização de todas as técnicas disponíveis dentro de um programa unificado, de tal modo a manter a população de organismos nocivos abaixo do limiar de dano econômico e a minimizar os efeitos colaterais deletérios ao meio ambiente”, é uma ferramenta adequada e eficiente no escopo da SP, permitindo um melhor planejamento e execução das ações de prevenção e controle de pragas. Zadoks (2001) lista três etapas importantes em um Programa de Manejo Integrado de Pragas, sendo eles, a prevenção (antes do plantio), a intervenção (durante o desenvolvimento da cultura) e o processamento (durante e após a colheita).

A amostragem manual em pontos e o monitoramento contínuo são os métodos mais utilizados para detecção de pragas na silvicultura de precisão (Ribeiro, 2002). Entretanto, as dificuldades encontradas na amostragem de pragas florestais são muitas, em função das características próprias dos plantios e muitas vezes do comportamento da praga. Em qualquer Programa de Manejo Integrado de Pragas, o fator “amostragem” é um item muito importante e muitas vezes de difícil execução em função da grande extensão das áreas, altura das plantas, período de desenvolvimento longo, acesso às áreas, entre outras. Assim, as ações, além de necessitarem, muitas vezes de equipamentos adequados, pessoal treinado, apresenta um custo elevado.

Para Ribeiro (2002), o sensoriamento remoto é um poderoso aliado neste caso, pois permite obter imagens digitais de baixo custo em amplo espectro da radiação eletromagnética e os dados são incorporados ao SIG para verificar se a distribuição espacial de plantas daninhas, insetos e doenças ocorrem de forma aleatória ou tendenciosa. Porém, esta ferramenta nem sempre é a mais adequada. Pode-se citar o exemplo da vespa-da-madeira (*Sirex noctilio*), praga conhecida mundialmente e que foi introduzida no Brasil na década de 1980. Ela ataca preferencialmente plantas estressadas e normalmente os plantios a partir de sete anos são mais susceptíveis. Entretanto, as plantas estressadas são as dominadas que se encontram no dossel inferior da floresta e assim, a utilização do sensoriamento remoto, nesses casos, não é tão eficiente, devido o comportamento da praga.

Em vários países, inclusive o Brasil, o MIP é uma realidade para diversas culturas, existindo programas bem elaborados permitindo ao
produtor realizar previsões sobre a ocorrência de problemas fitossanitários, em função das condições climáticas e aplicar esquemas de monitoramento adequados com níveis de precisão aceitáveis, e assim adotar ou não estratégias de controle (CARVALHO; BARCELLOS, 2012).

No Brasil, um exemplo clássico do uso do MIP para controle de uma praga florestal é a vespa-da-madeira. O Programa Nacional de Controle à vespa-da-madeira (PNCVM) foi instituído pelo Ministério da Agricultura e Abastecimento em 1989 e contemplou intensas atividades de pesquisa, visando a geração e adaptação de tecnologias de controle. Na sua fase inicial, foi priorizado o controle biológico, pela introdução, criação massal e liberação do nematóide *Deladenus (=Beddingia) siricidicola*. Contemplou ainda, o monitoramento para a detecção precoce e o controle da dispersão da praga com uso de árvores-armadilha e da amostragem sequencial. Medidas de prevenção foram enfatizadas, especialmente quanto ao manejo das áreas, visando melhorar as condições fitossanitárias para minimizar o ataque da praga. Também foram adotadas medidas quarentenárias, visando o controle e o retardamento da dispersão da praga e um amplo programa de capacitação do pessoal envolvido nas ações de controle da praga foi conduzido.

Em função da adoção das ações preconizadas pelo PNCVM pela grande maioria dos produtores de pinus no país, foi possível conter seus danos e conviver com a praga em níveis aceitáveis.

8. Considerações finais

A pesar das elevadas produtividades das florestas plantadas no Brasil, principalmente de espécies de *Eucalyptus* e *Pinus*, as práticas silviculturais, no que tange ao preparo do solo, plantio e aplicação de insumos, são realizadas com equipamentos que apresentam restrições na qualidade do trabalho realizado por serem adaptados e nem sempre são realizadas as manutenções adequadas dos mesmos. O desenvolvimento de equipamentos que possibilitem a aplicação de insumos a taxas variáveis com acurácia, principalmente de fertilizantes, é uma necessidade a ser superada. A obtenção de mapas de produtividade e dos fatores de produção envolvidos que permitam obter as relações de causa e efeito da variabilidade da produtividade é dispensiosa, porém indispensável para o manejo florestal sito específico. A opção pelo manejo florestal com base em unidade de manejo operacional é uma alternativa para manejo num nível de talhão florestal, de custo inferior, viável para a maioria dos silvicultores.

Referências

Resumo: A silvicultura de precisão utiliza os mesmos métodos da agricultura de precisão, mas tem um forte componente adicional que é a possibilidade do uso das dimensões das árvores como base para descrição da variabilidade espacial da plantação florestal. No presente trabalho, foi descrito como os software de simulação de manejo florestal, SisEucalipto, SisPinus, etc, podem ser utilizados para dar suporte, prognosticar resultados e avaliar a eficiência do manejo florestal baseado em silvicultura de precisão. Elementos gráficos dos software foram apresentados, sendo destacado o uso de Diagramas de Manejo da Densidade (DMD) que, juntamente com componentes tradicionais da agricultura de precisão facilitam a visualização e mapeamento das unidades de manejo por classes de densidade. A tecnologia apresentada auxilia na definição de tratos silviculturais em cada árvore (poda, desbaste imediato ou futuro, ou permanência até a colheita final) considerando fatores como as distribuições de diâmetro e altura de todas as árvores, sua qualidade, ocupação do dossel e área da copa. Com isto, são aprimorados os critérios para definição do manejo florestal que otimiza a produção madeireira e a renda.

Palavras-chave: árvores, desbaste, manejo florestal, software

Abstract: Although precision forestry uses a similar methodology prescribed for precision agriculture it has in trees dimensions an important additional attribute for describing the spatial variability of the plantation. In this study, we described how the simulation software (e.g. SisEucalipto, SisPinus) can be used to support in the decision making process, predict outcomes and evaluate the efficiency of forest management based on precision forestry. We proposed the use of graphics resources available in such software and the Density Management Diagram (DMD) with the traditional components of precision agriculture in order to facilitate the visualization and mapping of management units by density classes. The technology presented assists in defining silvicultural treatments for each tree (pruning, immediate or future thinning, or stay until clear-cut) considering factors such as the distribution of diameter and height of all trees, their quality, canopy cover and crown area. The method described allows for the improvement of the criteria and practices used in forest management as a means to optimize timber production and income.

Keywords: forest management, trees, software, thinning
1. Introdução

A silvicultura e o manejo de plantações florestais sempre tiveram por base os fundamentos da agricultura de precisão, como por exemplo, ao se dividir os povoamentos em “unidades de manejo” compostas por talhões organizados por características semelhantes de propriedades do solo e dos próprios plantios, visando maximizar a rentabilidade econômica de forma sustentável. Com a denominação de silvicultura de precisão, a tecnologia compartilha os componentes da agricultura de precisão, mas difere no que se refere a operações e objetivos (BURGER, 2009).

Cada unidade de manejo requer um manejo específico, que envolve desbastes de diferentes tipos, intensidades e épocas, e variações na idade da colheita final. A escolha do melhor regime de manejo varia, basicamente, em função do objetivo industrial da produção, qualidade do local, material genético, espaçamento e densidade do povoamento.

Variáveis relacionadas com a dimensão das árvores, como altura total e diâmetro do tronco, medidas diretamente por meio de simples fitas métricas, trenas ou hipsômetros, permitem que a própria árvore seja uma unidade básica para descrição da variabilidade espacial dentro da unidade de manejo. O conhecimento de sua localização possibilita a utilização de ferramenta de análise, como a geoestatística, que caracteriza a variabilidade dentro do talhão. A técnica resulta em mapas que expressam a distribuição espacial de variáveis amostradas em toda área de estudo, tornando-a uma ferramenta de suporte à decisão, quando o objetivo é definir a prática silvicultural a ser adotada para cada árvore e na unidade de manejo como um todo.

Para a decisão sobre qual será o trato silvicultural de uma árvore (poda, desbaste imediato ou futuro, ou permanência até a colheita final) ela é contextualizada em conjunto com as demais, considerando fatores como as distribuições de diâmetro e altura de todas as árvores, sua qualidade, ocupação do dossel e área da copa. Assim, ao se levar em conta cada uma das árvores, pode-se trabalhar em um nível refinado de silvicultura de precisão, diretamente dentro da unidade de manejo.

A Embrapa Florestas desenvolveu vários software de simulação de manejo florestal (SisEucalipto, SisPinus, SisTeca, etc) que têm sido amplamente utilizados pelo setor florestal, sendo aplicáveis a mais de 98% das plantações florestais no Brasil. São software de modelagem e simulação de crescimento e produção florestal, que descrevem como uma planta florestal cresce e produz, conforme os regimes de manejo que o próprio usuário indica, e servem de base para a otimização da produção madeireira e da renda (OLIVEIRA, 2011).

O presente trabalho tem por objetivo descrever como estes simuladores podem ser utilizados para dar suporte, prognosticar resultados e avaliar a eficiência do manejo florestal baseado em silvicultura de precisão.

2. Material e Métodos

Os simuladores têm por base distribuições probabilísticas que permitem a projeção ano a ano da estrutura de cada floresta, envolvendo vários parâmetros simultaneamente. Estas distribuições são a S\(\text{e} \) e a S\(\text{bivariada} \ (S\text{bb}) \) (HAPLEY; BUFORD, 1985). A S\(\text{e} \) descreve a distribuição marginal da variável diâmetro ou altura de árvores de um povoamento em diferentes idades e a S\(\text{bb} \) descreve a distribuição conjunta destas variáveis. Os parâmetros considerados são nove: valores mínimos, amplitude, desvio padrão e moda para altura total da árvore e diâmetro medido a 1,3m de altura (Diâmetro à Altura do Peito-DAP). O nono parâmetro é a correlação entre estas variáveis. Os dados de campo para construção dos simuladores foram obtidos de parcelas de inventários contínuos por meio de parcerias com produtores florestais, o que possibilitou a obtenção das estimativas dos parâmetros da distribuição para cada espécie, nas diferentes condições de solos, idade e espaçamento entre árvores. A linguagem de programação empregada foi Delphi. Uma descrição com detalhes dos software pode ser encontrada em Oliveira (2011).

Para o presente trabalho a discussão baseou-se nos gráficos gerados pelo software SisPinus, sendo que o SisEucalipto e o SisAraucaria também disponibilizam gráficos semelhantes. Estes gráficos, juntamente com a tabela gerada pelos
software, dão suporte à definição do regime de manejo florestal adequado para cada plantação. A aplicação da silvicultura de precisão se completa com a escolha das árvores a serem desbastadas, observando individualmente o diâmetro, a altura, qualidade, ocupação do dossel e competição entre copas, desbastando-se até o limite recomendado pelo software.

Diagramas de manejo da densidade (DMD) subsidiam a definição do regime de manejo ideal, adequando os níveis de competição em função dos objetivos da produção madeireira. Na seleção de árvores para desbaste em subunidades dentro do talhão podem ser considerados métodos que avaliam o grau de concorrência em um determinado ponto do povoamento (densidade pontual). O SisPinus possibilita o cálculo do FAB (fator de área basal) de 2,3, proposto por Daniels, Burkhart e Clason (1986), que indica o raio de influência competitiva de cada árvore.

O DMD apresenta as interrelações matemáticas entre diversas variáveis do povoamento florestal, envolvendo, basicamente, o número de árvores por hectare, o diâmetro médio das árvores e a área basal (soma das áreas transversais de todas as árvores, na altura do DAP). O DMD tem por base uma curva de máxima densidade e, a partir dela, outras curvas por proporção, que servirão de referências para ocupação do sítio. A curva de máxima densidade marca os limites da máxima ocupação do sítio pelas árvores. Para sua definição foi utilizado o modelo de Reineke (DAVIS; JOHNSON, 1987) cujo ajuste resultou em \(N = \exp(12,1333 +1,4933\ln(Dg)) \), em que \(N \) é o número de árvores por hectare e \(Dg \) é o diâmetro quadrático médio. O ajuste foi realizado com dados de inventários de P. taeda, os mesmos utilizados na elaboração do software Sispinus.

3. Resultados e discussão

Como forma de validar a aplicação do procedimento apresentado anteriormente, elaborou-se o DMD para Pinus taeda (Figura 1), considerando como faixa de manejo que priorizasse a produção de toras, o intervalo com valores próximos a 60% do estoque máximo até

![Diagrama de manejo da densidade (DMD) para Pinus taeda.](image_url)
um limite inferior de 30% do estoque máximo. Considerou-se que, ao manter o povoamento nesta faixa de densidade, as árvores apresentarão características correspondentes à classe das dominantes (as 100 árvores de maior diâmetro à altura do peito (DAP) em um hectare de plantação), com padrão uniforme de DAP e com fuste bem formado.

Considera-se que, acima da faixa para manejo, há competição excessiva e abaixo dela há sobra de espaço com consequente desperdício de recursos do sítio. Dentro da faixa, a opção por desbaster empregando os parâmetros correspondentes à linha superior ou à inferior dependerá do objetivo da produção e da viabilidade técnica e econômica da realização dos desbastes nestas diferentes situações. Caberá ao empreendedor florestal definir em que faixa de manejo poderá obter melhor resultado.

Para plantações florestais conduzidas sob regime pulpwood - portanto sem desbastes e com corte raso antecipado - o DMD pode informar o momento em que deveria ser realizado o corte raso, na faixa de manejo entre 80 e 90 %, no máximo, buscando evitar o elevado índice de mortalidade pela competição e, também, buscando otimizar o aproveitamento da capacidade produtiva do local.

A integração do DMD com os simuladores possibilita que as variáveis contempladas pelo diagrama sejam processadas juntamente com outras variáveis de crescimento e produção que têm grande influência na densidade do povoamento. Com isto, a dinâmica e as interações das diversas variáveis podem ser monitoradas para cada idade, acompanhando a prognose de crescimento e produção. Assim, o DMD passa a contemplar altura dominante e altura média, mortalidade, diâmetro médio, área basal e volume. Adicionalmente, os software fornecem o sortimento da madeira colhida por classes de diâmetro e por uso industrial.

O gráfico gerado pelo SisPinus (Figura 2) apresenta o percentual de ocupação do sítio pelo povoamento. Um valor de 100% indica que o sítio está completamente estocado, ou seja, com a capacidade de produção no limite. Como exemplo, a Figura 2 mostra que, aos 6 anos, o povoamento ocupa 46 % do sítio e segue aumentando em idades subsequentes. Aos 9 anos, a ocupação atinge 70%, porém, a partir desta idade, o programa revela a existência de alto risco de ataque de vespa-da-madeira, sendo recomendada a realização de desbaste preventivo.

![Gráfico gerado pelo SisPinus com variáveis básicas para manejo antes do desbaste.](image)

Figura 2. Gráfico gerado pelo SisPinus com variáveis básicas para manejo antes do desbaste.
Na Figura 3 é apresentado o gráfico gerado pelo SisPinus, considerando a realização de um desbaste seletivo aos 9 anos, deixando 25m².ha⁻¹ de área basal remanescente, de forma a encaixá-la dentro da faixa de manejo recomendada pelo diagrama de manejo da densidade.

Com o desbaste, o incremento médio anual (IMA) em volume na idade final será reduzido em 10% (de 36,6 m³.ha⁻¹ para 31,5 m³.ha⁻¹). Entretanto, o volume de toras acima de 20 cm de diâmetro terá um aumento de 23% (de 229 m³.ha⁻¹ para 282 m³.ha⁻¹).

4. Considerações finais

A integração de componentes da silvicultura de precisão com os simuladores de crescimento e produção florestal aprimora os critérios para definição das atividades silviculturais, se configurando como uma alternativa muito promissora para dar suporte ao planejamento de desbastes e colheita final, de forma a otimizar a produção de plantações florestais.

A implementação do DMD em software de simulação, juntamente com ferramentas tradicionais da agricultura de precisão, pode facilitar a visualização e mapeamento das unidades de manejo por classes de densidade.

A tecnologia apresentada se completa com mapas de variabilidade, que possibilitam um bom aproveitamento dos espaços disponíveis, reduzindo a variabilidade e evitando a formação de clareiras que, neste caso, seriam evitadas pela manutenção de árvores menores mas com algum potencial para crescimento.

A tecnologia possibilita que se localize as intervenções, fazendo com que a competição entre árvores no âmbito do talhão fique balanceada, evitando a remoção de árvores em pontos desnecessários.

O impacto potencial da tecnologia apresentada pode ser avaliado em função da dimensão da atividade de plantações florestais no Brasil que, segundo a ABRAF (ASSOCIAÇÃO..., 2013), em 2012, totalizaram 7,2 milhões de hectares, com um valor bruto da produção de R$ 56,3 bilhões e contribuição tributária de R$ 7,6 bilhões.
Agradecimento

Os autores agradecem a contribuição do pesquisador André Eduardo Biscaia de Lacerda para a elaboração do Abstract.

Referências

Obtenção de valores de referência do DRIS para Pinus taeda

Shizuo Maeda*1, Itamar A. Bognola*1, Carlos H. Kurihara*2, Edilson B. de Oliveira*1

1Pesquisador, Embrapa Florestas
2Pesquisador, Embrapa Agropecuária Oeste

E-mails: shizuo.maeda@embrapa.br, itamar.bognola@embrapa.br, carlos.kurihara@embrapa.br, edilson.oliveira@embrapa.br

Resumo: Em geral, as empresas florestadoras adotam o talhão como unidade de manejo em muitos plantios florestais, sendo esse estabelecido principalmente com base na topografia da propriedade. Assim, os talhões nem sempre são uniformes quanto às características dos solos e outras variáveis que possam promover diferenças na produtividade do talhão. Nesse sentido, o método será avaliado como ferramenta para identificar eventuais fatores nutricionais para diagnóstico em diferenças no crescimento das árvores na área piloto do projeto. Para a obtenção dos valores de referência do DRIS foram demarcadas 46 parcelas compostas de 5 linhas com 5 plantas em cada linha, coletadas amostras foliares e feita a avaliação biométrica das árvores (altura e diâmetro à altura do peito). Para a divisão das populações de alta e baixa produtividade das árvores, para a obtenção dos valores de referência do DRIS, foi baseado no valor médio do volume cilíndrico do tronco. Depois dessa etapa, foram diagnosticadas as possíveis causas do baixo crescimento das árvores nas parcelas de baixa produtividade, e os nutrientes identificados como deficientes foram aplicados nas respectivas parcelas, e em seguida serão avaliadas as respostas para avaliação dos valores de referência com o objetivo de validar os mesmos. Os índices do DRIS indicam que a carência de cálcio pode ser a principal limitação para o crescimento de Pinus taeda na área piloto do plano de ação silvicultura de precisão. Os testes a serem executadas poderão ou não confirmar essas observações.

Palavras-chave: manejo florestal sítio específico, silvicultura de precisão, nutrição florestal.

Obtaining reference value of DRIS to Pinus taeda

Abstract: In general, forest companies adopt plot as management unit in many plantations, this being established primarily based on the topography of the property. Thus, the plots are not always uniform as the soil characteristics and other variables that may promote differences in the productivity of the field. In this sense, the method is evaluated as a tool to identify potential nutritional factors for diagnostic differences in the growth of trees in the pilot area of the project. To obtain the reference values of the DRIS were demarcated 46 plots with 5 rows with 5 plants in each row, collected leaf samples and made the evaluation of biometric trees (height and diameter at breast height). For the division of the populations of low productivity and high trees, for obtaining the reference values of the DRIS, was based on the mean volume of the cylindrical trunk. After this step, will be diagnosed possible causes of the low growth of trees in the plots of low productivity, and if you identify nutritional problems, identified as deficient nutrients are applied in their plots, and then evaluated the responses to the evaluation of reference values in order to validate them.

Keywords: site-specific forest management, precision forestry, forest nutrition
1. Introdução

Normalmente, as empresas florestais adotam os talhões como unidades de manejo operacional. Em geral, o critério para o estabelecimento dos talhões é baseado na topografia da propriedade tendo em vista a facilidade de locação e manutenção das estradas as quais são utilizadas para as atividades de manejo florestal como plantio, colheita, desbaste e outras. Na região de Rio Negrinho, SC, importante pólo moveleiro do estado, a topografia é acidentada, com restritas condições de aproveitamento agrícola intensivo em mecanização, o que estimulou a exploração das terras com plantio de *Pinus taeda*, pela adaptação da espécie ao clima da região e pelo interesse comercial. É grande a variabilidade de classes de solos nos plantios florestais dessa região o que resulta em variações no desenvolvimento das árvores nos talhões como resultado das variações na fertilidade do solo, da disponibilidade de água (falta ou excesso), compactação do solo, profundidade efetiva, impedimentos físico ou químico, do nível de sobrevivência das mudas, entre outros fatores. O Sistema Integrado de Diagnose e Recomendação - DRIS, desenvolvido por Beaufils (1973), propõe, entre outras abordagens, avaliar a produtividade da planta como resposta ao seu estado nutricional, por meio do conhecimento dos teores de nutrientes, sendo comumente analisado as folhas. Para isso valores de referência devem ser obtidos a partir de teores de nutrientes em amostras foliares de populações de plantas com diferentes níveis de produtividade. O objetivo desse trabalho é relatar as atividades executadas até o momento no sentido de obter e validar os valores de referência do DRIS para *Pinus taeda* em plantios com idade aproximada de 27 meses.

2. Material e Métodos

A área-piloto é composta por um talhão comercial de plantio de *Pinus taeda* com cerca de 27 meses de idade e aproximadamente 31 ha, de propriedade da Battistella Florestal, localizada em Rio Negrinho, SC.

Quarenta e seis parcelas de “inventário” com cinco linhas de cinco plantas foram demarcadas considerando a altura uniforme das árvores na parcela com base numa avaliação visual e considerando-se ainda, as diferenças no crescimento entre as árvores das parcelas. Para avaliação do crescimento foram medidas a altura e o diâmetro à altura do peito (1,30 m) das árvores e coletadas amostras foliares para avaliação nutricional e o desenvolvimento do DRIS.

Para fins de diagnosticar as causas das diferenças de crescimento das árvores nas parcelas amostrais, outros fatores foram avaliados como a

Figura 1. Índices DRIS e índice de balanço nutricional - IBN das parcelas de “inventário” de menor crescimento baseado no volume cilíndrico de tronco avaliado na área piloto do projeto.
Tabela 1. Valores de referencia do DRIS, média e desvio padrão - DP, obtidos para *Pinus taeda* nas condições da área piloto do plano de ação silvicultura de precisão em Rio Negrinho, SC.

<table>
<thead>
<tr>
<th>Relação</th>
<th>média</th>
<th>DP</th>
<th>Relação</th>
<th>média</th>
<th>DP</th>
<th>Relação</th>
<th>média</th>
<th>DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/P</td>
<td>22,41</td>
<td>1,63</td>
<td>P/Mn</td>
<td>0,00</td>
<td>0,00</td>
<td>Ca/Cu</td>
<td>0,61</td>
<td>0,14</td>
</tr>
<tr>
<td>P/N</td>
<td>0,04</td>
<td>0,00</td>
<td>Mn/P</td>
<td>61,99</td>
<td>162,76</td>
<td>Cu/Ca</td>
<td>1,71</td>
<td>0,42</td>
</tr>
<tr>
<td>N/K</td>
<td>0,55</td>
<td>0,08</td>
<td>P/Cu</td>
<td>0,20</td>
<td>0,02</td>
<td>Ca/Zn</td>
<td>0,06</td>
<td>0,01</td>
</tr>
<tr>
<td>K/N</td>
<td>1,85</td>
<td>0,27</td>
<td>Cu/P</td>
<td>5,19</td>
<td>0,59</td>
<td>Zn/Ca</td>
<td>17,76</td>
<td>3,17</td>
</tr>
<tr>
<td>N/Ca</td>
<td>7,36</td>
<td>1,46</td>
<td>P/Zn</td>
<td>0,02</td>
<td>0,00</td>
<td>Mg/Fe</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Ca/N</td>
<td>0,14</td>
<td>0,03</td>
<td>Zn/P</td>
<td>54,56</td>
<td>7,22</td>
<td>Fe/Mg</td>
<td>257,72</td>
<td>53,84</td>
</tr>
<tr>
<td>N/Mg</td>
<td>27,75</td>
<td>4,01</td>
<td>K/Ca</td>
<td>13,70</td>
<td>3,61</td>
<td>Mg/Mn</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Mg/N</td>
<td>0,04</td>
<td>0,01</td>
<td>Ca/K</td>
<td>0,08</td>
<td>0,02</td>
<td>Mn/Mg</td>
<td>777,96</td>
<td>275,23</td>
</tr>
<tr>
<td>N/Fe</td>
<td>0,11</td>
<td>0,02</td>
<td>K/Mg</td>
<td>51,07</td>
<td>8,14</td>
<td>Mg/Cu</td>
<td>0,16</td>
<td>0,03</td>
</tr>
<tr>
<td>Fe/N</td>
<td>9,28</td>
<td>1,37</td>
<td>Mg/K</td>
<td>0,02</td>
<td>0,00</td>
<td>Cu/Mg</td>
<td>6,42</td>
<td>1,06</td>
</tr>
<tr>
<td>N/Mn</td>
<td>0,04</td>
<td>0,01</td>
<td>K/Fe</td>
<td>0,20</td>
<td>0,04</td>
<td>Mg/Zn</td>
<td>0,02</td>
<td>0,00</td>
</tr>
<tr>
<td>Mn/N</td>
<td>27,75</td>
<td>8,14</td>
<td>Fe/K</td>
<td>5,12</td>
<td>1,13</td>
<td>Zn/Mg</td>
<td>67,03</td>
<td>8,79</td>
</tr>
<tr>
<td>N/Cu</td>
<td>4,37</td>
<td>0,55</td>
<td>K/Mn</td>
<td>0,07</td>
<td>0,02</td>
<td>Fe/Mn</td>
<td>0,37</td>
<td>0,14</td>
</tr>
<tr>
<td>Cu/N</td>
<td>0,23</td>
<td>0,03</td>
<td>Mn/K</td>
<td>15,24</td>
<td>4,82</td>
<td>Mn/Fe</td>
<td>3,14</td>
<td>1,30</td>
</tr>
<tr>
<td>N/Zn</td>
<td>0,42</td>
<td>0,05</td>
<td>K/Cu</td>
<td>8,04</td>
<td>1,15</td>
<td>Fe/Cu</td>
<td>40,58</td>
<td>8,12</td>
</tr>
<tr>
<td>Zn/N</td>
<td>2,43</td>
<td>0,27</td>
<td>Cu/K</td>
<td>0,13</td>
<td>0,02</td>
<td>Cu/Fe</td>
<td>0,03</td>
<td>0,01</td>
</tr>
<tr>
<td>P/K</td>
<td>0,02</td>
<td>0,00</td>
<td>K/Zn</td>
<td>0,77</td>
<td>0,11</td>
<td>Fe/Zn</td>
<td>3,85</td>
<td>0,67</td>
</tr>
<tr>
<td>K/P</td>
<td>41,30</td>
<td>4,56</td>
<td>Zn/K</td>
<td>1,33</td>
<td>0,20</td>
<td>Zn/Fe</td>
<td>0,27</td>
<td>0,05</td>
</tr>
<tr>
<td>P/Ca</td>
<td>0,33</td>
<td>0,08</td>
<td>Ca/Mg</td>
<td>3,89</td>
<td>0,87</td>
<td>Mn/Cu</td>
<td>119,96</td>
<td>33,09</td>
</tr>
<tr>
<td>Ca/P</td>
<td>3,16</td>
<td>0,66</td>
<td>Mg/Ca</td>
<td>0,27</td>
<td>0,06</td>
<td>Cu/Mn</td>
<td>0,01</td>
<td>0,00</td>
</tr>
<tr>
<td>P/Mg</td>
<td>1,24</td>
<td>0,20</td>
<td>Ca/Fe</td>
<td>0,02</td>
<td>0,00</td>
<td>Mn/Zn</td>
<td>11,59</td>
<td>3,94</td>
</tr>
<tr>
<td>Mg/P</td>
<td>0,83</td>
<td>0,14</td>
<td>Fe/Ca</td>
<td>68,55</td>
<td>17,21</td>
<td>Zn/Mn</td>
<td>0,09</td>
<td>0,03</td>
</tr>
<tr>
<td>P/Fe</td>
<td>0,00</td>
<td>0,00</td>
<td>Ca/Mn</td>
<td>0,01</td>
<td>0,00</td>
<td>Cu/Zn</td>
<td>0,10</td>
<td>0,01</td>
</tr>
<tr>
<td>Fe/P</td>
<td>208,30</td>
<td>35,86</td>
<td>Mn/Ca</td>
<td>204,04</td>
<td>78,53</td>
<td>Zn/Cu</td>
<td>10,60</td>
<td>1,60</td>
</tr>
</tbody>
</table>

classe de solo do local da parcela, a profundidade, a ocorrência de camadas compactadas, a umidade e características químicas e físico-hídricas do solo, em diferentes camadas entre outras propriedades.

As amostras foliares foram analisadas quanto aos teores de nutrientes utilizando-se protocolos específicos (SILVA et al., 1999). Após a conclusão das análises das amostras foliares os procedimentos para obtenção e validação dos valores de referência do DRIS (BEAUFILS, 1973) foram executados, bem como para a etapa de diagnose nutricional com base no DRIS. A correção de problemas nutricionais das plantas nas parcelas de inventário com menor produtividade caso a deficiência no crescimento seja atribuída a problemas nutricionais das plantas será realizada em outubro/2012, havendo condições meteorológicas adequadas.

3. Resultados e Discussão

Com base nos resultados analíticos das amostras de acículas coletadas nas parcelas de “inventário”, os procedimentos para obtenção dos valores de referência do DRIS foram executados.
(Tabela 1). Esses foram utilizados para diagnose nutricional das 5 parcelas de menor produtividade, baseado no volume cilíndrico do tronco e os resultados obtidos são apresentados na Figura 1. Baseado no índice de balanço nutricional, pode ser observado que as parcelas 13 e 45 apresentam-se com maior desequilíbrio nutricional, sendo o ferro o nutriente em maior desequilíbrio (por excesso) no caso da parcela 13 e no caso da parcela 45 o cálcio (por carência). Os índices do DRIS indicam que a carência de cálcio pode ser a principal limitação para o crescimento de *Pinus taeda* na parcela piloto. Os testes em execução poderão ou não confirmar essas observações.

4. Conclusões

Ainda sem conclusões sobre a validade dos valores de referencia do DRIS em avaliação.

Agradecimentos

À Battistella Florestal pela colaboração na realização do trabalho disponibilizando área florestal e apoio logístico.

Referências

Manejo de precisão em florestas naturais

Evaldo Muñoz Braz*1, Patrícia Povoa de Mattos*1, Evandro Orfanó Figueiredo*2

1Pesquisador, Embrapa Florestas, Estrada da Ribeira, km 111, Colombo, PR, Brasil
2Pesquisador, Embrapa Acre, Rodovia BR-364, km 14, Rio Branco, AC, Brasil

*E-mails: evaldo.braz@embrapa.br, patrícia.mattos@embrapa.br, evandro.figueiredo@embrapa.br

Resumo: As técnicas de Exploração de Impacto Reduzido (EIR) em florestas naturais contribuem para a redução dos danos nos talhões, apesar de não serem suficientes para garantir a sustentabilidade do sistema. Existem técnicas para o manejo de precisão de florestas naturais, baseadas principalmente em Sistema de Informações Geográficas, que facilitam o planejamento de todas as etapas de exploração em campo. No entanto, informações essenciais sobre o crescimento das florestas por espécies e grupos de espécies, bem como variáveis como solo e relevo, segundoários diferenciados, ainda não são utilizadas para o planejamento da exploração, visando a sustentabilidade do ciclo futuro. O uso da dendrocronologia como ferramenta para a obtenção das informações de crescimento tem apresentado resultados relevantes com espécies da Floresta Amazônica. Outras ferramentas também estão sendo testadas e implementadas, sendo um modelo em constante aprimoramento. O avanço e efetividade do manejo de precisão implicarão futuramente em suporte a modificações nas normas que legislam o manejo de florestas tropicais naturais.

Palavras-chave: Exploração florestal; sistema de informações geográficas; dendrocronologia; manejo de precisão.

Precision management of natural forests

Abstract: Reduced Impact Logging (RIL) contribute to the reduction of damage in future compartments, although it is not enough to ensure the sustainability of the system. There are precision techniques already available to management of natural forests in the tropics. They are based on Geographic Information System which facilitates the planning of all stages of logging in the field. However, essential information of forest growth, by species or group of species, as well as variables such as soil or relief according different sites, are not used for planning the operation, aiming the future cycle. The use of dendrochronology as a tool for obtaining growth information has shown relevant results with species of the Amazon rainforest. Other tools are also being tested and implemented, as the precision forest management model is being improved continuously. The advances and precision management effectiveness will subsidize legislation changes concerning management of natural tropical forests in the future.

Keywords: Forest logging; geographic information system; dendrochronology; precision forest management
1. Introdução

Depois de uma longa estagnação, o manejo de florestas tropicais tem evoluído ao longo dos anos, a partir dos conceitos de Exploração de Impacto Reduzido (EIR). Tem se desenvolvido estudos de crescimento da floresta tropical em condições diferentes de extração. Essas técnicas, empregadas nos últimos anos, têm colaborado para reduzir os danos às florestas manejadas e elevar a qualidade dos talhões no próximo ciclo de colheita.

Apesar destes esforços, o manejo da floresta tropical tem ainda pela frente um vasto caminho de aperfeiçoamento. Como um dos principais aspectos, está a heterogeneidade da floresta tropical expressa pelo padrão de distribuição de suas espécies arbóreas, tipologias florestais, relevo, dezenas de espécies da flora, distribuídas em microssítios específicos, a qual torna mais complexo o entendimento de suas relações e dificulta o planejamento da sua exploração (BRAZ et al, 2005). Isto tem sido enfatizado como um fator quase determinante para a viabilização do manejo em longo prazo. Portanto, essa é uma das principais características a se considerar no planejamento das atividades de manejo florestal. Entretanto, a heterogeneidade ainda não está devidamente inserida no planejamento da exploração e dos tratamentos silviculturais.

Por outro lado, o produtor madeireiro, antes de adotar qualquer tecnologia, quer ter a certeza que ela é econômica e lhe renderá retornos mais atrativos. Para isso, devem ser considerados fatores que otimizam a exploração em florestas naturais. Por exemplo, o ponto de equilíbrio entre a distância das estradas secundárias e a distância média de arraste, segundo o potencial da tipologia florestal (BRAZ et al., 2003). Quando não se aplica este conceito, frequentemente ocorrem abertura de estradas para acessar áreas com baixo potencial madeireiro, e pátios sobredimensionados para estocar essa madeira, assim como o equivocado dimensionamento de talhões que não abastecem a indústria com quantidade e qualidade satisfatórias. Nesses casos, além do aumento dos custos de construção e de manutenção de estradas, áreas da floresta são danificadas, alterando sua composição e estrutura e reduzindo o estoque de madeira comercial para ciclos futuros.

O trânsito de máquinas em excesso e mal planejado causa compactação do solo da floresta, reduzindo a infiltração de água e aumentando a erosão do solo, resultando na obstrução e no assoreamento de corpos d’água. Estudos mostram que até 90% da erosão dos solos em áreas de manejo florestal se devem às estradas, pátios e trilhas de arrastes (DYKSTRA, 1997).

Também pode ser observado que as operações de exploração continuam com falhas no planejamento e de forma desconexa, ocasionando constantes embates com os fatores climáticos previsíveis. Isto resulta em dificuldades na retirada da madeira da floresta ainda no período adequado, sendo agravada no período das chuvas.

Os tratamentos silviculturais, por sua vez, capazes de elevar o incremento médio anual em volume de madeira comercial e reduzir o ciclo de corte (SILVA, 2001), são praticamente desconsiderados. A análise da viabilidade econômica da floresta em diferentes taxas de extração e ciclos, nem sempre associa os aspectos da composição e estrutura da floresta com os aspectos econômicos (PUTZ, 1993). Assim, o valor potencial da floresta no próximo ciclo, ou seja, aquele que poderia ser obtido devido a tratamentos, não é estimado.

O controle dos custos de produção no manejo de florestas naturais também tem sido pouco considerado, possivelmente pelo desconhecimento do seu potencial de auxílio na gestão das florestas (Macklin, 1992). Assim, em muitas empresas, tratores de arraste passam mais tempo parados com problemas mecânicos do que efetivamente em operação. Isso se deve à preocupação apenas com os custos variáveis e o esquecimento dos custos fixos (PUTZ; DYKSTRA; HEINRICH, 2002) e à falta de critérios das empresas para decidir sobre a substituição ou manutenção de um equipamento (WAGNER, 1986).

Apesar do censo florestal ser uma exigência do Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) para a submissão e aprovação de planos de manejo florestal, seu potencial ainda não é plenamente utilizado para a gestão florestal pelas empresas, sendo considerado apenas um entrave burocrático e despesa injustificável (BRAZ, 2002). Essa atividade, entretanto, é fundamental para o planejamento da exploração com o menor custo e dano, pois todas as árvores potenciais se encontram mapeadas, possibilitando a otimização das atividades e a redução dos danos em campo.

Como o volume madeireiro de um povoamento nativo varia em função do sítio e da distribuição
irregular das espécies, é pouco provável que uma divisão da área em partes iguais, corresponda à uma divisão equitativa do volume. Assim, para possibilitar a divisão da área que possibilite a exploração gradual em períodos de tempo semelhantes, os sítios de alta produtividade devem ter áreas menores e os de baixa, áreas maiores. Isto indica a necessidade de um melhor planejamento anual, visando padronizar as rendas (HOWARD, 1993). Sendo assim, o planejamento deve considerar a heterogeneidade da floresta na otimização das intervenções, o que é possível com uso de ferramentas matemáticas de planejamento e de pesquisa operacional, aplicadas às ciências florestais e econômicas, associadas e definidas em base aos Sistemas de Informações Geográficas (SIG).

O Manejo de Precisão é conceituado por Ribeiro (2002) como o manejo de sítios específicos, alicerçado no conhecimento a priori e na inclusão da variabilidade espacial e temporal dos fatores de produção e da própria produtividade, possibilitando intervenções localizadas na floresta. Da mesma forma, o manejo de precisão visa o alcance do máximo rendimento e retorno financeiro, associado à busca do menor dano ambiental. O conceito de Manejo de Precisão pode ser aplicado às florestas naturais, que, em geral, apresentam níveis mais elevados de biodiversidade e variabilidade espacial e temporal dos fatores de produção quando comparadas às florestas plantadas.

Portanto, em cada microsítio definido em uma floresta natural, a heterogeneidade será menor do que a da floresta como um todo. A adequada definição dos microsítios permite o planejamento de áreas de florestas mais homogêneas. Ou seja, possibilita o planejamento de uma malha otimizada de estradas e de trilhas de arraste e o uso de equipamentos mais adequados a determinadas condições ambientais e de estoque de madeira e a aplicação de tratamentos silviculturais específicos.

2. Resultados

O processo Modelo de Exploração Florestal - MODEFLORA (FIGUEIREDO; BRAZ; OLIVEIRA, 2007), baseado em Sistema de Informações Geográficas facilita o planejamento de todas as etapas de exploração em campo e se adequou rapidamente às necessidades imediatas dos produtores do estado do Acre. O Modeflora reduz custos e danos ambientais, e proporciona um monitoramento da exploração mais eficaz e quase instantâneo.

Mediante este processo associado a Análise Cluster, o manejo de precisão deverá prever a determinação de sub-compartimentos (ou sub-talhões) separados de acordo com espécies preferenciais, volumes, diâmetros médios, inclinação do terreno, texturas do solo, dentre outros. O agrupamento das variáveis como espécies preferenciais, volumes, diâmetros médios facilita os sortimentos, carregamentos e planejamento de distribuição ótima de pátios, distâncias de arraste e estradas e ciclos de corte diferenciados. Além disso, o agrupamento (identificação dos sítios) das variáveis inclinação do terreno, texturas do solo facilitarão a determinação das cargas ótimas do trator de arraste (skidder). Os padrões de produção deverão ser avaliados por sub-compartimentos de acordo com suas características.

As aferições econômicas e análises de viabilidade também devem ser calculadas por sub-compartimento, pois facilita a identificação das ações gerenciais prioritárias de acordo com as necessidades identificadas. Além disso, a redução dos danos de forma localizada e o estudo detalhado da estrutura remanescente poderá proporcionar o retorno ao sub-compartimento em períodos mais curtos, viabilizando o manejo por espécie. Outra ferramenta que vem sendo testada para obtenção de variáveis para o manejo de precisão são as técnicas de dendrocronologia (MATTOS et al., 2011; SCHONGART, 2008), as quais possibilitarão a recuperação rápida e localizada de séries históricas longas de registros de crescimento, frequentemente com séries superiores a 100 anos. Estas séries já estão sendo estudadas na Embrapa Florestas para o estado de Mato Grosso, com aplicações para planejamento e determinação das taxas de corte, visando o manejo sustentável da floresta e o ciclo futuro. Estas informações facilitarão a determinação de taxas de corte e ciclos específicos nos sub-compartimentos, considerando espécies ou grupo de espécies (BRAZ et al., 2012).

Os tratamentos silviculturais deverão ser planejados considerando quais classes de diâmetro são as mais promissoras para sofrerem
intervenção, evitando rebaixamento da área basal da floresta em pontos desnecessários. Aqui também a dendrocronologia apresenta papel importante, pois a partir das séries de crescimento de longo período, é possível inferir quais classes de diâmetro ainda podem dar retorno em volume do ponto de vista econômico, embasando o manejo pela otimização da produção potencial da área explorada (BRAZ et al., 2012).

3. Conclusões

Existem técnicas já disponíveis para que o manejo de precisão de florestas naturais seja implementado, garantindo a otimização dos recursos econômicos e ambientais. Novas ferramentas estão sendo testadas e implementadas, sendo um modelo em constante aprimoramento.

O avanço e efetividade do manejo de precisão implicarão futuramente em suporte a modificações nas normas que legislam o manejo de florestas tropicais naturais.

Referências

Agricultura de Precisão em Pastagens
Alberto C. de Campos Bernardi¹ & Naylor B. Perez²

¹Embrapa Pecuária Sudeste São Carlos, SP; ²Embrapa Pecuária Sul, Bagé, RS
E-mail: alberto.bernardi@embrapa.br; naylor.perez@embrapa.br

Resumo: A quantificação da variabilidade espacial da produção da biomassa de forrageira, de índices de vegetação e propriedades do solo podem auxiliar nas práticas de manejo de pastagens como na rotação, manejo de nutrientes e previsão de rendimento. Porém, a determinação manual da biomassa de forragem é trabalhosa. São apresentadas algumas novas ferramentas que podem ser muito úteis nestas determinações. O sucesso das tecnologias de Agricultura de Precisão em pastagem está ligado à integração das informações fornecidas pelos vários sensores de monitoramento de planta, com sensores para solo e o entendimento da dinâmica do pastejo. Estas medidas, juntamente com medidas mais tradicionais (de fertilidade do solo, por exemplo) permitirá que o produtor tenha uma compreensão muito melhor do sistema pecuário e possa formular uma estratégia de manejo mais adequada. Também são apresentados os aspectos da Pecuária de Precisão como sendo o manejo da produção animal usando os princípios e tecnologias da engenharia de processo, com uso de sensores “inteligentes”.

Palavras-chave: Pecuária de precisão, variabilidade especial, sensor.

Precision agriculture for pastures

Abstract: Quantifying spatial variation of forage biomass yield, vegetation index and soil properties can help on pasture management practices as grazing rotations, nutrient management and yield prediction. Manually forage harvesting determination of biomass is laborious. Some new tools that can be very useful in these determinations are shown. The success of Precision Agriculture technologies in pasture is linked to the information integration provided by multiple sensors for monitoring plant, soil and cattle grazing dynamics. These measures along with more traditional measures (soil fertility, for example) allow the farmer has a much better understanding of the livestock system and formulate the most appropriate management strategy. The standpoint of Precision Livestock are also presented as the management of livestock guided by the principles and technologies the of process engineering with the “smart” sensors use.

Keywords: Precision livestock, spatial variation, Sensor.
1. Introdução

As ferramentas de AP têm sido utilizadas com maior frequência nas culturas de grãos, hortícolas, fruteiras e silvicultura, mas há uma grande potencial para uso nos sistemas de produção animal baseados no uso de pastagens tropicais para ruminantes. O potencial, benefícios e limitações do uso da AP em sistemas de pastagens foi apresentado e discutido por Schellberg et al. (2008). Assim como os marcos conceituais para a pecuária de precisão, para os sistemas de pastagem e, para sistemas integrados considerando os componentes animal e forragem foram apresentados por Hacker et al. (2008), Schellberg et al. (2008), Wathes et al. (2008), Laca (2009), Banhazi et al. (2012).

Neste capítulo aborda-se a agricultura como um conjunto de procedimentos que incluem as atividades agrícolas e pecuárias sendo que, em muitos sistemas, tais atividades possuem uma elevada relação de dependência. Para a Rede de Agricultura de Precisão, a atividade pecuária se insere dentro da perspectiva de planejamento e intervenção sítio-específica com base na variabilidade existente.

2. Intervenção sítio-específica em Sistemas de produção animal

As oportunidades para a intervenção sítio-específica em pastagens dependem do grau de intensificação existente no sistema de produção. Normalmente, a intensificação da produção animal incorre na simplificação da variabilidade do ambiente e na própria expressão do comportamento animal. Um exemplo extremo de intensificação são os sistemas que utilizam o confinamento, suprimindo a necessidade de busca e apreensão da forragem na pastagem. Nesse tipo de sistema, onde o alimento é coletado e oferecido em cochos, em quantidades pré-determinadas, adequadas aos requerimentos fisiológicos dos animais, a possibilidade de intervenção sítio-específica se divide em dois componentes distintos. O primeiro, relativo à produção de alimentos, incorpora os procedimentos de AP normalmente utilizados nos sistemas de produção de grãos. O segundo, dentro do sistema de produção animal propriamente dito, permite ofertar em tempo real, uma alimentação ajustada quanto à composição e quantidade, de forma individual e automática, para cada animal do rebanho (Pomar et al., 2011).

Por outro lado, sistemas de produção animal baseados uso de pastagens incorporam outros tipos de interação, desafiando os animais à superar restrições ambientais de difícil controle. Restrição à sombra e à água para dessedentação, relevo declivoso, são fatores que se somam às observações de Serrano et al. (2013) sobre os efeitos da variação espacial da profundidade e umidade do solo na produção de forragem. Nessas circunstâncias, a heterogeneidade espacial e temporal se ampliam, dificultando a aferição do resultado econômico de práticas de manejo sítio-específicas e, por conseguinte, sua adoção. Estudos efetuados com herbívoros domésticos tem evidenciado a capacidade dos animais reconhecerem e memorizarem as zonas com maior oferta de alimento (Edwards et al., 1996; Bailey, 2005). Isso faz com que os animais gastem um tempo maior de pastejo nos sítios com maior oferta, extraindo mais nutrientes do que é ofertado em média em uma pastagem, explorando o ambiente de acordo com a variabilidade existente. Não obstante, mesmo quando pastejam parados em mesmo local, os herbívoros também conseguem imprimir uma desfolha seletiva nas plantas, colhendo as partes mais nutritivas da forragem disponível, obtendo assim uma dieta de melhor qualidade (Laca et al., 1992). Diante disso, o conhecimento, monitoramento e gerenciamento dessas relações constituem um campo importante para a pesquisa em AP em pastagens, sobretudo quando se considera a amplitude de ambientes e sistemas de produção à base de pasto presentes no Brasil.

3. Manejo de pastagens e estimativa da produção

O manejo da pastagem e o planeamento dos sistemas de produção animal são essencialmente baseados na estimativa de produção e acúmulo de biomassa. De acordo com Gomide & Gomide (2001), o desempenho animal sob pastejo é condicionado por diferentes fatores, como: genética animal e sua história prévia, consumo de forragem, valor nutritivo da forragem e
eficiência na conversão da forragem consumida. Ainda, segundo esses autores, os fatores que condicionam o consumo de forragem são: valor nutritivo (composição química e digestibilidade), a estrutura da forrageira e oferta de forragem. Dessa forma, o manejo de pastagens consiste em encontrar a maior eficiência entre o crescimento da forrageira, o seu consumo e sua conversão em produção animal, visando manter estável o sistema de produção (Hodgson, 1990). Nesse contexto, Gomide & Gomide (2001) sugeriram que o manejo de pastagens deve visar a otimização da produção forrageira e o uso eficiência de uso da forragem produzida, associado ao adequado desempenho animal e à produção animal por hectare.

O método padrão para estimativa da massa de forragem, baseado no corte da forragem contida numa determinada área (Penatti et al., 2005), é um método trabalhoso e demorado, dificultando muito a utilização pelos pecuaristas (Sanderson et al., 2001). Nessas circunstâncias, torna-se necessária a automação das técnicas de avaliação, de modo a otimizar o tempo e mão-de-obra, e manter a confiabilidade da estimativa. Demaneira geral, a eficácia do mapeamento da produtividade e qualidade dos produtos agropecuários é determinada, inicialmente, pelo sensor utilizado e pelo método de tomada de medida. As decisões para intervenção na área, fazendo o manejo diferenciado e a aplicação de insumos a taxas variadas, por exemplo, necessita de mapas que delimitem com acurácia atributos ou propriedades seja do solo ou das culturas. Atualmente, várias tecnologias já estão disponíveis para culturas anuais, embora sejam raros os relatos de uso em pastagens. Schellberg et al. (2008) reuniu em extensa revisão as principais tecnologias disponíveis para pastagens.

4. Estimativas da produção de forragem

Na tentativa de facilitar a mensuração de massa de forragem, foram desenvolvidos e testados vários métodos indiretos de amostragem, desde os mais simples até métodos eletrônicos mais sofisticados (Serrano et al., 2009). Entre os métodos indiretos de avaliação de massa de forragem estão o disco medidor de forragem, o bastão graduado e o medidor de capacitância.

De acordo com Serrano et al. (2009), a sonda de capacitância relaciona as diferenças entre as constantes dielétricas da forragem e do ar. A teoria e operação da sonda é explicada em detalhe por Currie et al. (1987), Sanderson et al. (2001); Silva & Cunha (2003) e Cauduro et al. (2006) comprovaram a utilidade da sonda de capacitância como método indireto de estimativa da produção de matéria seca em pastagens.

Alguns sensores ultrasônicos e óticos têm sido avaliados em sistemas de pastagens para estimar a altura das plantas (Awty, 2009; Yule et al. 2006). No entanto, estes sensores são predominantemente baseados nas correlações entre altura das plantas e produção de biomassa e não possuem a capacidade de diferenciar o material verde do senescente.

5. Sensores de solo

Assim como as tecnologias para monitoramento e mapeamento da produtividade, as tecnologias de mapeamento da variabilidade espacial das propriedades do solo são ferramentas muito utilizadas na AP. Para as medidas de condutividade elétrica do solo (CE), geralmente são utilizados o sistema de indução eletromagnética e o de contato direto (Adamchuk et al., 2004). No método da indução eletromagnética é possível medir a condutividade elétrica dos solos sem contato. Estas medidas podem ser obtidas com o equipamento comercial EM 38® (Geonics Limited, Mississauga, Ontario, Canadá). Já o sistema por contato direto utiliza discos de corte com eletrodos de fluxo de corrente elétrica. O equipamento comercial Veris® (Veris Thecnologies, Salina, KS, EUA) é o mais utilizado para este tipo de medida. Sudduth et al. (2005) compararam as duas tecnologias e concluíram que ambos os equipamentos fornecem dados semelhantes.

Os sensores de contato direto com o solo, que utilizam disco com eletrodos, são mais utilizados em solos preparados para o plantio ou mesmo aqueles com alguma cobertura vegetal. No entanto, o sensor tem que romper a cobertura vegetal e penetrar fisicamente no solo da pastagem, o que, dependendo da espécie forrageira e da quantidade de biomassa acumulada pode ser difícil.
Como a resposta do sensor é influenciada pela cobertura do solo, é preciso ter atenção redobrada na calibragem dos dados a partir desses sistemas de contato. Há trabalhos relatando as medidas de CE em pastagens demonstraram relações com as espécies de forrageiras, características do solo e produtividade das pastagens (Guretzky et al., 2004; Serrano et al., 2010).

A compactação do solo é comumente causada pelo tráfego de máquinas e pelo pisoteio de animais em áreas de pastejo, afetando as propriedades físicas, químicas e biológicas, com redução severa da macroporosidade, aumento da densidade do solo e redução da infiltração de água. Por isso, os sensores de compactação (Gardner e Howard 2009) também podem ser muito úteis em sistemas de pastagens.

Existem ainda outros tipos de sensores como radar de penetração no solo (ground penetrating radar - GPR) e espectrometria de raio gama (gamma ray spectrometry – GRS) que podem ser utilizados através da vegetação de cobertura do solo (Doolittle & Collings, 1998). Dados de GPR foram correlacionados com parâmetros de hidrologia do solo, e os de GRS relacionou-se com alguns nutrientes do solo e de outras características de textura do solo (Trotter et al., 2010). Sensores com base em reflectância óptica (Bricklemyer e Brown 2010), e também sensores multi-espectrais e hiperespectrais (Reeves 2010), também apresentam boa correlação com propriedades do solo.

6. Sensores de plantas

As ferramentas de monitoramento de índices vegetação provavelmente são as mais comumente utilizadas e comercialmente disponíveis para uso no manejo de pastagens. Desde a década de 1980 já se reconhecia o valor do sensoriamento remoto para o manejo de pastagens (Vickery et al., 1980). Existem inclusive alguns produtos comerciais de sensoriamento remoto desenvolvidos para pastagens, como por exemplo, o Pastures From Space - PFS (Hill et al., 2004), que fornece estimativas de disponibilidade de forragem e da taxa de crescimento diretamente para produtores australianos. As imagens multiespectrais e hiperespectrais têm sido muito utilizadas como ferramentas da AP para as culturas anuais (Haboudane et al., 2004). Porém, para que esta ferramenta seja utilizada em pastagens será necessário reduzir o custo da tecnologia, o que pode ser obtido através de veículos aéreos não tripulados – VANT que poderão fazer o transporte das câmeras (Trotter et al., 2010a). Outras possibilidades referem-se ao uso do sensoriamento remoto por satélite com base, principalmente, em imagem multiespectral e hiperespectral de baixa resolução (Boschetti et al., 2007; Numata et al., 2007; Schellberg et al., 2008).

Os índices de vegetação obtidos por sensoriamento remoto têm sido amplamente utilizados para estimar a biomassa de culturas e pastagens, uma vez que fornecem padrões temporais e espaciais das mudanças nos ecossistemas pastoris e tem sido úteis na estimativa de parâmetros biofísicos (Moges et al., 2004; Numata et al., 2007). Entre eles, o índice de diferença de vegetação normalizado (NDVI), por ser uma ferramenta rápida e eficiente de detecção de variações na vegetação (Rouse et al., 1973), tem sido comumente usado para avaliar a sanidade, a biomassa e o teor de nutrientes das plantas. Este índice também se correlaciona com rendimentos agrícolas (Mochheim & Barber, 1998).

Outros sensores ativos também têm sido utilizados para medições da refletância da biomassa de forrageiras de áreas extensas, de forma rápida e com baixo custo. Os sensores ativos ópticos comerciais, como Greenseeker e Crop Circle, foram utilizados para estimativas de produção de forrageiras (Flynn et al., 2008; Trotter et al., 2010). A análise da imagem digital, gerada por meio desses sensores, também pode ser utilizada como um meio de identificação de plantas daninhas (Schellberg et al., 2008).

O trabalho de Starks et al. (2006) é um exemplo de como a produtividade pode ser melhorada por meio do uso de ferramentas de AP na tomada de decisões de manejo de pastagens em sistemas rotacionados, com base na biomassa disponível, uso da tecnologia de aplicações em taxa variável (VRT) e estimativas da produção.
7. Monitoramento animal

Para aumentar ainda mais os conhecimentos da interação entre animais e forrageiras, é necessária a integração das tecnologias de monitoramento de solo e plantas com o conhecimento do comportamento animal. Para que isso fosse possível, foi essencial o desenvolvimento de tecnologias de rastreamento de baixo custo, como base nos sistemas de navegação global por satélite (Global Navigation Satellite Systems - GNSS) (Trotter et al., 2010a) O monitoramento conjunto das diferentes atividades (pastejo, ruminação, descanso, etc) e de sua posição pode ser muito útil na identificação e delimitação de áreas de preferência, fornecendo informações para o manejo sanitário e também sobre o bem-estar. Com este conhecimento é possível, por exemplo, ajustar mais adequadamente a pressão de pastejo (Laca, 2009). Além disso, a identificação eletrônica dos animais permite também a rastreabilidade das informações referentes àquele indivíduo, fornecendo informações para a tomada de decisões do mais rápidas e adequadas sobre o manejo. Existem várias alternativas de identificadores animais que estão sendo utilizados tanto na pesquisa como comercialmente (Trotter et al., 2010; Schleppe et al. 2010). Outras tecnologias importantes de monitoramento animal serão discutidas a seguir.

8. Pecuária de Precisão

A Pecuária de Precisão (PP) foi definida por Wathes et al. (2008) como sendo o manejo da produção animal usando os princípios e tecnologias da engenharia de processo, com o uso de sensores “inteligentes”. Segundo esses autores, a inclusão de animais vivos no sistema distingue a PP de outras aplicações da teoria de controle, especialmente a utilizada na Agricultura de Precisão voltada para a produção agrícola, requerendo a medição contínua dos sinais relativos à atividade fisiológica, comportamento e outros indicadores de produção, como o peso vivo, o consumo de alimentos e o movimento. Uma maneira de implementar a PP é mostrada na Figura 1, que tem como base o uso do modelo de controle preditivo. Isso não determinar uma estratégia de controle específico, mas sim uma gama de métodos de controle, que utilizam feedback contínuo do resultado do processo (como em outras estratégias de controle), e fazem o de um modelo dinâmico do processo para predizer a resposta do processo, e usar esse modelo para calcular o sinal de controle, minimizando uma função objetivo. Nesta abordagem também fica claro que o uso dos sensores é uma ferramenta do processo, no qual o processo de aquisição e processamento dos dados e estabelecimento de rotinas são as etapas realmente importantes.

De acordo com Banhazi et al. (2012) a Pecuária de Precisão, devidamente implementada tem o potencial para: i) melhorar e documentar objetivamente os parâmetros de bem-estar animal nas propriedades; ii) reduzir a emissão de gases de efeito estufa (GEE) e melhorar os aspectos ambientais das diferentes sistemas de produção agropecuários; iii) melhor comercialização e facilitar a segmentação dos produtos de origem animal; iv) reduzir o comércio ilegal de produtos de origem animal; e v) melhorar o retorno econômico das atividades agropecuárias.

A revisão de Whathes et al. (2008) considera promissora a utilização da Pecuária de Precisão, traçando um paralelo com as prática de AP adotadas na atividade agrícola há algum tempo. Outras aplicações estão relacionadas ao monitoramento do indivíduo quanto à sanidade, desempenho produtivo e comportamento social, fatores diretamente ligados à qualidade do produto final, também podem ser monitorados por meio de sistemas e modelos preditivos. Há vários exemplos descritos na literatura e apresentados por Wates et al. (2008) e Banhazi et al. (2012) que são resumidamente descritos a seguir. Há entre eles, por exemplo, os sistemas computacionais utilizando rede de sensores sem fio e células de pesagem, permitem, em tempo real, a detecção individual da conversão alimentar, peso corporal entre outros fatores produtivos. Ou câmeras de baixo custo que, em combinação aplicativos para a análise de imagens, podem monitorar o comportamento, o tamanho, a forma e o peso de um animal dentro do rebanho. O monitoramento de sons emitidos pelos animais e a análise de suas frequências também tem sido utilizados para avaliar o estado de saúde e quantificar remotamente comportamento alimentar e o consumo de matéria.
seca de ruminantes em pastejo. Há sensores que também podem ser ligados diretamente ao animal, tais como pedômetros para monitorar o comportamento de cio em vacas leiteiras. E outros ainda para quantificar a condutividade do leite e produção de vacas leiteiras. As vantagens evidentes destes sistemas de monitoramento é que muita informação pode ser recolhida sem provocar estresse nos animais.

A despeito da amplitude de sistemas apresentados na literatura Whathes et al. (2008) e Banhazi et al. (2012) consideram que, via de regra, os custos de identificação individual eletrônica impedem aplicações generalizadas, exceto para aqueles animais com alto valor agregado. Além disso, as oficinas de engenharia que trabalham no com produção animal estão repletas de invenções que falharam na tentativa de comercialização das tecnologias. Um exemplo de tecnologia promissora, que tem sido utilizada comercialmente em pequenos animais é a cerca virtual. Com esta tecnologia é possível utilizar informações georreferenciadas da pastagem e estímulos sensoriais nos animais, de forma a estabelecer padrões de posicionamento em áreas definidas, sem a utilização de cercas e aramados (Umstatter, 2011). Banhazi et al. (2012) alertam que ainda há apenas alguns exemplos de sucesso no repasse de tecnologias da PP, que estão sendo introduzidas por um pequeno número de empresas comerciais envolvidas no processo de inovação da Pecuária de Precisão. Para assegurar que o potencial de PP seja adotado pelo setor produtivo é necessário: i) estabelecer uma nova indústria de serviços; ii) avaliar, demonstrar e divulgar os benefícios da PP; iii) coordenar esforços do setor privado e órgãos públicos de pesquisa e transferência interessados no desenvolvimento e implementação de tecnologias de PP nas propriedades; e iv) incentivar o setor de prestação de serviços no desenvolvimento de produtos de gestão profissional das propriedades.

Figura 1. Esquema dos componentes do Pecuária de Precisão para controle de processos biológicos. (Adaptada de Wathes et al., 2008)
Referências

REEVES III, J.B. Near-versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done? Geoderma. v. 158, p. 3-14, 2010.

Análise espacial do índice de área foliar de pastagens utilizando Crop Circle e imagem WorldView-2

Ricardo Guimarães Andrade¹, Luiz Eduardo Vicente¹, Célia Regina Grego¹, Sandra Furlan Nogueira¹, Cristina Aparecida Gonçalves Rodrigues¹

¹Pesquisador, Embrapa Monitoramento por Satélite, Av. Soldado Passarinho, 303, CEP 13070-115, Campinas, SP

*E-mails: ricardo.andrade@embrapa.br, luiz.vicente@embrapa.br, celia.grego@embrapa.br, sandra.nogueira@embrapa.br, cristina.rodrigues@embrapa.br

Resumo: Dados de sensoriamento remoto vêm sendo aplicados em diversos estudos da vegetação. Contudo, no Brasil são raras as pesquisas que utilizam técnicas de sensoriamento remoto na análise da área foliar de pastagens. Assim, este trabalho objetivou realizar análise espacial do índice de área foliar (IAF) de pastagens ao utilizar imagem do satélite WorldView-2 do dia 13 de abril de 2013 e dados coletados em campo por meio do Crop Circle ACS-430. O estudo foi realizado em pastagem de um piquete localizado na fazenda da Embrapa Gado de Corte, Campo Grande, MS. O IAF estimado a partir da imagem WorldView-2 apresentou similaridade com o padrão de variação do IAF obtido no campo e teve alta correlação no local dos pontos amostrais (r = 0,8). Assim, para grandes piquetes, dados oriundos do satélite WorldView-2 torna-se uma alternativa interessante em tomadas de decisões relacionadas com o controle da perda do potencial produtivo das pastagens.

Palavras-chave: Crop Circle, pastagem Worldview-2, índice de vegetação

Spatial analysis of the leaf area index of pastures using data of Crop Circle instrument and WorldView-2 image

Abstract: Remote sensing data have been applied in several studies of vegetation. However, in Brazil are few studies that use remote sensing techniques in the analysis of the leaf area of pasture. This study aimed to accomplish spatial analysis of leaf area index (LAI) of the pasture by data of the WorldView-2 satellite of April 13th, 2013 and data collected in the field by the Crop Circle ACS-430. The study was conducted in a pasture paddock located on the farm of Embrapa Beef Cattle, Campo Grande, Brazil. The LAI estimate from WorldView-2 image show similarity with the pattern of variation of LAI obtained in field and had high correlation in the location of sampling points (r = 0.8). Thus, for large paddocks, data from the WorldView-2 satellite becomes an interesting alternative in making decisions related to loss control of the productive potential of pasture.

Keywords: Crop Circle, pasture, Worldview-2, vegetation index
1. Introdução

Variações da radiação na faixa espectral do vermelho e do IVP se correlacionam com variações do IAF (TUCKER, 1979) que por sua vez correlaciona-se com outros parâmetros biofísicos da vegetação e pode, por exemplo, ser utilizado para o monitoramento das condições de crescimento da cultura. Nesse sentido, as técnicas de sensoriamento remoto tem sido promissoras em diversos estudos tanto na identificação de áreas de cultivo quanto na obtenção de parâmetros biofísicos dos alvos de interesse. Xavier, Vettorazzi e Machado (2004) avaliaram a correlação entre valores de IAF de diferentes tipos de cobertura do solo existentes em uma microbacia rural com valores de frações de componentes puros oriundos de um modelo linear de mistura espectral (MLME), gerados a partir de dados do Landsat 7 - ETM+. Já Sanches et al. (2008) utilizaram o produto IAF do sensor MODIS para analisar variações do IAF em áreas de floresta de transição entre Amazônia e Cerrado. Por outro lado, Sugawara et al. (2009) utilizaram produtos MODIS para estimativa do IAF em plantios de cana-de-açúcar.

Em diversos estudos, os índices de vegetação tem sido uma das formas de relacionar a área foliar aos dados de sensoriamento remoto como, por exemplo, no estudo da caracterização espectral de dosséis de trigo (CAMARGO et al., 2007) e em estudos relacionados com a cultura da cana-de-açúcar (XAVIER; VETORAZZI, 2004). No entanto, poucos são os estudos no Brasil que utilizam dados de sensoriamento remoto para avaliar a variabilidade espacial da área foliar de pastagens, apesar de algumas iniciativas (ANDRADE et al., 2013). Além disso, não há relatos do uso de imagens de alta resolução espacial na estimativa do IAF de pastagens. Diante do exposto, este trabalho objetivou analisar a variabilidade espacial do IAF de pastagens utilizando dados coletados em campo por meio do sensor ativo Crop Circle ACS-430 e imagem de alta resolução espacial proveniente do satélite WorldView-2.

2. Material e Métodos

O presente estudo foi realizado para pastagem do gênero Brachiaria de um piquete experimental (área de 31,78 ha) do projeto GeoRastro localizado na fazenda da Embrapa Gado de Corte, Campo Grande, Mato Grosso do Sul (Figura 1). Para a estimativa do IAF da pastagem foram utilizados dados coletados em campo por meio do sensor ativo Crop Circle ACS-430 e uma imagem do dia 13 de abril de 2013 obtida pelo satélite WorldView-2.

O satélite WorldView-2 foi lançado em 8 de outubro de 2009 e entrou em plena capacidade de operação no dia 04 de janeiro de 2010. O satélite possui órbita polar síncrona com o sol a uma altitude de 770 km e possibilita o imageamento em 8 bandas multiespectrais com 16,4 km de largura da faixa nominal. Além disso, possui revisita média de 1,1 dias, resolução radiométrica de 11 bits. Já a resolução espacial pode chegar até 0,46 m no pancromático e até 1,84 m no multiespectral. Porém, as bandas são comercializadas na resolução espacial de 0,50 m (pancromático) e de 2,0 m (multiespectral).

Para transformação dos números digitais (ND) da imagem WorldView-2 em valores de radiação espectral de cada banda no topo da atmosfera
(Lλi, dada em W m⁻² sr⁻¹ μm⁻¹) ou calibração radiométrica absoluta, utilizou-se a equação:

\[L_{\text{al}} = \frac{ND \times F_{\text{calibração}}}{\text{largura banda(s)}} \] \hspace{1cm} \text{Eq. 1}

Onde, F_{calibração} é o fator de calibração radiométrica absoluta e largura banda(s) é o valor da efetiva largura de bandas (Effective Bandwidth), os quais estão disponíveis nos arquivos de metadados da imagem (arquivo de extensão .IMD).

Posteriormente, a L_{al} foi transformada em reflectância no topo da atmosfera (ρ_{TOA}) ao empregar a equação:

\[\rho_{\text{TOA}} = \frac{d_{ES}^2 \pi L_{\lambda_i}}{E_{\lambda_i}(\text{S}) \cos \theta_S} \] \hspace{1cm} \text{Eq. 2}

Onde, θ_S é o ângulo zenital solar; L_{λ_i} é a radiação espectral de cada banda no topo da atmosfera e E_{λ_i}(S) é a irradiância solar espectral média de cada banda no topo da atmosfera (W m⁻² μm⁻¹) (Tabela 1). O termo d_{ES} é a distância relativa terra-sol em unidades astronômicas (UA).

Para obtenção da reflectância de superfície ou corrigida para os efeitos da atmosfera foi aplicado o método \textit{Dark Object Subtraction} (DOS) proposto por Chavez Junior (1988, 1989). Este é um método de correção do espalhamento atmosférico no qual a interferência atmosférica é estimada diretamente a partir dos números digitais (ND) da imagem de satélite.

Em seguida, obteve-se o índice de vegetação ajustado para correção dos efeitos do solo (\textit{Soil Adjusted Vegetation Index} - SAVI), conforme Huete (1988):

\[SAVI = \frac{(1 + L)(\rho_{\text{IVP}} - \rho_{\text{VERM}})}{(L + \rho_{\text{IVP}} + \rho_{\text{VERM}})} \] \hspace{1cm} \text{Eq. 3}

Onde, \rho_{\text{IVP}} e \rho_{\text{VERM}} são as reflectâncias de superfície nas bandas do infravermelho próximo (IVP-1) e do vermelho, respectivamente. Já o L representa o grau de fechamento do dossel e varia de 0 a 1, neste caso foi aplicado o fator L de 0,5.

De posse do SAVI foi possível estimar o IAF da pastagem ao aplicar a equação (ALLEN; TASUMI; TREZZA, 2002):

\[IAF = -\ln\left(\frac{0,69 - SAVI}{0,59}\right) \] \hspace{1cm} \text{Eq. 4}

Neste estudo, também foi utilizado o sensor ativo Crop Circle ACS-430 para coleta de dados de reflectância de superfície nas bandas do infravermelho próximo e do infravermelho próximo numa malha de pontos regular de aproximadamente 60 x 60 m totalizando 74 pontos observacionais. Em cada ponto da malha foram registradas pelo menos

Tabela 1. Especificações do satélite WorldView-2 referente as bandas, comprimento de onda e irradiância solar espectral no topo da atmosfera

<table>
<thead>
<tr>
<th>Bandas</th>
<th>Comprimento de onda (μm)</th>
<th>Irradiância solar espectral no topo da atmosfera (W m⁻² μm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancromática</td>
<td>0,450-0,800</td>
<td>1580,8140</td>
</tr>
<tr>
<td>Costal</td>
<td>0,400-0,450</td>
<td>1758,2229</td>
</tr>
<tr>
<td>Azul</td>
<td>0,450-0,510</td>
<td>1974,2416</td>
</tr>
<tr>
<td>Verde</td>
<td>0,510-0,580</td>
<td>1856,4104</td>
</tr>
<tr>
<td>Amarelo</td>
<td>0,585-0,625</td>
<td>1738,4791</td>
</tr>
<tr>
<td>Vermelho</td>
<td>0,630-0,690</td>
<td>1559,4555</td>
</tr>
<tr>
<td>RedEdge</td>
<td>0,705-0,745</td>
<td>1342,0695</td>
</tr>
<tr>
<td>IVP-1</td>
<td>0,770-0,895</td>
<td>1069,7302</td>
</tr>
<tr>
<td>IVP-2</td>
<td>0,860-1,040</td>
<td>861,2866</td>
</tr>
</tbody>
</table>

Fonte: DigitalGlobe.
50 amostras que posteriormente foram utilizadas para obter o valor médio no ponto.

Com os dados de reflectância de superfície oriundos do sensor ativo Crop Circle ACS-430 foi possível aplicar as equações 3 e 4 para estimar o SAVI e, posteriormente, o IAF da pastagem em nível de campo. Na sequência, empregou-se a análise geoestatística para identificar a existência de dependência espacial nos dados de IAF, com o cálculo e ajuste do semivariograma e, posteriormente, a interpolação de dados nos locais não amostrados pelo método da krigagem ordinária.

3. Resultados e Discussão

Na Figura 2a tem-se uma visualização parcial da área de pastagem do piquete. Já a Figura 2b apresenta o mapa da estimativa do IAF da pastagem ao utilizar os dados de reflectância do satélite WorldView-2. Nota-se que os valores de IAF entre 0 e 0,76 m²/m² (cor preta) estão localizados em áreas de pastagens sombreadas pelas copas das árvores. Nesse caso o sombreamento interferiu na quantidade de radiação refletida pelo dossel da pastagem e, consequentemente, nas estimativas do IAF. Por outro lado, vale ressaltar que os bovinos utilizam as áreas sombreadas em períodos mais quente do dia. Nessas áreas o pisoteio dos animais contribui para compactação do solo e propicia alguns pontos de pastagem mais rala e até exposição do solo. Os maiores valores de IAF (1,51 a 1,65 m²/m²) foram observados em pixels da imagem que representam, na maior parte, as copas de árvores e áreas de pastagem localizadas próximas ao leste e em alguns pixels representativos da pastagem ao sul do piquete. O valor do IAF médio da pastagem do piquete foi de 0,98 m²/m². Para estudo utilizando imagem Landsat 5 - TM em áreas de pastagens do gênero Brachiaria localizadas no município de Guararapes, São Paulo, Andrade et al. (2013) obtiveram valores médios de IAF que variaram de acordo com as condições das pastagens e com o parâmetro L utilizado no método de estimativa. Nesse caso, os valores médios de IAF estimado variaram de 1,98 a 4,36 m²/m². Sendo que a média do IAF obtido no campo a partir do instrumento LAI-2000 oscilou entre 1,20 e 4,21 m²/m².

A Figura 3 mostra os parâmetros de dependência espacial decorrentes do semivariograma juntamente com a espacialização por krigagem ordinária do IAF da pastagem estimado a partir dos dados coletados com o sensor ativo Crop Circle ACS-430. Apesar dos parâmetros decorrentes da análise geoestatística indicarem fraca dependência espacial entre os pontos do IAF estimado, nota-se que o padrão de variação espacial do IAF é
semelhante visualmente ao estimado para cada pixel da imagem WorldView-2 (Figura 2b). Nesse caso, na Figura 3 fica evidenciado que os maiores valores de IAF (1,08 a 1,14 m²/m²) estão localizados na parte nordeste e sul do piquete. O valor médio do IAF estimado a partir dos dados do sensor ativo Crop Circle ACS-430 foi de 0,96 m²/m². Esse valor médio é praticamente o mesmo encontrado para o IAF estimado com os dados de reflectância da imagem WorldView-2. Além disso, esses resultados são próximos àqueles observados por Roberts et al. (1996), que ao analisar o IAF de pastagens de Urochloa brizantha nos meses de agosto e setembro de 1992, obtiveram respectivamente valores médios de IAF da ordem de 1,55 ± 0,72 m²/m² e 1,66 ± 0,52 m²/m².

A título de validar a semelhança de padrão de variação dos IAF, a Figura 4 apresenta uma análise de regressão entre o valor do IAF do pixel da imagem WorldView-2 e o valor do IAF estimado a partir dos dados oriundos do sensor ativo Crop Circle ACS-430. Verifica-se uma correlação de 80% (r = 0,80) entre os dados de IAF para os 74 pontos amostrais. Esse dado estatístico é considerado satisfatório, pois apesar da alta resolução da imagem (= 1,84 m), o IAF obtido para cada pixel representa um valor integrado para uma área de pastagem de aproximadamente 3,4 m². Já as medições realizadas com o sensor ativo Crop Circle abrangem menos de 1,0 m² de área. Além disso, ressalta-se também que os dados de campo foram coletados no dia 09 de maio de 2013 e apresentam-se defasados em 26 dias com relação à data da imagem WorldView-2. Nesse período, podem ter ocorrido alterações das condições das pastagens principalmente devido aos fatores climáticos e manejo do rebanho no piquete.

4. Conclusões

A variação espacial da estimativa do IAF da pastagem ao utilizar imagem WorldView-2 é semelhante ao padrão de variação espacial do IAF encontrado para os pontos de campo que foram espacializados por krigagem. Além disso, o IAF estimado a partir da imagem WorldView-2 apresentou alta correlação com os pontos de IAF estimado por meio dos dados do sensor ativo Crop Circle ACS-430.

Figura 3. Parâmetros de dependência espacial (efeito pepita - Co; variância estrutural - C1 e alcance - a) e espacialização por krigagem ordinária de dados de IAF estimados a partir dos dados do sensor ativo Crop Circle ACS-430.
Figura 4. Análise de regressão entre o IAF estimado a partir dos dados do satélite WorldView-2 e a estimativa do IAF nos pontos amostrais ao utilizar o sensor ativo Crop Circle ACS-430.

De forma geral, as estimativas do IAF da pastagem foram consistentes com a literatura, tanto ao utilizar Crop Circle quanto a imagem WorldView-2. Assim, para grandes piquetes os dados do satélite WorldView-2 torna-se uma alternativa interessante em tomadas de decisões voltadas para o controle da perda do potencial produtivo das pastagens.

Agradecimentos

Sinceros agradecimentos aos colegas Pedro Paulo Pires, Quintino Izidio dos Santos Neto e Davi José Bungenstab da Embrapa Gado de Corte pelo apoio de sempre e parceria no âmbito do projeto GeoRastro.

Referências

Variabilidade espacial e temporal da resistência do solo à penetração após diferentes pressões de pastejo no Norte do Paraná**

Henrique Debiasi*1, Julio Cezar Franchini*1, Alvadi Antonio Balbinot Junior*1, Fabio Alvares de Oliveira*1

*E-mails: henrique.debiasi@embrapa.br, julio.franchini@embrapa.br, alvadi.balbinot@embrapa.br, fabio.alvares@embrapa.br

**Trabalho parcialmente financiado com recursos da rede de Fomento ILPF

Resumo: A integração lavoura-pecuária (ILP) é um sistema de produção em expansão, com grande potencial para aumentar a rentabilidade e a sustentabilidade do agronegócio brasileiro. A Urochloa ruziziensis é uma das espécies mais utilizadas na fase de transição entre o sistema exclusivo e integrado. No entanto, há pouca informação acerca do efeito de pressões de pastejo dessa espécie sobre a qualidade física do solo e sobre a produtividade de culturas graníferas em sucessão. Em um sistema ILP estabelecido em Londrina, norte do Paraná, foram avaliados os efeitos das pressões de pastejo de 2, 4 e 6 UA ha⁻¹ sobre a variabilidade espacial e temporal da resistência do solo à penetração (RP) e da produtividade da soja cultivada em sucessão. A RP aumentou proporcionalmente com o incremento da pressão de pastejo apenas na camada superficial do solo (5 cm). A produtividade da soja cultivada em sucessão à pastagem não foi relacionada com a RP, sendo a maior produtividade observada na pressão de pastejo intermediária, 4 UA ha⁻¹. Os resultados indicam que o aumento da RP na superfície do solo após o pastejo não é limitante para a produção de soja e pode ser manejado com o uso de semeadoras equipadas com sulcadores do tipo facão para deposição do fertilizante. A pressão de pastejo pode estar interferindo em outros fatores, como a quantidade de cobertura e a qualidade da semeadura, que podem ter tido maior influência na produtividade da soja do que a RP.

Palavras-chave: compactação do solo, geoestatística, integração lavoura-pecuária, Glycines max, Urochloa ruziziensis, manejos da pastagem.

Temporal and spatial variability of soil resistance to penetration after different grazing intensities in the northern Paraná state, Brazil

Abstract: The crop-livestock integration (ILP) is an expanding production system with great potential to increase the profitability and sustainability of the Brazilian agribusiness. The Urochloa ruziziensis is a forage commonly used in the transition between exclusive and integrated systems, however, information about the effects of grazing pressures on the soil physical quality and crop yield is scarce. The effects of cattle grazing pressures of 2, 4 and 6 animal unities (AU) ha⁻¹ on the spatial and temporal variability of the soil penetration resistance (RP), and on the yield of the soybean in succession, were evaluated in an ILP system established in Londrina, northern Paraná, Brazil. The RP increased proportionally with the increase in the grazing pressures only at the topsoil (5 cm). The yield of the soybean grown after the pasture was not related to the RP. However, the highest soybean yield was observed at the intermediate grazing pressure (4 AU ha⁻¹). The results indicate that the increase in the RP at 5 cm depth after grazing is not limiting for soybean yield and can be managed with the use of planters equipped with chisel-type fertilizer furrow openers. The grazing pressure may influence other factors, such as the mulching, and planting quality, which may have greater influence on soybean yield than the RP.

Keywords: soil compaction, geostatistics, crop-livestock system, Glycines max, Urochloa ruziziensis, grazing management.
1. Introdução

A intensificação do uso da terra, integrando as atividades da agricultura e da pecuária, tem-se mostrado como opção viável para o aumento da rentabilidade e da sustentabilidade da produção de soja, quando comparada com os sistemas exclusivos. A integração lavoura-pecuária (ILP), como tem sido comumente denominada, tem chamado a atenção de produtores e ambientalistas em razão do aumento na eficiência de uso dos recursos disponíveis nos agroecossistemas, associado à melhoria da qualidade do solo e da água, redução do consumo de insumos e geração de maior renda por área (BALBINOT JUNIOR, 2009; NAIR et al., 2010). A ILP pode ser definida como um sistema de produção que alterna, na mesma área, o cultivo de espécies para produção de grãos e pastagens de forma concomitante ou não, de modo que haja sinergia entre as atividades (NAIR et al., 2010).

Apesar do aumento da adoção de sistemas de ILP, ainda permanecem várias dúvidas quanto ao manejo mais adequado da pastagem na fase de transição entre a pecuária e a lavoura. A forrageira *Urochloa ruziziensis* tem sido uma das espécies mais utilizadas pelos produtores de grãos no início das atividades com pecuária. Mesmo apresentando menor capacidade de suporte animal e maior suscetibilidade à cigarrinha das pastagens, em relação a outras forrageiras do gênero *Urochloa*, a facilidade de manejo com baixas doses de herbicida, o hábito de crescimento prostrado com menor formação de touceiras e a produção de forragem de boa qualidade fazem desta espécie uma importante opção de forrageira para a ILP. Mesmo apresentando menor capacidade de suporte animal e maior suscetibilidade à cigarrinha das pastagens, em relação a outras forrageiras do gênero *Urochloa*, a facilidade de manejo com baixas doses de herbicida, o hábito de crescimento prostrado com menor formação de touceiras e a produção de forragem de boa qualidade fazem desta espécie uma importante opção de forrageira para a ILP.

O estudo foi conduzido na Embrapa Soja, em Londrina/PR (23°12’ S, 51°11’ W e altitude média de 585 m), sobre um Latossolo Vermelho distroférrico muito argiloso (739, 189 e 72 g kg⁻¹ de argila, silte e areia, respectivamente), que vinha sendo manejado em sistema plantio direto há quinze anos, com o cultivo de soja no verão e trigo ou aveia preta no inverno. Após a colheita da soja em março de 2010, a pastagem de *Urochloa ruziziensis* foi implantada sem aplicação de fertilizante na base, por meio de uma semeadeira com 13 linhas espaçadas 17 cm entre si, equipada com sulcadores do tipo disco duplo defasado e dosadores de sementes do tipo rotor acanalado, específico para forrageiras. A densidade de semeadura foi de 5 kg ha⁻¹ de sementes puras viáveis. De outubro de 2010 até maio de 2011, a área foi uniformemente pastejada com o equivalente a 2 unidades animais (UA) ha⁻¹. Após um período de 60 dias de diferimento, a pastagem recebeu, em 22/07/2011, adubação com 45 kg ha⁻¹ de N na forma de sulfato de amônio. A partir de setembro de 2011 até dezembro de 2011, a área foi novamente uniformemente pastejada com o equivalente a 2 UA ha⁻¹.

Em dezembro de 2011, quando a pastagem apresentava altura média de 50 cm, a área experimental foi dividida em três piquetes com aproximadamente 1,2 ha, perfazendo uma área total de 3,6 ha. Nos piquetes, foram aplicadas as seguintes pressões de pastejo: P2 = pastejo contínuo com 2 UA ha⁻¹; P4 = pastejo contínuo com 4 UA ha⁻¹; e P6 = pastejo contínuo com 6 UA ha⁻¹. Os níveis de pastejo foram estabelecidos com o objetivo de manter alturas aproximadas de 50, 35 e 15 cm para P2, P4 e P6, respectivamente. Os animais, bovinos machos e fêmeas, entraram nos piquetes em 08/12/2011, onde permaneceram até 31/05/2012. Após esse período, os piquetes foram mantidos sem animais até outubro, quando a área foi dessecada com o herbicida glifosato, na dose de 2,52 kg e.a. ha⁻¹. Em 06/11/2012, foi semeada a cultivar de soja ‘BRS 360RR’, utilizando-se uma semeadeira-adubadora tratorizada equipada com mecanismos sulcadores do tipo guilhotina para o adubo e discos duplos defasados para a semente. A semeadeira foi regulada visando o estabelecimento de 350 mil plantas de soja por...
hectare, com espaçamento de 45 cm entre linhas. A adubação de base foi constituída de 50 kg ha\(^{-1}\) de P\(_2\)O\(_5\) e de K\(_2\)O. As sementes foram inoculadas com *Bradyrhizobium japonicum* e *B. elkanii*, estirpes SEMIA 587 e SEMIA 5019. Os tratos culturais e tratamentos fitossanitários foram realizados seguindo as indicações técnicas para a cultura na região.

A resistência do solo à penetração (RP) foi avaliada em dezembro de 2011, antes da aplicação dos tratamentos, e em outubro 2012, quatro meses após o deferimento dos animais. A RP foi determinada nas profundidades de 5, 10, 15 e 20 cm, por meio de um penetrômetro eletrônico equipado com cone de 12,83 mm de diâmetro e 30° de ângulo. A primeira avaliação da RP (dezembro/2011) foi realizada seguindo uma grade amostral de 15 × 15 m, com uma repetição por ponto, totalizando 175 leituras em cada profundidade. Já a segunda avaliação (outubro/2012) foi realizada em uma grade amostral de 10 × 10 m, totalizando 276 leituras em cada profundidade. Em ambas as avaliações, em 75 pontos distribuídos na área, foram coletadas amostras de solo nas camadas de 0-10 e 10-20 cm, para determinação do conteúdo gravimétrico de água no solo, conforme Embrapa (1997). Em 15/03/2013, a produtividade da soja foi estimada por meio da colheita de três linhas de 10 m, seguindo uma grade amostral de 10 x 30 m, totalizando 96 amostras em toda a área do estudo, sendo os valores corrigidos para a umidade de 13% e expressos em sacas ha\(^{-1}\).

Os dados de RP e de produtividade da soja foram submetidos à análise geostatística, conforme Vieira et al. (2002). O modelo selecionado para ajuste do semivariograma foi aquele que resultou no maior coeficiente de correlação obtido pelo método de validação cruzada. A partir dos parâmetros dos modelos ajustados aos semivariogramas, foram elaborados os mapas de variabilidade espacial por meio do programa Surfer 9.0.

3. Resultados e Discussão

Os parâmetros dos modelos ajustados aos semivariogramas de RP e de produtividade da soja são apresentados na Tabela 1. Na primeira avaliação, em todas as camadas, a RP apresentou fraca dependência espacial, o que indica que a maior parte da variabilidade não foi explicada pelos modelos ajustados. Na segunda avaliação, houve um aumento da dependência espacial da RP, que passou a ser moderada em três das quatro camadas avaliadas. Esse comportamento pode estar relacionado ao aumento no número de pontos medidos, que passou de 175, na primeira, para 276 na segunda avaliação. Apesar do número de pontos medidos influenciar no grau de dependência espacial, era esperado que o efeito pepita fosse predominante em uma área submetida à pastoreio, já que o caminhamento dos animais dentro da área não é homogêneo, o que naturalmente aumenta a variabilidade aleatória dentro da área. No caso da produtividade da soja, foi observada uma forte dependência espacial do modelo ajustado, indicando que, apesar da grade amostral para produtividade ser composta por apenas 96 pontos, a amostragem foi adequada para representar esse parâmetro na área de estudo.

Os mapas da RP e da produtividade da soja, elaborados a partir dos modelos ajustados aos semivariogramas (Tabela 1), são apresentados na Figura 1. Na primeira avaliação, na profundidade de 5 cm, houve o predomínio de valores de RP variando entre 2,5 e 3,0 MPa, valores acima dos considerados críticos ao desenvolvimento radicular da maioria das culturas (2 MPa)(REICHERT; SUZUKI; REINERT, 2007). Ainda nessa profundidade, foram observadas regiões com valores de RP superiores a 3,0 MPa. A 10 cm de profundidade, houve o predominio de valores de RP entre 2,0 e 2,5 MPa. Já para as camadas abaixo de 10 cm, a maior parte da área apresentou valores de RP menores do que 2 MPa. A 10 cm de profundidade, houve o predomínio de valores de RP entre 2,0 e 2,5 MPa. Já para as camadas abaixo de 10 cm, a maior parte da área apresentou valores de RP menores do que 2 MPa. É possível observar que os valores de RP em dezembro/2011 foram diminuindo com o aumento da profundidade de avaliação, o que não é esperado para áreas sob sistema plantio direto consolidado, onde a RP é maior na camada de 10-20 cm comparativamente à de 0-10 cm (LANZANOVA et al., 2010; DEBIASI et al., 2011). Desse modo, a maior RP na camada de 0-10 cm em relação à 10-20 cm pode ser atribuída às pressões aplicadas pelos animais na superfície do solo durante o primeiro período de pastoreio (outubro/2010 a novembro/2011). Os valores de RP nas camadas superficiais, acima de 10 cm, evidenciam que compactação do solo ocasionada...
A compactação pelo pisoteio animal poderia ser limitante à produtividade de culturas anuais. Por outro lado, os resultados indicam que o pastejo com 2 UA ha⁻¹ por um período aproximado de 12 meses teve pouca influência na RP nas camadas abaixo de 10 cm.

Na segunda avaliação, a RP na profundidade de 5 cm aumentou em relação à primeira avaliação, o que é evidenciado pelo predomínio de valores acima de 2,5 MPa e pelo aumento das áreas com valores de RP acima de 3,0 MPa (Figura 1). O aumento da RP a 5 cm de profundidade foi proporcional ao incremento na pressão de pastejo, já que a maior frequência de valores acima de 3,0 MPa, assim como o surgimento de valores acima de 3,5 MPa, foram associados com os tratamentos P4 e P6. A compactação pelo pisoteio animal na superfície do solo pode ser explicada pelo fato da pressão exercida pelos animais sobre o solo alcançar valores de 350 a 400 kPa (OFFITT et al., 1993), os quais podem ser duplicados quando o animal está em movimento (NIE; WARD; MICHAEL, 2001). Esses valores são superiores às pressões que um solo argiloso, manejado sob SPD, pode suportar sem sofrer compactação adicional (VEIGA et al., 2007). Para as demais profundidades, os valores de RP na segunda avaliação não foram significativamente alterados pelas pressões de pastejo, sendo similares aos obtidos na primeira avaliação. Esses resultados revelam que a compactação pelo pisoteio animal é limitada à camada superficial do solo, confirmando resultados obtidos anteriormente em estudos envolvendo pastagens de aveia + azevém (SILVA; REINERT; REICHERT, 2000; FLORES et al., 2007; PETEAN et al., 2009). Avaliando os efeitos de diferentes pressões de pastejo sobre a qualidade física do solo em pastagem de Urochloa brizantha cv ‘Xaraes’, Debiassi e Franchini (2012) também encontraram que o aumento da RP pelo pisoteio animal foi restrito à camada de 0-5 cm quando a pressão de pastejo foi de 6,88 UA ha⁻¹. Salienta-se que a compactação superficial do solo, até 5 cm de profundidade, pode ser corrigida nas linhas de semeadura com o uso de semeadoras equipadas com sulcadores do tipo facão (ANDREOLLA; GABREIL FILHO, 2006).

Levando-se em consideração as tensões aplicadas ao solo por máquinas agrícolas, Hamza e Anderson (2005) explicam que a compactação na superfície do solo depende da pressão de contato rodado-solo, enquanto que a compactação em camadas subsuperficiais é determinada principalmente pela carga total por eixo. Embora a pressão aplicada pelas patas

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Parâmetros³</th>
<th>Dependência Espacial³</th>
<th>Grau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C₀</td>
<td>C₁</td>
<td>a</td>
</tr>
<tr>
<td>Primeira avaliação (Dez 11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-05 cm</td>
<td>Gausseniano</td>
<td>0,41</td>
<td>0,053</td>
</tr>
<tr>
<td>RP-10 cm</td>
<td>Gausseniano</td>
<td>0,30</td>
<td>0,032</td>
</tr>
<tr>
<td>RP-15 cm</td>
<td>Gausseniano</td>
<td>0,25</td>
<td>0,047</td>
</tr>
<tr>
<td>RP-20 cm</td>
<td>Gausseniano</td>
<td>0,26</td>
<td>0,057</td>
</tr>
<tr>
<td>Segunda avaliação (Out 12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP-05 cm</td>
<td>Gausseniano</td>
<td>0,28</td>
<td>0,126</td>
</tr>
<tr>
<td>RP-10 cm</td>
<td>Gausseniano</td>
<td>0,15</td>
<td>0,078</td>
</tr>
<tr>
<td>RP-15 cm</td>
<td>Gausseniano</td>
<td>0,17</td>
<td>0,043</td>
</tr>
<tr>
<td>RP-20 cm</td>
<td>Gausseniano</td>
<td>0,16</td>
<td>0,060</td>
</tr>
<tr>
<td>Produtividade</td>
<td>Gausseniano</td>
<td>10,00</td>
<td>23,140</td>
</tr>
</tbody>
</table>

*C₀ = efeito pepita; C₁ = variância estrutural; a = alcance. *De acordo com Cambardella et al. (1994), esse parâmetro pode ser usado para classificar a dependência espacial como: forte (0 a 0,25); moderada (0,26 a 0,75) e fraca (0,76 a 1).
A produtividade da soja cultivada em sucessão à pastagem foi pouco influenciada pelas alterações na qualidade física da camada superficial do solo, uma vez que as maiores produtividades foram observadas nas maiores pressões de pastejo (Figura 1). Considerando os valores médios nas áreas de pastejo, a produtividade da soja (sc ha\(^{-1}\)) seguiu a seguinte ordem decrescente: 68 (P4); 65 (P6) e 62 (P2). Assim, os dados indicam que a pressão de pastejo intermediária, de 4 UA ha\(^{-1}\), que conferiu altura média da pastagem de 35 cm, foi a que proporcionou o melhor ambiente para maximizar a produtividade de soja cultivada em sucessão. Resultados semelhantes foram obtidos por Debiasi e Franchini (2012), que obtiveram maior produtividade da soja cultivada após pastagem de *Urochloa brizantha* nas maiores pressões de pastejo. Possivelmente, a pressão de pastejo interfere em outros fatores de produção, como a quantidade de palha e a qualidade da semeadura, que podem exercer maior influência sobre a produtividade de grãos de soja do que a RP do solo. Cabe destacar que a distribuição regular das chuvas na safra 2012/2013 pode ter minimizado os impactos negativos da compactação do solo ocasionada pelo pisoteio animal sobre as plantas de soja.

4. Conclusões

O aumento da pressão de pastejo aumentou proporcionalmente a RP do solo apenas na camada superficial de 5 cm.

A produtividade da soja cultivada em sucessão à pastagem não foi relacionada com a RP do solo, sendo a maior produtividade observada na pressão de pastejo intermediária, de 4UA ha\(^{-1}\), que conferiu altura da pastagem de 35 cm.

Os resultados indicam que o aumento da RP na superfície do solo em áreas de pastagem não é
limitante para a produtividade da soja e pode ser manejado com o uso de semeadora-adubadora equipada com mecanismos sulcadores, do tipo facão. A pressão de pastejo pode estar interferindo em outros fatores, como a quantidade de cobertura e a qualidade da semeadura, que tiveram maior influência sobre a produtividade da soja do que a RP do solo.

Agradecimentos

A Bunge e Finep/FNDCT/Ministério da Ciência e Tecnologia (MCT), pelo apoio financeiro aos projetos que originaram os resultados apresentados.

Referências

Variabilidade espacial de propriedades do solo, índices de vegetação e produtividade de pastagem sob manejo intensivo

Alberto C. de Campos Bernardi*, Mariana Campana, Giovana Maranhão Bettiol, Patrícia P. A. de Oliveira, Ricardo Y. Inamasu, Ladislau M. Rabello

1Embrapa Pecuária Sudeste, CEP 13560-970, São Carlos, SP
2CCA/UFSCar, Araras, SP
3Embrapa Instrumentação, São Carlos, SP
4Bolsista do CNPq

*E-mails: alberto.bernardi@embrapa.br

Resumo: O conhecimento da variabilidade espacial das propriedades do solo é útil para o uso racional dos insumos, como na aplicação a taxa variável de calcário e fertilizante. A AP necessita de métodos que indiquem a variabilidade espacial do solo e das culturas para reduzir a necessidade de amostragens intensivas e caras. O objetivo deste trabalho foi o mapear a variabilidade espacial da condutividade elétrica do solo, parâmetros biofísicos, produtividade e análise econômica de uma pastagem de capim-mombaça irrigada e manejada no sistema intensivo rotacionado em São Carlos (SP). A condutividade elétrica aparente do solo (CEa) foi medida com um protótipo de sensor de contato. O índice de diferença de vegetação normalizado (NDVI) e o teor de clorofila (Chl) foram medidos com o sensor óptico ativo Crop Circle. Os resultados mostraram que o mapa da CE apresentou com a mesma tendência da produção de matéria seca. Os índices de vegetação têm potencial para o mapeamento da variabilidade espacial da produção de forragem. As ferramentas de AP foram úteis para estabelecer a variabilidade espacial da pastagem e fornecer informações para as estratégias de manejo.

Palavras-chave: geostatística, NDVI, NDRE, Chl, CEa, Panicum maximum, retorno econômico.

Spatial variability of soil properties, vegetation index and productivity of intensively managed grassland

Abstract: The knowledge of spatial variability soil properties is useful in the rational use of inputs, as in the variable rate application of lime and fertilizers. PA requires methods to indicate the spatial variability of soil and crops for reducing the need for expensive and intensive sampling. The objective of this work was to map and evaluate spatial variability of soil electrical conductivity, biophysics parameters, yield and economical return of an intensively manages pasture. The study was conducted in an area of pasture Mombaça grass irrigated and intensively managed in a rotational system in Sao Carlos, SP, Brazil. Soil electrical conductivity (EC) was measured with a prototype of a contact sensor. NDVI and chlorophyll content (Chl) readings were taken during the summer season with a Crop Circle active optical sensor. Results showed that the NDVI and ECa had the same tendency of dry matter estimation. Results showed that EC map had the same tendency of dry matter production. Vegetation indexes have the potential to map the spatial variability of pasture production. PA tools were useful to establish the pasture spatial variability and support the management strategies.

Keywords: geostatistics, NDVI, NDRE, Chl, ECa, Panicum maximum, economical return.
1. Introdução

A agricultura de precisão (AP) auxilia os produtores na tomada de decisões gerenciais para os diferentes sistemas de cultivo (KOCH; KHOSLA, 2003). Entretanto, a AP requer ferramentas para avaliar a variabilidade espacial do solo e das culturas que possibilitem a redução das amostragens intensivas e caras (McBRATNEY; PRINGLE, 1999). Isso tem levado ao surgimento de uma série de propostas e sistemas de sensoriamento e monitoramento, que têm como objetivo a medida indireta de propriedades do solo ou das culturas com base em sistemas ópticos, eletromagnéticos, eletroquímicos, mecânicos, fluxo de ar e acústicos (ADAMCHUK et al., 2004).

O uso de ferramentas de AP tem sido frequente nas culturas anuais e perenes, especialmente em grãos, hortícolas e fruteiras, mas ainda tem aplicações que poderiam ser mais bem exploradas nos sistemas de produção animal, especialmente naqueles baseados no uso de pastagens tropicais para ruminantes. Schellberg et al. (2008) já demonstraram e discutiram o potencial, benefícios e limitações do uso da AP em sistemas de pastagens.

Marcos conceituais foram desenvolvidos para a zootecnia de precisão (Laca 2009) e sistemas de pastagem (Schellberg et al. 2008) e, para sistemas integrados considerando os componentes animal e forragem (Hacker et al., 2008). O trabalho de Trotter (2010) procura integrar as opções de novas tecnologias de AP, que podem ser usadas para monitorar e gerenciar a variabilidade espacial nos componentes solo, planta e animal de sistemas de pastoje. O conhecimento da distribuição espacial dos atributos do solo e de suas relações com a pastagem por meio das ferramentas de AP pode decisiva para manejo intensivo de pastagens.

Os índices de vegetação obtidos por sensoriamento remoto têm sido amplamente utilizados para estimar a biomassa de culturas e pastagens, uma vez que fornecem padrões temporais e espaciais das mudanças nos ecossistemas e têm sido útil na estimativa de parâmetros biofísicos (MOGES et al., 2004; NUMATA et al., 2007). A mensuração da reflectância espectral é a abordagem sem contato e não destrutiva mais promissora para a determinação da deficiência de nitrogênio e estimativa da biomassa das culturas (TUMBO; WAGNER; HEINEMANN, 2002). A luz vermelha é absorvida pelos pigmentos verdes (clorofila), em tecidos fotosinteticamente ativos, e, portanto, a proporção refletida varia inversamente à quantidade de biomassa vegetal. No entanto, no campo, a intensidade de luz vermelha refletida vai depender não apenas da proporção absorvida, mas, também, da intensidade incidente, que varia com a localização e hora do dia.

O índice de diferença de vegetação normalizado (NDVI), por ser uma ferramenta rápida e eficiente de detecção de variações na vegetação (ROUSE et al., 1973), é comumente usado para avaliar a sanidade, a biomassa e o teor de nutrientes das plantas. Este índice também se correlaciona com rendimentos agrícolas (MOCHHEIM e BARBER, 1998). Hill et al. (1999) e Vickery et al. (1999) relacionaram o NDVI com crescimento vegetal.

O conteúdo de clorofila (Chl) do dossel de uma cultura é uma variável biofísica que expressa quantitativamente a capacidade fotosintética da vegetação. Ela está relacionada a parâmetros biofísicos do dossel, como teor de nitrogênio, biomassa, coloração verde, índice de área foliar total, balanço de troca de CO₂, e radiação fotosinteticamente ativa absorvida - PAR (GITELSON et al., 2005). Entre 50 a 70% do N total na folha está associado a enzimas presentes nos cloroplastos por isso existe relação direta entre o teor de N e o conteúdo de clorofila (MARSCHNER, 1995). Dessa forma, as leituras de sensores oferecem rápida e estimativa não-destrutiva dos teores de clorofila nas folhas, e estas podem relacionar-se diretamente com a produtividade de matéria seca e qualidade da forragem (SCEPERS; SHANAHAN; LUCHIARI JUNIOR, 2000). O sensoriamento remoto tem sido utilizado na estimativa do teor de clorofila do dossel, na estimativa da produção de biomassa e para detectar o estresses (GITELSON et al., 2005). Sensores ativos ópticos comerciais, como Greenseeker e Crop Circle, foram utilizados para estimativas de produção de forrageiras por Flynn, Dougherty e Wendroth (2008) e Trotter et al. (2010).

A condutividade elétrica aparente do solo integra textura e da disponibilidade de água, duas características do solo que afetam a produtividade, e pode auxiliar na interpretação das variações de rendimento das culturas.
(KITCHEN; SUDDUTH; DRUMMOND, 1999) e foi relacionada com a variabilidade espacial da produção das culturas (KITCHEN; SUDDUTH; DRUMMOND, 1999; LUCHIARI et al., 2001). No Brasil, Machado et al. (2006) verificaram que os valores da CEa estavam relacionados com o teor de argila do solo e sua variabilidade espacial e foi útil para o estabelecimento dos limites de zonas de manejo em lavoura de soja. Serrano et al. (2010) mostraram que a ECA medida em área de pastagem relacionou-se positivamente com o pH e produção de matéria seca.

A análise da sustentabilidade de qualquer sistema tem de considerar tanto os aspectos agronômicos, quanto os ambientais e os econômicos. A escala de produção é um dos fatores importantes para a viabilidade econômica da pecuária, e os sistemas de produção tenderão a se intensificar, visando apresentar maior rentabilidade. De acordo com Bouwman et al. (2005) o aumento na intensificação deverá obrigatoriamente ser acompanhado de melhoria no manejo. Neste cenário o monitoramento da produção de forragem pode ser um elemento chave na para a intensificação. A AP é uma postura gerencial que leva em conta a variabilidade espacial da propriedade para maximizar o retorno econômico e minimizar riscos de dano ao meio ambiente (INAMASU et al., 2011). Griffin e LowenDeBoer (2005) em revisão de vários trabalhos sobre o uso da AP, indicaram que em 68% dos casos analisados os sistemas com uso da AP foram mais rentáveis que os sistemas de cultivo convencional.

O objetivo deste trabalho foi o mapear a variabilidade espacial da condutividade elétrica do solo, parâmetros biofísicos, produtividade e análise econômica de uma pastagem de capim-mombaça irrigada e manejada no sistema intensivo rotacionado em São Carlos (SP).

2. Material e Métodos

O estudo foi conduzido na Embrapa Pecuária Sudeste, em São Carlos, SP (21°57’15 S e 47°50’53,5 W; 856 m acima do nível do mar), em área de solo Latossolo Vermelho-Amarelo distrófico textura média (CALDERANO FILHO et al., 1998). O clima da região é tropical de altitude, com 1502 mm de precipitação pluvial anual e médias de temperatura mínima e de temperatura máxima de 16,3°C (julho) e de 23°C (fevereiro), respectivamente (CENTRO..., 2010). A área de 8 ha de pastagem de Panicum maximum cv. Mombaça vem sendo manejada no sistema intensivo desde 2005. As pastagens são manejadas em sistema rotacionado (Figura 1A) de pastejo com 3 e 4 dias de ocupação e 33 e 44 dias de descanso na época das águas e da seca, respectivamente. O pasto foi adubado após a saída dos animais de cada piquete, com resíduo em torno de 40 cm, na dosagem de 80 kg/ha de nitrogênio por ciclo de pastejo, reduzida à metade no período da seca. A irrigação por aspersão foi realizada através de sistema autopropulsor de movimentação circular do tipo pivô central. A pastagem de capim-mombaça é dividida com cerca eletrificada em 4 sistemas de 12 piquetes (Figura 1A).

A amostragem para produção biomass ad da forragem foi realizada a cada 33 dias, respeitando-se a altura de corte de 35 cm (resíduo). A amostragem ocorreu em área de 3,95 ha (Figura 1B). Para cada piquete foram colhidas 4 amostras aleatórias de 1 m² (PEN ATI et al., 2005). O material colhido foi pesado e levado para estufa com circulação forçada de ar a 60°C por 72 horas até o peso constante para determinação da matéria seca.

A condutividade elétrica aparente do solo (CEa) foi medida com um protótipo de sensor de contato descrito por Rabello et al. (2011). Os dados de reflectância do dossel do capim Mombaça foram coletadas utilizando o sensor Crop Circle ACS-430 (Holland Scientific, Lincoln, NE) um dia antes da avaliação da produção de matéria seca durante 3 meses no verão. O sensor ativo ACS-430 mede a reflectância da luz do solo e das culturas emitida por um diodo emissor de luz policromática modulada (LED) em 3 canais ópticos (670, 720 e 760 nm) (SOLARI et al., 2008). As medidas foram realizadas a aproximadamente 0,5 m acima e perpendicular ao dosel das plantas. Foi utilizado um sistema de posicionamento global (GPS) Garmin (Garmin GPSmap 60CSx, Garmin Int. Corp., Olathe, KS) para obter as coordenadas geográficas de cada medição de reflectância. A partir das medidas foram calculados os índices descritos na Tabela 1.

A partir dos resultados de produção de matéria seca, foram realizadas simulações para estimativa...
da lotação animal, ganho de carcaça e receita bruta. Para a simulação de ganho de carcaça por hectare e receita bruta foram considerados os seguintes indicadores como base de cálculo: UA = unidade animal, representada por 450 kg de peso vivo; produção de massa de forragem acima de 35 cm de altura; 240 dias de estação das águas; 120 dias de estação seca; 700 g de média de ganho de peso diário nas águas; 200 g de média de ganho de peso diário na seca; perda de forragem.

Figura 1. Aspecto geral (A) e localização (B) da área de pastagem de capim-mombaça irrigado em São Carlos, SP.

Tabela 1. Cálculos e definições dos parâmetros biofísicos

<table>
<thead>
<tr>
<th>Parâmetro</th>
<th>Equação</th>
<th>Descrição</th>
<th>Referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDVI</td>
<td>(\text{NDVI} = \frac{\text{Nir}{760} - \text{Vis}{670}}{\text{Nir}{760} + \text{Vis}{670}})</td>
<td>Normalized difference vegetation index ou Índice de diferença de vegetação normalizado, relacionado à quantidade de biomassa verde, teor e conteúdo de pigmentos e estresse hídrico.</td>
<td>Rouse et al. (1973)</td>
</tr>
<tr>
<td>NDRE</td>
<td>(\text{NDRE} = \frac{\text{Nir}{760} - \text{Re}{720}}{\text{Nir}{760} + \text{Re}{720}})</td>
<td>Normalized difference red edge ou diferença normalizada, na banda do vermelho, relacionado aos teores de clorofila e N na biomassa.</td>
<td>Barnes et al. (2000) e Rodriguez et al. (2006)</td>
</tr>
<tr>
<td>Chl</td>
<td>(\text{Chl} = 1 - \left(\frac{\text{Nir}{760}}{\text{Re}{720}} \right))</td>
<td>Chlorophyll Index ou índice de clorofila, relacionado ao teor de clorofila.</td>
<td>Gitelson, Gritz e Merzlyak (2003)</td>
</tr>
<tr>
<td>SRI</td>
<td>(\text{SRI} = \frac{\text{Vis}{670}}{\text{Nir}{760}})</td>
<td>Simple Ratio Index ou índice de relação simples, relacionado à quantidade de biomassa verde, teor e conteúdo de pigmentos e estresse hídrico.</td>
<td>Tucker (1979)</td>
</tr>
<tr>
<td>MSR</td>
<td>(\text{MSR} = 1 - \left(\frac{\text{Nir}{760} - \text{Vis}{670}}{1 + \left(\frac{\text{Nir}{760} + \text{Vis}{670}}{6000} \right)} \right))</td>
<td>Modified simple ratio ou relação simples modificada, relacionada à linearização do índice em relação aos parâmetros biofísicos.</td>
<td>Chen (1996)</td>
</tr>
</tbody>
</table>

Obs.: NIR₇₆₀, Re₇₂₀ e Vis₆₇₀ são as refletâncias das bandas nos comprimentos de luz de 760, 720 e 670nm.
acima de 35 cm de altura de 20%; média de peso do boi = 300 kg; preço da arroba do boi = R$ 95,00; consumo de massa de forragem = 2% do peso vivo animal; oferta de forragem = 2,5% do peso vivo animal; rendimento de carcaça = 50%.

Os dados de CE, parâmetros biofísicos (NDVI, NDRE, Chl, SRI e MSR), produção de MS, e as estimativas de lotação animal, ganho de carcaça e receita bruta foram espacializados pelo método do inverso do quadrado da distância, e os mapas de contorno foram gerados com o software Arc Gis 9.2 para gerar.

3. Resultados e Discussão

Bernardi et al. (2011) avaliaram a variabilidade espacial das propriedades químicas do solo e da necessidade de calagem e adubação para esta área. Os parâmetros foram modelados utilizando semivariogramas e os mapas foram obtidos por krigagem com o software Vesper. Os resultados indicaram que a área em estudo apresentava-se muito homogênea quanto às propriedades do solo avaliadas, e que apenas a adubação potássica a taxas variáveis teria potencial para ser adotada.

Segundo Vieira (2000), existem interpoladores que não consideram a dependência espacial, como inverso do quadrado da distância, média móvel ponderada e outros que interpolam por meio de ajuste por polinômios bidimensionais. Entretanto, estes interpoladores não consideram a estrutura da variação espacial dos valores medidos revelado pelo semivariograma, e portanto não determinam com exatidão a variação dos dados interpolados.

O método de interpolação pelo inverso do quadrado da distância apresenta algumas limitações, uma vez que a interpolação ocorre por meio do ajuste de polinômios bidimensionais, sem considerar a estrutura da variação espacial dos valores medidos obtido pelo semivariograma (VIEIRA, 2000).

A medida da condutividade elétrica aparente do solo (CEa) está relacionada a algumas propriedades do solo como textura, matéria orgânica e CTC (KITCHEN; SUDDUTH; DRUMOND, 1999; LUCHIARI et al., 2000; MACHADO et al., 2006). Na Figura 2 é apresentada a espacialização da CEa, que como já havia sido indicado por Bernardi et al. (2011), existe pouca variação nos valores de CEa. Porém, é possível destacar-se 3 regiões distintas na área em estudo, nas quais os valores de CEa foram < 3,3 mS m⁻¹, de 3,3 a 6,6 mS m⁻¹ e de 6,6 a 9,9 mS m⁻¹. Houve uma tendência da produção de matéria seca relacionar-se com a CEa, confirmando as observações de Serrano et al. (2004).

O cálculo do NDVI é feito pela diferença de refletância entre a faixa de infravermelho próximo (NIR) e a do vermelho visível (VIS) e normalizada pela divisão da soma das faixas de NIR e VIS (ROUSE et al., 1973). Neste índice, é incluída especificamente a região do vermelho, em substituição a de toda região do visível, devido à maior absorção da radiação eletromagnética pela clorofila para esta faixa espectral em relação às demais. Esta faixa espectral tem a vantagem de corresponder a de maior comprimento de onda na faixa do visível e de menor interferência da atmosfera (PONZONI; SHIMABUKURO, 2007).

Além disso, é adequado para áreas com coberturas vegetais maiores que 80%, pois é pouco afetado pelos fatores topográficos (LYON et al., 1998). Na Figura 3B é apresentado o mapa da variabilidade espacial das leituras de NDVI da pastagem de capim-Mombaça. As leituras obtidas no presente estudo foram altas, e apresentam pouca variação, sendo que os valores observados variaram de 0,64 a 0,88. Tucker (1977) descreveu a refletância
espectral do dossel de uma forrageira como uma curva assintótica, por isso os incrementos de densidade de vegetação produzem incrementos na reflectância, até o ponto em que os aumentos adicionais na área foliar não provocam alterações na reflectância. Há uma tendência das áreas escuras do mapa apresentarem maior produção de matéria seca, pois o NDVI é sensível ao conteúdo de clorofila das folhas e índice de área foliar da vegetação (MOGES et al., 2004; NUMATA et al., 2007).

Outra área espectral de considerável interesse tem sido a NDRE ou *Normalized difference red edge* (diferença normalizada na banda do vermelho) normalizada pela divisão da soma das faixas de forte absorção de luz vermelha de clorofila (~720 nm) e a banda altamente reflexiva do infravermelho próximo (~760 nm). Esta região de comprimento de onda é muitas vezes referida como a *vire red edge* ("banda vermelha"). De acordo com Barnes et al. (2000) e Rodriguez et al. (2006) a red edge se modifica para comprimentos de onda ligeiramente mais longos com o aumento do teor de clorofila. Dessa forma, sendo um índice útil no manejo de pastagens manejadas intensivamente, pois também têm sido utilizado para inferir as taxas de aplicação de adubos (BARNES et al., 2000; RODRIGUEZ et al., 2006). Na Figura 3C está o mapa da variabilidade espacial das leituras de NDRE. As leituras obtidas no presente estudo foram apresentaram pouca variação com valores variando de 0,23 a 0,40.

A concentração de clorofila (Chl) muito importante, pois esta estrutura molecular controla o potencial fotosintético e, por consequência, a produção primária de uma cultura. A clorofila incorpora uma grande parte do N total das folhas, e o seu teor é uma estimativa indireta precisa do estado nutricional de plantas (MARSCHNER, 1996). A Figura 3D mostra o mapa da distribuição das leituras de Chl da pastagem de capim-Mombaça. Os valores obtidos indicam 3 classes distintas de Chl. Observa-se que o mapa deste índice é muito semelhante ao de NDRE, porém com maior amplitude de valores. Indicando que o Chl pode ser um índice mais útil para utilização no manejo de pastagens.

Dessa forma, as leituras de sensores oferecem rápida e estimativa não-destrutiva dos teores de clorofila nas folhas, e estas podem relacionar-se diretamente com a produtividade de matéria seca e qualidade da forragem (SCHEPERS; SHANAHAN; LUCHIARI JUNIOR, 2000). O sensoriamento remoto tem sido utilizado na estimativa do teor de clorofila do dossel, na estimativa da produção de biomassa e para detectar o estresses (GITELSON et al., 2005).

Na Figura 4, encontra-se a simulação da lotação animal, do ganho de carcaça por hectare e da receita bruta considerando-se a variabilidade espacial da produção de matéria seca no ano. Os benefícios da quantificação da disponibilidade de forragem para a pecuária foi bem documentada por Fulkerson et al. (2005). A Figura 4a indica que em cerca de 70% da área a oferta de forragem foi em média 23,5 t ha⁻¹ de matéria seca, e em 17% da área foram produzidos torno de 25 t ha⁻¹ de MS, sendo que no restante a produção foi entre 19,8 e 22,7 t ha⁻¹. Trotter et al. (2910) também verificaram diferenças entre as produções dos piquetes. Estas diferenças são um grande desafio para o manejo do pastejo (Laca 2009).

A taxa de lotação é a variável de manejo que mais pode impactar a produção animal por área e por ano em sistemas de produção pecuários (WALKER, 1995). No entanto, os resultados (Figura 4b) indicam que em cerca de 90% da área a lotação estaria entre 5,4 e 6,3 UA ha⁻¹, sendo que a estimativa deste parâmetro não acompanhou a tendência observada na produção de forragem. Já os mapas de ganho de carcaça (kg ha⁻¹ - Figura 4c) e receita bruta (R$ ha⁻¹ - Figura 4d) apresentaram a mesma tendência da produção de forragem. A estimativa de ganho de carcaça (kg ha⁻¹) em 79% da área seria entre 1,9 a 2,1 t ha⁻¹. Também em 79% da área a receita variaria de R$ 89.424 a R$ 98.830 por ha. No restante da área receita seria entre R$80 mil a R$ 89 mil, ou seja, representariam uma receita em média 20% menor. No caso da receita, deve-se considerar ainda que as variações no preço da arroba do boi e nos preços dos insumos (corretivos e fertilizantes) podem alterar estas relações e modificar o mapa da receita bruta.

Os resultados indicaram que as medidas da variabilidade espacial e temporal da produção de massa de forragem, obtidas por medições diretas ou estabelecimento dos índices de vegetação, podem fornecer mais indicativos sobre os fatores limitantes à produtividade das pastagens e, auxiliar nas estratégias de manejo do pastejo. Com estas informações é possível estabelecer um plano de correção do solo e adubação com base nestas diferenças. As áreas com maior ou menor potencial...
Figura 3. Mapas da produção de MS no verão (A) e dos parâmetros biofísicos (NDVI - B; NDRE - C; Chl - D; SRI - E; e MSR - F) de uma pastagem de capim-mombaça irrigado em São Carlos, SP.
Os resultados deste em pastagem de capim-mombaça irrigado e manejado intensivamente mostraram que o mapa da CE apresentou com a mesma tendência da produção de matéria seca. E que os índices de vegetação têm potencial para o mapeamento da variabilidade espacial da produção de forragem. As ferramentas de AP foram úteis para estabelecer a variabilidade espacial da pastagem e fornecer informações para o manejo.

4. Conclusões

Os resultados deste em pastagem de capim-mombaça irrigado e manejado intensivamente mostraram que o mapa da CE apresentou com a mesma tendência da produção de matéria seca. E que os índices de vegetação têm potencial para o mapeamento da variabilidade espacial da produção de forragem. As ferramentas de AP foram úteis para estabelecer a variabilidade espacial da pastagem e fornecer informações para o manejo.

Referências

Figura 4. Produção anual de matéria seca (A) e as estimativas de lotação animal (B), ganho de carcaça (C) e receita bruta (D) de uma pastagem de capim-mombaça irrigado em São Carlos, SP.

Manejo da pastagem em ILP e seu impacto nos atributos de solo e da produção

Leandro Bochi da S. Volk¹, Naylor Bastiani Perez*¹, Márcia Cristina T. da Silveira¹, Rodison Natividade Sisti²

¹Pesquisador A, Embrapa Pecuária Sul, BR 153, km 633, Zona Industrial, Bagé, RS, CEP 96401-970
²Técnico, Embrapa Pecuária Sul, BR 153, km 633, Zona Industrial, Bagé, RS, CEP 96401-970

*E-mails: leandro.volk@embrapa.br, naylor.perez@embrapa.br, marcia.c.silveira@embrapa.br, rodison.sisti@embrapa.br

Resumo: Na fase pastagem do sistema integração lavoura-pecuária, a quantidade de palha e do sistema radicular deixados no solo são extremamente importantes visto que aumentam a matéria orgânica, que é fundamental na estruturação física, além de aumentar também a fonte de carbono para microrganismos do solo. Com isso em mente, conduziu-se dois experimentos diferentes, porém complementares. Os dois têm por objetivo estabelecer relações entre atributos de planta e atributos físicos de solo em áreas de ILP com vistas a manejo sitioespecífico. Os trabalhos foram conduzidos em área experimental da Embrapa Pecuária Sul-Bagé/RS em sistema de integração lavoura-pecuária e sobre um Luvisolo. Conduziu-se dois experimentos complementares, na mesma área, onde avaliou-se a resistência do solo a penetração, densidade, massa seca de raízes, infiltração de água, altura das plantas de azevém e produção da soja. Conclui-se que a resistência a penetração apontou presença de camada impeditiva ao desenvolvimento de raízes e infiltração de água, o que afetou o desenvolvimento radicular do azevém. A prática do diferimento associado à adubação feita antes da germinação da pastagem de azevém propiciou melhor desenvolvimento radicular e da parte aérea do azevém. Mesmo com a presença de maior resistência a penetração no solo, o uso do preparo de solo com escarificação não foi eficaz para se refletir em aumento da produção de soja. A decisão de uso do preparo do solo por escarificação, principalmente no manejo sitioespecífico não deve considerar apenas as informações isoladas de resistência a penetração, ou densidade do solo, ou de produção da cultura de interesse, mas sim a integração destas e de outras informações disponíveis.

Palavras-chave: azevém, escarificação, física do solo, manejo sitioespecífico, soja

Pasture management in crop-livestock integration and its impact on soil attributes and production

Abstract: In pasture phase of crop-livestock integration system, the amount of straw and roots left in the soil are extremely important since they increase the organic matter, which is crucial in physical structure, and also increase the carbon source for soil microorganisms. With this in mind, we conducted two experiments different, but complementary. Both aim to establish relationships among plant and soil physical properties in areas of ILP with a view to management in specific site. The work was conducted in the experimental area of Embrapa Pecuária Sul-Bagé/RS in integrated crop-livestock and about a Luvisol. We conducted two additional experiments, the same area where we evaluated the resistance to penetration, density, root dry matter, water infiltration, plant height ryegrass and soybean yield. We conclude that the penetration resistance showed the presence of layer impeding the development of roots and water infiltration, affecting root development ryegrass. The practice of deferral associated with fertilization done before germination of ryegrass developed better root and shoot of ryegrass. Even with the presence of greater resistance to penetration in the soil, the use of soil tillage with chisel was not able to be reflected in increased soybean production. The decision to use soil preparation by scarification sitioespecifico mainly in management should not only consider the information isolated resistance to penetration or density, or production of the crop of interest, but the integration of these and other available information.

Keywords: ryegrass, soil physic, site specific management, soybean, scarification
1. Introdução

A integração lavoura-pecuária (ILP) se caracteriza como uma associação entre cultivos agrícolas e a produção animal, presentes em várias partes do mundo e com objetivos diversificados.

A ILP tem como ideia principal ser uma via sustentável e de recuperação de áreas de pastagem ou de lavoura degradadas. Estes sistemas têm capacidade de incrementar a resiliência ambiental baseado no aumento da diversidade de culturas agrícolas com efetividade e eficiência na ciclagem de nutrientes melhorando assim a qualidade do solo (Carvalho et al., 2011). A ILP, quando bem conduzida do ponto de vista técnico, tende a servir como forma de melhoramento das condições físicas, químicas e biológicas do solo, se comparadas a áreas degradadas ou utilizadas com monocultivos, principalmente pela redução do processo de erosão hídrica.

Segundo Alvarenga e Noce (2005), na fase pastagem, a quantidade de palha e do sistema radicular deixados no solo são extremamente importantes visto que aumentam a matéria orgânica, que é fundamental na estruturação física, além de aumentar também a fonte de carbono para microrganismos do solo. Com relação ao sistema radicular, este tem sido utilizado como ponto de entendimento e explicação para a produtividade das pastagens levando em consideração suas características morfológicas como distribuição em diferentes camadas do solo, seu peso, volume, comprimento específico e área superficial (CORSÍ; MARTHA JÚNIOR; PAGOTTO, 2001).

No caso do Rio Grande do Sul, esse sistema se caracteriza pelo uso na fase lavoura com culturas de verão (com ênfase na cultura da soja) e na fase pastagem com culturas de inverno (com ênfase nas culturas de aveia preta e azevém, em monocultivo ou consorciadas). Na fase pastagem, é comum o pastejo contínuo com animais de grande porte (visando a terminação) até próximo à época de semeadura da cultura de verão, o que pode resultar em compactação de solo e pouco resíduo vegetal remanescente. Tais consequências levam ao insucesso da lavoura se manejada em semeadura direta, o que contraria um dos principais objetivos da ILP. Para o máximo aproveitamento dos benefícios que a fase pastagem trás ao sistema, uma das alternativas de manejo (associado ao ajuste de carga à oferta de forragem) é o diferimento de final de ciclo, que permite o aumento da massa da parte aérea e das raízes da forrageira antes da semeadura da cultura agrícola de verão.

Com isso em mente, conduziu-se dois experimentos diferentes, porém complementares. Os dois têm por objetivo estabelecer relações entre atributos de planta e atributos físicos de solo em áreas de ILP com vistas a manejo sitioespecífico.

2. Material e Métodos

Os trabalhos foram conduzidos em área experimental do Centro de Pesquisa de Pecuária dos Campos Sul-Brasileiros (Embrapa CPPSUL), localizada em Bagé/RS, conduzida a dois anos no sistema de integração lavoura-pecuária, com cultivo de soja (Glycine max L.) na fase lavoura e azevém (Lolium multiflorum) na fase de pastagem. O solo da área foi identificado como um Luvissolo Hipocrômico órtico típico (STREC et al., 2002). Nas safras 2011/2012 e 2012/2013 a soja foi semeada na última quinzena do período recomendado para a cultura, assim como as práticas de manejo acompanham tais recomendações. O azevém tem estabelecimento por resssemeadura natural e o pastejo é feito por novilhos da raça Brangus. O diferimento foi feito antecipando cerca de 30 dias antes da semeadura da soja.

Para o experimento 1, a adubação (calculada com base na necessidade da cultura da soja - dose de 300 kg ha\(^{-1}\) da fórmula 5-30-20) foi feita em duas épocas: ou na semeadura da soja, ou no estabelecimento do azevém. Assim, o experimento consta de quatro diferentes tratamentos: a) com diferimento e adubação feita na pastagem de azevém; b) com diferimento e adubação feita na lavoura de soja; c) sem diferimento e adubação feita na pastagem de azevém; e d) sem diferimento e adubação feita na lavoura de soja.

Para as análises de raízes, foram coletadas amostras de solo com coletor de metal em forma
elíptica com 169,71 cm² de área. As amostragens foram feitas em três coletas por tratamento e nas profundidades de 0 a 5 cm, 5 a 10 cm, 10 a 15 cm, 15 a 20 cm, seguindo metodologia descrita em Volk et al. (2011).

Para os ensaios de infiltração de água no solo foi utilizado o método do infiltrômetro de anel (FORSYTHE, 1975). Os ensaios eram realizados até que a taxa de infiltração atingisse valor constante.

As medições da resistência à penetração do solo (FORSYTHE, 1975) foram realizadas quando o mesmo encontrava-se com umidade correspondente a capacidade de campo e foi utilizado penetrômetro digital modelo PLG1020 marca Falker, que apresenta haste de metal e ponte em forma de cone (ângulo de 30°), os dados eram armazenados automaticamente. As medições eram feitas até 30 cm de profundidade do solo. Foram realizadas 30 medições com caminhamento em transecta diagonal nas áreas experimentais onde estavam sendo conduzidos os tratamentos já citados.

Para a determinação da altura das plantas de azevém, efetuou-se 25 medidas na mesma transecta das medições de resistência à penetração. Para tal procedimento, utilizou-se um bastão graduado (sward stick - BARTHRAM, 1985). Para a determinação de massa seca da parte aérea do azevém, coletou-se todo o material contido em área delimitada por um quadrado de 0,25 m². As amostras cortadas foram secas em estufa a 65ºC até atingirem massa constante. Todas as medições foram feitas entre os meses de outubro e novembro de 2011, com o azevém em pleno florescimento.

É importante salientar que em todas as amostragens de plantas de soja, observou-se a má distribuição das raízes das plantas, as quais indicam a presença de uma camada impeditiva entre 8 e 15 cm de profundidade em toda a área experimental. Assim, para o experimento 2 utilizou-se a mesma área, as mesmas culturas e os mesmos animais do experimento 1, porém foi realizada uma escarificação do solo em parte da área. Tal escarificação foi feita com escarificador de 5 hastes, após o diferimento e antes da semeadura da soja, com o solo na umidade recomendada e com profundidade de trabalho de 20 cm.

Utilizou-se a mesma metodologia do experimento 1 para a avaliação da resistência a penetração. Avaliou-se também a densidade do solo (segundo FORSYTHE, 1975) nas profundidades de 0 a 10 cm, 10 a 20 cm, 20 a 30 cm e 30 a 40 cm.

A produtividade da soja foi avaliada nos mesmos pontos das coletas de densidade e de resistência a penetração. Foram coletadas as plantas inteiras em duas linhas contíguas e em um metro linear. As vagens foram separadas e abertas manualmente para a retirada dos grãos. Esses foram secos em estufa a 60 ºC até atingirem massa constante.

3. Resultados e Discussão

3.1. Experimento 1

Na Figura 1a são apresentados os valores de resistência à penetração observados até a profundidade de 30 cm nos tratamentos avaliados. Observa-se que apenas o tratamento com diferimento e adubação no azevém não chegou ao valor de 2.000 kPa. Ao mesmo tempo, todos os tratamentos apresentaram comportamento semelhante e os valores máximos foram atingidos entre as profundidades de 8 e 12 cm, indicando presença de uma barreira física ao correto desenvolvimento das raízes do azevém e de infiltração de água. Tal resultado foi confirmado na coleta de plantas de soja nas áreas experimentais, as quais apresentavam desenvolvimento anormal de suas raízes, com engrossamento e desvio nas mesmas profundidades apontadas pelas curvas de resistência à penetração (Figura 1a).

Considerando que se trabalha na área com ajuste de carga de animais de acordo com a disponibilidade de forragem (oferta de 10% a 12% de peso vivo) e que a mesma vem sendo manejada sob semeadura direta, tal barreira física nessa profundidade tem sua origem provável na morfogênese do Luvissolo, que apresenta forte gradiente textural do horizonte A para o B. Segundo Embrapa (2006), esse horizonte B é classificado como sendo diagnóstico, horizonte B textural e associado com a presença de argilas 2:1.
expansivas. Devido a essas características, esse horizonte fica muito duro quando seco, o que explica a deformação das raízes das plantas de soja.

Na Figura 1b são apresentados os valores de taxa de infiltração de água no solo variando no tempo. Observa-se que, independentemente do tratamento, as taxas de infiltração decaimam rapidamente nos primeiros 10 minutos do ensaio e apresentaram valores de taxa constante (Ka) abaixo de 20 mm h\(^{-1}\). O tratamento com diferimento e adubação no azevém foi o que apresentou as maiores taxas de infiltração durante os ensaios, atingindo Ka de 19 mm h\(^{-1}\). Por outro lado, o tratamento sem diferimento e adubação na soja foi o que apresentou as menores taxas de infiltração, com valor de Ka de 6 mm h\(^{-1}\).

Assim, observa-se que apesar da presença de camada impeditiva para o correto desenvolvimento das raízes das culturas (Figura 1a), o que limitou até mesmo a infiltração de água no solo (Figura 1b), a prática de diferimento do azevém associado com o uso de adubação antes da sua germinação, propiciou melhor desenvolvimento radicular (mesmo que superficialmente - Figura 2), não limitou a altura das plantas (Figura 3b) e promoveu a maior produção de massa seca. Considerando que essa massa seca será a cobertura do solo para a implantação de soja por semeadura direta, esta se mostrou ser a prática mais adequada ao sistema de ILP nas condições estudadas. Contudo, é importante a condução deste estudo por prazo mais longo para que o efeito cumulativo dos manejos estudados seja mais efetivo.

3.2. Experimento 2

Considerando os resultados encontrados no experimento 1, testou-se a resposta do sistema de ILP com e sem diferimento do azevém ao uso de uma escarificação.

Na Figura 4 são apresentadas as curvas de resistência a penetração nos tratamentos estudados. O efeito da escarificação na diminuição da resistência a penetração pode ser observado na Figura 4, onde os tratamentos com escarificação,

Tabela 1. Densidade do solo (kg dm\(^{-3}\)) em diferentes profundidades e produtividade da soja nos pontos georreferenciados em cada tratamento, observados na safra 2012/2013.

<table>
<thead>
<tr>
<th>Profundidade</th>
<th>Diferido-Escarificado</th>
<th>Diferido-Não Escarificado</th>
<th>Não Diferido-Escarificado</th>
<th>Não Diferido-Não Escarificado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Talhão 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ponto 1</td>
<td>Ponto 2</td>
<td>Ponto 3</td>
<td>Ponto 1</td>
</tr>
<tr>
<td>0 a 10 cm</td>
<td>1,26</td>
<td>1,29</td>
<td>1,35</td>
<td>1,39</td>
</tr>
<tr>
<td>10 a 20 cm</td>
<td>1,31</td>
<td>1,29</td>
<td>1,45</td>
<td>1,47</td>
</tr>
<tr>
<td>20 a 30 cm</td>
<td>1,47</td>
<td>1,47</td>
<td>1,40</td>
<td>1,47</td>
</tr>
<tr>
<td>30 a 40 cm</td>
<td>1,17</td>
<td>1,33</td>
<td>1,27</td>
<td>1,39</td>
</tr>
<tr>
<td>Produtividade (kg ha(^{-1}))</td>
<td>1.410</td>
<td>1.933</td>
<td>2.287</td>
<td>2.357</td>
</tr>
</tbody>
</table>

	Talhão 2								
0 a 10 cm	1,09	1,28	1,31	1,28	1,34	1,24	1,16	1,33	1,31
10 a 20 cm	1,44	1,28	1,48	1,46	1,47	1,46	1,33	1,32	1,32
20 a 30 cm	1,52	1,31	1,50	1,42	1,52	1,51	1,38	1,33	1,30
30 a 40 cm	1,51	1,40	1,51	1,46	1,59	1,39	1,41	1,31	1,31
Produtividade (kg ha\(^{-1}\))	3.261	2.818	2.867	3.290	2.915	2.158	2.700	2.615	3.630
a quantidade e a distribuição de chuvas durante a safra 2012/2013 foi favorável ao desenvolvimento das culturas de verão. Tal evidência é confirmada na relação entre a densidade do solo de 0 a 10 cm e a produtividade da soja apresentada na Figura 6, onde observa-se a baixa correlação entre estas duas variáveis analisadas individualmente.

independentemente do diferimento ou não da pastagem, apresentaram resistência a penetração menor até a profundidade de 20 cm. Já os tratamentos sem escarificação mantiveram o mesmo comportamento da Figura 1a, atingindo valor de 2000 kPa próximo aos 10 cm de profundidade.

Na Tabela 1 são apresentadas as densidades de solo observadas até 40 cm de profundidade e a produtividade da soja, nos mesmos pontos. Na Figura 5 são apresentados os valores médios de densidade nos tratamentos. Observa-se na Figura 5 que os valores de densidade apresentaram sempre o mesmo comportamento, apresentando seus valores máximos na camada de 20 a 30 cm, independentemente do uso da escarificação. Contudo, na camada de 0 a 10 cm e de 10 a 20 cm, a densidade foi sempre menor nos tratamentos com escarificação do que nos sem escarificação, confirmando os menores valores de resistência a penetração observados nos mesmos tratamentos e nas mesmas profundidades demonstradas na Figura 4.

A produtividade da soja (Tabela 1) variou entre os pontos de coleta, mas sem apresentar efeito dos tratamentos. Assim, as diferenças nos valores de densidade não se mostraram efetivas para diferir a produtividade da soja, principalmente por que
Figura 3. Massa seca da parte aérea (A) e altura de plantas (B) de azevém cultivado em ILP nos tratamentos avaliados.

Figura 4. Resistência a penetração em solo na condição de capacidade de campo nos tratamentos avaliados, após a colheita da soja.

Figura 5. Densidade do solo até 40 cm de profundidade nos tratamentos estudados.
Figura 6. Relação entre densidade do solo na profundidade de 0 a 10 cm e a produtividade observada da soja nos mesmos pontos.

4. Conclusões

Em relação ao experimento 1, a resistência a penetração apontou presença de camada impeditiva ao desenvolvimento de raízes e infiltração de água, o que afetou o desenvolvimento radicular do azevém. A prática do diferimento associado à adubação feita antes da germinação da pastagem de azevém propiciou melhor desenvolvimento radicular e da parte aérea do azevém.

Em relação ao experimento 2, mesmo com a presença de maior resistência a penetração no solo, o uso do preparo de solo com escarificação não foi eficaz para se refletir em aumento da produção de soja.

Em relação ao trabalho, a decisão de uso do preparo do solo por escarificação, principalmente no manejo sitioespecífico não deve considerar apenas as informações isoladas de resistência a penetração, ou densidade do solo, ou de produção da cultura de interesse, mas sim a integração destas e de outras informações disponíveis.

Referências

Análise geoestatística da condutividade elétrica aparente do solo em sistemas de integração lavoura-pecuária em Mato Grosso do Sul

Éder Comunello*1, Julio Cesar Salton1, Michely Tomazi1, Simone Silmara Werner Gurgel Do Amaral2

1Pesquisador, Embrapa Agropecuária Oeste, CEP 79804-970, Dourados, MS, Brasil
2Pós-Graduanda, Doutorado em Estatística e Experimentação Agronômica, USP/Esalq, Piracicaba, SP, Brasil

*E-mail: eder.comunello@embrapa.br

Resumo: O presente artigo descreve os procedimentos adotados para a análise geoestatística de dados de condutividade elétrica aparente (CEa) obtidos de um sistema de integração lavoura-pecuária (SILP) localizado em Dourados, Mato Grosso do Sul. A área refere-se a um experimento de longa duração, com diferentes sistemas de manejo (tratamentos), implantado desde 1996 em um Latossolo típico da região. Dados de CEa em duas profundidades, coordenadas planas e altitudes, foram coletados utilizando o equipamento VERIS Soil EC 3100. Para a análise dos dados utilizou-se o programa R for Windows, destacando-se o pacote geoR. A análise exploratória dos dados mostrou-se fundamental para a adequada modelagem dos variogramas. Diversos modelos foram avaliados e ajustados, considerando diferentes funções e fontes de tendência. Identificou-se tendência apenas na camada superior avaliada (CEa 30cm), sendo decorrente do efeito dos tratamentos (sistemas de manejo). A função com melhor ajuste nessa camada foi a exponencial. A camada inferior (CEa 90cm) não demonstrou tendência e os dados foram melhor ajustados pela função esférica. A variável CEa 30cm mostrou-se mais adequada à definição de zonas homogêneas, uma vez que permite considerar o efeito dos diferentes sistemas de manejo na análise geoestatística.

Palavras-chave: agricultura de precisão, sistemas integrados de produção, manejo localizado, zonas homogêneas, zonas de manejo

Geostatistical analysis of apparent soil electrical conductivity in an integrated crop-livestock system in Mato Grosso do Sul State, Brazil

Abstract: This paper describes the procedures adopted for the geostatistical analysis of apparent soil electrical conductivity (EC) data obtained in an integrated crop-livestock system located in Dourados, Mato Grosso do Sul State, Brazil. The study area is a long-term experiment with different crop management systems (treatments), implanted since 1996 in a typical oxisol of that region. The EC data at two depths and coordinates were collected using equipment VERIS Soil EC 3100. The statistical program R for Windows was used for data analysis, especially the package geoR. Exploratory analysis of data was essential for the proper modeling of variograms. Some models were evaluated and adjusted, considering different functions and trend sources. Trend effect was identified only in the upper layer (EC 30cm) due to the effect of treatments. In that layer the exponential function had a better fit. The bottom layer (EC 90cm) showed no trend and the data were best fitted by the spherical function. The variable EC 30cm was more adequate for the definition of homogeneous zones, since it allows considering the effect of different crop management systems on the geostatistical analysis.

Keywords: precision farming, integrated production systems, site-specific management, homogeneous zones, management zones
1. Introdução

A atual demanda mundial por alimentos, fibras e energia exerce grande pressão sobre a atividade agropecuária, exigindo que a produção seja dada em níveis cada vez maiores. Ao mesmo tempo, a comunidade mundial tem evidenciado sua preocupação com a sustentabilidade dos processos produtivos, passando a exigir práticas e processos produtivos cada vez mais racionais e eficazes. O atendimento dessas demandas só é possível pelo contínuo processo de aprimoramento científico e tecnológico, no qual surgem novas tecnologias, tal como a Agricultura de Precisão (AP), um conjunto de ferramentas e de conceitos para gerenciar a variabilidade espacial de atributos do solo, da planta e do ambiente, visando a obtenção de elevadas produtividades e maior eficiência de uso de práticas e insumos. Ou seja, na AP busca-se um balanço entre a máxima produtividade das culturas e a manutenção da estabilidade econômica, possibilitando a utilização dos recursos naturais renováveis com minimização dos impactos ambientais (CORWIN; LESCH, 2003).

A chave para o sucesso da AP está na identificação e delimitação de regiões homogêneas dentro da área produtiva, as quais receberiam tratamento diferenciado visando compensar as diferenças existentes em relação às demais glebas. E ao permitir avaliar a variabilidade espacial do solo, a AP se torna uma ferramenta de grande valia na tomada de decisões gerenciais para os diferentes sistemas de cultivo (KOCH; KHOSLA, 2003).

A principal vantagem da AP é a possibilidade de aplicar os insumos na quantidade e local corretos. Por outro lado, sua grande limitação é que, para avaliar adequadamente a variabilidade espacial do solo, muitas vezes são necessárias amostragens intensivas e caras. Ferramentas e métodos rápidos, confiáveis e de baixo custo são de grande importância tanto para a pesquisa como para o setor produtivo, sendo cruciais para o sucesso da AP em escala comercial (McBRATNEY et al., 2005; LUCHIARI JUNIOR et al., 2011). Deste modo, buscam-se alternativas para a redução da amostragem, sem ônus para a confiabilidade do método. E uma das alternativas para redução da amostragem é utilizar o método de definição de zonas de manejo (LUCHIARI JUNIOR et al., 2011). Nesse método, critérios tais como: histórico da área, topografia, atributos do solo, produtividade e condutividade elétrica, podem ser empregados para orientar a delimitação de áreas homogêneas (zonas de manejo) e locais para as amostragens de interesse.

O uso de dados de condutividade elétrica aparente (CEa) do solo como ferramenta para reduzir a amostragem tem sido preconizado pela pesquisa brasileira em AP. Essa variável tem estreita relação com vários atributos do solo (textura, umidade, presença de sais, teor de matéria orgânica) que afetam a produtividade, e podem auxiliar na interpretação das variações espaciais de rendimento das culturas (MACHADO et al., 2006; SIRI-PRIETO et al., 2006). A CEa pode ser medida com equipamentos relativamente simples e com grande eficiência operacional. Vários sensores de campo podem ser utilizados, tendo sido escolhido, especificamente para os projetos de pesquisa da Rede AP, o sensor móvel VERIS Soil EC 3100, da empresa norte-americana Veris Technologies (RABELLO et al., 2008).

Nas pesquisas desenvolvidas na Rede AP têm-se buscado avaliar o uso da CEa para a definição de zonas de manejo em uma grande diversidade de cultivos e sistemas de manejo (INAMASU et al., 2011). Embora a prática da AP seja bastante desenvolvida em cultivos tradicionais (anuais ou perenes), ainda há demandas de pesquisa para sua aplicação em sistemas complexos, tais como os sistemas de produção integrados que combinam diferentes atividades agrícolas, incluindo a pecuária e florestas. Nesse contexto estão os sistemas de integração lavoura-pecuária (SILP), sistemas de produção caracterizados pelo cultivo de culturas anuais em rotação com pastagens. Assim como a própria AP, os SILP constituem-se hoje em uma das principais alternativas para a sustentabilidade econômica e ecológica da agricultura e pecuária.

A despeito da importância dos SILP, conciliar-los à tecnologia da AP não se revela uma tarefa fácil. A constante rotação de cultivos e diversidade de usos observados nesses sistemas tende a imprimir grande variabilidade espacial na área. Em áreas experimentais a situação torna-se ainda mais complicada, uma vez que vários tratamentos são avaliados concomitantemente. Embora seja
possível compartimentar a análise em função dos sistemas de manejo observados, a teoria geoestatística prevê a possibilidade de descrever áreas complexas por meio de modelos únicos, considerando inclusive tendências estabelecidas.

Deste modo, o objetivo deste trabalho foi realizar a análise variográfica dos dados de condutividade elétrica aparente do solo (CEa), avaliando a possibilidade de utilizá-los na análise da variabilidade espacial de um sistema de integração lavoura-pecuária experimental, nas condições ambientais de Mato Grosso do Sul.

2. Material e métodos

O estudo foi conduzido em um experimento de longa duração, implantando em 1996, em uma área de 20 hectares localizada no campo experimental da Embrapa Agropecuária Oeste,

Figura 1. Modelo tridimensional de elevações e disposição do experimento no terreno.
em Dourados, Mato Grosso do Sul (22°16'55"S e 54°48'20"W). O experimento encontra-se cultivado sob os seguintes sistemas de manejo do solo: a) Sistema de Plantio Convencional (PC) - monocultivo de soja no verão e aveia no inverno - preparo do solo utilizando grades de discos; b) Sistema Plantio Direto (SPD) - rotação de culturas tendo soja e milho no verão, trigo e aveia ou nabos nas demais épocas - sem revolvimento do solo; c) Sistema de Integração Lavoura Pecuária (ILP) - alternância de lavoura (soja/aveia) com pastagem B. decumbens conduzida em SPD, com ciclos de dois anos e d) Pastagem permanente (PP) - pastagem (B. decumbens) manejada em pastoreio intermitente com lotação ajustada. Considerando três variações do sistema SPD (1,2 e 3) e duas variações do sistema ILP (1 e 2), considerou-se, em conjunto com PC e PP, os sistemas de manejo como sete (7) tratamentos para efeitos da análise geestatística empregada. O solo do local é Latossolo Vermelho distroférrico caulinítico, com teor médio de argila de 640 g kg⁻¹. A área de estudo encontra-se em uma faixa de transição entre os biomas Cerrado e Mata Atlântica, apresentando clima Cwa - mesotérmico úmido, verões quentes e invernos secos. Informações detalhadas do experimento podem ser encontradas em Salton (2005).

Com o intuito de avaliar o uso da CEa no estudo da variabilidade espacial da área, em outubro de 2010 foi realizado o mapeamento dessa variável utilizando o equipamento VERIS Soil EC 3100 produzido pela Veris Tecnologies, EUA (LUND et al., 1999; RABELLO et al., 2008). Este equipamento realiza simultaneamente medições nas profundidades de 0-30 e 0-90 cm, armazenando os dados em mS m⁻¹, conjuntamente com as coordenadas geográficas do ponto amostral obtidas por GPS integrado.

Realizado o mapeamento da área, as informações geográficas e de condutividade elétrica aparente foram analisadas por meio do programa R for Windows, versão 3.0.0, destacando-se o uso do pacote geoR. Inicialmente procedeu-se a análise exploratória dos dados, buscando avaliar a qualidade do conjunto de dados, bem como a necessidade de remoção de “outliers” e de transformação dos dados. O grau de relação linear entre variáveis foi avaliado por meio do coeficiente de correlação de Pearson. Após essa etapa inicial, passou-se à análise de tendências e modelagem variográfica dos dados, utilizando o ajustamento pelo método de mínimos quadrados (variofit). Foram definidos oito modelos de tendência a serem ajustados por funções exponenciais, gaussianas e esféricas nas duas profundidades avaliadas. Avaliou-se o desempenho dos modelos por meio da avaliação visual dos ajustes obtidos e considerando os valores obtidos na soma de quadrados dos erros e grau de dependência espacial (GDE).

3. Resultados e discussão

Os parâmetros estatísticos das variáveis originais são apresentados na Tabela 1. Além da média e mediana, apresentam-se ainda os valores extremos, quartis, número de dados, desvio padrão, coeficiente de variação, assimetria e curtose da CEa em duas profundidades e da altitude obtida na amostragem.

Foram identificados problemas de variabilidade e assimetria que ficam mais nítidos com a análise visual por meio dos histogramas e gráficos Box

Tabela 1. Parâmetros estatísticos dos dados originais.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CEa 30cm</td>
<td>0,40</td>
<td>9,90</td>
<td>10,43</td>
<td>89,60</td>
<td>6966</td>
<td>4,21</td>
<td>40,32</td>
<td>1,71</td>
<td>20,95</td>
</tr>
<tr>
<td>CEa 90cm</td>
<td>-5,00</td>
<td>4,50</td>
<td>4,68</td>
<td>27,60</td>
<td>6966</td>
<td>1,85</td>
<td>39,56</td>
<td>1,60</td>
<td>10,37</td>
</tr>
<tr>
<td>Altitude</td>
<td>370,28</td>
<td>381,92</td>
<td>381,55</td>
<td>388,79</td>
<td>6966</td>
<td>2,99</td>
<td>0,78</td>
<td>-0,70</td>
<td>0,56</td>
</tr>
</tbody>
</table>
plots apresentados na Figura 2. Observou-se grande número de dados destoantes, possivelmente outliers.

A análise espacial dos dados destoantes culminou na remoção de 242 amostras, localizadas em sua maioria nas proximidades das bordas do conjunto de dados. Considerou-se que estes pontos eram referentes a erros de leituras, tomados na operação de manobra do equipamento durante o mapeamento da área. Com a remoção dos outliers os parâmetros estatísticos foram recalculados, conforme consta na Tabela 2, e utilizados para construção dos gráficos apresentados na Figura 3.

Foi possível verificar que, com a remoção dos dados destoantes, a CEa se aproximou da distribuição normal, uma vez que os valores dos coeficientes de assimetria e curtose aproximam-se de zero (VIEIRA et al., 2000). Sendo assim, inferiu-se que não havia necessidade de transformação dos dados, o que foi posteriormente comprovado com a análise dos dados transformados pela função logarítmica e fazendo uso do parâmetro lambda da função Box-Cox.

A análise da presença de tendência no conjunto de dados considerou oito modelos possíveis, a saber: M0) efeito constante/sem tendência observada; M1) efeito polinomial de primeira ordem das coordenadas; M2) efeito polinomial de segunda ordem das coordenadas; M3) efeito das altitudes; M4) efeito dos tratamentos; M5) efeito combinado da altitude + tratamentos; M6) efeito combinado de M1 + altitude e, M7) efeito combinado de M1 + tratamentos. Os modelos foram avaliados utilizando três equações de

Figura 2. Histogramas e gráficos Box plots relativos aos dados originais.

Tabela 2. Parâmetros estatísticos recalculados após remoção de outliers.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CEa 30cm</td>
<td>1,20</td>
<td>9,80</td>
<td>10,17</td>
<td>19,50</td>
<td>6724</td>
<td>3,61</td>
<td>35,44</td>
<td>0,18</td>
<td>-0,25</td>
</tr>
<tr>
<td>CEa 90cm</td>
<td>1,00</td>
<td>4,50</td>
<td>4,55</td>
<td>8,90</td>
<td>6724</td>
<td>1,54</td>
<td>33,82</td>
<td>0,30</td>
<td>-0,32</td>
</tr>
<tr>
<td>Altitude</td>
<td>370,71</td>
<td>381,92</td>
<td>381,56</td>
<td>388,79</td>
<td>6724</td>
<td>2,96</td>
<td>0,77</td>
<td>-0,65</td>
<td>0,46</td>
</tr>
</tbody>
</table>
Agricultura de precisão para culturas perenes e semi-perenes

Figura 3. Histogramas e gráficos Box plots relativos aos dados com remoção de outliers.

O ajuste dos variogramas (exponencial, gaussiana e esférica), nas duas profundidades em que a CEa foi obtida. Os parâmetros dos semivariogramas obtidos pelo método de mínimos quadrados (função `variogfit` do pacote `geoR`) são apresentados nas Tabelas 3 e 4. Houve ajustamento de todos os modelos e funções utilizadas, revelando que o esquema de amostragem e estrutura dos dados é consistente.

Conforme os dados da Tabela 3, pode-se observar que para a variável CEa 30cm, independentemente da função utilizada, houve melhor desempenho dos modelos M4 e M5. Ou seja, o melhor ajuste foi dado quando se considerou a tendência por conta do efeito de tratamento (M4) ou quando esse efeito combinou-se com o efeito de altitudes (M5). Uma vez que os desempenhos foram similares, indica-se o uso do modelo mais simples, M4. Entre as funções ajustadas, a análise visual revelou melhor desempenho do modelo exponencial. O efeito dos tratamentos e da altitude era esperado, uma vez que a área experimental se dispõe no sentido da vertente e os tratamentos, por sua vez, se dispõem transversalmente à vertente, formando faixas homogêneas em termos de altitude (Figura 2). Isso equivale a dizer que, de certo modo, o efeito de altitude está confundido com os efeitos agronômicos proporcionados pelos sistemas de manejo. Sendo assim, é possível inferir porque o modelo M4 se equivale ao modelo M5.

Ao considerar o desempenho dos modelos para a variável CEa 90cm, temos bom desempenho em 3 modelos de tendência. Além daqueles com melhor resposta em CEa 30cm, tem-se desempenho superior quando nenhuma tendência é considerada (M0). A medida de condutividade elétrica tomada para variável CEa 90cm, incluindo os 30cm avaliados na variável anterior. Sendo assim, seria esperada certa consonância com a variável anterior, com alta correlação entre elas, o que de fato ocorre ($r = 0.77$). Todavia, efeitos que proporcionam tendência são mais intensos nas camadas superiores do solo e, à medida que a profundidade aumenta, é esperado que os efeitos sejam atenuados. Sendo assim, embora os modelos M4 e M5 sejam válidos para a variável CEa 90cm, eles não melhoram o desempenho em comparação ao modelo M0. Sendo assim, recomenda-se o uso do modelo M0. Adicionalmente, entre as funções utilizadas, diferentemente da primeira camada, não houve bom desempenho visual do modelo exponencial (exp), recomendando-se o
Tabela 3. Parâmetros obtidos no ajuste do variogramas para a variável CEA 30cm.

<table>
<thead>
<tr>
<th>Modelo Tendência</th>
<th>Modelo Ajustado</th>
<th>C0</th>
<th>C1</th>
<th>a1</th>
<th>a2</th>
<th>d</th>
<th>SQE</th>
<th>GDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0 exp</td>
<td></td>
<td>0,07</td>
<td>0,13</td>
<td>52,9</td>
<td>159</td>
<td>320</td>
<td>1071</td>
<td>65</td>
</tr>
<tr>
<td>M1 exp</td>
<td></td>
<td>0,06</td>
<td>0,11</td>
<td>39,0</td>
<td>117</td>
<td>320</td>
<td>2132</td>
<td>64</td>
</tr>
<tr>
<td>M2 exp</td>
<td></td>
<td>0,06</td>
<td>0,11</td>
<td>39,0</td>
<td>117</td>
<td>320</td>
<td>2132</td>
<td>64</td>
</tr>
<tr>
<td>M3 exp</td>
<td></td>
<td>0,06</td>
<td>0,13</td>
<td>49,5</td>
<td>148</td>
<td>320</td>
<td>1551</td>
<td>67</td>
</tr>
<tr>
<td>M4* exp</td>
<td></td>
<td>0,09</td>
<td>0,08</td>
<td>93,1</td>
<td>279</td>
<td>320</td>
<td>570</td>
<td>48</td>
</tr>
<tr>
<td>M5* exp</td>
<td></td>
<td>0,09</td>
<td>0,08</td>
<td>98,8</td>
<td>296</td>
<td>320</td>
<td>529</td>
<td>47</td>
</tr>
<tr>
<td>M6 exp</td>
<td></td>
<td>0,07</td>
<td>0,10</td>
<td>36,1</td>
<td>108</td>
<td>320</td>
<td>1027</td>
<td>56</td>
</tr>
<tr>
<td>M7 exp</td>
<td></td>
<td>0,09</td>
<td>0,06</td>
<td>64,4</td>
<td>193</td>
<td>320</td>
<td>719</td>
<td>41</td>
</tr>
<tr>
<td>M0 gau</td>
<td></td>
<td>0,11</td>
<td>0,08</td>
<td>82,0</td>
<td>142</td>
<td>320</td>
<td>629</td>
<td>43</td>
</tr>
<tr>
<td>M1 gau</td>
<td></td>
<td>0,11</td>
<td>0,07</td>
<td>68,3</td>
<td>118</td>
<td>320</td>
<td>1773</td>
<td>39</td>
</tr>
<tr>
<td>M2 gau</td>
<td></td>
<td>0,11</td>
<td>0,07</td>
<td>68,3</td>
<td>118</td>
<td>320</td>
<td>1773</td>
<td>39</td>
</tr>
<tr>
<td>M3 gau</td>
<td></td>
<td>0,11</td>
<td>0,08</td>
<td>79,1</td>
<td>137</td>
<td>320</td>
<td>1044</td>
<td>43</td>
</tr>
<tr>
<td>M4* gau</td>
<td></td>
<td>0,11</td>
<td>0,05</td>
<td>116,1</td>
<td>201</td>
<td>320</td>
<td>315</td>
<td>33</td>
</tr>
<tr>
<td>M5* gau</td>
<td></td>
<td>0,11</td>
<td>0,05</td>
<td>119,4</td>
<td>207</td>
<td>320</td>
<td>281</td>
<td>33</td>
</tr>
<tr>
<td>M6 gau</td>
<td></td>
<td>0,11</td>
<td>0,06</td>
<td>63,2</td>
<td>109</td>
<td>320</td>
<td>856</td>
<td>34</td>
</tr>
<tr>
<td>M7 gau</td>
<td></td>
<td>0,11</td>
<td>0,04</td>
<td>98,2</td>
<td>170</td>
<td>320</td>
<td>546</td>
<td>27</td>
</tr>
<tr>
<td>M0 esf</td>
<td></td>
<td>0,10</td>
<td>0,10</td>
<td>166,6</td>
<td>167</td>
<td>320</td>
<td>566</td>
<td>50</td>
</tr>
<tr>
<td>M1 esf</td>
<td></td>
<td>0,10</td>
<td>0,08</td>
<td>140,3</td>
<td>140</td>
<td>320</td>
<td>1714</td>
<td>46</td>
</tr>
<tr>
<td>M2 esf</td>
<td></td>
<td>0,10</td>
<td>0,08</td>
<td>140,3</td>
<td>140</td>
<td>320</td>
<td>1714</td>
<td>46</td>
</tr>
<tr>
<td>M3 esf</td>
<td></td>
<td>0,09</td>
<td>0,10</td>
<td>162,1</td>
<td>162</td>
<td>320</td>
<td>971</td>
<td>51</td>
</tr>
<tr>
<td>M4* esf</td>
<td></td>
<td>0,10</td>
<td>0,06</td>
<td>228,2</td>
<td>228</td>
<td>320</td>
<td>283</td>
<td>40</td>
</tr>
<tr>
<td>M5* esf</td>
<td></td>
<td>0,10</td>
<td>0,06</td>
<td>234,2</td>
<td>234</td>
<td>320</td>
<td>255</td>
<td>40</td>
</tr>
<tr>
<td>M6 esf</td>
<td></td>
<td>0,10</td>
<td>0,07</td>
<td>130,9</td>
<td>131</td>
<td>320</td>
<td>830</td>
<td>40</td>
</tr>
<tr>
<td>M7 esf</td>
<td></td>
<td>0,10</td>
<td>0,05</td>
<td>196,8</td>
<td>197</td>
<td>320</td>
<td>505</td>
<td>32</td>
</tr>
</tbody>
</table>

*Modelos com melhor desempenho, C0: efeito pepita, C1: variância estrutural, a1: alcance teórico, a2: alcance prático, d: distância (m), SQE: soma de quadrados dos erros, GDE: grau de dependência espacial.

uso da função esférica (esf), que de fato é um dos modelos que melhor se ajusta para descrever o comportamento de semivariogramas de atributos do solo.

Embora a análise visual e dos parâmetros obtidos nos ajustamentos permitam uma análise prévia do desempenho dos modelos, para uma decisão mais segura deverá seguir a interpolação dos dados por krigagem, avaliando-se os resultados obtidos na validação cruzada.

4. Conclusões

A análise exploratória dos dados, com identificação e supressão de outliers é uma etapa fundamental para a adequada modelagem dos
Tabela 4. Parâmetros obtidos no ajuste do variogramas para a variável CEa 90cm.

<table>
<thead>
<tr>
<th>Modelo Ajustado</th>
<th>C0</th>
<th>C1</th>
<th>a1</th>
<th>a2</th>
<th>d</th>
<th>SQE</th>
<th>GDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0*</td>
<td>exp</td>
<td>0,02</td>
<td>0,13</td>
<td>65,4</td>
<td>196</td>
<td>320</td>
<td>257</td>
</tr>
<tr>
<td>M1</td>
<td>exp</td>
<td>0,01</td>
<td>0,11</td>
<td>37,7</td>
<td>113</td>
<td>320</td>
<td>1375</td>
</tr>
<tr>
<td>M2</td>
<td>exp</td>
<td>0,01</td>
<td>0,11</td>
<td>37,7</td>
<td>113</td>
<td>320</td>
<td>1375</td>
</tr>
<tr>
<td>M3</td>
<td>exp</td>
<td>0</td>
<td>0,14</td>
<td>49,2</td>
<td>147</td>
<td>320</td>
<td>1137</td>
</tr>
<tr>
<td>M4*</td>
<td>exp</td>
<td>0,03</td>
<td>0,07</td>
<td>122,2</td>
<td>366</td>
<td>320</td>
<td>182</td>
</tr>
<tr>
<td>M5*</td>
<td>exp</td>
<td>0,04</td>
<td>0,07</td>
<td>142,1</td>
<td>426</td>
<td>320</td>
<td>166</td>
</tr>
<tr>
<td>M6</td>
<td>exp</td>
<td>0,02</td>
<td>0,09</td>
<td>35,2</td>
<td>106</td>
<td>320</td>
<td>543</td>
</tr>
<tr>
<td>M7</td>
<td>exp</td>
<td>0,03</td>
<td>0,05</td>
<td>80,5</td>
<td>241</td>
<td>320</td>
<td>217</td>
</tr>
<tr>
<td>M0*</td>
<td>gau</td>
<td>0,05</td>
<td>0,09</td>
<td>88,8</td>
<td>154</td>
<td>320</td>
<td>13</td>
</tr>
<tr>
<td>M1</td>
<td>gau</td>
<td>0,05</td>
<td>0,07</td>
<td>64,5</td>
<td>112</td>
<td>320</td>
<td>1032</td>
</tr>
<tr>
<td>M2</td>
<td>gau</td>
<td>0,05</td>
<td>0,07</td>
<td>64,5</td>
<td>112</td>
<td>320</td>
<td>1032</td>
</tr>
<tr>
<td>M3</td>
<td>gau</td>
<td>0,05</td>
<td>0,09</td>
<td>76,6</td>
<td>133</td>
<td>320</td>
<td>617</td>
</tr>
<tr>
<td>M4*</td>
<td>gau</td>
<td>0,05</td>
<td>0,05</td>
<td>129,2</td>
<td>224</td>
<td>320</td>
<td>54</td>
</tr>
<tr>
<td>M5*</td>
<td>gau</td>
<td>0,05</td>
<td>0,05</td>
<td>137,4</td>
<td>238</td>
<td>320</td>
<td>47</td>
</tr>
<tr>
<td>M6</td>
<td>gau</td>
<td>0,05</td>
<td>0,06</td>
<td>59,7</td>
<td>103</td>
<td>320</td>
<td>368</td>
</tr>
<tr>
<td>M7</td>
<td>gau</td>
<td>0,05</td>
<td>0,04</td>
<td>107,3</td>
<td>186</td>
<td>320</td>
<td>115</td>
</tr>
<tr>
<td>M0*</td>
<td>esf</td>
<td>0,04</td>
<td>0,11</td>
<td>179,3</td>
<td>179</td>
<td>320</td>
<td>21</td>
</tr>
<tr>
<td>M1</td>
<td>esf</td>
<td>0,04</td>
<td>0,08</td>
<td>132,2</td>
<td>132</td>
<td>320</td>
<td>993</td>
</tr>
<tr>
<td>M2</td>
<td>esf</td>
<td>0,04</td>
<td>0,08</td>
<td>132,2</td>
<td>132</td>
<td>320</td>
<td>993</td>
</tr>
<tr>
<td>M3</td>
<td>esf</td>
<td>0,04</td>
<td>0,11</td>
<td>156,3</td>
<td>156</td>
<td>320</td>
<td>579</td>
</tr>
<tr>
<td>M4*</td>
<td>esf</td>
<td>0,04</td>
<td>0,06</td>
<td>251,2</td>
<td>251</td>
<td>320</td>
<td>54</td>
</tr>
<tr>
<td>M5*</td>
<td>esf</td>
<td>0,04</td>
<td>0,06</td>
<td>264,8</td>
<td>265</td>
<td>320</td>
<td>55</td>
</tr>
<tr>
<td>M6</td>
<td>esf</td>
<td>0,04</td>
<td>0,07</td>
<td>121,2</td>
<td>121</td>
<td>320</td>
<td>346</td>
</tr>
<tr>
<td>M7</td>
<td>esf</td>
<td>0,04</td>
<td>0,04</td>
<td>214,0</td>
<td>214</td>
<td>320</td>
<td>98</td>
</tr>
</tbody>
</table>

*Modelos com melhor desempenho, C0: efeito pepita, C1: variância estrutural, a1: alcance teórico, a2: alcance prático, d: distância (m), SQE: soma de quadrados dos erros, GDE: grau de dependência espacial.

variogramas. A variável CEa 30cm é influenciada pelos tratamentos considerados, contudo a modelagem geostatística permite identificar e considerar o efeito da tendência na análise dos dados. Na variável CEa 90 cm não foi possível identificar o efeito dos manejos na tendência. A variável CEa 30cm mostrou-se mais adequada à definição de zonas homogêneas, uma vez que permite considerar o efeito dos diferentes sistemas de manejo na análise estatística.

Referências

INOVACÃO EM
AGRICULTURA DE
PRECISÃO

Fotos: L. A. C. Jorge, A. C. C. Bernardi, R. Y. Inamasu
Aplicações de ferramentas de avaliação de impacto socioeconômico e ambiental para agricultura de precisão

Luciano Gebler*1, Cinthia Cabral da Costa2, Jorge Luiz Sant’Anna dos Santos3, Viviane M. de A. de Bem e Canto4

1Pesquisador, Embrapa Uva e Vinho, EFCT, BR 285, km 115, Vacaria, RS, CEP 95200-000
2Pesquisadora, Embrapa Instrumentação
3Pesquisador, Embrapa Pecuária Sul
4*E-mail: luciano.gebler@embrapa.br

Resumo: Foram avaliadas ferramentas para aplicação da avaliação de impacto socioeconômico e ambiental para o macroprograma 1 de agricultura de precisão. Duas em particular chamaram a atenção pelo potencial de resposta e foram detalhadas nesse trabalho como exemplos: a Matriz Insumo Produto, representando ferramentas de avaliação inovadoras a serem aplicadas na avaliação da AP e a avaliação tradicional pela Embrapa através do modelo Ambitec. Uma vez que a maioria das tecnologias propostas nesse projeto ainda não estão em fase finalística, optou-se por aplicar o modelo Ambitec nas tecnologias que atingiram a fase de uso pelo produtor e selecionou-se uma, o aplicador seletivo de herbicida Campo Limpo, desenvolvido pela Embrapa Pecuária Sul. O equipamento apresentou um baixo valor na avaliação do Ambitec Social, responsável pela dimensão social, principalmente devido ao baixo impacto econômico, mas um valor significativo em relação ao Ambitec agro, que avalia a dimensão ambiental. Isso pode indicar uma tecnologia que será plenamente aplicada à medida que demandas de ordem ambiental tornem a atividade agrícola mais restrita do que o momento atual.

Palavras-chave: ambitec, matriz insumo produto

Applications of assessment tools socioeconomic and environmental impact for precision agriculture

Abstract: Was evaluated the application of tools for assessment of socioeconomic and environmental impact for macroprograma 1 Precision Agriculture. Two, in particular, was caught the attention of the potential response and were detailed in this paper as examples: Input Output Matrix, representing innovative assessment tools to be applied in the evaluation of AP and traditional evaluation model by Embrapa, through Ambitec. Since most of the technologies proposed in this project are not being purposive, it was decided to apply the model Ambitec to technologies that have reached the stage of use by the producer and was selected one, selective herbicide applicator Campo Limpo, developed by Embrapa South Cattle. The equipment exhibited a low value in assessing the Ambitec social, responsible for the social dimension, mainly due to the low economic impact, but significant value in relation to Ambitec agro, that evaluates the environmental dimension. This may indicate a technology that will be fully implemented as of environmental demands to make farming more restricted than the present moment.

Keywords: ambitec, input output matrix
1. Introdução

Nos dias de hoje, o setor agrícola brasileiro tem recebido atenção especial em relação às questões ambientais, (Andrade, 2012), sendo que a AIA se apresenta como uma metodologia que permite avaliar se determinada atividade, que sofre ação direta ou indireta do homem, causa impacto socioeconômico e ambiental.

Cada vez mais essa metodologia vem sendo demandada para justificar as ações ou investimentos em determinada atividade ou estratégia a ser adotada. Assim, avaliar corretamente os impactos, seja positivos ou negativos, que uma nova tecnologia pode proporcionar, significa aumentar as chances de uso da mesma em comparação com outras, quando ela apresenta maior valor de impactos positivos ou menores de negativos. Para isso, é importante que a avaliação se afaste da subjetividade inerente a esses processos, tanto quanto possível.

Uma das formas encontradas para isso foi a criação de sistemas de valoração numérica quantitativa, capaz de produzir indicadores resumidos comparáveis com padrões de qualidade a serem alcançados (Gebler, 2012). O padrão mais simples seria aquele que comprova que uma nova tecnologia apresenta qualificações melhores que outra anterior, bastando usar a comparação direta. Ainda assim, é necessário se averiguar um valor ou grau de vantagem, que permita o usuário determinar se trocará de tecnologia ou não.

Um dos sistemas de AIA que aplica esse princípio é o sistema AMBITEC (Monteiro; Rodrigues, 2006), pois devido à falta de séries temporais de dados que permitam a construção de cenários mais detalhados e complexos, o conhecimento apresentado pelo cliente entre o velho e o novo já proporciona a base de avaliação mínima para determinação da escolha. Além desse método de sucesso, vem sendo testadas outras ferramentas que também buscam responder esses questionamentos, sendo que, nesse caso, o campo da socioeconômica isolada tem avançado mais que a área ambiental.

Uma das razões é a relativa facilidade na obtenção de indicadores resumo, que em número relativamente resumido permitam uma série de conclusões sobre o tema em análise. Uma solução para esses casos é a aplicação da ferramenta Matriz de Insumo Produto (MIP).

O objetivo desse trabalho foi buscar ferramentas e aplicá-las sobre pelo menos uma técnica desenvolvida ao longo do projeto MP1 de agricultura de precisão.

2. Material e Métodos

Os métodos escolhidos para serem apresentados nesse capítulo foram a Matriz de Insumo Produto, representando uma ferramenta inovadora a ser aplicado em técnicas que ainda não chegaram à condição de mercado e o sistema de uso consagrado pela Embrapa, o Ambitec, tanto o Ambitec Social, para a análise socioeconômica, como o Ambitec Agro, responsável pela dimensão ambiental, aplicado em uma análise de uma tecnologia já em uso pelo produtor.

3. Resultados e Discussão

3.1. Caso 1: Impactos sócio-econômicos mensurados pela matriz insumo produto

A principal motivação para a aplicação do método de análise utilizando a MIP está relacionada a se obter os efeitos de transbordamento das tecnologias, ou seja, identificam-se os impactos nos diferentes agentes econômicos: produtor, consumidor, governo e o setor externo. Além disto, é importante entender que este é um método complementar a outros que identificam os efeitos primários da ação. Portanto, não é um método exclusidente. E, em geral, é utilizado como uma última etapa na avaliação de impacto, justamente para se conhecer os efeitos de transbordamento de uma ação. Entretanto, isto não significa também que este método sempre poderá ser aplicado para obtenção deste resultado.

A matriz insumo-produto, cujos primeiros trabalhos de organização foram realizados por Wassily Leontief, tem como objetivo o levantamento mais detalhado possível das informações econômicas de um país. Sob influência do trabalho de Quesnay, Leontief procurou uma forma de estruturar as relações produtivas da economia. O desenvolvimento
destas ideias culminou no desenvolvimento da Matriz de insumo-produção, que é esquematizada na Tabela 1.

Uma matriz de insumo-produção (MIP) dá uma visão geral do comportamento do comércio na economia nacional. Ela descreve os fluxos de bens e serviços de uma economia em termos financeiros. Esses fluxos são representativos de um período de tempo particular, usualmente um ano. Para entender-la, a partir da linha do Setor 1, tem-se o quanto este setor vendeu para os demais setores (n) da economia (Cl_n). Por isto estes valores são denominados como consumo intermediário. Depois tem-se o valor da sua venda para a demanda final (Y_1). A demanda final é composta pelo consumo das famílias e do governo, pelos investimentos e variações no valor dos estoques e pelas exportações. Todas as vendas são descritas em termos de valor monetário (preço multiplicado pela quantidade) da moeda do país e, a soma da linha de cada setor, indica o seu valor de produção (X_1). Ou seja, o valor de tudo que foi produzido por aquele setor.

Mas é possível visualizar os fluxos da MIP a partir das compras. Para isso, considera-se os valores descritos nas colunas. A coluna que apresenta o Setor 1 mostra: o quanto o setor 1 comprou dos demais setores da economia (Cl_n); o quanto é importado de insumo para este setor (M_{j}); e o quanto é adicionado de valor sobre estes insumos (PIB_{j}). Tal adição de valor refere-se a salários, remuneração de capital, juros e aluguéis. Somando ainda o valor dos tributos (T_{j}) tem-se então o valor da produção deste setor (X_1).

A partir da estrutura descrita na Tabela 1, que representa o funcionamento da economia, pode-se aplicar mudanças na mesma, provocadas por diferentes tipos de choques, e verificar seus impactos sobre: número de empregos; valor das importações; do PIB e de variáveis formadoras do PIB, como a remuneração e o lucro.

No caso da agricultura de precisão, tem-se não apenas uma, mas um conjunto de tecnologias, que têm como foco um mesmo objetivo, que é a redução no desperdício de insumos agrícolas. Esta redução pode afetar: contaminação do meio ambiente, redução no consumo de insumos e, ou, aumento da produtividade. Neste caso, apesar de já existirem tecnologias que são aplicadas na agricultura, as mesmas são ainda pouco utilizadas no país e seus efeitos, principalmente para as condições brasileiras, ainda carecem ser melhor avaliados, como descrito por Costa e Guilhoto (2012). Neste estudo, os autores analisaram as potenciais culturas e o percentual das mesmas onde as técnicas de agricultura de precisão seriam efetivas. Foram elaborados vários cenários pelos autores, entretanto, considerando os resultados obtidos para uma redução de 10% no consumo de fertilizantes e aumento de 10%
Na sua produtividade obteve-se um efeito de transbordamento na economia que geraria cerca de: R$ 11 bilhões em Produto Interno Bruto (PIB) e 450 mil empregos.

Neste caso, o uso da MIP para análise dos impactos é uma informação adicional para estimular, ou não, os gestores na adoção de políticas públicas para incentivar as práticas. Entretanto, apesar dos choques descritos no trabalho de Costa e Guilhoto (2012) apresentarem algumas especificidades relativas ao uso da agricultura de precisão, tem-se que outras ações podem originar impactos semelhantes como, por exemplo, o melhoramento genético das culturas que resultem em aumento de produtividade e, ou, redução no uso de insumos.

Resumindo, o objetivo final da aplicação da metodologia descrita é, a partir da ação que gere um determinado choque em agentes econômicos, identificar e modelar o mesmo na MIP. Com isso, obtêm-se ao final, resultados que consideram os efeitos de transbordamento na sociedade.

3.2. Caso 2: Avaliação dos impactos econômicos, sociais e ambientais do aplicador seletivo de herbicida Campo Limpo - Embrapa Pecuária Sul

O controle químico de plantas invasoras em pastagens torna-se problemático pela ausência de produtos que nelas atuem e, ao mesmo tempo, não tragam dano às espécies forrageiras. O aplicador seletivo de herbicida Campo Limpo, desenvolvido pela Embrapa Pecuária Sul, permite aplicar o herbicida diretamente na planta indesejável, devido à diferença de altura que se estabelece entre as espécies consumidas pelo gado, que ocupam o estrato inferior, e as espécies invasoras, que, por serem rejeitadas pelos animais, assumem uma maior altura. A aplicação direta do herbicida, por meio de aplicadores umedecidos que entram em contato direto com a planta indesejável, atendem aos requisitos de racionalização do uso de insumos e diminuição do risco ambiental buscados pela Agricultura de Precisão.

A deposição do herbicida ocorre sem a necessidade de pulverização, aumentando a segurança da aplicação, ao evitar riscos de deriva do produto para áreas indevidas e inalação do agroquímico pelo operador. A máquina foi desenvolvida a partir de uma estrutura piramidal, permitindo distribuir o peso do tanque da calda herbicida sobre o rodado, bem como absorver os impactos sofridos pelas irregularidades do terreno. Dependendo do tamanho e de algumas adaptações no equipamento, o implemento pode ser tracionado por trator, automóvel ou animal. O sistema de regulagem de altura é feito através de rodado articulado, permitindo ajustar a altura do aplicador à altura das espécies que se deseja controlar. A calda herbicida é armazenada em um tanque plástico, sendo seu volume facilmente aferido pelo operador. A disposição dos aplicadores umedecidos permite um ataque à vegetação ligeiramente transversal em relação ao deslocamento da máquina, o que aumenta a eficiência da aplicação.

Pode ser recomendado para utilização como tecnologia de controle de plantas invasoras em estabelecimentos de pecuária associada ao manejo das pastagens nativas, como forma de recuperação de áreas infestadas. Em situações de infestação superior a 60% da área das pastagens, a Campo Limpo não é uma tecnologia da qual o produtor possa lançar mão como recurso exclusivo. Para a obtenção de resultados satisfatórios, a recuperação das áreas com alto grau de infestação deve ser feita por intermédio da interação com diferentes tecnologias, tais como introdução de espécies forrageiras nativas perenes, integração lavoura-pecuária, ajuste de carga animal.

A avaliação dos impactos do aplicador seletivo de herbicida Campo Limpo baseou-se em entrevistas com: seis produtores adotantes da tecnologia e visitas às suas unidades de produção, localizadas em seis diferentes municípios dos estados do Rio Grande do Sul (Bom Jesus, Candiota, Hulha Negra, Muitos Capões e Osório do Sul) e Santa Catarina (Campos Novos); o pesquisador da Embrapa Pecuária Sul responsável pela execução do projeto, para a caracterização do objeto da avaliação; um revendedor de máquinas e implementos agrícolas no município de Vacaria, no norte do estado do Rio Grande do Sul, em função da demonstração do funcionamento da tecnologia realizada em algumas fazendas da região; o proprietário da Metalúrgica Grazmec, localizada no município de Não-Me-Toque (RS), parceira da Embrapa Pecuária Sul na produção comercial da tecnologia, o engenheiro mecânico responsável pelo desenvolvimento do projeto industrial do protótipo apresentado pelo pesquisador e dois funcionários do setor de vendas da empresa. O perfil do adotante da tecnologia é de um produtor...
que combina pecuária com agricultura (em geral, soja e arroz), com estabelecimento, identificado como uma empresa rural, de 1.000 hectares de área média, embora a tecnologia tenha sido utilizada somente em parte da área de pastagens, com intuito de testar a sua eficiência.

Lançado em 2008 na Exposição Internacional de Animais, Máquinas, Implementos e Produtos Agropecuários (Expomot), no município de Esteio/RS, e distribuído comercialmente, a partir de 2009, pode-se dizer que o aplicador seletivo de herbicida Campo Limpo se constitui em uma tecnologia que, uma vez introduzida no combate às plantas invasoras que infestam áreas de pastagens naturais ou cultivadas, tem provocado um grande impulso na atividade pecuária. Esse impulso se traduz no incremento da produtividade, medido pelo ganho de peso vivo de 14 kg.ha\(^{-1}\) ano\(^{-1}\) no ano de 2012. Em termos monetários, isso representa R$ 33,12 (ganho unitário, já subtraído o custo de adição), considerando o rendimento que era obtido com a tecnologia convencional (as entrevistas indicaram ter sido, via de regra, a roçadeira), em comparação com o rendimento superior obtido com a tecnologia Embrapa. O benefício econômico trazido para a região, como impacto desse incremento de produtividade foi da ordem de R$ 745.000,00, levando-se em conta a participação da Embrapa de 45%, já que esta possui uma parceira, a indústria mecânica Grazmec, que tem realizado um esforço importante de aprimoramento da tecnologia junto aos usuários.

A introdução dessa tecnologia na pecuária pode permitir, ainda, redução de custos. Por um lado, a partir do corte de parte dos desembolsos com suplementação alimentar, um dos recursos utilizados pelos produtores para enfrentar os problemas advindos da infestação de suas pastagens por plantas indesejáveis aos animais e melhorar a condição corporal dos seus rebanhos. Por outro lado, pela redução do uso de óleo diesel, já que, na tecnologia anteriormente utilizada pelos produtores entrevistados, o trator funcionava com alta rotação para puxar a roçadeira, aumentando o consumo de combustível. Foi visto que, no ano de 2012, houve uma contenção de R$ 17,08 no gasto com sal mineral e óleo diesel.

Considerados esses dois tipos de impactos, os benefícios econômicos estimados são da ordem de R$ 891.110,00 para o ano de 2012, perfazendo uma média de R$ 7.072,30 por produtor. Esses resultados apontam para um impacto econômico muito expressivo na atividade pecuária, caso possa ser intensificado o trabalho de transferência de tecnologia realizado pela Embrapa Pecuária Sul, pela Grazmec e pelos revendedores de máquinas e implementos agrícolas. Constatou-se, durante o trabalho de campo, que estes últimos têm assumido um papel crucial de levar ao conhecimento dos produtores essa inovação da Embrapa, através da programação de dias de campo e demonstração do uso da tecnologia em fazendas localizadas em diferentes microrregiões do estado do Rio Grande do Sul. Um trabalho de transferência de tecnologia concentrado em revendedores de outros estados poderia intensificar a demanda pela tecnologia.

No entanto, se são fortemente encorajadores os resultados do impacto econômico, o índice de impacto social da tecnologia, obtido com a metodologia Ambitec-Social, é pouco expressivo (1,68), embora levemente ascendente, quando comparado ao índice de impacto social do ano de 2011 (1,23). Em 2012, a tecnologia apresentou maiores impactos nos aspectos emprego e renda, mas os entrevistados apontaram para alterações pouco expressivas nos indicadores dos aspectos saúde e gestão/administração, sendo que cinco desses indicadores permaneceram inalterados, dificultando a obtenção de um índice de impacto social mais substantivo. No aspecto renda, caberia um destaque para o indicador “Valor da propriedade” (coeficiente de 4,3). Um produtor entrevistado chegou a quantificar esse impacto a partir da sua experiência. Segundo ele, com os campos “sujos” pelas invasoras, o preço da terra gira em torno de R$ 5.600 o hectare, na sua região. Com os campos “limpos” pela tecnologia, pode-se obter 9 ou 10 mil reais pelo hectare. Quanto ao aspecto emprego, os informantes reconheceram a possibilidade de criação de empregos permanentes, portanto, de maior qualidade, indicando o impacto como positivo (coeficiente de 0,45), porém, modesto.

Já a avaliação dos impactos ambientais, realizada com a metodologia Ambitec-Agro, trouxe um resultado positivo mais expressivo (índice de impacto ambiental = 2,35), quando comparado ao índice de impacto social. Foi visto que a tecnologia mostra-se inovadora e mais eficiente em termos não apenas econômicos, mas também para a qualidade do meio ambiente, quando comparada às formas tradicionais mais utilizadas de controle das plantas invasoras.
(roçada e pulverização). Em termos de eficiência tecnológica, foram identificados impactos bastante favoráveis: redução da toxicidade e do uso de agroquímicos (coeficiente de 3,25), bem como redução do uso de recursos naturais (coeficiente de 2,5), principalmente, de água, em comparação com a pulverização, além de redução do uso de energia (coeficiente de 2,0), basicamente, de diesel, em comparação com a roçadeira mecânica.

Em relação à conservação ambiental, produtores e especialistas identificaram diminuição da erosão, bem como da compactação do solo, com melhorias na estrutura física e química do solo, como consequência da conservação das espécies forrageiras desejáveis, proporcionada pelo uso da tecnologia (coeficiente para qualidade do solo de 3,75). A manutenção das espécies desejáveis reduz a formação de áreas de solos descobertas, as quais são bastante suscetíveis à erosão, à perda de matéria orgânica e de nutrientes e compactação e, consequentemente, a degradação física e química dos solos. Da mesma forma, a biodiversidade torna-se bastante favorecida pelo uso da tecnologia (coeficiente de 2,4), em razão da diminuição da perda da vegetação natural, identificada tanto por produtores quanto por especialistas. Devido à permanência das forrageiras nas áreas controladas, pela forma seletiva de aplicação, diminui-se a perda da diversidade florística das pastagens naturais. Para a qualidade da atmosfera (coeficiente de 1,6), foram identificados benefícios relacionados à diminuição de material particulado lançado na atmosfera, em função da aplicação ser realizada por contato e não por pulverização, com diminuição da deriva característica das aplicações pulverizadas, como melhoria da segurança relacionada a intoxicações por inalação do operador. Em comparação com a roçadeira mecânica, há diminuição de fumaça e ruídos no ambiente, visto que, enquanto a roçadeira exige que o trator trabalhe em alta rotação, com o aplicador, o motor do trator trava em baixa rotação.

Em termos de recuperação ambiental (coeficiente de 1,4), podem ocorrer grandes benefícios para a recuperação de áreas de pastagens degradadas, naturais ou cultivadas, tanto pelo controle das plantas indesejáveis, quanto pela manutenção das plantas desejáveis ou forrageiras. Os benefícios são bastante importantes quando se considera o ecossistema pastagem natural, pois a sua conservação é primordial para a produção pecuária com base alimentar a pasto, como ocorre com a atividade pecuária da Região Sul do Brasil.

4. Conclusões

Devido ao grande número de tecnologias trabalhadas nesse projeto ainda não atingirem a fase finalística, há dificuldades de valorar corretamente os impactos sócio-econômicos ambientais que as mesmas alcançarão, mantendo-se ainda como exercício teórico de uma avaliação ex-ante; devido a diversidade de tecnologias, processos e culturas envolvidas no projeto, serão necessários mais que um conjunto de ferramentas para se avaliar corretamente todo o conjunto de atividades existentes nesse projeto;

Para tecnologias já lançadas ao produtor, ainda em pequeno número, como o exemplo aqui avaliado, os impactos têm se mostrado positivos, sugerindo que a agricultura de precisão tem potencial para estender seus efeitos muito além da resposta esperada em produtividade das culturas.

Referências

Transferência de Tecnologia em Agricultura de Precisão

Mateus Moraes Tavares¹, Igor Orígenes Moreira Borges¹, Rafael Diego Nascimento da Costa¹, Phelipe Souza Antunes²

¹Engenheiro Agrônomo, SENAR Central
²Estudante de agronomia, SENAR Central

*E-mails: mateus.tavares@senar.org.br, igor.borges@senar.org.br, rafael.costa@senar.org.br, phelipe.antunes@senar.org.br

Resumo: Trabalhada no Brasil há mais de uma década, a Agricultura de Precisão (AP) atualmente se encontra em expansão no setor agropecuário. São diversas tecnologias embarcadas em máquinas que auxiliam produtores rurais no mapeamento da propriedade e na aplicação de insumos a taxas variáveis nas culturas com objetivo de reduzir os custos de produção e aumentar a produtividade. A expansão dessas tecnologias de AP no país, contudo, tem ocorrido de forma pontual e sem a devida padronização conceitual. Alguns produtores adquiriram equipamentos, não passando por nenhum tipo de capacitação a fim de poder extrair o máximo potencial dessas máquinas. Nesse sentido, o Serviço Nacional de Aprendizagem Rural - SENAR, sendo uma instituição de formação profissional rural, propôs duas ações para auxiliar na capacitação de técnicos, produtores e trabalhadores rurais. A primeira ação foi a realização de seminários, em parceria com instituições de pesquisa (Embrapa), universidades e empresas do setor privado, com intuito de desmistificar o conceito e a aplicação das tecnologias da AP. A segunda proposta é a elaboração de um programa de capacitação continuada, buscando a formação de técnicos junto a órgãos de pesquisa e empresas privadas de forma a possibilitar o acesso às novas tecnologias ao trabalhador rural. O objetivo maior é que os profissionais capacitados sirvam de multiplicadores das tecnologias AP, por meio de treinamentos e de assistência técnica, e também continuem buscando atualizar-se para acompanhar o desenvolvimento da tecnologia.

Palavras-chave: agricultura de precisão, formação profissional rural e capacitação.

Technology Transfer in Precision Agriculture

Abstract: Precision Agriculture (PA) has been increasingly used in Brazil for over a decade. It involves several machine-based technologies designed to assist farmers in using inputs at variable rates in crops with the aim of reducing production costs and stepping up productivity. However, these PA technologies have only been increasingly used sporadically and without any conceptual standardization. Some farmers have bought the necessary equipment, but have not been trained in any way to learn how to take as much advantage as possible of the potential of these machines. For this reason, the National Service for Rural Learning - SENAR, as an institution providing rural vocational training courses, proposed two actions to assist in the training of technicians, farmers and rural workers. The first one was to hold seminars in partnership with research organizations (Embrapa) and the private sector with the aim of demystifying the concept of PA technologies and their actual application. The second one was developing a continued training program for technicians in research agencies and private companies to provide access to these new technologies to rural workers. The ultimate goal is to enable trained professionals to act as multipliers of PA technologies through training and technical assistance and to continue to refresh their knowledge, making it possible for them to keep up with the latest technological developments.

Keywords: precision agriculture, rural vocational training and capacity-building.
1. Introdução

São inúmeros e diversificados os conceitos associados à Agricultura de Precisão (AP), variando consideravelmente de autor para autor. Em todas essas definições, porém, existe um mesmo fundamento, o de que a AP é uma ferramenta cada vez mais essencial na agricultura moderna, capaz de potencializar o melhor monitoramento da propriedade, resultando no aumento da produtividade e oferta de alimentos, sem que haja a necessidade da expansão das fronteiras agrícolas. Ao mesmo tempo, o uso dessas tecnologias permitirá reduzir o custo de produção, trazendo consequentes benefícios para o meio ambiente (CAMPO, 2000; GENTIL; FERREIRA, 1999; BATCHelor et al., 1997).

Alguns desses conceitos determinam que, para desenvolver a agricultura de precisão, é necessário o conhecimento profundo da propriedade, ou seja, é preciso trabalhar em cada área da propriedade de maneira distinta, dada a grande variabilidade em suas características, seja no solo, na água ou nas condições do microclima. Tal situação está refletida em diferentes condições de produtividade, fertilidade, infestação por pragas e doenças, etc. Alguns estudos apontam que os conceitos de agricultura de precisão estão sendo incorporados também na pecuária (LACA, 2009; CARVALHO et al., 2009), bem como no estudo ambiental de áreas degradadas (COELHO, 2005).

Com base nessa nova forma de se pensar em agricultura, as definições sobre o que é AP são caracterizadas principalmente na necessidade de se detalhar o conjunto das variabilidades existentes na propriedade (ROZA, 2000; BATCHelor et al., 1997), no manejo adequado de insumos, como quantidade, época e localização para aplicação (CAPELLI, 1999; MANZATO et al., 1999; FATORGIS, 1998) e no uso de máquinas e equipamentos modernos (EMBRAPA, 2011). Em fins, para trabalhar com agricultura de precisão, não se deve pensar de forma isolada e, sim, trabalhar englobando todas as tecnologias e procedimentos para que o sistema de produção agrícola seja otimizado (MOLIN, 2001).

A aplicação no campo de todos esses fundamentos pode envolver o uso de máquinas, equipamentos e tecnologias, as quais, aliadas ao uso da informática, servirão para reduzir o tempo e minimizar o erro durante a realização das atividades pré-plantio e pós-colheita e nos manejos de condução da lavoura, além de reduzir o gasto com os insumos. No entanto, é fundamental que estudos e pesquisas na área estejam em constante evolução. Nesse sentido, vários trabalhos vêm sendo desenvolvidos para aperfeiçoar o uso do GPS - Global Positioning System – no uso de máquinas agrícolas (ALONSO-GARCIA et al., 2011; AMIAMA-ARES et al., 2011; LAPIS et al., 2008; STABILE; BALASTRAIRE, 2006), o desenvolvimento de software e hardwares (ROCCIA et al., 2012; GARCIA; CAPPELLI; UMEZU, 2012; QUEIROZ; BOTREL; FRIZZONE, 2008; MELLO; CAIMI, 2008), aplicação de insumos à taxas variáveis (MERCALDI et al., 2011; BARBIERI; MARQUES JUNIOR; PEREIRA, 2008; FERRAZ et al., 2001; SARAIVA; CUGNASCA; HIRAKAWA, 2000), sistemas de navegação e autoesterçamento (OLIVEIRA; MOLIN, 2011; BAIO; MORATELLI, 2011) e, mais recentemente, a aplicação da robótica no campo (TABILE et al., 2011).

Tanto as frentes de pesquisa quanto os avanços tecnológicos, cada vez mais velozes e sofisticados minimizam-se diante de uma barreira praticamente imperceptível aos olhos da pesquisa em tecnologia: a transferência de tecnologia. A aplicação prática de toda a evolução de máquinas, equipamentos e da própria informática no campo somente é possível quando o operador ou o trabalhador rural tem acesso a essas informações e ao treinamento adequado para operacionalização dessas máquinas. É preciso minimizar ou até mesmo acabar com tamanha deficiência, permitindo, desse modo, que esse montante de informações chegue ao trabalhador para que todo o potencial de produção seja expresso.

Seria fácil imaginar que essa mão de obra especializada estivesse surgindo a partir dos cursos superiores ou cursos técnicos espalhados pelo país. O que ocorre, no entanto, em muito dos casos, é que o profissional recém-formado é absorvido pelas próprias empresas que desenvolvem os insumos e/ou equipamentos ou mesmo pelo setor de pesquisa.

Geralmente, as empresas responsáveis pelo desenvolvimento das tecnologias AP fornecem cursos de capacitação em suas próprias máquinas e equipamentos destinados a técnicos e produtores. Isso requer, porém, um investimento alto do produtor, que muitas vezes não dispõe de recursos para essa finalidade. Contudo, tais treinamentos,
voltados exclusivamente para operação das máquinas, não são suficientes para educar o produtor a utilizar todos os conceitos de agricultura de precisão em sua propriedade.

A transferência dessa tecnologia e de conceitos de agricultura de precisão acaba ficando sob a responsabilidade dos técnicos ligados aos órgãos de assistência técnica estadual ou municipal, das associações, sindicatos e prefeituras e muitas vezes sua capacitação ou treinamentos de atualização não ocorrem com frequência hábil para que possam acompanhar a rápida evolução no setor.

Essa necessidade por mão de obra qualificada na operação e assistência em maquinários agrícolas modernos é algo que há muito tempo vem sendo notada e uma demanda muito forte por capacitações, sendo criada em vários estados. Nos estados do Rio Grande do Sul, Paraná, Goiás e Bahia, onde a produção de grãos é mais intensa, a demanda foi tão grande que levou as Administrações Regionais do Senar ao desenvolvimento de ações de capacitação em Agricultura de Precisão.

Nesse contexto, o Senar - Administração Central, juntamente com universidades e indústrias do setor privado, está propondo um programa de capacitação de técnicos e trabalhadores rurais em tecnologias AP. O objetivo dessa iniciativa é promover um treinamento contínuo desses profissionais no que se refere à operação de máquinas e equipamentos. Desse modo, os técnicos que passarem pelo programa estarão aptos a auxiliar na transmissão de toda informação adquirida no treinamento, tornando-se um multiplicador das tecnologias AP.

2. Material e Métodos

2.1. Parceria entre entidades de pesquisa e empresas privadas

Com intenção de facilitar e aumentar a qualidade na transferência de tecnologia e assessoria técnica para os produtores rurais, uma importante parceria foi consolidada, em 2012, envolvendo três setores responsáveis pelos avanços tecnológicos no campo. O primeiro dos três pilares envolvidos é constituído por instituições de pesquisa (Embrapa), universidades e faculdades - referências no desenvolvimento de pesquisas e ensino na área da agropecuária no Brasil. O segundo envolve as empresas privadas fabricantes de máquinas, implementos e tecnologias embarcadas destinadas à agricultura de precisão. Por fim, o Senar complementa o tripé que configura a parceria.

Com esse tripé, é possível fechar todo o ciclo para transferência de tecnologia, abranguendo as principais fontes geradoras de inovação no campo, aliadas à capilaridade que o Senar possui para difundir esse conhecimento ao homem do campo.

O resultado dessa parceria pode ser ilustrado a partir de alguns eventos realizados e da capacitação de técnicos em andamento desde o ano de 2012. Dos eventos já realizados, podemos destacar a capacitação de técnicos dentro de empresas, como a Stara e a Jacto - localizadas respectivamente no município de Não Me Toque/RS e em Pompéia/SP. Também foi promovido um ciclo de seminários, realizados pelo Senar juntamente com as entidades parceiras, principalmente a Embrapa, com intuito de desmistificar a agricultura de precisão e introduzir o assunto aos técnicos e produtores rurais. Ocorreram, ao todo, nove seminários, em parceria com as Administrações Regionais do Senar nos estados da BA, GO, MA, MG, MS, MT, PI, PR e RS, onde, além do caráter explicativo e desmistificador, houve um levantamento de demandas e pontos prioritários a serem atendidos pelo programa de capacitação em agricultura de precisão.

Outra ação foi a realização de oficina técnica em agricultura de precisão, em parceria com a Escola Superior de Agricultura Luiz de Queiroz ESALQ, ligada à Universidade de São Paulo - USP. Essa oficina, destinada aos instrutores do Senar, teve a finalidade de introduzir conceitos e atualizar os participantes quanto aos avanços da agricultura de precisão no Brasil.

2.2. Processos de capacitação

Está prevista a aplicação de dois processos de capacitação distintos, preparados, especificamente, para dois públicos alvos: primeiramente a qualificação dos instrutores do Senar junto às universidades, faculdades e empresas privadas. Já o segundo será destinado aos produtores rurais e operadores de máquinas agrícolas, justamente o público que mais demanda investimentos em instrução por atuar diretamente na aplicação
dessas tecnologias para a produção. Nesse segundo processo, o instrutor do Senar capacitado atuará como um multiplicador das tecnologias em AP, formando, assim, uma rede de difusão dessas tecnologias em todos os estados brasileiros.

O processo de capacitação continuada dos instrutores do Senar será ministrado dentro das empresas parceiras, que serão responsáveis pelo treinamento direto no uso de seus próprios equipamentos. A meta é que, ao final do período de capacitação, os instrutores estejam aptos a operar os diferentes equipamentos das principais empresas do ramo de agricultura de precisão. Os treinamentos serão aplicados para grupos de instrutores, selecionados pelas Administrações Regionais do Senar conforme o nível de conhecimento técnico e experiência profissional.

O processo de capacitação dos produtores rurais e operadores de máquinas agrícolas seguirá o modelo preconizado pelo Senar - “aprender a fazer fazendo”. Os treinamentos serão ministrados em módulos contínuos, ou seja, os alunos deverão participar integralmente dos módulos (teóricos e praticos) para conseguir a certificação. Ao final de cada módulo será elaborada uma avaliação de aproveitamento do conteúdo ministrado. Após a conclusão do treinamento, será emitido o certificado. De forma a tornar as capacitações mais participativas e práticas, o limite de participantes em cada turma será de seis a oito pessoas, permitindo, assim, uma dedicação praticamente exclusiva para cada um.

Os produtores e operadores de máquinas agrícolas passarão, em seu treinamento, por módulos de introdução à agricultura de precisão e utilização direta de equipamentos, como pulverizadores, semeadoras, distribuidores e monitores de colheitas, além de sistemas de orientação e piloto automático; totalizando em 120 horas de treinamento. A tabela 1, abaixo disposta, descreve os módulos aplicados nas turmas para capacitação dos produtores rurais e operadores de máquinas agrícolas.

Para o acompanhamento durante as capacitações dos produtores e técnicos rurais e com o propósito de servir como material de consulta e reforço da aprendizagem, o Senar - Administração Central elaborou, junto com os especialistas no assunto, uma coleção de cartilhas com sete volumes específicos vinculados aos módulos do Programa, a serem fornecidos gratuitamente ao longo da aplicação dos treinamentos. A proposta é periodicamente fazer uma atualização desse material, de modo a acompanhar todos os avanços nas tecnologias e disponibilizar essas atualizações ao público.

3. Conclusão

O esperado e significativo resultado esperado com essa iniciativa é conseguir suprir uma necessidade cada vez mais presente na agricultura brasileira moderna, impulsionando, desse modo e progressivamente, a produção agrícola. Por fim, vale sublinhar que o modelo proposto de parcerias entre o Senar, Embrapa, universidades e empresas privadas para a capacitação em agricultura de precisão constitui algo inovador, configurando uma importante solução para assegurar a transferência de tecnologias de forma segura e eficiente ao público de interesse.

Tabela 1. Programa de Agricultura de Precisão - descrição dos módulos aplicados na capacitação dos produtores rurais e operadores de máquinas agrícolas.

<table>
<thead>
<tr>
<th>Módulo 1</th>
<th>Agricultura de precisão para todos</th>
<th>16 horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo 2</td>
<td>Sistemas de orientação</td>
<td>16 horas</td>
</tr>
<tr>
<td>Módulo 3</td>
<td>Piloto automático</td>
<td>16 horas</td>
</tr>
<tr>
<td>Módulo 4</td>
<td>Operação e manutenção de semeadoras</td>
<td>16 horas</td>
</tr>
<tr>
<td>Módulo 5</td>
<td>Operação e manutenção do distribuidor</td>
<td>16 horas</td>
</tr>
<tr>
<td>Módulo 6</td>
<td>Pulverizador autopropelido</td>
<td>24 horas</td>
</tr>
<tr>
<td>Módulo 7</td>
<td>Monitor de Colheita</td>
<td>16 horas</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>120 Horas</td>
</tr>
</tbody>
</table>
Referências

Comissão Brasileira de Agricultura de Precisão para o fomento e a difusão da Agricultura de Precisão no Brasil

Fabricio Vieira Juntolli*¹, José Paulo Molin²

¹Fiscal Federal Agropecuário, Departamento de Propriedade Intelectual e Tecnologia Agropecuária, Ministério da Agricultura, Pecuária e Abastecimento, Coordenador da Comissão Brasileira de Agricultura de Precisão
²Professor da USP/ESALQ, Presidente da Comissão Brasileira de Agricultura de Precisão

*E-mails: fabricio.juntolli@agricultura.gov.br, jpmolin@usp.br

Resumo: Entre as responsabilidades do Ministério da Agricultura, Pecuária e Abastecimento (MAPA) está a gestão das políticas públicas de estímulo à agropecuária, o fomento da agricultura sustentável e a regulação e normatização dos serviços vinculados ao setor. Assim, o MAPA busca integrar em sua gestão os aspectos mercadológico, tecnológico, científico, ambiental e organizacional do setor produtivo. A Coordenação de Acompanhamento e Promoção da Tecnologia Agropecuária (CAPTA) desenvolve um ambiente favorável e inovador para o fomento e a disseminação da Agricultura de Precisão (AP) no País. Auxilia assim na promoção das ferramentas e tecnologias utilizadas na AP para gerar competitividade e sustentabilidade adequada ao pequeno, médio e grande produtor do agronegócio brasileiro, em benefício da sociedade brasileira. Com o apoio dos representantes dos setores de AP, o MAPA criou a Comissão Brasileira de Agricultura de Precisão (CBAP), oficializado pela portaria nº 852 de 20 de setembro de 2012, que consiste em um fórum consultivo e proposicional de articulação e interlocução para a elaboração de políticas públicas para o setor.

Palavras-chave: agricultura sustentável, competitividade, sustentabilidade, políticas pública

Contribution of the Brazilian Commission on Precision Agriculture for promotion and dissemination of Precision Agriculture in Brazil

Abstract: Among the responsibilities of the Ministry of Agriculture, Livestock and Food Supply (MAPA) is the management of public policies to stimulate agriculture, promotion of sustainable agriculture and the regulation and standardization of services related to the sector. Thus, the MAPA seeks to integrate its management aspects related to market, technology, science, environment and organization of the productive sector. The Coordination of Monitoring and Promotion of Agricultural Technology (CAPTA) develops an innovative and supportive environment for the promotion and dissemination of Precision Agriculture (AP) in the country and promotes the tools and technologies used in the AP to generate competitiveness and sustainability suited to small medium and large producer of Brazilian agribusiness, for the benefit of Brazilian society. With the support of the representatives from AP sectors MAPA created the Brazilian Commission on Precision Agriculture (CBAP), formalized by ordinance n° 852 of September 20, 2012, consisting of a consultative and propositional forum of articulation and dialogue for the development of public policies for the sector.

Keywords: sustainable agriculture, competitiveness, sustainability, public policies
1. Introdução

Os primeiros relatos sobre Agricultura de Precisão (AP) surgiram em 1929, porém tiveram destaque a partir da década de 1980, devido aos avanços e à difusão dos sistemas de posicionamento geográfico, sistemas de informação geográfica, monitores de colheita e também ao desenvolvimento da informática. No Brasil a AP foi introduzida na segunda metade dos anos 1990 com o advento dos monitores de produtividade para colhedoras de grãos que possibilitavam a geração de mapas de produtividade. No início da década de 2000 surgiram soluções práticas para o mapeamento da variabilidade do solo, plantas e outros parâmetros, resultando numa aplicação otimizada de insumos, diminuindo custos e impactos ambientais negativos, aumentando o retorno econômico, social e ambiental das práticas agropecuárias. No meio acadêmico, a Escola Superior de Agronomia Luiz de Queiroz (ESALQ/USP) foi uma das pioneiras, organizando em 1996 o primeiro Simpósio sobre AP e a partir de 2004 passou a realizar o Congresso Brasileiro de Agricultura de Precisão (ConBAP). No início dos anos 2000, surgiu o Projeto Aquarius, que recebeu a adesão da Universidade Federal de Santa Maria (UFSM), em parceria com empresas privadas. Nessa mesma época a Universidade Federal de Viçosa (UFV) iniciava a realização dos Simpósios Internacionais de Agricultura de Precisão (SIAP) e mais recentemente a Embrapa teve uma iniciativa importante com a criação da Rede de AP.

No Ministério da Agricultura, Pecuária e Abastecimento (MAPA) iniciou-se com a criação da Coordenação de Acompanhamento e Promoção da Tecnologia Agropecuária (CAPTA) em 2005, para promover o desenvolvimento sustentável e a competitividade do agronegócio em benefício da sociedade brasileira, que tem utilizado as ferramentas e tecnologias da AP para atingir esse objetivo.

2. Comitê Brasileiro de Agricultura de Precisão - CBAP

Em 25 de setembro de 2007, durante o SIAP em Viçosa, MG, a CAPTA, com apoio de pessoas e entidades do setor de AP criou o Comitê Brasileiro de Agricultura de Precisão (CBAP), que contou com participantes das instituições de ensino, da pesquisa agropecuária, do setor de prestação de serviços e da indústria de máquinas e equipamentos em AP.

3. Reuniões do CBAP

A primeira reunião técnica do CBAP ocorreu em 25 de setembro de 2007 durante o SIAP e os principais itens discutidos foram:

- incentivo ao uso da AP no País;
- elaboração de uma cartilha e folder com o apoio do MAPA, para servir de instrumento de divulgação e difusão da AP;
- desenvolver programas de atualização profissional do pessoal especializado em AP;
- levantamento das demandas de pesquisa junto a todos os setores específicos;
- buscar formas de inserção da AP nas políticas agrícolas brasileiras;
- buscar a abertura de editais específicos para financiamento de pesquisa em AP, com foco em ações interinstitucionais;
- sensibilizar os gestores públicos sobre a importância da AP;
- oficializar e manter um Comitê Brasileiro de Agricultura de Precisão.

Definiu-se nessa reunião que o CBAP seria um grupo aberto, com a participação do maior número de pessoas possível e de adesão voluntária.

A segunda reunião técnica do CBAP foi realizada em 03 de junho de 2008, em Piracicaba, SP, por ocasião do ConBAP 2008 e nessa época o Comitê já possuía 200 membros cadastrados. Na mesma época a CAPTA foi reestruturada e criou-se a Divisão de Prospeção à Tecnologia Agropecuária com objetivo, dentre outros, de fomentar, desmistificar e organizar o setor de AP no Brasil. Outro assunto importante levantado foi a viabilização de chamadas públicas com a função de promover e financiar a inovação e a pesquisa científica e tecnológica relacionadas à AP em empresas, universidades, centros de pesquisa. Assim, o CBAP, com apoio do MAPA deu início a articulação para conseguir financiamento para projetos de pesquisa e inovação em AP.
Nessa mesma reunião técnica foi destacada a preocupação do CBAP com a pecuária de precisão, voltada para a produção animal.

A terceira reunião técnica do CBAP foi realizada em 28 de setembro de 2010, em Ribeirão Preto, SP, durante o ConBAP 2010, da qual destaca-se a criação do boletim e folder técnico em AP publicado pelo MAPA e a conquista da aprovação do Edital nº. 01/2008 MAPA/MCT/FINEP/CT - Agro, que proporcionou recursos para os seguintes projetos de pesquisa e desenvolvimento tecnológico dedicado à AP:

- Sistema de controle automático para ajuste em tempo real dos componentes de aterramento e compactação de semeadoras diretas - Executor: IAPAR/PR;
- Desenvolvimento de inovações tecnológicas aplicadas à mecanização da cana-de-açúcar - Executor: UNICAMP/SP;
- Sistemas para viabilizar monitoramentos e intervenções localizadas - Executor: Embrapa-CNPDIA/SP;
- Desenvolvimento de uma plataforma robótica modular e multifuncional para aquisição de dados em agricultura de precisão - Executor: USP/Escola de Engenharia de São Carlos/SP;
- Sistemas de monitoramento, aplicação de fertilizantes em taxa variável e avaliação de indicadores de em lavouras, com o uso de sensores de refletância para plantas e solo - Executor: USP/ESALQ/SP;
- Sistema de controle de adubação em tempo real pela identificação de condições nutricionais das plantas - Executor: CETA/SENAI/RS;
- Projeto e desenvolvimento do sistema de monitoração do microclima em culturas de soja - Executor: UEL/PR.

5. Oficialização da Comissão Brasileira de Agricultura de Precisão - CBAP

Em 21 de setembro de 2012 o Comitê Brasileiro de Agricultura de Precisão foi oficializado pelo Ministério da Agricultura, Pecuária e Abastecimento com o nome de “Comissão Brasileira de Agricultura de Precisão - CBAP”, com caráter consultivo, propositivo de livre adesão, que representou uma grande conquista para o setor.

A CBAP é coordenada pela Secretaria Executiva da Comissão Brasileira de Agricultura de Precisão - SECBAP, composta por um presidente, um coordenador e pelos representantes indicados pelas instituições públicas ou privadas que guardam maior representatividade nacional, e pelos convidados especiais “de notório saber”, que possuem interfaces operacionais em AP no país.
garantindo assim a representatividade de todos os específicos segmentos setoriais.

Os representantes que compõe e coordenam a SECBAP são oriundos dos diversos segmentos público e privado com interfaces operacionais que tratam de temas específicos de AP, são indicados respectivamente, pelos órgãos e entidades que guardam maior identidade com as competências sobre AP no Brasil, sendo garantida a representatividade de todos os específicos segmentos setoriais e o equilíbrio entre os mesmos. Os convidados especiais participam de forma temporária, com objetivo de organizar determinados segmentos do setor de AP, que ainda não possuem representatividade de âmbito nacional.

A inclusão de novas entidades é precedida de consulta ao plenário da Secretaria Executiva e posterior aprovação pelo MAPA. O Presidente é escolhido dentre os membros da Secretaria Executiva por meio de votação, com exercido por período de dois anos sendo permitida apenas uma recondução por igual período, a coordenação da Secretaria Executiva é exercida por um profissional indicado pela CAPTA.

As principais competências da SECBAP são:

- apoiar eventos relacionados à AP no Brasil;
- difundir e fomentar o conceito e as técnicas de AP;
- elaborar materiais de divulgação sobre AP para servir de instrumento de divulgação e difusão no Brasil;
- incentivar o desenvolvimento de programas de atualização profissional do pessoal especializado em AP;
- incentivar o desenvolvimento de programas de treinamento de mão-de-obra em AP em todos os níveis;
- captar as demandas de pesquisa junto aos setores de AP e encaminhá-las aos órgãos competentes;
- estimular a geração e/ou adaptação de conhecimentos e tecnologias de custo acessível em relação aos benefícios proporcionados;
- buscar formas de inserção da AP nas políticas agrícolas brasileiras;
- dialogar com os gestores públicos enfatizando a importância da AP para o desenvolvimento agropecuário e a sua sustentabilidade socioambiental;
- realizar levantamentos estatísticos sobre a evolução da AP no Brasil e manter um banco de dados, de domínio público, das atividades relacionadas à AP;
- informar e apoiar os trabalhos técnicos e científicos relacionados à AP;
- realizar articulações e parcerias para a elaboração dos instrumentos relativos à AP;
- garantindo assim a representatividade de todos os específicos segmentos setoriais.

Figura 1. Organograma da Secretaria Executiva da Comissão Brasileira de Agricultura de Precisão
identificar e articular os atores envolvidos com AP no cenário nacional;
identificar as demandas e monitorar tendências em AP do país e do exterior;
buscar a abertura de editais específicos para financiamento de pesquisa em AP, com foco em ações interinstitucionais;
propar encaminhamentos e políticas públicas para o setor de AP;
implementar e manter um fórum de discussão virtual em AP.
A SECBAP pode articular com agentes públicos e privados para definir ações prioritárias de interesse comum, visando à atuação sistêmica e integrada para o desenvolvimento dos diferentes segmentos que atuam com a AP.
Devido à natureza consultiva da Secretaria Executiva da CBAP, todos os encaminhamentos das discussões técnicas realizadas são oriundos do consenso entre todos os membros presentes nas reuniões.
Uma das práticas adotadas desde o início do funcionamento da SECBAP é a designação de Grupos de Trabalho (GT), que são previamente acordados entre os membros, para subsidiar tecnicamente um tópico específico. Para compor um GT é indicado um coordenador e integrantes da CBAP com reconhecida competência nos assuntos objeto do grupo. As propostas dos GTs são apresentadas nas reuniões e submetidas à apreciação da SECBAP para apreciação e aprovação.

6. As metas de curto prazo da CBAP

Dentre os objetivos da SECBAP está a promoção da desmistificação da AP, o levantamento de dados e informações setoriais, a união e organização dos setores da AP no país, a proposição de programas de financiamento, a capacitação de recursos humanos de forma a ter um setor organizado com maiores condições de articulação. Ela também tem como grande desafio difundir e fomentar as ferramentas e tecnologias já existentes para os pequenos e médios produtores rurais no sentido de promover a competitividade e sustentabilidade do agronegócio brasileiro. Na atualidade a Comissão tem focado seus esforços junto com o MAPA na realização do mapeamento sobre o uso das práticas de AP no Brasil e diagnosticar a proporção de produtores que empregam as técnicas de AP, qual o tamanho da área agrícola envolvida com AP, o levantamento da quantidade de máquinas e equipamentos comercializados pelas empresas, como são empregados, impactos econômicos do uso das ferramentas e tecnologias, perspectivas do setor, entre outros. O levantamento será fundamental para subsidiar o Plano Plurianual do Governo Federal (PPA), o direcionamento e melhorias das políticas públicas ao setor de AP e assim termos um setor com maior articulação e argumentações fundamentadas para as suas conquistas.

7. Reuniões da SECBAP

A primeira reunião técnica da SECBAP foi realizada em 25/09/2012, em Ribeirão Preto, SP durante o ConBAP 2012, os principais temas foram:
• criação das diretrizes para o regimento interno;
• necessidade da participação e identificação de todas as instituições representativas do setor;
• representatividade dos setores que ainda não possuem uma entidade representativa de nível nacional;
• criação do site da CBAP;
• análise das demandas e propostas dos setores;
• contratação de empresa privada para a realização do levantamento estatístico;
• criação dos grupos de trabalho para tratar de mercado de máquinas e equipamentos (GTME), para elaboração do Regimento Interno (GTRI) e para viabilização de pesquisas de adoção de prática de AP no país (GTE).
A segunda reunião técnica da SECBAP foi realizada em 03/12/2013 em Indaiatuba, SP os principais temas foram:
• apresentação dos resultados e conclusões dos GTs, sendo diagnosticada a necessidade clara de maiores estudos para a obtenção das informações técnicas e o apoio dos setores para aprofundar o debate sobre os temas específicos;
• o GTRI esclareceu que não existe diferenciação entre representantes titulares e suplentes, que as competências, obrigações e responsabilidades são as mesmas para ambos, a comissão...
é consultiva e propositiva, e que não há necessidade de votação numérica, devendo-se resolver e definir as prioridades em consenso entre todos os presentes;

- o GTME apresentou algumas experiências coletadas em outros países e debateu-se sobre os princípios que deverão rege a estatística de mercado que vire a ser organizada pela representação da indústria; uma contribuição dos representantes convidados do segmento de serviços em AP estimou o número de empresas de consultoria e soluções em AP no Brasil e foram identificadas 138 empresas (consultoria, cooperativa, prestadores de serviços, fornecedores de equipamentos e softwares e laboratórios) em 11 estados brasileiros e o trabalho continuará com o objetivo de formar uma entidade representativa de nível nacional;
- o GTE identificou a existência de várias propostas de questionários que já foram exercitados e que seria necessário unificados para que sirvam como referência para a empresa a ser contratada para executar o levantamento nacional.

A terceira reunião da SECBAP foi realizada em 17/04/2013 na sede do MAPA, em Brasília, DF. Contou com a presença do Secretario da Secretaria de Desenvolvimento Agropecuário e Cooperativismo e do Diretor do Departamento de Propriedade Intelectual e Tecnologia Agropecuária do Ministério da Agricultura, Pecuária e Abastecimento. Os principais temas abordados foram:

- aprovação por unanimidade o Regimento Interno da SECBAP;
- a Gerência de Avaliação de Safra - GEASA/CONAB foi convidada a participar dessa reunião por já estar veiculando questões relacionadas a AP no seu questionário estatístico em algumas regiões do Brasil; a Comissão sugeriu modificações e a possibilidade de trabalharem juntos;
- aprovação por unanimidade da entrada de uma entidade para contribuir e fortalecer a CBAP;
- proposta da criação da Agenda Estratégica da CBAP;
- divulgação do Curso de Capacitação de Técnicos em Gestão da Unidade Produtiva em Agricultura de Precisão pelo MAPA em 2013 em todas as regiões do Brasil.

8. Conceito de Agricultura de Precisão e recentes ações

“Agricultura de Precisão é um conjunto de ferramentas e tecnologias aplicadas para permitir um sistema de gerenciamento agrícola baseado na variabilidade espacial e temporal da unidade produtiva e visa ao aumento de retorno econômico, à sustentabilidade e à minimização do efeito ao ambiente”. Esse conceito é fruto de debates e distintas formulações internas e representa a visão da CBAP a respeito do grande tema Agricultura de Precisão.

9. Principais ações com apoio da CBAP

- Apoio para a segunda publicação do livro “Agricultura de Precisão - Um Novo Olhar”;
- Treinamento e capacitação dos técnicos do MAPA em torno do tema AP;
- Apoio na realização de Workshops em Pecuária de Precisão, Caféicultura de Precisão, Fruticultura de Precisão e outros;
- Publicação de novos boletins e folder de AP;
- Apoio ao termo de Cooperação para Capacitação e treinamento a técnicos em extensão rural, consultores, professores, alunos, com objetivo de promover a sensibilização, capacitação e atualização continuada de multiplicadores no espaço temático da AP e da Gestão e Administração Rural;
- Realização da reunião técnica em geoestatística entre pesquisadores da Embrapa, técnicos do MAPA, assistência técnica e ensino agrícola público, para nivelamento e harmonização de conhecimentos sobre sistemas de cultivo agrícola com o uso de AP;
- Presença no Congresso Sul Americano de Agricultura de Precisão e Máquinas Precisas;
- Criação da agenda estratégica da CBAP;
- Gestão para a realização do levantamento estatístico brasileiro de AP.
Adoção da Agricultura de Precisão No Brasil

Alberto C. de Campos Bernardi1; Ricardo Y. Inamasu2,3

1Embrapa Pecuária Sudeste, CEP 13560-970, São Carlos, SP
2Embrapa Instrumentação, São Carlos - SP.
3Bolsista do CNPq

*E-mail: alberto.bernardi@embrapa.br

Resumo: O entendimento dos fatores que condicionam a adoção da AP pode ser decisivo para traçar estratégias que possibilitem a disseminação pelos setores do agronegócio brasileiro. Este estudo teve como objetivo avaliar a adoção e uso das tecnologias de AP por produtores das principais regiões agrícolas brasileira. O levantamento foi feito com a aplicação de questionário a 301 proprietários e administradores. Os resultados indicaram que o perfil dos proprietários e administradores de propriedades que adotam a AP é jovem, instruído, propenso a utilizar mais tecnologias e informática e cultivam grandes extensões de terras. O tempo médio de adoção das tecnologias de AP é de 4 anos. Os principais produtos agrícolas cultivados com ferramentas de AP são o arroz e milho, seguido pelas culturas do trigo e feijão. As propriedades que adotam AP possuem equipamentos, porém são subutilizados. Os sistemas de navegação (barra de luz e piloto automático) e para aplicação de insumos a taxas variadas são os equipamentos mais frequentes nas propriedades. As principais atividades em que a AP está presente são na aplicação de corretivos do solo e colheita. A maior parte das atividades de AP é realizada por terceiros. A grade amostral utilizada varia de 3 a 5 ha. As principais fontes de informação dos produtores têm sido os consultores, cursos e treinamentos, e feiras e exposições agropecuárias. Existe a percepção de que a adoção da AP pode aumentar a produtividade, o retorno econômico, a qualidade do produto e reduzir o impacto ambiental negativo.

Palavras-chave: fatores de adoção, ferramentas de AP, agricultores

Adoption of Precision Agriculture in Brazil

Abstract: Understanding the factors that influence the adoption of AP can be decisive to devise strategies that will enable its dissemination by Brazilian agribusiness. This study aimed to evaluate the adoption and use of PA technologies by producers of major agricultural regions of Brazil. The survey was conducted through applying a questionnaire to 301 land owners and managers. The results indicated that the profile of the owners and property managers who adopt the AP is young, educated, more likely to use technology and informatics and cultivate large areas. The average time of adoption of technologies is 4 years. The main agricultural products cultivated with tools AP are soybeans and corn, followed by wheat and beans. The properties that take AP have equipment, but are underutilized. Navigation systems (light bar and auto guidance) and variable rate are the most common equipment in the farms. The main activities in which the AP is present are in the application of soil amendments/ fertilizer and harvest. Most of the activity of AP is performed by a third party. The soil sampling grid used ranges from 3 to 5 ha. The main sources of information producers have been consultants, courses and training programs, and agricultural fairs and exhibitions. There is a perception that the adoption of AP can increase productivity, economic returns, and product quality and reduce the negative environmental impact.

Keywords: adoption factors, PA tools, farmers
1. Introdução

O primeiro mapa de produtividade derivado de um monitor de rendimento acoplado ao GPS foi produzido na Alemanha, em 1990 a partir de uma cultura de canola (SCHNUG; HANEKLAU; LAMP, 1991). Desde então, a Agricultura de Precisão tornou-se acessível aos produtores com o surgimento de vários equipamentos e tecnologias. Os produtores de grãos e algodão dos EUA dominaram as tecnologias e expandiram as atividades com a AP. De acordo com Griffin e Lowenberg-DeBoer (2005) no início da década de 2000, cerca de 90% dos monitores de produtividade do mundo estavam em operação nos EUA. Cerca de 28% da área de milho plantada e 22% da área plantada de soja possuíam o rendimento monitorados com estes equipamentos (WINSTEAD et al., 2010). Os principais fatores para a adoção das tecnologias de AP nos EUA foram o aumento da eficiência dos sistemas de produção, com a otimização dos custos por meio da aplicação de fertilizantes à taxa variável (GODWIN et al., 2003; DOERGE, 2005) e a maximização do rendimento (KITCHEN, 2008).

As projeções do MAPA para 2022 (BRASIL, 2012) indicam que a produção de grãos aumentará 22%, sendo a soja o produto principal, com média de 2,3% ao ano. Os produtos trigo, milho, carnes (frango, bovina e suína) deverão também liderar esse crescimento. Neste cenário de expansão da produção, de acordo com Inamasu et al. (2011), o uso do conjunto de tecnologias da Agricultura de Precisão na gestão da propriedade, considerando a variabilidade espacial para maximização do retorno econômico e minimização dos riscos de dano ao meio ambiente pode ser decisivo. Porém, a adoção da AP nos diversos setores do agronegócio brasileiro está ocorrendo em um ritmo inferior ao da expansão da produção. A situação é semelhante em outras regiões do mundo (GRiffin; LOWENBERG-DEBOER, 2005).

No Brasil ainda são escassos os estudos sobre a adoção das tecnologias de AP e os fatores condicionantes de sua adoção. A análise conduzida por Griffin e Lowenberg-DeBoer (2005) sugeriu que a adoção da PA no Brasil estava ocorrendo de forma lenta e desigual. Entre os fatores que contribuíram para este atraso na adoção da tecnologia estavam os preços relativamente baixos da terra, baixo custo da mão-de-obra, pouco uso de informática nas propriedades rurais e o custo elevado dos equipamentos importados de alta tecnologia. Os outros estudos sobre a adoção no Brasil são de Silva, De Moraes e Molin (2011), para o setor sucro-alcooleiro do Estado de São Paulo, Borghi et al. (2011), com uma abordagem para o Estado do TO e de Anselmi (2012) para o Rio Grande do Sul.

Tey e Brindal (2012) revisaram vários artigos sobre a adoção da AP e levantaram 34 fatores ligados a esta tomada de decisão. Estes fatores podem ser agrupados em sete categorias: 1) sócio-econômicos (idade do produtor, educação formal, tempo de experiência em agricultura), (2) agro-ambientais (propriedade e arrendamento da terra, parceiros, especialização, tamanho da propriedade, qualidade do solo, área da cultura principal da propriedade, produtividade, dívidas, renda, oportunidades de emprego, diversificação da produção, pecuária); 3) institucionais (distância do fornecedor de fertilizantes, contratos futuros, região, pressão para desenvolvimento); 4) informativos (consultores e serviços de extensão); 5) percepção do produtor (rentabilidade); 6) comportamentais (desejo do produtor) e 7) tecnológicos (mapas de produtividade, irrigação, uso do computador, geração de mapas de recomendação).

O entendimento dos fatores que condicionam a adoção da AP pode ser decisivo para traçar estratégias que possibilitem sua disseminação pelos setores do agronegócio brasileiro. Dessa forma este estudo teve como objetivo avaliar a adoção e uso das tecnologias de AP por produtores das principais regiões agrícolas brasileira.
2. Material e métodos

Elaborou-se um questionário, que abordava inicialmente questões gerais, para caracterização do entrevistado (idade, gênero, grau de instrução, renda), da propriedade (localização, área, propriedade da terra, arrendamento, textura do solo, relevo), e o sistema de produção adotado (culturais e práticas conservacionistas e culturais).

Em seguida eram apresentadas questões sobre uso de tecnologias (computador, celular, acesso à internet) e agricultura de Precisão (uso, ferramentas e equipamentos, atividades, execução das atividades, fontes de informação, grade e frequência de amostragem do solo). Houve também questões subjetivas sobre a percepção dos produtores sobre o uso da AP em sua região (taxa de adoção e expectativa de crescimento) e efeitos do uso da AP sobre produtividade, rentabilidade, custo, qualidade do produto e meio ambiente.

O questionário foi aplicado, entre 10/setembro e 13/novembro/2012 durante os Seminários sobre Agricultura de Precisão, promovidos pelo Serviço Nacional de Aprendizagem Rural - SENAR (http://www.canaldoprodutor.com.br/agricultura-precisao/programacao-seminarios/) e realizados nas localidades: Balsas, MA; Bom Jesus, PI; Maracaju, MS; Campo Verde, MT; Luis Eduardo Magalhães, BA; Cascavel, PR; Náo me Toque, RS, Patos de Minas, MG e Rio Verde, GO. Os participantes dos seminários eram produtores, técnicos da extensão, consultores, funcionários de empreendimento agropecuários, professores e alunos. A partir das respostas coletadas selecionou-se 301 questionários para análise preenchidos exclusivamente por produtores e administradores de propriedades.

As respostas foram tabuladas e sua avaliação permitiu traçar o perfil dos produtores que tem utilizado a AP nas principais regiões agrícolas do Brasil.

3. Resultados e Discussão

A idade e grau de instrução são motivadores para o uso das novas tecnologias e algumas diferenças foram observadas na caracterização dos proprietários e administradores que adotam o sistema de cultivo convencional e os que adotam a AP (Tabela 1). O questionário apresentado em todas as regiões obteve 301 respostas, sendo que 47% utilizavam o sistema convencional e o restante (53%) adotavam a AP. A idade média dos entrevistados que utilizam o sistema convencional foi de 39,3 anos, enquanto que adotam a AP foi de 35,5 anos. Os resultados de pesquisa realizada por Roberts et al. (2004) já havia indicado a menor probabilidade de adoção da AP pelos produtores mais velhos. Com relação ao gênero, mais de 80% dos entrevistados eram homens. O grau de instrução dos entrevistados indicou que mais de 42% possuíam curso superior (Tabela 1), porém houve algumas diferenças considerando o uso da AP, com a tendência de elevação do grau de instrução, uma vez que houve maior porcentagem de entrevistados com cursos de pós-graduação que utilizam a AP (19%) que os que utilizam cultivo convencional (11%). E também uma tendência de diminuição da percentual de entrevistados com 1 e 2 graus que adotam a AP. Anselmi (2012) observou a mesma tendência de elevada escolaridade entre os adotantes no RS. Daberkow e Mcbride (2003) haviam já indicado que os produtores mais novos tendiam a ter maior grau de instrução e isso interferia positivamente na adoção da AP.

Os resultados indicaram maior renda no grupo de proprietários e administradores que utilizam a AP. A maioria da renda dos entrevistados que adotavam AP estava entre 5 a 10 salários mínimos (31%) ou acima de 10 salários (38%), enquanto que no sistema convencional de cultivo as tendência foi de maior número de entrevistados com renda abaixo de 5 salários (29%) e entre 5 a 10 salários mínimos (34%). Rogers (2003) indicou que os inovadores, ou os que adotam a tecnologia mais cedo, possuem características diferentes daqueles que não adotam ou adotam mais tardiamente as tecnologias, sendo que estes possuem maior grau de escolaridade, estão mais expostos aos meios de comunicação de massa e interpessoal, maior contato com agentes de mudança, maior disponibilidade de capital e proximidade com outros adotantes.

O tamanho das propriedades refletiu o tipo de uso e a região (Tabela 2), sendo que tendem a serem maiores as propriedades nas quais a AP está sendo utilizada. Na região Sul, as propriedades apresentaram entre 171 e 272 ha no cultivo convencional e 287 e 408 ha para as que
<table>
<thead>
<tr>
<th>Estado</th>
<th>N</th>
<th>Idade</th>
<th>Gênero</th>
<th>Instrução</th>
<th>Renda (salário mínimo)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conv.</td>
<td>AP</td>
<td>Conv.</td>
<td>AP</td>
<td>Fem Masc</td>
</tr>
<tr>
<td>BA</td>
<td>6 6</td>
<td>44,0</td>
<td>36,7</td>
<td>16,7</td>
<td>83,3</td>
</tr>
<tr>
<td>PI</td>
<td>9 12</td>
<td>33,0</td>
<td>30,1</td>
<td>0,0</td>
<td>77,8</td>
</tr>
<tr>
<td>MA</td>
<td>8 13</td>
<td>41,4</td>
<td>34,3</td>
<td>0,0</td>
<td>100,0</td>
</tr>
<tr>
<td>GO</td>
<td>17 14</td>
<td>31,6</td>
<td>25,3</td>
<td>23,5</td>
<td>76,5</td>
</tr>
<tr>
<td>MS</td>
<td>9 35</td>
<td>46,9</td>
<td>41,5</td>
<td>11,1</td>
<td>77,8</td>
</tr>
<tr>
<td>MT</td>
<td>7 12</td>
<td>31,8</td>
<td>32,3</td>
<td>71,4</td>
<td>0,0</td>
</tr>
<tr>
<td>MG</td>
<td>15 15</td>
<td>42,1</td>
<td>38,5</td>
<td>6,7</td>
<td>80,0</td>
</tr>
<tr>
<td>PR</td>
<td>53 31</td>
<td>44,5</td>
<td>42,1</td>
<td>1,9</td>
<td>96,2</td>
</tr>
<tr>
<td>RS</td>
<td>17 22</td>
<td>38,4</td>
<td>38,5</td>
<td>17,6</td>
<td>82,4</td>
</tr>
<tr>
<td>Total</td>
<td>141 160</td>
<td>39,3</td>
<td>35,5</td>
<td>11,3</td>
<td>83,0</td>
</tr>
</tbody>
</table>
Tabela 2. Caracterização e sistemas de produção das propriedades que adotam o sistema convencional e AP.

<table>
<thead>
<tr>
<th>Estado</th>
<th>Área (ha)</th>
<th>Textura do solo</th>
<th>Planta</th>
<th>S.ond</th>
<th>Ond</th>
<th>Decl</th>
<th>Relevo</th>
<th>Plantio direto</th>
<th>Rot. culturas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Are</td>
<td>Med</td>
<td>Arg</td>
<td>Are</td>
<td>Med</td>
<td>Arg</td>
<td>Plana</td>
<td>S.ond</td>
</tr>
<tr>
<td>BA</td>
<td>1940</td>
<td>66,7</td>
<td>33,3</td>
<td>0,0</td>
<td>33,3</td>
<td>66,7</td>
<td>0,0</td>
<td>66,7</td>
<td>33,3</td>
</tr>
<tr>
<td>PI</td>
<td>1975</td>
<td>11,1</td>
<td>77,8</td>
<td>11,1</td>
<td>50,0</td>
<td>41,7</td>
<td>8,3</td>
<td>44,4</td>
<td>55,6</td>
</tr>
<tr>
<td>MA</td>
<td>1691</td>
<td>0,0</td>
<td>62,5</td>
<td>37,5</td>
<td>69,2</td>
<td>23,1</td>
<td>0,0</td>
<td>75,0</td>
<td>25,0</td>
</tr>
<tr>
<td>GO</td>
<td>407</td>
<td>17,6</td>
<td>64,7</td>
<td>17,6</td>
<td>7,1</td>
<td>71,4</td>
<td>21,4</td>
<td>41,2</td>
<td>52,9</td>
</tr>
<tr>
<td>MS</td>
<td>815</td>
<td>11,1</td>
<td>44,4</td>
<td>44,4</td>
<td>2,9</td>
<td>28,6</td>
<td>68,6</td>
<td>55,6</td>
<td>55,6</td>
</tr>
<tr>
<td>MT</td>
<td>504</td>
<td>0,0</td>
<td>71,4</td>
<td>14,3</td>
<td>8,3</td>
<td>75,0</td>
<td>16,7</td>
<td>57,1</td>
<td>28,6</td>
</tr>
<tr>
<td>MG</td>
<td>907</td>
<td>6,7</td>
<td>60,0</td>
<td>26,7</td>
<td>6,7</td>
<td>73,3</td>
<td>26,7</td>
<td>26,7</td>
<td>40,0</td>
</tr>
<tr>
<td>PR</td>
<td>171</td>
<td>0,0</td>
<td>22,6</td>
<td>75,5</td>
<td>3,2</td>
<td>32,3</td>
<td>64,5</td>
<td>1,9</td>
<td>62,3</td>
</tr>
<tr>
<td>RS</td>
<td>272</td>
<td>17,6</td>
<td>35,3</td>
<td>47,1</td>
<td>4,5</td>
<td>54,5</td>
<td>36,4</td>
<td>0,0</td>
<td>58,8</td>
</tr>
<tr>
<td>Total</td>
<td>977</td>
<td>9,2</td>
<td>43,3</td>
<td>45,4</td>
<td>14,4</td>
<td>46,3</td>
<td>38,8</td>
<td>24,8</td>
<td>52,5</td>
</tr>
</tbody>
</table>
adotam a AP. Em Minas Gerais (região Sudeste) existem muito pouca diferença entre os 2 sistemas (907 e 8446 ha) e ha. No Centro-oeste, existem grandes diferenças no tamanho das propriedades, variando de 407 a 815 nas que utilizam o sistema convencional e de 1167 a 1921 ha nas que adotam a AP. Nos Estados do Maranhão, Piauí e Bahia, a extensão das propriedades é muito maior, estando entre 1691 e 1975 no sistema convencional e 2645 a 5531 para as que adotam a AP. A influência do tamanho das propriedades na adoção da AP também foram observadas por Daberkow e Mcbride (1998, 2003). Estes resultados confirmam as observações de Griffin e Lowenberg-DeBoer (2005) de que as maiores escalas de produção tendem a favorecer a adoção de tecnologias de AP.

Com relação à textura do solo nas regiões Sul, Centro-Oeste e Sudeste aparentemente não existem diferenças entre os sistemas de cultivo (Tabela 2). Já na região da nova fronteira agrícola do Brasil, Maranhão, Piauí e Bahia, caracterizada pela estação chuvosa definida e solos arenosos e de baixa fertilidade natural, existe uma tendência das propriedades do PI e MA utilizarem AP em propriedades com solos mais arenosos (50 e 69%, respectivamente), enquanto que na BA prevalecem as propriedades com solos de textura média (67%). De acordo com Daberkow e Mcbride (2003) a localização da propriedade, a fertilidade do solo, o níveis de acesso às informações influenciam a adoção de tecnologias como a AP. As diferenças no relevo são observadas entre as regiões produtoras e não influenciam os sistemas de cultivo (convencional ou AP). O uso de plantio direto e da rotação de culturas apresenta uma tendência de serem mais utilizados nas propriedades que utilizam AP, indicando uma maior adequação tecnológicas destas propriedades às condições de cultivo.

O uso de computadores na gestão da propriedade e o primeiro passo em direção da adoção da AP, uma vez que a informática é parte integrante desse processo (ROBERTS et al. 2004). O levantamento indicou (Tabela 3) diferenças relevantes entre as propriedades que utilizam o sistema convencional e as que utilizam a AP. Entre os que adotam a AP, 74% utilizam a informática na gestão enquanto que este valor é de apenas 47% para as que não adotam as tecnologias. Essa diferença já também havia sido observada por Daberkow e Mcbride (1998). No entanto, estes valores são maiores que os 14% observados em levantamento sobre o uso de compactadores em propriedades rurais do Estado de São Paulo (FRANCISCO; PINO, 2002) e estão próximos dos valores relatados para os EUA e Argentina (GRIFFIN; LOWENBERG-DEBOER, 2005). Nas propriedades que afirmam não utilizar a informática na gestão, provavelmente, têm utilizado registros limitados às anotações, que muitas vezes não são devidamente organizados e são de difícil recuperação. Com isso, perdem o grande potencial de examinar os problemas potenciais através da análise da informação armazenada (LARSON et al. 2008). Quando questionados sobre o uso de laptop no campo, apenas 38% dos que adotam AP afirmaram utilizar este recurso, e apenas 20% das propriedades de cultivo convencional o fazem. Outros números relevantes são que 68% das propriedades que adotam a AP possuem acesso à internet, contra apenas 46% das que utilizam cultivo convencional. Se 90% dos entrevistados possuem telefone celular, o uso de tecnologias que possibilitem mais funcionalidades, como a navegação na internet pelo telefone móvel do tipo “Smartphones”, é realizada por 46% dos que adotam AP e por apenas 28% do que adotam o cultivo convencional. As facilidades de acesso à internet e familiaridade com o su o de laptop no campo, pelas propriedades que utilizam a AP, indicam possibilidades interessantes, pois estes equipamentos possuem considerável capacidade computacional, são portáteis e de baixo custo. Entre as possibilidades estão o uso do software Geo-fielder (JORGE et al., 2011) para captura e gerenciamento de informações georreferenciadas em propriedades rurais.

A análise química da terra é um dos recursos mais usados no Brasil para avaliação da fertilidade do solo. Por meio de extratores químicos, procura-se determinar o grau de suficiência ou de deficiência dos elementos no solo, além de quantificar condições adversas que possam prejudicar o desenvolvimento das plantas (RAIJ, 1991). Os resultados da Tabela 4 confirmam isso, indicando que a análise de solo é uma prática comum entre os entrevistados, uma vez que 83 e 93% das propriedades sob sistema de cultivo convencional e com uso de AP, respectivamente, a realizam. Destaques que 100% das propriedades
Tabela 3. Acesso a tecnologias pelas propriedades que adotam o sistema convencional e AP.

<table>
<thead>
<tr>
<th>Estado</th>
<th>Computador para gerenciar propriedade</th>
<th>Laptop no campo</th>
<th>Acesso à internet</th>
<th>Celular</th>
<th>Celular para acessar internet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conv.</td>
<td>AP</td>
<td>Conv.</td>
<td>AP</td>
<td>Conv.</td>
</tr>
<tr>
<td>BA</td>
<td>100,0</td>
<td>100,0</td>
<td>33,3</td>
<td>83,3</td>
<td>33,3</td>
</tr>
<tr>
<td>PI</td>
<td>22,2</td>
<td>66,7</td>
<td>0,0</td>
<td>16,7</td>
<td>11,1</td>
</tr>
<tr>
<td>MA</td>
<td>62,5</td>
<td>92,3</td>
<td>25,0</td>
<td>84,6</td>
<td>50,0</td>
</tr>
<tr>
<td>GO</td>
<td>58,8</td>
<td>78,6</td>
<td>52,9</td>
<td>28,6</td>
<td>41,2</td>
</tr>
<tr>
<td>MS</td>
<td>77,8</td>
<td>82,9</td>
<td>11,1</td>
<td>45,7</td>
<td>55,6</td>
</tr>
<tr>
<td>MT</td>
<td>71,4</td>
<td>83,3</td>
<td>14,3</td>
<td>16,7</td>
<td>42,9</td>
</tr>
<tr>
<td>MG</td>
<td>33,3</td>
<td>66,7</td>
<td>13,3</td>
<td>33,3</td>
<td>33,3</td>
</tr>
<tr>
<td>PR</td>
<td>35,8</td>
<td>54,8</td>
<td>13,2</td>
<td>19,4</td>
<td>52,8</td>
</tr>
<tr>
<td>RS</td>
<td>41,2</td>
<td>68,2</td>
<td>23,5</td>
<td>40,9</td>
<td>58,8</td>
</tr>
<tr>
<td>Total</td>
<td>46,8</td>
<td>73,8</td>
<td>19,9</td>
<td>37,5</td>
<td>46,1</td>
</tr>
</tbody>
</table>
que usam AP afirmam realizá-la na BA, MA e MT. Com relação à frequência, existe uma tendência das amostragens anuais e a cada 2 anos para ambos sistemas. Alguns usuários de AP (26%) afirmam ainda que realizam análise de solo a cada 3 anos. As recomendações realizadas sem os resultados da análise de solo utilizando doses e formulações padronizadas, podem não levar em conta as reais necessidades das culturas e a disponibilidade de nutrientes no solo, o que pode causar prejuízos, pelo uso indevido de insumos, e levar à degradação ambiental, desequilíbrio nutricional e baixa produtividade.

A grade de amostragem é fundamental a avaliação da variabilidade espacial dos atributos dos solos e para estabelecer um programa de recomendação de correção e adubação do solo utilizando as ferramentas de AP. A maioria do grupo que utiliza AP (72%) realizam amostragem espacializada, com destaque para os Estados do MT, MS e MG onde este valores são acima de 80% (Tabela 4). O tamanho da grade amostral está relacionado com a acurácia da amostragem, e também ao custo. De modo geral, a maioria dos entrevistados informou que utilizam grades de 3 a 4 ha (24%) e de 5 ha (26%). Estas grades maiores podem não ser eficientes para indicar as variação nas propriedades químicas e físicas dos solos nestas áreas (McBRATNEY et al., 2005).

A Tabela 5 indica os produtos agrícolas cultivados pelos entrevistados que adotam a AP. Os dois principais produtos são a soja (82%) e o milho (82%). E também com destaque aparecem as culturas do trigo (22%) e do feijão (13%). Em seguida aparecem as culturas da cana (5%), sorgo (5%) e algodão (4%). O levantamento sistemático anual da produção agrícola brasileira, realizada pelo Instituto Brasileiro de Geografia e Estatística (INSTITUTO..., 2013) indicou que, atualmente, a produção de soja no Brasil é liderada pelos estados do MT, PR e RS. E a liderança destes estados também se reflete na porcentagem de propriedades que adotam AP na produção de soja. O levantamento do IBGE indica também que a produção de soja está evoluindo para novas áreas no MA, TO, PI e BA, que em 2012 responderam por 10% da produção Brasileira. E os dados do levantamento também indicam uma tendência do uso de AP na produção desta leguminosa pelos produtores da nova fronteira agrícola brasileira.

A produção nacional do milho é mais dispersa no país (INSTITUTO..., 2013), sendo que as maiores regiões produtoras são o Sul e o Centro Oeste, com destaque respectivamente para os PR e MT. O levantamento também indica que o milho é produzido em diferentes regiões com uso de tecnologias de AP, com destaque para MT, BA, RS, PR, MA e MS com grande porcentagem de produtores que adotam a AP. Já a produção de trigo no país concentra-se na região Sul (PR e RS), e também estão nestes estados os produtores que utilizam AP. O feijão é cultivado tipicamente por pequenos e grandes produtores em todas as regiões do Brasil, sendo os maiores produtores são PR e MG (INSTITUTO..., 2013).

Em geral a AP está sendo utilizada em 65% da área total das propriedades que adotam a técnica (Tabela 6), sendo que MS, MT, MA indicaram utilização em mais de 80% da área. A novidade do tema da AP reflete-se no tempo de adoção deste conjunto de tecnologias, uma vez que em média as propriedades o fazem há aproximadamente 4 anos. Sendo este também o tempo de adoção da AP em levantamento realizado no RS por Anselmi (2012).

O uso de mapas ou imagem aérea para gestão das propriedades ocorre em 61% dos que adotam a AP (Tabela 6). O sensoriamento remoto se baseia na aquisição de imagens de sensores ópticos e radiométricos instalados em uma plataforma aérea ou de um satélite, enquanto os sistemas de sensoriamento próximos são terrestres e ligados a um receptor GNSS. A vantagem de sensoriamento remoto é que as imagens de todo o campo podem ser capturadas em uma visada, enquanto sensores de solo proximais tem que ser movido através da paisagem para criar medições de alta densidade que podem ser mapeados (GEBBERS; ADAMCHUK, 2010). Apesar de haver vários trabalhos mostrando as aplicações do sensoriamento remoto na agricultura, Griffin e LowenDeBoer (2005) relatam que o retorno econômico do uso desta ferramenta ainda não foi bem estabelecido.

Inicialmente, no Brasil as tecnologias de AP estavam restritas ao uso de monitores de colheita de grãos para gerar os mapas de produtividade. No entanto os sistemas navegação na lavoura tiveram suas utilizações ampliadas. O levantamento (Tabela 6) indicou que as ferramentas de direcionamento (barras de luz
Tabela 4. Utilização da análise de solo e frequência de amostragem pelas propriedades e uso de amostragem georreferenciada e tamanho da grade de amostragem nas propriedades que adotam AP.

<table>
<thead>
<tr>
<th>Estado</th>
<th>Análise de solo</th>
<th>Frequência (anos)</th>
<th>Amostragem georreferenciada</th>
<th>Grade de amostragem (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>83,3</td>
<td>100,0</td>
<td>66,7</td>
<td>0,0</td>
</tr>
<tr>
<td>PI</td>
<td>44,4</td>
<td>75,0</td>
<td>33,3</td>
<td>0,0</td>
</tr>
<tr>
<td>MA</td>
<td>100,0</td>
<td>100,0</td>
<td>25,0</td>
<td>25,0</td>
</tr>
<tr>
<td>GO</td>
<td>82,4</td>
<td>78,6</td>
<td>29,4</td>
<td>0,0</td>
</tr>
<tr>
<td>MS</td>
<td>77,8</td>
<td>97,1</td>
<td>0,0</td>
<td>66,7</td>
</tr>
<tr>
<td>MT</td>
<td>85,7</td>
<td>100,0</td>
<td>71,4</td>
<td>14,3</td>
</tr>
<tr>
<td>MG</td>
<td>93,3</td>
<td>93,3</td>
<td>46,7</td>
<td>0,0</td>
</tr>
<tr>
<td>PR</td>
<td>81,1</td>
<td>90,3</td>
<td>7,5</td>
<td>35,8</td>
</tr>
<tr>
<td>RS</td>
<td>94,1</td>
<td>95,5</td>
<td>23,5</td>
<td>35,3</td>
</tr>
<tr>
<td>Total</td>
<td>83,0</td>
<td>92,5</td>
<td>24,1</td>
<td>24,1</td>
</tr>
</tbody>
</table>
Tabela 5. Produtos cultivados nas propriedades que adotam AP.

<table>
<thead>
<tr>
<th>Estado</th>
<th>Soja</th>
<th>Milho</th>
<th>Trigo</th>
<th>Feijão</th>
<th>Cana</th>
<th>Sorgo</th>
<th>Algodão</th>
<th>Pecuária (corte e leite)</th>
<th>Arroz</th>
<th>Café</th>
<th>Milheto</th>
<th>Frutas</th>
<th>Aveia, cevada, girassol</th>
<th>Hortaliças, ornamentais</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>83,3</td>
<td>100,0</td>
<td>-</td>
<td>16,7</td>
<td>-</td>
<td>16,7</td>
<td>50,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16,7</td>
<td>16,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PI</td>
<td>50,0</td>
<td>41,7</td>
<td>-</td>
<td>25,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8,3</td>
<td>25,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MA</td>
<td>92,3</td>
<td>92,3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15,4</td>
<td>30,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>GO</td>
<td>71,4</td>
<td>64,3</td>
<td>-</td>
<td>28,6</td>
<td>21,4</td>
<td>7,1</td>
<td>7,1</td>
<td>21,4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7,1</td>
<td>14,2</td>
</tr>
<tr>
<td>MS</td>
<td>91,4</td>
<td>91,4</td>
<td>5,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5,8</td>
<td>2,9</td>
</tr>
<tr>
<td>MT</td>
<td>100,0</td>
<td>100,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MG</td>
<td>20,0</td>
<td>33,3</td>
<td>-</td>
<td>13,3</td>
<td>20,0</td>
<td>13,3</td>
<td>-</td>
<td>6,7</td>
<td>20,0</td>
<td>6,7</td>
<td>-</td>
<td>-</td>
<td>6,7</td>
<td>-</td>
</tr>
<tr>
<td>PR</td>
<td>96,8</td>
<td>93,5</td>
<td>51,6</td>
<td>29,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>29,0</td>
<td>-</td>
</tr>
<tr>
<td>RS</td>
<td>95,5</td>
<td>95,5</td>
<td>77,3</td>
<td>9,1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>90,9</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>81,9</td>
<td>81,9</td>
<td>21,9</td>
<td>13,1</td>
<td>5,0</td>
<td>5,0</td>
<td>4,4</td>
<td>3,8</td>
<td>1,9</td>
<td>1,9</td>
<td>1,3</td>
<td>0,6</td>
<td>20,0</td>
<td>3,2</td>
</tr>
</tbody>
</table>
Tabela 6. Porcentagem e tempo de uso da AP, uso de mapas e imagens aéreas e equipamentos presentes nas propriedades que adotam AP.

<table>
<thead>
<tr>
<th>Estado</th>
<th>% da área que usa AP</th>
<th>Tempo que adotou AP</th>
<th>Propriedade possui</th>
<th>Mapas ou imagem aérea para gestão da propriedade</th>
<th>Baixa de Ar</th>
<th>Plote autônomo</th>
<th>Adubadora/semeadora a taxa variável</th>
<th>Colhedora com sensor de colheita</th>
<th>Não possui equipamentos de AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>70,0</td>
<td>3,7</td>
<td>33,3</td>
<td>50,0</td>
<td>83,3</td>
<td>50,0</td>
<td>16,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>22,3</td>
<td>1,8</td>
<td>33,3</td>
<td>50,0</td>
<td>83,3</td>
<td>50,0</td>
<td>16,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>80,0</td>
<td>6,7</td>
<td>92,3</td>
<td>15,4</td>
<td>84,6</td>
<td>76,9</td>
<td>23,1</td>
<td>7,7</td>
<td></td>
</tr>
<tr>
<td>GO</td>
<td>74,2</td>
<td>4,2</td>
<td>57,1</td>
<td>28,6</td>
<td>57,1</td>
<td>57,1</td>
<td>35,7</td>
<td>14,3</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>86,4</td>
<td>4,8</td>
<td>58,3</td>
<td>41,7</td>
<td>91,7</td>
<td>54,3</td>
<td>41,7</td>
<td>11,4</td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>80,8</td>
<td>2,3</td>
<td>86,7</td>
<td>33,3</td>
<td>53,3</td>
<td>0,0</td>
<td>13,3</td>
<td>40,0</td>
<td></td>
</tr>
<tr>
<td>MG</td>
<td>51,6</td>
<td>3,4</td>
<td>86,7</td>
<td>33,3</td>
<td>53,3</td>
<td>0,0</td>
<td>13,3</td>
<td>40,0</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>66,8</td>
<td>4,5</td>
<td>54,8</td>
<td>29,0</td>
<td>161,1</td>
<td>129,0</td>
<td>129,0</td>
<td>38,7</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>56,6</td>
<td>3,9</td>
<td>68,2</td>
<td>45,5</td>
<td>22,7</td>
<td>31,8</td>
<td>31,8</td>
<td>27,3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>65,4</td>
<td>3,9</td>
<td>61,3</td>
<td>24,9</td>
<td>39,4</td>
<td>38,3</td>
<td>38,3</td>
<td>21,3</td>
<td></td>
</tr>
</tbody>
</table>
e piloto automático) estão em 42 e 37% das propriedades, com destaque para o MA com a indicação de que 92% possuem barras de luz e BA com 67% indicando possuir piloto automático. Silva, De Moraes e Molin (2011) indicaram que 39% das usinas de cana-de-açúcar instaladas no Estado de São Paulo adotam pilotos automáticos ou os sistemas de auto-direcionamento por satélites. Gebbers e Adamchuk (2010) relataram que esta é a ferramenta de AP mais amplamente adotada.

Os equipamentos voltados para aplicação de insumos a taxas variadas (“Variable Rate Technology”), como a semeadora/adubadora e adubadora/calcareadora também são frequentes nas propriedades que utilizam AP (49 e 38%, respectivamente). Já as colhedoras com monitor de colheita estão presentes em apenas 19% das propriedades avaliadas, sendo que BA, GO e MT estes equipamentos estão presentes em maior número (50, 36 e 33%, respectivamente). Apesar dos mapas de produtividade ser excelente fonte de indicação da variabilidade espacial no campo, o custo para aquisição da colhedora equipada com o sensor pode ser o fator limitante para aquisição pelos produtores. Por outro lado, os sistemas de direcionamento apresentam custo relativamente mais baixo e provavelmente este seja o motivo de sua maior aquisição.

Quando foram questionados sobre quais atividades a AP era utilizada (Tabela 7), as atividades de aplicação de corretivos do solo e adubação foram as atividades de maior porcentagem de utilização (80 e 67%), sendo condizente com os equipamentos presentes nestes locais. Com relação à colheita, apesar da baixa porcentagem de propriedades que possuem o sensor de colheita, em 33% das propriedades esta é uma das atividades com uso das tecnologias de AP, com destaque para o MA, onde 62%. Estes valores indicam que provavelmente este serviço esteja sendo feito por terceiros. Por outro lado, apesar das semeadoras/adubadoras estarem presentes em quase metade das propriedades (Tabela 6), a atividade de semeadura com ferramentas de AP é utilizada em apenas 18% das propriedades, com exceção para GO que apresenta índices de 43%. Indicando que estes equipamentos estejam sendo subutilizados nas propriedades. A pulverização de defensivos (fungicidas, inseticidas e herbicidas) e adubos foliares e com uso de tecnologias de AP é realizada em 28% das propriedades, com valores entre 40 a 50% nos Estados da BA, GO e RS. A atividade de irrigação de precisão ainda está em fase de desenvolvimento, como pode ser observado pelos números baixos (3,8%) de utilização, à exceção de GO que apresenta 21%.

A Tabela 7 confirma a utilização dos serviços de terceiros para realização das atividades de AP nas propriedades. Quando questionados sobre a execução destas atividades, 40% informaram que elas são realizadas inteiramente (amostragem, geração dos mapas e intervenções) por prestadores de serviço, e 41% informaram que sedem os equipamentos, porém a execução ocorre por conta dos prestadores de serviço. Apenas 17% afirmam possuir equipe e equipamentos para executarem as atividades. Estes números confirmam as informações prévias de Robertson et al. (2012) e Larson et al. (2008), segundo os quais os adotantes da AP são os que mais utilizam os serviços contratados e também consultores.

As informações sobre as práticas agrícolas são normalmente fornecidas por serviços de extensão ou consultores. As principais fontes de informação aos produtores que adotam AP (Tabela 8) têm sido os consultores (58%) e os cursos e treinamentos (49%), seguidas pelas feiras e exposições agropecuárias (35%), revendedores (29%), e internet (27%). Observa-se que os cursos e treinamentos representam uma fonte consistente de informações em AP, indicando a necessidade de fomentarem-se as atividades de instrução em todas as regiões avaliadas em especial em alguns Estados, com baixo acesso a este tipo de informação. A extensão rural representa apenas 7% das fontes informação, que pode ser explicado devido ao tema da AP ser mais novo, mais complexo, e multidisciplinar, exigindo um grau de especialização dos profissionais. Apesar da pesquisa em AP ter avançado no Brasil nos últimos anos, por se tratar de um tema relativamente novo, existe ainda falta de informações aplicadas às condições do país, que pode ser comprovada que as publicações técnico-científicas representam apenas 16% das fontes de informação. Destaca-se que vários adotantes utilizam diversas fontes de informação, sendo esta uma característica do perfil inovador (Roger, 2003), que busca diminuir a incerteza da inovação e manter-se atualizado.

A percepção dos proprietários refere-se às avaliações pessoais e subjetivas sobre a adoção da
<table>
<thead>
<tr>
<th>Estado</th>
<th>Correção do solo</th>
<th>Adubação</th>
<th>Colheita</th>
<th>Pulverização</th>
<th>Semeadura</th>
<th>Irrigação</th>
<th>Realizado por prestadores de serviço</th>
<th>Os prestadores de serviço geram mapas, realizada por equipe e equipamentos próprios</th>
<th>Realizado por prestadores de serviço, utilizando equipamentos próprios</th>
<th>Equipe especializada, máquinas e equipamentos próprios</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>83,3</td>
<td>83,3</td>
<td>16,7</td>
<td>50,0</td>
<td>16,7</td>
<td>16,7</td>
<td>16,7</td>
<td>0,0</td>
<td>50,0</td>
<td>33,3</td>
</tr>
<tr>
<td>PI</td>
<td>75,0</td>
<td>58,3</td>
<td>33,3</td>
<td>8,3</td>
<td>8,3</td>
<td>8,3</td>
<td>41,7</td>
<td>8,3</td>
<td>33,3</td>
<td>25,0</td>
</tr>
<tr>
<td>MA</td>
<td>92,3</td>
<td>92,3</td>
<td>61,5</td>
<td>7,7</td>
<td>0,0</td>
<td>7,7</td>
<td>15,4</td>
<td>0,0</td>
<td>84,6</td>
<td>0,0</td>
</tr>
<tr>
<td>GO</td>
<td>71,4</td>
<td>57,1</td>
<td>42,9</td>
<td>42,9</td>
<td>21,4</td>
<td>14,3</td>
<td>6,6</td>
<td>8,6</td>
<td>8,6</td>
<td>8,6</td>
</tr>
<tr>
<td>MS</td>
<td>74,3</td>
<td>65,7</td>
<td>48,6</td>
<td>25,7</td>
<td>0,0</td>
<td>8,6</td>
<td>8,3</td>
<td>0,0</td>
<td>75,0</td>
<td>8,3</td>
</tr>
<tr>
<td>MT</td>
<td>91,7</td>
<td>58,3</td>
<td>25,0</td>
<td>25,0</td>
<td>0,0</td>
<td>8,3</td>
<td>0,0</td>
<td>75,0</td>
<td>0,0</td>
<td>6,7</td>
</tr>
<tr>
<td>MG</td>
<td>86,7</td>
<td>60,0</td>
<td>13,3</td>
<td>6,7</td>
<td>20,0</td>
<td>0,0</td>
<td>6,7</td>
<td>0,0</td>
<td>60,0</td>
<td>6,7</td>
</tr>
<tr>
<td>PR</td>
<td>83,9</td>
<td>64,5</td>
<td>22,6</td>
<td>35,5</td>
<td>16,1</td>
<td>0,0</td>
<td>25,8</td>
<td>9,7</td>
<td>9,7</td>
<td>6,5</td>
</tr>
<tr>
<td>RS</td>
<td>72,7</td>
<td>72,7</td>
<td>22,7</td>
<td>40,9</td>
<td>9,1</td>
<td>0,0</td>
<td>54,5</td>
<td>18,2</td>
<td>36,4</td>
<td>13,6</td>
</tr>
<tr>
<td>Total</td>
<td>80,0</td>
<td>66,9</td>
<td>33,1</td>
<td>27,5</td>
<td>17,5</td>
<td>3,8</td>
<td>40,0</td>
<td>13,1</td>
<td>40,6</td>
<td>16,9</td>
</tr>
<tr>
<td>Estado</td>
<td>Conselheiros</td>
<td>Consultores</td>
<td>Cursos e treinamentos</td>
<td>Revendedores</td>
<td>Feiras ou exposições agropecuárias</td>
<td>Internet</td>
<td>Publicações técnico-científicas</td>
<td>Propriedades vizinhas</td>
<td>Propriedades propÍcia de precÍsao: resultados de um novo olhar</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td>---------</td>
<td>-------------------------------</td>
<td>------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>66,7</td>
<td>66,7</td>
<td>50,0</td>
<td>0,0</td>
<td>16,7</td>
<td>16,7</td>
<td>0,0</td>
<td>0,0</td>
<td>16,7</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>16,7</td>
<td>16,7</td>
<td>41,7</td>
<td>50,0</td>
<td>50,0</td>
<td>16,7</td>
<td>0,0</td>
<td>0,0</td>
<td>16,7</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>25,0</td>
<td>41,7</td>
<td>16,7</td>
<td>0,0</td>
<td>16,7</td>
<td>16,7</td>
<td>0,0</td>
<td>0,0</td>
<td>16,7</td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>92,3</td>
<td>46,2</td>
<td>16,7</td>
<td>0,0</td>
<td>16,7</td>
<td>16,7</td>
<td>0,0</td>
<td>0,0</td>
<td>16,7</td>
<td></td>
</tr>
<tr>
<td>GO</td>
<td>35,7</td>
<td>57,1</td>
<td>35,7</td>
<td>14,3</td>
<td>35,7</td>
<td>14,3</td>
<td>28,6</td>
<td>42,9</td>
<td>21,4</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>71,4</td>
<td>34,3</td>
<td>57,1</td>
<td>0,0</td>
<td>35,7</td>
<td>14,3</td>
<td>28,6</td>
<td>42,9</td>
<td>21,4</td>
<td></td>
</tr>
<tr>
<td>MT</td>
<td>91,7</td>
<td>41,7</td>
<td>35,7</td>
<td>14,3</td>
<td>35,7</td>
<td>14,3</td>
<td>28,6</td>
<td>42,9</td>
<td>21,4</td>
<td></td>
</tr>
<tr>
<td>MG</td>
<td>53,3</td>
<td>53,3</td>
<td>33,3</td>
<td>0,0</td>
<td>33,3</td>
<td>0,0</td>
<td>11,4</td>
<td>8,3</td>
<td>8,3</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>53,3</td>
<td>53,3</td>
<td>33,3</td>
<td>0,0</td>
<td>33,3</td>
<td>0,0</td>
<td>11,4</td>
<td>8,3</td>
<td>8,3</td>
<td></td>
</tr>
<tr>
<td>PR</td>
<td>48,4</td>
<td>54,8</td>
<td>35,5</td>
<td>0,0</td>
<td>35,5</td>
<td>0,0</td>
<td>11,4</td>
<td>8,3</td>
<td>8,3</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>40,9</td>
<td>40,9</td>
<td>40,9</td>
<td>0,0</td>
<td>40,9</td>
<td>0,0</td>
<td>11,4</td>
<td>8,3</td>
<td>8,3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>57,5</td>
<td>49,4</td>
<td>35,0</td>
<td>18,8</td>
<td>26,9</td>
<td>15,6</td>
<td>12,5</td>
<td>6,9</td>
<td>6,9</td>
<td></td>
</tr>
</tbody>
</table>
Tabela 9. Percepção sobre a AP e estimativa da % adoção na região que adotam o sistema convencional e AP.

<table>
<thead>
<tr>
<th>Estado</th>
<th>AP será realidade na sua região</th>
<th>Tempo para AP ser realidade na região</th>
<th>% adoção</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AP</td>
<td>5 anos</td>
<td>10 anos</td>
</tr>
<tr>
<td>BA</td>
<td>100,0</td>
<td>76,7</td>
<td>2,9</td>
</tr>
<tr>
<td>PI</td>
<td>100,0</td>
<td>76,7</td>
<td>2,9</td>
</tr>
<tr>
<td>MA</td>
<td>100,0</td>
<td>76,7</td>
<td>2,9</td>
</tr>
<tr>
<td>GO</td>
<td>100,0</td>
<td>76,7</td>
<td>2,9</td>
</tr>
<tr>
<td>MS</td>
<td>100,0</td>
<td>76,7</td>
<td>2,9</td>
</tr>
<tr>
<td>MT</td>
<td>100,0</td>
<td>76,7</td>
<td>2,9</td>
</tr>
<tr>
<td>MG</td>
<td>100,0</td>
<td>76,7</td>
<td>2,9</td>
</tr>
<tr>
<td>PR</td>
<td>100,0</td>
<td>76,7</td>
<td>2,9</td>
</tr>
<tr>
<td>RS</td>
<td>100,0</td>
<td>76,7</td>
<td>2,9</td>
</tr>
<tr>
<td>Total</td>
<td>100,0</td>
<td>76,7</td>
<td>2,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estado</th>
<th>AP aumenta produtividade</th>
<th>% aumento</th>
<th>Redução no custo de produção</th>
<th>Retorno econômico</th>
<th>Melhoria a qualidade do produto</th>
<th>Diminuição do impacto ambiental</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conv.</td>
<td>AP</td>
<td>Conv.</td>
<td>AP</td>
</tr>
<tr>
<td>BA</td>
<td>83,3</td>
<td>83,3</td>
<td>0,0</td>
<td>16,7</td>
<td>0,0</td>
<td>16,7</td>
</tr>
<tr>
<td>PI</td>
<td>77,8</td>
<td>83,3</td>
<td>11,1</td>
<td>11,1</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>MA</td>
<td>75,0</td>
<td>100,0</td>
<td>12,5</td>
<td>12,5</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>GO</td>
<td>82,4</td>
<td>85,7</td>
<td>11,8</td>
<td>5,9</td>
<td>11,8</td>
<td>29,4</td>
</tr>
<tr>
<td>MS</td>
<td>88,9</td>
<td>94,3</td>
<td>0,0</td>
<td>0,0</td>
<td>22,2</td>
<td>22,2</td>
</tr>
<tr>
<td>MT</td>
<td>100,0</td>
<td>100,0</td>
<td>0,0</td>
<td>14,3</td>
<td>28,6</td>
<td>14,3</td>
</tr>
<tr>
<td>MG</td>
<td>93,3</td>
<td>100,0</td>
<td>0,0</td>
<td>13,3</td>
<td>13,3</td>
<td>6,7</td>
</tr>
<tr>
<td>PR</td>
<td>86,8</td>
<td>93,5</td>
<td>0,0</td>
<td>28,3</td>
<td>20,8</td>
<td>9,4</td>
</tr>
<tr>
<td>RS</td>
<td>76,5</td>
<td>95,5</td>
<td>0,0</td>
<td>23,5</td>
<td>5,9</td>
<td>17,6</td>
</tr>
<tr>
<td>Total</td>
<td>85,1</td>
<td>93,8</td>
<td>2,8</td>
<td>19,1</td>
<td>15,6</td>
<td>12,8</td>
</tr>
</tbody>
</table>
AP (Tabelas 9 e 10). A percepção dos entrevistados é otimista com relação à AP tornar-se realidade nas principais regiões agrícolas do Brasil, já 84 e 96% confirmam a afirmação (Tabela 9). As diferenças surgem quando se questionou o tempo em que a AP será efetivamente uma realidade para a região, pois para 51% daqueles que adotam a AP esta já é uma realidade, e para 48% dos que não adotam, a AP será uma realidade apenas em 5 anos. Enquanto os que não utilizam a AP afirmam que a adição está em média em menos de 5% na sua região, 44% dos que utilizam afirmam que a adoção da AP pode ser de 16 até 50% na região.

Entre os atributos de percepção sugeridos por Rogers (2003), a vantagem relativa é utilizada para avaliar o quanto uma inovação tecnológica pode oferecer de vantagens sobre outra tecnologia. Entre as vantagens relativas, a rentabilidade deve ser a grande preocupação dos empreendimentos agropecuários, a qual é resultado da produtividade e dos custos. Entre os proprietários e administradores que adotam AP, 94% indicam que o conjunto de tecnologias pode aumentar a produtividade, enquanto que 85% dos que usam cultivo convencional concordam com esta afirmação (Tabela 10). Com relação ao percentual de aumento da produtividade, a maioria dos que adotam AP afirmam que pode ser de 6 a 10 (25%) e entre 11 a 20% (36%), enquanto que para 19% entre os que não adotam, este aumento deve ser de 6 a 10%. Com relação à redução dos custos e o retorno econômico, a maioria (93 e 95%) daqueles que adotam a AP confirmam esta afirmação, no entanto para aqueles que não utilizam AP estes são em torno de 77 e 76%. Griffin e Lowenberg-DeBoer (2005) em revisão de vários trabalhos sobre o uso da AP, indicaram que em 68% dos casos analisados os sistemas com uso da AP foram mais rentáveis que os sistemas de cultivo convencional. Para Tey e Brindal (2012) a probabilidade de adoção da AP deverá ser maior se houver maior lucro para o produtor.

No levantamento, os entrevistados foram solicitados a avaliar ainda o uso da AP sobre a qualidade do produto final e a diminuição do impacto ambiental. As diferenças entre usuários da AP e não usuários foi também percebida, porém de forma menos marcante, sendo a quase totalidade dos adotantes de AP (95 e 94%) confirmam que há melhoria da qualidade do produto e diminuição do impacto ambiental negativo com o uso da AP, enquanto que no outro grupo estes valores foram de em torno de 88 e 89%. Esta tendência confirma os efeitos benéficos da AP sobre o meio ambiente, que já haviam sido descritos por Bongiovani e Lowenberg-DeBoer (2004) e Stoorvogel e Bouma (2005). Em estudo recente, Silva, De Moraes e Molin (2011) demonstraram a mesma tendência no setor suroalcooleiro no Estado de São Paulo, que indicaram que as tecnologias de AP são úteis para melhorias na gestão, aumento da produtividade, redução do custo, diminuição do impacto ambiental e melhoria da qualidade da cana.

Os resultados do presente estudo evidenciam o aumento da adoção da AP entre os produtores rurais das principais regiões agrícolas do Brasil. Reforçando a necessidade de pesquisas voltadas às tecnologias de AP (detecção, mapeamento e intervenção considerando a variabilidade espacial) e também a necessidade de fomento da transferência de tecnologias de AP.

4. Conclusões

Os resultados indicaram que o perfil dos proprietários e administradores de propriedades que adotam a AP é jovem, instruído, propenso a utilizar mais tecnologias e informática e cultivam grandes extensões de terras. O tempo médio de adoção das tecnologias de AP é de 4 anos. Os principais produtos agrícolas cultivados com ferramentas de AP são a soja e milho, seguido pelas culturas do trigo e feijão. As propriedades que adotam AP possuem equipamentos, porém são subutilizados. Os sistemas de navegação (barra de luz e piloto automático) e para aplicação de insumos a taxas variadas são os equipamentos mais frequentes nas propriedades. As principais atividades em que a AP está presente são na aplicação de corretivos do solo e colheita. A maior parte das atividades de AP é realizada por terceiros. A grade amostral utilizada varia de 3 a 5 ha. As principais fontes de informação dos produtores têm sido os consultores, cursos e treinamentos, e feiras e exposições agropecuárias. Existe a percepção de que a adoção da AP pode aumentar a produtividade, o retorno econômico, a qualidade do produto e reduzir o impacto ambiental negativo.
Agradecimentos

A Rede AP agradece ao SENAR e CNA o apoio para a realização deste trabalho.

Referências

DABERKOW, S. G.; MCBRIDE, W. D. Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. *Precision Agriculture*, v. 4, n. 2, p. 163-177, 2003. http://dx.doi.org/10.1023/A:1024557205871

Avaliação do padrão tecnológico e tendências da Agricultura de Precisão - Safra 2011/12**

Emerson Borghi*¹, Junior Cesar Avanzi*¹, Ariovaldo Luchiari Junior*², Leandro Bortolon*¹, Elisandra Solange Oliveira Bortolon*¹, Ricardo Yassushi Inamasu*³

¹Pesquisador, Embrapa Pesca, Aquicultura e Sistemas Agrícolas, CEP 77020-020, Palmas, TO
²Pesquisador, Embrapa Informática Agropecuária, CEP 13083-886, Campinas, SP
³Pesquisador, Embrapa Instrumentação, CEP 13560-970, São Carlos, SP

*E-mails: emerson.borghi@embrapa.br, junior.avanzi@embrapa.br, leandro.bortolon@embrapa.br, elisandra.bortolon@embrapa.br, ariovaldo.luchiari@embrapa.br, ricardo.inamasu@embrapa.br

**Projeto financiado pela Fundação Agrisus intitulado “Estado-da-arte da agricultura e pecuária no Estado do Tocantins”

Resumo: Embora os conceitos e tecnologias da Agricultura de Precisão (AP) são bastante difundidos no Brasil, a AP ainda é pouco utilizada em algumas regiões produtoras de grãos. O presente trabalho teve como objetivo fazer um levantamento sobre a utilização da AP, por meio da aplicação de um questionário via web e impresso. Foram encaminhados 250 e-mails convidando produtores e técnicos a responderem o questionário, além da realização de uma reunião técnica sobre AP em Guaraí/TO. Após análise das respostas obtidas, 67% dos produtores que responderam ao questionário informaram que iniciaram as atividades de AP entre dois e cinco anos. O tamanho do grid mais utilizado é de 5 hectares, sendo o serviço predominantemente realizado por empresas prestadoras de serviço, contudo os equipamentos e a interpretação dos resultados é realizada pela equipe técnica da propriedade. Embora não consigam observar a redução no custo de produção com a utilização da AP, os produtores discordam que os custos da AP sejam maiores que os benefícios observados. Além disso, os equipamentos e softwares hoje empregados na AP são um obstáculo ao crescimento e ao investimento na tecnologia. Como o questionário foi respondido por produtores e técnicos de diversas regiões do Brasil, constatou-se que o trabalho com AP ainda é bastante recente. Mesmo com conhecimento sobre a técnica e os benefícios que a tecnologia proporciona a utilização ainda é bastante restrita e necessita de mais acesso à informação e capacitação técnica, a fim de ter um uso mais eficaz e eficiente.

Palavras-chave: agronegócio; levantamento; produtores; questionário.

Evaluation of the current adoption level and tendencies of Precision Agriculture - 2011/12 Crop Year

Abstract: Although Precision Agriculture (PA) concepts and technologies are widespread in Brazil, its application is still little used in some grain producing regions. The purpose of this paper was to survey the current adoption level, applying a questionnaire via web site, as also printed. A number of 250 questionnaires were distributed by e-mail inviting farmers and technicians to complete them; moreover, a technical meeting was held at the city of Guaraí, Tocantins State. After response analysis, results showed that 67% of the farmers, who answered the survey, reported the adoption time of the PA varied between 2 and 5 years. The soil grid size was 5 hectares and the soil sampling was done by service providers companies, however, the equipments and data interpretation results are done for technicians. Although the farmers cannot observe reduction on the production costs for using PA technologies, they disagree that PA costs can be more than benefits observed. The farmers pointed out that software and equipments adopted nowadays on PA are the main constraints for increasing the investment in this technology. Considering that the survey was applied to farmers and technicians
1. Introdução

Em muitas regiões brasileiras, a agricultura de precisão (AP) tornou-se importante no processo produtivo dos empreendimentos rurais, principalmente pelos benefícios técnicos e econômicos que a tecnologia gera ao longo do tempo. De acordo com Costa e Guilhoto (2011), o benefício das técnicas de AP (ou o conjunto de tecnologias associadas ao sistema) na produtividade das culturas agrícolas impacta em benefícios sociais e econômicos para a economia brasileira. Porém, tais efeitos benéficos são mais restritos aos grandes empreendimentos rurais. Vários autores descrevem os principais fatores para a implementação da AP em função da variabilidade espacial nos atributos de solo e, consequentemente, interferindo na produtividade das culturas. Embora o aspecto técnico esteja bastante difundido no cenário agrícola atual, pesquisas sobre a percepção dos usuários desta tecnologia são praticamente inexistentes na literatura no país. Nos EUA, Whipker e Akridge (2009) realizaram uma pesquisa em produtores rurais sobre o uso da AP e constataram, entre outros resultados, que 85% utilizam alguma técnica de AP em algum momento do processo produtivo. Pesquisas semelhantes em agricultores foram feitas também na Austrália (MANDEL; LAWES; ROBERTSON, 2010) e em outras regiões produtoras dos EUA (WINSTEAD et al., 2010), buscando analisar, sob o ponto de vista dos usuários, quais seriam as inovações, problemas e tendências para a AP no processo produtivo. No Brasil, Silva, Moares e Molin (2011) realizaram uma pesquisa de avaliação do uso da AP no setor suco-alcooleiro e verificaram que a adoção e uso da tecnologia promoveu ganhos agronômicos significativos e que isto se reflete também na indústria havendo, ainda, redução nos impactos ambientais. Os autores ainda mencionam que, nos próximos anos, o uso de tecnologias buscando incrementos de produtividade, mas com menor impacto ambiental, será indispensável para o agronegócio brasileiro do futuro.

O presente estudo tem como objetivo traçar um cenário do uso da AP pela visão dos produtores que adotam esta técnica. Mesmo tendo em vista o aumento de produtividade, é importante entender como os produtores enxergam o uso desta tecnologia no seu processo produtivo. Tais informações são, até o presente momento, não encontradas na literatura. Para tanto, assim como o trabalho desenvolvido por Winstead et al. (2010), buscou-se neste trabalho uma pesquisa em produtores rurais para determinar a adoção e uso da AP bem como identificar algumas barreiras e incentivos à sua adoção.

2. Material e Métodos

O trabalho teve início a partir da confecção de um questionário específico para ser respondido por produtores rurais e técnicos que utilizam alguma tecnologia ligada à agricultura de precisão. Os questionários foram elaborados a partir da metodologia de Whipker e Akridge (2009), adaptados às condições regionais.

Além da impressão dos questionários, foi criado um modelo digital e disponibilizado na internet, para acesso instantâneo. Neste caso, um e-mail informativo foi elaborado convidando produtores e técnicos a acessarem o questionário e responderem de forma espontânea os questionamentos levantados.

O acesso ao questionário foi feito pelo link: https://docs.google.com/spreadsheet/viewform?formkey=dDNcWlhvSUdXUUh2NkM1VnRtT09NbWc6MQ.

Levantaram-se as seguintes informações: início do trabalho de AP na propriedade; tamanho da área destinada à AP; considerando a aplicação de corretivos, fertilizantes e defensivos, em quais
manejo de AP auxilia na tomada de decisão; realização de análise de solo georreferenciada (parte química e física); área do grid de amostragem; estratificação de amostragem; como é realizado o trabalho de AP (somente por empresas, ou possui equipamentos próprios); equipamentos de AP nos maquinários da propriedade; quais operações são realizadas em taxa variável; observações quanto ao uso da AP (redução nos custos de produção, e.g.); problemas de manutenção de equipamentos e softwares para utilização de AP; assistência técnica; expectativa de investimento; observações de incrementos de produtividade; barreiras para implementação e uso da AP na região, ou mesmo em toda a propriedade. Os resultados obtidos nos questionários foram tabulados e interpretados pela porcentagem de alternativas assinaladas em cada questão. Foram aplicados ao total 250 questionários, entre e-mails e impressos. O total de questionários respondidos foi de 7% principalmente oriundos dos Estados de Goiás, Rio Grande do Sul, Paraná, Maranhão e Tocantins. Embora baixo, o retorno de respostas ao questionário encontra-se similar aos resultados obtidos por pesquisa semelhante desenvolvida por Whipker e Akridge (2009).

3. Resultados e Discussão

Dos produtores que responderam o questionário, 67% informaram que iniciaram a utilização da agricultura de precisão recentemente, entre dois a cinco anos (Figura 1a). Quando questionados sobre o tamanho do grid de amostragem, 56% informaram que o tamanho médio adotado para amostragem é de 5 hectares (Figura 1b), sendo as amostragens realizadas basicamente para avaliação das propriedades químicas do solo na profundidade de 0 a 20 cm. Basicamente o serviço de AP é realizado por prestadores de serviço, porém, o trabalho hoje efetuado nas propriedades é bastante amplo. Do total de respostas obtidas neste assunto, 33% informaram que todo o serviço de AP (amostragem, geração dos mapas, interpretação dos resultados e recomendação) é realizado pelas empresas prestadoras de serviço, muito embora a maioria (44%) informou que os prestadores de serviço fazem a amostragem e geração dos mapas, mas os equipamentos e a interpretação dos resultados é realizada pela equipe técnica da propriedade (Figura 1c). Os resultados apresentados demonstram a complexidade como a AP vem sendo utilizada no Brasil. Como o questionário foi respondido por produtores e técnicos de diversas regiões do Brasil, constata-se que o trabalho com AP ainda é bastante recente. Mesmo com conhecimento sobre a técnica e os benefícios que a tecnologia proporciona, a utilização ainda é bastante restrita e necessita ainda de ajustes. O investimento em máquinas e implementos já não preocupa os produtores, porém, o custo da realização das amostragens ainda é alto, fato que corrobora com a utilização de grids para amostragem acima de 5 hectares. Porém, sob a ótica dos produtores sobre a redução no custo de produção após a implementação da AP no seu negócio, a Tabela 1 demonstra que os produtores não sabem informar em quais situações a AP tem impactado no custo total da lavoura. Considerando a aplicação de corretivos, fertilizantes, herbicidas e manutenção

<table>
<thead>
<tr>
<th>Aplicação de corretivos</th>
<th>Aplicação de fertilizantes</th>
<th>Aplicação de herbicidas</th>
<th>Manutenção e consultoria em equipamentos e softwares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menos que 10%</td>
<td>22</td>
<td>33</td>
<td>44</td>
</tr>
<tr>
<td>10 a 20%</td>
<td>22</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>20 a 30%</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mais que 30%</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Não sei</td>
<td>44</td>
<td>44</td>
<td>56</td>
</tr>
</tbody>
</table>
Figura 1. Data de início da atividade de AP (a), tamanho do grid de amostragem (b), forma de realização do trabalho de AP (c), incremento de produtividade observado com o uso da tecnologia (d) e investimento para os próximos anos (e), expressos em porcentagem, obtidos a partir das respostas dos questionários respondidos por produtores de diferentes regiões do Brasil, na safra 2011/12.
de equipamentos e softwares, os produtores informaram que não conseguem mensurar qual o real impacto do uso da tecnologia no seu negócio. Grande parte desta afirmação é corroborada com a Figura 1d pois, ao serem questionados sobre o incremento de produtividade após a implantação da AP, 33% das respostas informaram que os ganhos em produtividade foram inferiores a 5%. Com 22% de respostas, produtores afirmaram que os ganhos variaram entre 6 a 10% e, em igual proporção, os ganhos registrados foram acima de 40%. Observando incrementos pouco significativos e não conhecendo o real benefício econômico da AP no seu agronegócio, os produtores optam pelo investimento pequeno em máquinas e equipamentos, conforme apresentado na Figura 1e. Em referência à expectativa de investimento nos próximos anos, 56% dos produtores informaram que irão investir menos de 10% do faturamento do ano anterior em AP, e 22% informaram ainda que não estão previstos investimentos em AP na próxima safra. Tais resultados demonstram que a AP, muito embora possa trazer incrementos de produtividade, seu resultado no balanço econômico do negócio não está claro para os produtores. Este fato, aliado aos custos de produção no momento da negociação para a próxima safra, tornam a AP bastante suscetível ao mercado. Com isso, a decisão por parte dos agricultores está alinhada com os custos e balanço econômico de um cenário à médio prazo. Para muitos produtores que participaram do trabalho, somente após conhecerem o preço das commodities na próxima safra é que irão realmente analisar sobre a continuidade ou investimento em AP.

Em relação às limitações para expansão do uso da AP, os produtores discordam que os custos da AP sejam maiores que os benefícios observados e, muito embora não consigam observar a redução no custo de produção, é possível obter benefícios com a utilização da AP (Tabela 2). Não concordam também que existam limitações para o uso da AP, como topografia e tipos de solos por exemplo, e que o tempo entre a coleta de informações e a geração dos mapas é relativamente curto. Para os entrevistados, a quantidade de informações sobre novos produtos e tecnologias e treinamento das equipes de campo para utilização de equipamentos ainda necessita ser melhorada. As empresas prestadoras de serviço tem bom relacionamento com os produtores, fornecendo informações como gerenciamento dos custos e benefícios com a utilização da AP. Porém, ao analisar as limitações, os produtores concordam que este serviço prestado gera uma segurança nas recomendações, podendo ser observado um benefício com o uso da AP, muito embora os produtores não saibam quantificar (Figura 1d). Os produtores informaram ainda que o custo da AP ainda é elevado, principalmente na aquisição de equipamentos e softwares, mas os valores cobrados não são excessivos e coerentes com a tecnologia empregada.

Para os produtores, os equipamentos e softwares hoje empregados na AP são um obstáculo ao crescimento e ao investimento na tecnologia. A incompatibilidade entre tipos de equipamentos e tecnologias (formatos de dados, compartilhamento de informações) limitam a utilização. Os manuais são bastante complexos e a falta de treinamento das equipes de campo, aliado à falta de mão-de-obra capacitada para utilizar máquinas e implementos com a tecnologia embarcada, são fatores limitantes para o investimento na AP ao longo dos anos.

Em relação aos prestadores de serviço, os produtores concordam que ainda é muito difícil acompanhar as constantes atualizações em AP. As empresas optam por oferecer o serviço ou a compra do maquinário, mas ainda não fornecem atualizações da tecnologia gratuitamente. Além disso, os produtores também concordam que a coleta de dados pode sofrer interferências climáticas ou operacionais não corrigidas plenamente pelos softwares, comprometendo assim a acurácia dos dados e, por conseguinte, na recomendação. A falta de acompanhamento das empresas de AP na atualização e manutenção dos softwares e equipamentos, treinamentos e acompanhamentos técnicos, fazem com que as equipes de campo fiquem limitadas sobre o correto manuseio dos equipamentos. A dificuldade de peças para reposição em tempo hábil também constituem empecilhos importantes.
Tabela 2. Limitações indicativas para expansão e/ou prevenção do uso que limitam o crescimento da agricultura de precisão, respondidos por produtores de diferentes regiões do Brasil, na safra 2011/12. Valores em porcentagem, calculados a partir das respostas assinaladas em cada item.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Os custos de AP para os produtores é maior que os benefícios observados</td>
<td>22</td>
<td>44</td>
<td>0</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Tipos de solos na área limitam a rentabilidade da AP</td>
<td>56</td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Topografia do terreno impede uso</td>
<td>67</td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Demora no tempo de tempo entre a coleta de informações e geração dos mapas</td>
<td>44</td>
<td>11</td>
<td>11</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>Tenho confiança em recomendações levando em consideração a divisão da área em grids</td>
<td>11</td>
<td>0</td>
<td>33</td>
<td>33</td>
<td>22</td>
</tr>
<tr>
<td>Consigo observar os benefícios da AP no meu negócio</td>
<td>11</td>
<td>0</td>
<td>33</td>
<td>44</td>
<td>11</td>
</tr>
<tr>
<td>Valores cobrados não são excessivos e coerentes com a tecnologia empregada</td>
<td>0</td>
<td>22</td>
<td>22</td>
<td>44</td>
<td>11</td>
</tr>
<tr>
<td>Dificuldade de mão-de-obra especializada no manuseio dos equipamentos</td>
<td>11</td>
<td>11</td>
<td>33</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>Custos na aquisição de equipamentos e softwares é elevado</td>
<td>11</td>
<td>0</td>
<td>33</td>
<td>44</td>
<td>11</td>
</tr>
<tr>
<td>Difícil convencer o ganho com o uso de AP</td>
<td>33</td>
<td>22</td>
<td>0</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>Custos de funcionários é muito alto</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>56</td>
<td>11</td>
</tr>
<tr>
<td>Equipamentos de precisão mudam rapidamente e os custos são elevados</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>56</td>
<td>11</td>
</tr>
<tr>
<td>Incompatibilidade entre os diferentes softwares existentes no mercado</td>
<td>0</td>
<td>33</td>
<td>11</td>
<td>44</td>
<td>11</td>
</tr>
<tr>
<td>Incompatibilidade entre os diferentes softwares e as recomendações da pesquisa</td>
<td>0</td>
<td>33</td>
<td>22</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>Equipamentos e softwares tem manuais para utilização muito complexos</td>
<td>11</td>
<td>11</td>
<td>22</td>
<td>44</td>
<td>11</td>
</tr>
<tr>
<td>Dificuldade no treinamento de funcionários para manuseio dos programas e equipamentos</td>
<td>0</td>
<td>22</td>
<td>33</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>Existem softwares e equipamentos que não apresentam acurácia significativa para utilização em AP</td>
<td>0</td>
<td>11</td>
<td>22</td>
<td>56</td>
<td>11</td>
</tr>
<tr>
<td>A coleta de dados sofre interferências (climáticas, operacionais etc) que dificultam sua acurácia</td>
<td>11</td>
<td>22</td>
<td>22</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>Incompatibilidade entre tipos de equipamentos e tecnologias (diferentes formatos de dados, dificuldade em compartilhar informações) limita a habilidade em oferecer novos produtos e serviços aos clientes</td>
<td>0</td>
<td>22</td>
<td>22</td>
<td>44</td>
<td>11</td>
</tr>
<tr>
<td>As empresas não fornecem manutenção nos softwares</td>
<td>0</td>
<td>33</td>
<td>22</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>As empresas não disponibilizam atualizações e/ou novas informações gratuitas via internet</td>
<td>0</td>
<td>33</td>
<td>11</td>
<td>44</td>
<td>11</td>
</tr>
<tr>
<td>Pouca informação sobre novos produtos / tecnologias em AP</td>
<td>0</td>
<td>44</td>
<td>11</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>Minha equipe não recebe treinamento sobre uso correto do software / equipamento</td>
<td>11</td>
<td>44</td>
<td>11</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>Não tenho atendimento em relação às reclamações do produto quanto ao seu uso e manutenção</td>
<td>22</td>
<td>33</td>
<td>11</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>Há dificuldade de peças de reposição para meus equipamentos</td>
<td>11</td>
<td>22</td>
<td>22</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>As empresas não fornecem gerenciamento de custo e benefício para acesso do mercado</td>
<td>11</td>
<td>22</td>
<td>11</td>
<td>22</td>
<td>33</td>
</tr>
<tr>
<td>Não há nenhuma ferramenta disponível no mesmo nível da AP para planejamento na compra e uso de insumos</td>
<td>0</td>
<td>11</td>
<td>22</td>
<td>44</td>
<td>22</td>
</tr>
</tbody>
</table>

1 - Discordo totalmente; 2 - Discordo parcialmente; 3 - Concordo totalmente; 4 - Concordo parcialmente; 5 - Não concordo / não discordo
4. Conclusões

O crescimento da AP é decorrência dos ganhos agronômicos e econômicos já difundidos no campo, porém, em algumas situações, os produtores ainda não conseguem mensurar o impacto da AP no seu negócio. Pelas informações obtidas, o aspecto econômico, aliado à dificuldade no uso de softwares e equipamentos por falta de capacitação técnica das equipes de campo, podem ser os principais fatores limitantes à expansão da AP em muitas regiões produtoras do Brasil.

Agradecimentos

À Fundação Agrisus pelo apoio financeiro e a Rede AP pela oportunidade de divulgação do trabalho.

Referências

Estratégias de comunicação em agricultura de precisão

Alberto C. de Campos Bernardi*, Cristiane V. Peres Fragalle¹, Edilson P. Fragalle², Joana C. da Silva², Ricardo Y. Inamasu²,³

¹Embrapa Pecuária Sudeste, CEP 13560-970, São Carlos, SP
²Embrapa Instrumentação, São Carlos, SP
³Bolsista do CNPq

*E-mails: alberto.bernardi@embrapa.br

Resumo: A popularização do conhecimento científico é a ponte de acesso da sociedade aos avanços técnico-científicos. O desafio está em ampliar os meios, canais e processos de relacionamento e informação com a sociedade e decodificar os assuntos científicos para um formato que torne o conhecimento acessível. A Rede Agricultura de Precisão da Embrapa tem utilizado estratégias de comunicação nas tradicionais e novas mídias, como forma de buscar a aproximação com diversos públicos, contribuindo com a construção de uma consciência crítica da sociedade brasileira. O objetivo deste capítulo é o de apresentar e avaliar os resultados destas estratégias como a homepage, vídeos didáticos e reportagens na mídia. A divulgação dos resultados da pesquisa tem sido uma forma eficiente da equipe do projeto aproximar-se da sociedade, mostrando a geração de conhecimento em AP feita no País pela Embrapa e seus parceiros. Contribuindo com o fortalecimento e divulgação do conceito de AP como ferramenta gerencial para produtores e provedores de serviços. Também é uma forma de prestação de contas à sociedade, indicando o destino dos recursos alocados para pesquisa.

Palavras-chave: comunicação, transferência de tecnologia, Google Analytics, Youtube.

Strategies for scientific communication of Precision Agriculture

Abstract: Scientific knowledge popularization is the way to the society access technical scientific advances. The challenge is to increase the means, channels and processes of information and relationship with society and decode scientific issues into a format that makes knowledge accessible. The Embrapa Precision Agriculture Network has been used scientific communication strategies at the traditional and new media, as a way of approach with various stakeholders, contributing to the construction of a critical conscience of Brazilian society. The aim of this chapter is to present and evaluate the results of these strategies in scientific communication such as the website, educational videos and media reports. The release of research results has been an efficient way of the project team approach the society by showing the generation of PA knowledge in made in the country by Embrapa and partners. It can contribute to the strengthening and promotion of the concept of AP as a management tool for producers and service providers. It is also a form of accountability to society, indicating the destination of the financial resources.

Keywords: communication, technological transfer, Google Analytics, Youtube.
1. Introdução

A inovação tecnológica é imprescindível para o desenvolvimento do País, e isso ocorre em todos os setores, e não é diferente no agronegócio. Com o aumento da produção científica brasileira no cenário mundial surge a necessidade de comunicar à população brasileira sobre ciência e tecnologia, diminuindo o hiato que separa esses dois mundos. Para tanto, as instituições de ciência e tecnologia devem assumir o importante papel de serem ativas nesse processo, inserindo a ciência na agenda da população.

A comunicação contribui para a popularização da ciência, se tornando a porta de acesso da sociedade aos avanços técnicos científicos obtidos nos laboratórios e campos experimentais dos centros de pesquisa e universidades, levando ao aprofundamento da consciência pública sobre o valor da ciência. O desafio está em ampliar os meios, canais e processos de relacionamento e informação com a sociedade, traduzindo para uma linguagem acessível os conhecimentos gerados, abrindo espaços para ampliar as discussões e para a reflexão, levando a apropriação do conhecimento gerado. Para tanto é necessário tornar público como estes conhecimentos e suas aplicações tem impacto no ambiente ou na vida cotidiana.

Desde sua criação, a Rede Agricultura de Precisão da Embrapa tem trabalhado na consolidação do conceito de que a Agricultura de Precisão é uma postura gerencial que leva em conta a variabilidade espacial da propriedade para maximizar o retorno econômico e minimizar riscos de dano ao meio ambiente (INAMASU et al., 2011).

Como forma de reforçar a percepção pública deste conceito da Agricultura de Precisão, Fragalle e Fonseca Júnior (2011) propuseram a utilização de várias ferramentas de comunicação, como estratégia de aproximação e relacionamento com os públicos. As ferramentas para comunicação da Rede AP indicadas incluíam a veiculação de matérias na mídia; apresentação de resultados em feiras e exposições agropecuárias; distribuição de material institucional; divulgação de vídeos no Youtube e criação de um site próprio da Rede.

As Tecnologias de Informação e Comunicação (TICs) são recursos poderosos na criação e ampliação de conhecimento, e têm contribuído sobremaneira para os processos educativos e interativos, trazendo transformações sociais e culturais para a sociedade. A comunicação pública de conteúdos complexos (CPCC) é um modelo para descrever e compreender os processos e problemas da comunicação pública da complexidade, particularmente da ciência, tecnologia e inovação, fornecendo instrumentos novos e importantes para a sua solução. De acordo com Campos (2013), para estabelecer uma comunicação eficaz é necessário decodificar o código linguístico; contextualizar o tema, avaliar a complexidade da mensagem, e atribuir relevância do receptor ao tema. Desta forma a CPCC, baseia-se no estabelecimento da estratégia de divulgação sob a perspectiva do receptor e não do emissor.

As organizações de ensino e pesquisa têm utilizado cada vez mais a internet como o veículo para a divulgação dos resultados de pesquisa, compartilhamento de conhecimento, e criação de redes de relacionamento interpessoais (HARTLEY; BENDIXEN, 2001; GREENHOW; ROBELIA; HUGHES, 2009). Um dos formas de buscar o aperfeiçoamento do uso de sites e páginas da internet pode ser por meio da medição, coleta e análise dos dados de navegação. Para este fim existem softwares de análise da Web, como o Google Analytics que permitem traduzir em métricas a atividade específica em um site (LEDFORD; TYLER, 2007). Existem alguns resultados na literatura recente sobre o uso da ferramenta Google Analytics em diferentes campos do conhecimento (BHANDAR, 2009; HASAN; MORRIS; PROBETS, 2009; TURNER, 2010; PLAZA, 2011).

Vídeos educativos já vêm sendo utilizado há muito tempo, e com evolução tecnológica (de equipamentos e softwares) a facilidade para criá-los está cada vez maior. A publicação, acesso e abrangência da divulgação dos vídeos aumentaram muito com a partir de 2005 com a criação do Youtube uma ferramenta da nova geração Web 2.0 (GREENHOW; ROBELIA; HUGHES, 2009; JONES; CUTHRELL, 2011). O Youtube pode ser usado como eficiente ferramenta de ensino como foi mostrado por Duffy (2008), Greenhow, Robelja e Hughes (2009) e Jones e Cuthrell (2011). Conectividade, redes, sistemas de comunicação móvel e a convergência digital entre telefone, internet, rádio e TV estão mudando as estratégias e ferramentas de comunicação. O uso das novas mídias engloba estratégias de
comunicação bidirecional, criando espaços para manifestações e reflexão do público.

Os sistemas de comunicação de massa especializados ou segmentados são a alternativa da sociedade para entrarem em contato com a ciência, e consequentemente seus produtos e propostas. Por isso, para que a divulgação científica ocorra de forma eficiente é essencial que as informações sejam transmitidas de forma clara, simples, direta e de fácil entendimento para que se tornem acessíveis ao grande público. Neste aspecto, o jornalismo científico exerce importante papel na decodificação dos assuntos científicos para uma linguagem que torne o conhecimento acessível aos demais públicos (ADEODATO, 1987).

A divulgação dos avanços técnico-científicos e seus dos impactos econômicos, sociais e ambientais, tanto por pesquisadores, como por jornalistas científicos, podem contribuir de forma decisiva para a construção de uma consciência crítica da sociedade brasileira. Assim, o jornalismo científico pode exercer o papel de facilitador na construção da cidadania (OLIVEIRA, 2002).

A livre circulação das ideias e resultados de pesquisa são fundamentais para o enriquecimento da educação e para o avanço científico (IVANISSEVICH, 2001), construindo pensamentos coletivos e colaborativos.

O objetivo deste capítulo é o de apresentar e avaliar os resultados das estratégias de divulgação científica adotadas pela Rede AP.

2. Material e métodos

Em abril de 2010 foi lançado site próprio da Rede AP (http://www.macroprograma1.cnptia.embrapa.br/redeap2). A homepage foi estruturada e organizada com baseado no servidor de aplicação Zope 2.9.5/Plone 2-5/Python 2.4.3. Plone é um sistema de gestão de conteúdo (CMS - Content management system) acessado via browser. Utiliza a ferramenta Zope (Z Object Publishing Environment), que é um servidor de aplicações WEB com código aberto escrito em linguagem python e banco de dados orientado a objetos (ZODB) (BROCKMANN et al., 2002; MCKAY, 2004).

A ferramenta digital Google Analytics (CLIFTON, 2008) foi utilizada para monitorar o site e fornecer os registros das navegações. Por meio de um código fonte gratuito e instalado no site foi possível o levantamento do de informações sobre o perfil dos visitantes, e geração de relatórios sobre o conteúdo pesquisado dentro da página.

Para divulgar os resultados e conceitos da agricultura de precisão foram criados vídeos para a internet. Esses vídeos reúnem depoimentos de especialistas (membros do projeto e parceiros externos) sobre temas da Agricultura de Precisão e também sobre as diferentes culturas pesquisadas, como milho, soja, algodão, arroz, cana, silvicultura, pêssego, maçã, e sistema de integração lavoura-pecuária. A partir de entrevistas com os especialistas foram editados os vídeos, com duração entre 1 e 3 min, utilizando o software Adobe Premiere Pro CS5.5. Para divulgar os vídeos didáticos da Rede AP foi utilizado o serviço gratuito de publicação de vídeos Youtube. Em 21/11/2011 foi lançado em um canal de vídeos (http://www.youtube.com/redeapvideos#p/u), no qual estão reunidos 27 vídeos. A veiculação de matérias na mídia (jornais, rádio, revistas, televisão, internet) tem sido estimulada por meio dos Núcleos de Comunicação Organizacional das Unidades participantes da Rede AP.

3. Resultados e Discussão

3.1. Homepage da Rede AP

A página do projeto tem servido para prover meios eletrônicos de acesso dos usuários externos para atualização de dados. Esta atividade está apoiando a execução do projeto, tanto na disseminação das informações geradas, para o público externo, quanto na gestão das atividades e interação entre os membros da equipe. Desse modo, a homepage tem feito a socialização dos conhecimentos gerados a partir deste projeto de pesquisa, bem como a disponibilização de informações já existentes em publicações e sites referentes à temática Agricultura de Precisão. Para alcançar um grande público, estão sendo implementadas ações de divulgação do site e da Rede AP. Por se tratar de um projeto em rede a criação desta homepage, também trouxe maior facilidade de acompanhamento das atividades que estão sendo realizadas por todos os integrantes, em um espaço de acesso restrito à equipe do projeto.
Perante isso, o desenvolvimento da página da web constitui-se como importante veículo de difusão do conhecimento, tornando-o acessível a um grande número de pessoas e auxiliando as ações dos pesquisadores envolvidos no projeto.

Com base nos relatórios gerados pelo Google Analytics, observa-se que site da Rede AP entre a data do lançamento (abril de 2010) até fevereiro/2013 recebeu mais de 35 mil acessos, com cerca de 126 mil visualizações de páginas (Tabela 1). Até esta data o total de visitantes de 25,2 mil, sendo que cerca de 29% destes retornaram ao site. Cada visitante visualizou em média 3,6 páginas por visita. Interessante também destacar o crescimento na procura pelo site deste do seu lançamento até a presente data, indicando que o conteúdo que está sendo lançado tem atingido às expectativas, pois a procura pelo site tem sido crescente no período analisado.

Nestes relatórios também foi possível detectar a origem dos acessos. A Tabela 2 indica que o Brasil é, naturalmente, a origem da maioria dos acessos. Porém, observa-se que países como EUA, Portugal, Paraguai e Argentina foram outros países que também visitaram o site. Estas visitas ocorreram, apesar da maioria das páginas estarem em português, havendo apenas um resumo em espanhol (http://www.macroprograma1.cnptia.embrapa.br/redeap2/red-de-investigacion-en-agricultura-de-precision) e outro em inglês (http://www.macroprograma1.cnptia.embrapa.br/redeap2/english-version). Com relação aos estados brasileiros, São Paulo lidera os acessos, seguido por RS, PR, MG e GO (Tabela 2). Interessante destacar que todos os outros estados também acessaram as páginas da Rede AP.

Uma análise mais detalhada do conteúdo acessado do site da Rede AP (Tabela 3) também fornece informações sobre o interesse dos visitantes. A página mais acessada é a que possibilita o download gratuito dos capítulos do livro “Livro agricultura de precisão: um novo olhar” (30%). O livro foi mais acessado até mesmo que a homepage da Rede AP. Outros conteúdos procurados pelos visitantes foram o conceito de AP, o canal de vídeos e as publicações dos membros da Rede AP sobre o tema. Estes números fornecem um indicativo que o público está interessado em informações sobre o tema AP e que a Rede tem cumprido o papel de gerar e distribuir este conhecimento.

A origem dos acessos indica que a maioria partiu do site de busca Google, porém o acesso direto também tem funcionado (Tabela 4). Outras fontes de direcionamento para o site tem sido o próprio site da Embrapa e de algumas Unidades participantes do projeto. Sites de informações agronômicas também têm contribuído com a divulgação (como por exemplo RuralBR - Agricultura e Agrosoft). Também devem ser destacados que surgiram acessos com origem de novas mídias como o Facebook e do Wikipedia. Os acessos de maior tempo de duração foram aqueles com origem do site da Embrapa e dos sites especializados.

<table>
<thead>
<tr>
<th>Ano</th>
<th>Visitas</th>
<th>Visitantes</th>
<th>Páginas visualizadas</th>
<th>Páginas/visita</th>
<th>Tempo médio (min)</th>
<th>Novas visitas (%)</th>
<th>Rejeição (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>2.263</td>
<td>1.612</td>
<td>9.308</td>
<td>4,11</td>
<td>3:02</td>
<td>70,2</td>
<td>55,9</td>
</tr>
<tr>
<td>2011</td>
<td>6.229</td>
<td>4.482</td>
<td>22.182</td>
<td>3,56</td>
<td>2:32</td>
<td>70,8</td>
<td>62,2</td>
</tr>
<tr>
<td>2012</td>
<td>23.550</td>
<td>16.953</td>
<td>84.778</td>
<td>3,60</td>
<td>4:16</td>
<td>71,2</td>
<td>58,1</td>
</tr>
<tr>
<td>2013 (31/maio/13)</td>
<td>11.410</td>
<td>8.882</td>
<td>33.491</td>
<td>2,94</td>
<td>0:30</td>
<td>76,1</td>
<td>63,8</td>
</tr>
<tr>
<td>Total</td>
<td>43.452</td>
<td>31.485</td>
<td>149.762</td>
<td>3,45</td>
<td>0:35</td>
<td>72,4</td>
<td>60,1</td>
</tr>
</tbody>
</table>
Tabela 2. Países e estados brasileiros de origem das visitas à página da Rede AP (entre abril/10 e maio/2013).

<table>
<thead>
<tr>
<th>País/território</th>
<th>Visitas</th>
<th>% de Visitas</th>
<th>Estados Brasileiros</th>
<th>Visitas</th>
<th>% de Visitas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brasil</td>
<td>38.987</td>
<td>89,7</td>
<td>São Paulo</td>
<td>11.378</td>
<td>26,2</td>
</tr>
<tr>
<td>Estados Unidos</td>
<td>948</td>
<td>2,2</td>
<td>Rio Grande do Sul</td>
<td>5.717</td>
<td>13,2</td>
</tr>
<tr>
<td>Portugal</td>
<td>788</td>
<td>1,8</td>
<td>Paraná</td>
<td>4.052</td>
<td>9,3</td>
</tr>
<tr>
<td>Não identificados</td>
<td>744</td>
<td>1,7</td>
<td>Minas Gerais</td>
<td>3.466</td>
<td>8,0</td>
</tr>
<tr>
<td>Paraguai</td>
<td>229</td>
<td>0,5</td>
<td>Goiás</td>
<td>1.671</td>
<td>3,8</td>
</tr>
<tr>
<td>Argentina</td>
<td>205</td>
<td>0,5</td>
<td>Mato Grosso</td>
<td>1.670</td>
<td>3,8</td>
</tr>
<tr>
<td>Colômbia</td>
<td>180</td>
<td>0,4</td>
<td>Distrito Federal</td>
<td>1.449</td>
<td>3,3</td>
</tr>
<tr>
<td>Alemanha</td>
<td>103</td>
<td>0,2</td>
<td>Mato Grosso do Sul</td>
<td>1.344</td>
<td>3,1</td>
</tr>
<tr>
<td>Espanha</td>
<td>100</td>
<td>0,2</td>
<td>Santa Catarina</td>
<td>1.160</td>
<td>2,7</td>
</tr>
<tr>
<td>Uruguai</td>
<td>91</td>
<td>0,2</td>
<td>Rio de Janeiro</td>
<td>1.117</td>
<td>2,6</td>
</tr>
</tbody>
</table>

Tabela 3. Conteúdo acessado pelos visitantes na página da Rede AP (entre abril/10 e maio/2013).

<table>
<thead>
<tr>
<th>Conteúdo</th>
<th>Página</th>
<th>Acessos</th>
<th>% do Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homepage da Rede AP</td>
<td>http://www.macroprograma1.cnptia.embrapa.br/redeap2/redeap2</td>
<td>16.629</td>
<td>11,1</td>
</tr>
<tr>
<td>Conceito de AP</td>
<td>http://www.macroprograma1.cnptia.embrapa.br/redeap2/redeap2/o-que-e-agricultura-de-precisao</td>
<td>4.350</td>
<td>2,9</td>
</tr>
<tr>
<td>Canal de vídeos da Rede AP</td>
<td>http://www.macroprograma1.cnptia.embrapa.br/redeap2/redeap2/videos-de-agricultura-de-precisao</td>
<td>3.621</td>
<td>2,4</td>
</tr>
<tr>
<td>Publicações sobre AP</td>
<td>http://www.macroprograma1.cnptia.embrapa.br/redeap2/redeap2/publicacoes</td>
<td>2.455</td>
<td>1,6</td>
</tr>
<tr>
<td>Descrição da Rede AP</td>
<td>http://www.macroprograma1.cnptia.embrapa.br/redeap2/redeap2/Rede AP</td>
<td>2.114</td>
<td>1,4</td>
</tr>
<tr>
<td>Histórico da AP</td>
<td>http://www.macroprograma1.cnptia.embrapa.br/redeap2/redeap2/historico</td>
<td>1.672</td>
<td>1,1</td>
</tr>
<tr>
<td>Notícias na mídia sobre as atividades da Rede AP</td>
<td>http://www.macroprograma1.cnptia.embrapa.br/redeap2/redeap2/noticias</td>
<td>1.415</td>
<td>0,9</td>
</tr>
</tbody>
</table>

INovação em Agricultura de Precisão | 589

<table>
<thead>
<tr>
<th>Origem</th>
<th>Visitas</th>
<th>Páginas/visita</th>
<th>Duração média da visita (min)</th>
<th>% novas visitas</th>
<th>% rejeição</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Google</td>
<td>23.935</td>
<td>2,92</td>
<td>02:50</td>
<td>75,1</td>
<td>66,1</td>
</tr>
<tr>
<td>2. Direto</td>
<td>5.798</td>
<td>4,31</td>
<td>04:53</td>
<td>65,5</td>
<td>54,1</td>
</tr>
<tr>
<td>3. embrapa.br</td>
<td>2.857</td>
<td>4,98</td>
<td>06:53</td>
<td>72,5</td>
<td>46,4</td>
</tr>
<tr>
<td>4. agricultura.ruralbr.com.br</td>
<td>1.461</td>
<td>4,23</td>
<td>06:23</td>
<td>76,7</td>
<td>48,9</td>
</tr>
<tr>
<td>5. facebook.com</td>
<td>977</td>
<td>3,6</td>
<td>05:23</td>
<td>75,7</td>
<td>65,2</td>
</tr>
<tr>
<td>6. cpao.embrapa.br</td>
<td>799</td>
<td>4,77</td>
<td>03:36</td>
<td>53,4</td>
<td>46,6</td>
</tr>
<tr>
<td>7. google.com.br</td>
<td>770</td>
<td>2,95</td>
<td>02:41</td>
<td>77,5</td>
<td>43,1</td>
</tr>
<tr>
<td>8. cpao.embrapa.br</td>
<td>582</td>
<td>3,17</td>
<td>02:32</td>
<td>82,3</td>
<td>60,7</td>
</tr>
<tr>
<td>9. agrosoft.org.br</td>
<td>418</td>
<td>5,36</td>
<td>08:05</td>
<td>71,8</td>
<td>47,6</td>
</tr>
<tr>
<td>10. en.wikipedia.org</td>
<td>373</td>
<td>2,4</td>
<td>02:14</td>
<td>85,8</td>
<td>63,5</td>
</tr>
</tbody>
</table>

Figura 1. Número de reportagens na mídia sobre a Rede AP e número de acessos aos vídeos da Rede AP no Youtube. *Resultados até maio de 2013.
3.2. Vídeos da Rede AP

As mídias sociais podem auxiliar a tornar a ciência uma experiência mais próxima do público, facilitando a apropriação das ideias. A apropriação de uma ideia permite que a população ultrapasse a barreira da informação para compreensão, o que leva ao questionamento, interpretação e reflexão, tornando a participação mais ativa.

No contexto em que cada vez mais internautas preferem ver vídeos a ler textos na internet, os vídeos são considerados uma boa estratégia para maior capilaridade com os públicos. Os acessos aos vídeos da Rede AP (http://www.youtube.com/redeapvideos#p/u) comprovam a preferência do público. O formato destes vídeos, sobre os conceitos de AP, provavelmente são mais interessantes para o receptor, que os vídeos técnicos. O alto número de visualizações (12 mil) confirmam isso (Figura 1). A procura pelos vídeos tem sido crescente, confirmando como sendo esta uma eficiente estratégia de comunicação, conforme já havia indicado por Duffy (2008), Greenhow, Robelia e Hughes (2009) e Jones e Cuthrell (2011). Como Campos (2013) já havia ponderado, o processo de comunicação é estabelecido quando há atribuição de relevância do receptor com o tema. Além disso, o acesso aos vídeos pode fornecer ainda outras informações, sobre o interesse do público nos temas apresentados. Esta informação poderá ainda direcionar ações futuras de pesquisa e de comunicação em AP.

3.3. Reportagens na mídia

A Figura 1 ilustra o número de reportagens na mídia (jornais, rádio, revistas, televisão, internet) entre 2009 e 2013. Observa-se que tem havido um aumento significativo muito desde o ano de 2009, quando oito notícias da aprovação do projeto foram publicadas, até o final de 2012, quando a Rede está em pleno funcionamento e 158 notícias foram publicadas. No presente ano de 2013, até o mês de maio, foram publicadas 31 notícias. Os resultados indicam que com a consolidação das ações de pesquisa da Rede AP no período do projeto, houve maior geração de resultados e consequentemente a divulgação acompanhou este crescimento.

4. Considerações finais

As atividades de comunicação da Rede AP estão indicando meios para se vencer o desafio de divulgar de forma eficaz a ciência, a tecnologia e a inovação para a sociedade. Alguns obstáculos foram contornados. Pois, se por um lado são poucos os pesquisadores que valorizam e destinam tempo para divulgar os resultados de suas pesquisas, também existe pouco espaço nos meios de comunicação para divulgação de temas ligados à ciência (IVANISSEVICH, 2009). Por isso, a divulgação, na sua maioria, ocorreu em veículos especializados no tema do agronegócio.

De acordo com a Teoria Epidêmica de Goffman, as ideias científicas são transmitidas de forma análoga aos processos de propagação de uma doença infecciosa em um processo epidêmico (GOFFMAN; NEWILL, 1964). Segundo os autores a propagação destas ideias pode ocorrer em artigos de periódicos, em contatos de um conferencista e o público, ou por meio de contato pessoal. Os resultados positivos alcançados na divulgação científica da Rede AP indicam que o uso da internet (site e vídeos do Youtube) e as reportagens na mídia também são meios eficientes de disseminação.

5. Conclusões

A divulgação dos resultados da pesquisa tem sido uma forma eficiente da equipe do projeto aproximar-se da sociedade, mostrando a geração de conhecimento em AP feita no País pela Embrapa e seus parceiros. Contribuindo com o fortalecimento e divulgação do conceito de AP como ferramenta gerencial para produtores e provedores de serviços. Também é uma forma de prestação de contas à sociedade, indicando o destino dos os recursos alocados para pesquisa.

Agradecimentos

A Rede AP agradece a todas as equipes dos Núcleos de Comunicação Organizacional das Unidades envolvidas na Rede de Agricultura de Precisão, e também à Secretaria de Comunicação da Embrapa.
Referências

ÍNDICE DE AUTORES

A
Alan Kazuo Hiraga.................................157
Alberto C. de Campos Bernardi.............21, 48, 173, 492, 513, 559, 585
Alberto Miele................................. 350, 361, 368
Aldemir Pasinato279, 287
Alessandra Monteiro
Salviano Mendes.................. 380, 389
Almir César Rambo 287
Alvadi Antonio Balbinot Junior 246, 507
Álvaro Vilela de Resende194, 338
Anderson Santi......................... 173, 279, 287, 331
André de Souza Tarallo...................157
Andrea Koga Vicente.......................... 442
Antônio Heriberto de Castro Teixeira....239
Antônio Luís Santi.................... 260, 267, 279, 287
Ariovaldo Luchiari Junior 97, 578
Arthur José Vieira Porto165

B
Bruno Ricardo Silva Costa 374, 407, 400

C
Camila Remor279
Carlos Alberto Flores36, 350, 361, 368
Carlos H. Kurihara 484
Carlos Manoel Pedro Vaz 458
Carlos Reisser Júnior 350, 421, 427, 434
Célia Regina Grego 74, 350, 442, 458, 500
Cinei Teresinha Riffel 260, 267
Cinthia Cabral da Costa542
Claudir José Basso 260, 267
Cledir Márcio Schuck 224
Cleist Luiz Ribeiro Nunes 252
Clério Nailto Pillon 209
Cristiane V. Peres Fragalle 585
Cristina Aparecida
Gonçalves Rodrigues 458, 500

D
Daniel de Castro Victoria 58, 239, 442
Davi José Silva 380, 389
Décio Karam 135
Denise Jeton Cardoso 478

E
Edemar Joaquim Corazza........ 194, 231
Éder Comunello 530
Edilson B. de Oliveira 467, 484, 478
Edilson P. Fragalle 585
Edison Ulisses Ramos Jr 274
Edson Luis Bolfe 442
Eduardo Antonio Speranza 97
Elaina Maria Guarienti 287
Elie Ferreira do Nascimento 374, 413
Elisandra Solange Oliveira Bortolon 578

ÍNDICE DE AUTORES | 593
Elizandro Fochesatto .. 287, 331
Emerson Borghi ... 578
Evaldo Muñoz Braz .. 488
Evandro Orfanó Figueiredo 488

Fabio Alvares de Oliveira 507
Fabrício Machado da Luz Leitão 252
Fabricio Vieira Juntolli ... 553
Fernando Sichieri .. 246
Flávio Jesus Wruck .. 217
Flávio Luiz Carpena Carvalho 421, 427, 434

Genei Antonio Dalmago .. 279, 287, 331
Geomar Mateus Corassa 260, 267, 279, 287
German Andres Gaviria Martinez 157
Gilberto Rocca da Cunha ... 279, 287, 331
Gilvan Barbosa Ferreira .. 295, 322
Giovan Maranhão Bettiol ... 513

Henrique Debiiasi .. 246, 274, 507
Henrique Oldoni .. 421, 427, 434
Henrique Pereira dos Santos 279
Hermes Senger ... 157

Ibanor Anghinoni .. 322
Igor Orígenes Moreira Borges 548
Itamar A. Bognola ... 467, 484

Janice Freitas Leivas ... 239
Joana C. da Silva .. 585
João Antonio Pereira Fowler 467
João Camargo Neto .. 97
Joao Flavio Veloso Silva ... 274
João Henrique Zonta ... 295, 306, 315
João Leonardo Fernandes Pires 260, 267, 279, 287, 331
Jorge Luiz Sant’Anna dos Santos 542
Jorge Ricardo Ducati ... 58
José da Cunha Medeiros 306, 315, 322, 338
José Francirlei de Oliveira 231
José Francisco Martins Pereira 421, 427, 434
José Marcos Garrido Beraldo 135
José Maria Alba Filippini 209
José Maria Barbarat Parfitt 209
José Maria Filippini Alba .. 36, 84, 173, 350, 361, 368
José Paulo Molin .. 553
José Pereira da Silva Júnior 279, 287
Juaci Vitória Malaquias ... 231
Juliano Athayde Silva ... 374, 400, 407
Julio Cesar Salton .. 530
Julio Cezar Franchini .. 173, 239, 246, 274, 507
Junior Cesar Avanzi .. 578

Ladislau Marcelino Rabello 48, 413, 458, 513
Leandro Bochi da S. Volk 523
Leandro Bortolon ... 578
Leonardo Kerber .. 287
Leonardo Ribeiro Queirós 97
Lisandra Pinto Della Flora260, 267
Lorena Stolle ..467
Lucas Malheiros Villani..................368
Lúcia Elena Coelho da Cruz.............209
Luciana Spinelli de Araujo442
Luciano Gebler173, 350, 542
Luciano Shozo Shiratsuchi58, 173, 194, 224
Lúcio André de Castro Jorge109, 157, 180, 458
Luís Carlos Timm350, 421, 427, 434
Luís Henrique Basso173, 350, 374, 380, 389, 400, 407, 413
Luiz Eduardo Vicente58, 239, 442, 458, 500
Luziane Franciscon478

M
Márcia Cristina T. da Silveira523
Marcos Corrêa Neves252
Maria Stela Veludo de Paiva157
Mariana Campana513
Marina de Fátima Vilela58, 194, 231
Maria de Fátima Guimarães231
Mateus Moraes Tavares548
Mateus Tonini Eitelwein260, 267
Mauricio Roberto Cherubin260
Méricio Luiz Strieder279, 287
Michely Tomazi530

N
Naylor Bastiani Perez173, 252, 492, 523

O
Onã da Silva Freddi217
Orlando Lúcio de Oliveira Júnior224

P
Patricia dos Santos Nascimento350, 374, 400, 407
Patricia P. A. de Oliveira513
Patrícia Povoa de Mattos488
Paulo E. Cruvinel135
Paulo Sergio Graziano Magalhães442
Phelipe Souza Antunes548

R
Rafael Diego Nascimento da Costa548
Rafael Vieira de Sousa165
Ricardo Bernardo Affonso458
Ricardo Guimarães Andrade239, 500
Ricardo Padulla246
Ricardo Y. Inamasu21, 48, 97, 109, 165, 180, 513, 559, 585, 578
Robério Leandro Marchâo231
Robson Guimarães da Silva224
Rodison Natividade Sisti252, 523
Rodrigo Gonçalves Trevisan217
Ronaldo Pereira de Oliveira58, 74, 173, 306
Ronei Sandri Sana306, 315, 322, 338
Rubens Andre Tabile165

S
Samuel Roggia239
Sandra Furlan Nogueira442, 500
Sandro Manuel Carmelino Hurtado……..194, 231, 458
Sandro Roberto Brancalião442, 458
Sérgio Ahrens 467
Shizuo Maeda 467, 484
Sidney Rosa Vieira.........................74
Silvia Maria Fonseca Silveira Massruhã...97
Silvio Roberto Medeiros Evangelista97
Simone Silmara
Werner Gurgel do Amaral.............530
Susete do Rocio Chiarello.............. 467
Telmo Jorge Carneiro Amado...........267
Tiago José Malacarne224
Valdinei Sofiatti.........................306, 315, 322, 338
Vanderlei Porfirio-da-Silva 246
Vinicius de M. Benites173
Viviane M. de A. de Bem e Canto542
Viviane Santos Silva Terra350, 421, 427, 434
Waldir Pereira Dias274
Welington Gonzaga do Vale224
Wellington Carlos Lopes165
O bem “Agricultura de precisão: resultados de um novo olhar” é a concretização do trabalho realizado pela equipe da Rede Agricultura de Precisão da Embrapa, cujas atividades têm se tornado um referencial, com a proposta de lançar um “novo olhar” sobre o tema. Confeccionado e projetado de forma técnica e didática para um público orientado, os autores do livro destacam a vantajosidade da agricultura de precisão, que permite operações mais eficientes e reduzidas a danos à natureza.

O livro, com 300 páginas, é o resultado de um ano de trabalho intenso e contém capítulos dedicados à agricultura de precisão, técnica que permite a aplicação de agrotóxicos e outros produtos de maneira mais precisa e eficiente. Os autores abordam temas como georreferenciamento, automatização e controle de qualidade nas operações de precisão.

Recomenda-se a leitura desse livro para profissionais da área, estudantes e entusiastas da agricultura, que queiram entender mais sobre esse campo em constante evolução.