
ARTIFICIAL NEURAL NETWORKS APPLIED FOR SOIL CLASS PREDICTION IN MOUNTAINOUS...       1681

R. Bras. Ci. Solo, 38:1681-1693, 2014

ARTIFICIAL NEURAL NETWORKS APPLIED FOR SOIL CLASS

PREDICTION IN MOUNTAINOUS LANDSCAPE OF THE

SERRA DO MAR(1)

Braz Calderano Filho(2), Helena Polivanov(3), César da Silva Chagas(2), Waldir de

Carvalho Júnior(2), Emílio Velloso Barroso(3), Antônio José Teixeira Guerra(4) &

Sebastião Barreiros Calderano(2)

SUMMARY

Soil information is needed for managing the agricultural environment. The

aim of this study was to apply artificial neural networks (ANNs) for the prediction

of soil classes using orbital remote sensing products, terrain attributes derived

from a digital elevation model and local geology information as data sources. This

approach to digital soil mapping was evaluated in an area with a high degree of

lithologic diversity in the Serra do Mar. The neural network simulator used in this

study was JavaNNS and the backpropagation learning algorithm. For soil class

prediction, different combinations of the selected discriminant variables were

tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile,

topographic index, solar radiation, LS topographic factor, local geology information,

and clay mineral indices, iron oxides and the normalized difference vegetation

index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper

Plus (ETM+) sensor. With the tested sets, best results were obtained when all

discriminant variables were associated with geological information (overall

accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable

profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the

Kappa index from 0.932 to 0.948. The maps based on the neural network classifier

were consistent and similar to conventional soil maps drawn for the study area,

although with more spatial details. The results show the potential of ANNs for soil

class prediction in mountainous areas with lithological diversity.

Index terms: artificial neural networks, terrain attributes, digital mapping.
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RESUMO: REDES NEURAIS ARTIFICIAIS APLICADAS NA PREDIÇÃO DE
CLASSES DE SOLOS EM ÁREAS DE PAISAGENS MONTANHOSAS
DA SERRA DO MAR

A informação de solo é necessária para o gerenciamento do ambiente agrícola. O objetivo
deste trabalho foi aplicar redes neurais artificiais (RNAs) para a predição de classes de solos,
utilizando como fonte de dados produtos de sensores remotos orbitais, atributos do terreno
derivados de um modelo digital de elevação e informação da geologia local, visando avaliar a
utilização dessa abordagem no mapeamento digital de solos, em área com elevado grau de
diversidade litológica na Serra do Mar. O simulador de redes neurais utilizado foi o JavaNNS
e o algoritmo de aprendizado, o backpropagation. Para a predição das classes de solos,
testaram-se diferentes combinações entre as variáveis discriminantes selecionadas: elevação,
declividade, aspecto, curvatura, plano de curvatura, perfil de curvatura, índice topográfico,
radiação solar, fator topográfico LS, informações da geologia local e índices minerais de
argila, óxidos de ferro e vegetação por diferença normalizada (NDVI), derivados de uma
imagem do sensor ETM+ do LANDSAT 7. Dos conjuntos testados, os melhores resultados
foram obtidos com todas as variáveis discriminantes associadas às informações de geologia,
alcançando exatidão global entre 93,2 e 95,6 % e índice Kappa entre 0,924 e 0,951 (conjunto
13). Excluindo a variável perfil de curvatura (conjunto 12), a exatidão global alcançada
oscilou entre 93,9 e 95,4 % e o Kappa entre 0,932 e 0,948. Os mapas inferidos pelo classificador
por redes neurais evidenciaram coerência e semelhança com o mapa de solos convencional,
produzido para área de estudo, apresentando porém, mais detalhes espaciais. Os resultados
apresentaram o potencial de utilização de RNAs na predição de classes de solos de áreas
montanhosas com diversidade litológica.

Termos de indexação: redes neurais artificiais, atributos do terreno, mapeamento digital.

INTRODUCTION

The environmental impacts related to production
activities have generated an increased demand for
updated and detailed soil information, stimulating the
need for evolution and adaptation of conventional
methods for acquiring this information. Especially
regarding execution time, conventional methods fail
to provide quantitative information that meet the
requirements of environmental modeling and support
environmental planning in a timely manner.

The technological innovations of the last two
decades enabled access to a set of tools related to
computational intelligence, remote sensing data,
computer products and conventional cartography,
enabling progress in the forms of acquisition and
analysis of environmental information. Benefiting from
these innovations, the methods for generating soil
information were adjusted and improved by
incorporating digital mathematical techniques for
spatial soil prediction.

These techniques currently used in soil science are
more widely known as digital soil mapping “DSM”
(McBratney et al., 2003). Several techniques are used
for  DSM, e.g., the application of parametric methods
such as logistic regression, geostatistical analysis and
fuzzy logic, as well as non-parametric approaches such
as auto-learning algorithms (ALA), decision trees,
neural networks, and expert systems (Zhou et al.,
2004; Grinand et al., 2008; Sarmento et al., 2008),
based on the quantitative analysis of spatially

distributed characteristics of soil formation factors
(Florinsky, 2012).

Artificial neural network is an artificial
intelligence technique based on the biological concept
of  the functioning of neurons with the ability to
acquire, store, and use experiential knowledge and
belong to the same family as expert systems and
knowledge-based learning approaches (Key et al.,
1989).

The application of artificial neural networks in soil
studies has been widely used to estimate soil properties
and attributes (Minasny et al., 2004), specifically for
the prediction and distribution of soil types, as in the
studies of Zhu (2000), Carvalho Júnior (2005), Chagas
(2006), and Sirtoli (2008).

The aim of this study was to apply artificial neural
networks to predict soil types by using orbital remote
sensing products, terrain attributes derived from a
digital elevation model and local geology information
as data source. Thus, the possibility of using this
approach for soil type prediction was evaluated
specifically for the mountainous landscapes of the
Serra do Mar (Brazil), with a high degree of lithological
diversity.

MATERIAL AND METHODS

The study area is located in the mountainous
region of the State of Rio de Janeiro and occupies
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approximately 48,469 ha, covering parts of the
territorial districts of Cordeiro, Trajano de Morais,
Duas Barras, Bom Jardim, Casimiro de Abreu, and
of Nova Friburgo (Figure 1). The climate is humid
mesothermal tropical, temperatures are evenly
distributed throughout the year and there is little
or no water deficit. Summers are mild, with an
average annual temperature of 17.8 oC and
minimum of 13 oC in winter. The natural vegetation
is represented by sub-perennial rainforest in the high
parts and wetland sub-perennial rainforest in the
lower parts.

The study area is part of the geomorphological unit
of “Hill Reverse fault and Coastal Range on the Serra
dos Órgãos Plateau”, with a complex terrain with large
variations in altitude. According to Matos et al. (1980),
DRM (1982) and Mendes et al. (2007), in this area,
Neoproterozoic geological units are predominant,
consisting mostly of orthogneiss and migmatites of
the Rio Negro Complex and granodioritic orthogneiss
of the Serra dos Órgãos Batholith. They are
interspersed with gneiss bands derived from the
Paraíba do Sul Group (leuco-gneiss and
metasedimentary rocks) and igneous rocks of
granodioritic to granitic composition, more rarely
gabbroic, which intruded these units. To a lesser
extent, unconsolidated alluvial deposits of sandy-
clayey, silty-clayey and sandy consistency occur.

Initially, geological and soil maps were drawn at a
scale of 1:50,000 to perform this study, based on the
conventional soil survey method described by
Embrapa (1995). The geological map was obtained
from scanning the topographic sheets of Cordeiro,
Quartéis, Duas Barras and Trajano de Morais (Matos

et al., 1980; DRM, 1982). It was used as environmental
predictor variable in digital mapping, providing
information about soil source material (Figure 2). The
conventional soil map drawn by Calderano Filho
(2012), allowed defining the dominant soil types within
the area, which were used as output variables in
predictive models, besides serving as a reference to
evaluate the results by digital classification with
ANNs (Figure 3). For the conventional soil map, 40
complete soil profiles, 30 extra profiles (A and B
horizons) and 456 points of field observation were used.
The soil types used as output variables are presented
in table 1.

For digital mapping, 13 predictor variables were
used: elevation, declivity, aspect, curvature, curvature
plan, curvature profile, topographic wetness index
(TWI), solar radiation, and LS factor derived from a
digital elevation model (DEM) with a 30-m spatial
resolution, which, together with the geological map
of the area, were associated with the indices of clay
minerals, iron oxide, and the normalized difference
vegetation index (NDVI), derived from an image of
the ETM + Landsat 7 sensor from August 1999. In
addition to 40 profiles and 30 extra soil samples, in a
total of 300 horizons analyzed, 256 of the 456 field
observation points were selected for use. The choice of
the variables for digital soil type discrimination was
based on soil formation factors, according to the Jenny
(1941) equation. These variables reflect the major
factors that affect pedogenetic processes and with
greater possibility of correlation for the prediction of
local soil classes.

The DEM was obtained from interpolation of 20-m
equidistant contour lines, hydrography and elevation

Figure 1. Study area in the highlands of Rio de Janeiro State.
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points derived from the IBGE topographic maps, on
the 1:50,000 scale, referring to the topographic sheets
of Quartéis, Cordeiro, Trajano de Morais, Duas Barras
and Casimiro de Abreu, using the “top to raster” tool
of ArcGIS 9.2 software (ESRI, 2004). From the DEM
free of spurious pits, the terrain attributes elevation,
declivity, aspect, curvature, curvature plan, curvature

Figure 2. Lithological units within the area.

Class Output order Unit

1 1st Rocky outcrop associated to Dystrophic Litholic Neosols - Entisols (RO)

2 2nd Dystrophic Haplic Cambisols or leptic - CXbd (Inceptisols)

3 3rd Dystrophic Yellow Latosols A moderate type - LAd (Oxisols)

4 4th Dystrophic Humic Yellow Latosols - Ladh (Oxisols) associated to Dystrophic Humic Cambisols (Inceptisols)

5 5th Dystrophic Red-Yellow Latosols A moderate type - LVAd (Oxisols)

6 6th Dystrophic Red Latosols Typical - LVd (Oxisols)

7 7th Dystrophic Red-Yellow Argisols - PVAd (Ultisols)

8 8th Dystrophic Red Argisols - PVd (Ultisols)

9 9th Dystrophic Fluvic Neosols (Entisols) associated to Dystrophic Fluvic Cambisols - RYbd (Inceptisols)

10 10th Dystrophic Yellow Argisols - Pad (Ultisols)

Table 1. Soil classes used as output variables in classification by artificial neural networks

Figure 3. Soil conventional map of the area.

profile, topographic wetness index (TWI), solar
radiation, and LS factor (slope length and declivity)
were derived.

Moore (1993) defined the TWI index as a function
of declivity and the contributing area per orthogonal
width unit towards flow direction, calculated by
equation 1:

÷÷
ø

ö
çç
è

æ
b

=
tan

ln
As

TWI (1)

where As is the contributing area [(cumulative flow + 1)
× grid cell size in m2] and β the declivity expressed in
radians.

The factor LS was obtained using an adaptation
routine developed by Engel (2003), according to
equation 2.

LS = Pow {([flowacc]×40/22.13), 0.4}×

Pow {(Sin([slopedg]×3.14/180)/0.0896), 1.3)} (2)

where Pow = Power Function; flowacc = cumulative
flow grid; Sin = sine function; and slopedg = declivity,
in degrees.

Solar radiation was obtained based on equations
of Fu & Rich (2000), using the Solar Analyst extension
of ArcGis 9.2, which computes overall solar radiation
for each DEM pixel within the study area, based on
the calculation of potential insolation. The other terrain
attributes were obtained directly from ArcGIS 9.2
(ESRI, 2004), using the Spatial Analyst option.

The Landsat 7 image, originally with a spatial
resolution of 28.5-m, was resampled by the nearest
neighbor method for a 30-m spatial resolution; then,
it was used to derive the clay mineral indices by
dividing band 5 (1.55 to 1.75 µm) by band 7 (2.08 to
2.35 µm); iron oxide by dividing band 3 (0.63 to
0.69 µm) by band 1 (0.45 to 0.52 µm); and NDVI as
the ratio between the weighted difference of total
measured near-infrared and red reflectance (band 4
- band 3/band 4 + band 3) through ERDAS Imagine
software (version 8.5).

The neural network simulator “Java Neural
Network Simulator” version 1.1 (JavaNNS, 2001) was
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used and the learning algorithm was the
backpropagation. In order to facilitate the training
process and avoid network saturation, values related
to discriminating variables used as inputs in the
neural network (terrain attributes, indices derived
from Landsat 7 image and geology grid), were rescaled
to the interval between 0 and 1, using ArcGIS 9.2 for
terrain and geology attributes, and ERDAS Imagine
8.5 for indices derived from the Landsat 7 image.
Then, using the “layer stack” module in ERDAS
Imagine 8.5, images were assembled by combining
all environmental variables used in the study, which
served to collect the samples fed to the neural network
simulator.

Twelve different training sets were assembled,
combining land attributes, indices derived from
Landsat 7 image, and geological information, with a
minimum of six and maximum of 13 discriminant
variables in each set, by varying predictor variables
within the input layer, as shown in table 2. Ten classes
of dominant soil were standardized as output variable
for each set, as shown in table 1. For each soil type,
300 training samples and 250 samples were used to
validate ANNs, totaling 3,000 and 2,500 samples,
respectively. The samples obtained independently
(stratified samples) were collected from images
containing the discriminant variables, with ERDAS
Imagine 8.5 software, and distributed within the study
area in order to best represent each soil type
characteristics. The files obtained were converted to
JavaNNS format. For each set tested, one training

file and one validation file were created. Zhu (2000)
suggested that the set sizes be 30 times the number
of soil types to be mapped, and 50 % of this value for
validation samples. Differing from Zhu (2000), we
used 84 % of the number of training samples for
validation. To organize the training files and present
results, the sets were separated into three groups:
(T12 and T13), (Tps) and (T9G, T9G1 and TB9_2), as
shown in table 2.

In the definition of network architectures, single
and double-layer networks were standardized for
training, with 1 to 55 neurons each, two training
sequences each with 10,000 cycles, considered as
training time 1 (t). The 10 best networks of each set
with Kappa values above 0.85 received a new training
cycle (from 20,000 to 30,000 cycles), considered here
as training time 2 (TP).

Thus, various network architectures were tested
by varying the number of neurons in the input layer,
corresponding to the number of discriminant
environmental variables used (Table 2), varying the
neuron number in the inner layer(s) and the inner
layer number; and, all of them with 10 neurons in
the output layer corresponding to soil types observed
in conventional mapping (Table 1).

The ANN training phase, using supervised
learning, consisted of the random distribution of
interneuron weights from -0.5 to 0.5, with a variable
learning rate (η) of 0.2 for the initial 10,000 cycles; of
0.1 for cycles from 10,000 to 20,000; and 0.075 for the

Training and validation sets of the ANNs (T)

Variable Block 3 Block 2 Block 1

T13 T12 Tp Tp1 Tp2 Tp3 Tp4 Tp5 Tp6 T9G T9G1 TB9_2

Elevation ok ok ok ok ok ok ok ok ok ok ok ok

Declivity ok ok ok ok ok ok ok ok ok ok ok ok

Aspect ok ok ok ok ok ok - - - - - -

Curvature ok ok - - - - - - - - - -

Curv. plan ok ok ok ok ok ok ok ok ok ok ok ok

Curv. profile ok - - - - - - - - - - -

TWI index ok ok ok ok ok ok ok ok ok ok ok ok

Solar radiation ok ok ok ok ok - - - ok - ok -

LS factor ok ok ok ok - - - - ok ok - ok

Iron oxide ok ok ok ok ok ok ok ok ok ok ok ok

Clay mineral ok ok ok ok ok ok ok ok ok ok ok ok

NDVI ok ok ok - - - - - ok ok ok ok

Geology ok ok ok ok ok ok ok - ok ok ok -

Predictor var. 13 12 11 10 9 8 7 6 10 9 9 8

Set T13 T12 Tp Tp1 Tp2 Tp3 Tp4 Tp5 Tp6 T9G T9G1 TB9_2

Trained NNs R13 R12 RP Rp1 Rp2 Rp3 Rp4 Rp5 Rp6 R9G R9G1 R9_2 Rs

R13d R12d RPd RP1d RP2d RP3d RP4d RP5d RP6d R9Gd R9G1d R9_2d Rdp

Table 2. Arranged training and validation sets and inserted variables

T, Tp, TG and TB: arranged training sets (simplified numbering to differentiate ANN results); ok: contain; - do not contain; R:
artificial network architecture; Rs: single-layer network; and Rd: double-layer network.
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final cycles from 20,000 to 30,000. The increment
method was used to add neurons to the inner layers,
observing the mean squared error behavior during
training. This process was repeated until the network
reached a low training error (Zhu, 2000).

At the end of the training process, the networks
were subjected to validation for the choice of that or
those suited for soil type discrimination in the study
area. Results were evaluated for their accuracy or
reliability level and overall accuracy of classification
(Kappa index) of the ANNs, derived from a confusion
matrix (Congalton & Green, 1999), using validation
samples. A significance matrix of Kappa among the
considered networks was also generated to evaluate
results obtained from ANNs selected for each set, and
assist in the final choice of the best network(s)
architecture(s) for data classification. At the end of
the process, the four network architectures with best
results for the Kappa index, among all evaluated sets,
were selected for soil type prediction.

The final results obtained with ANNs and classified
scene images were generated using the “Funcpow”
application developed by Vieira (2000), and
manipulated by software ERDAS Imagine 8.5 and
ArcGIS 9.2. The soil type maps produced by the
selected neural networks were then compared to the
conventional soil map, considering it as reference and
evaluating the concordance of the information.

RESULTS AND DISCUSSION

The best results of ANN classification throughout
the training process with the tested and assessed
combinations were obtained with set 13, using all
discriminant variables, resulting in an overall
accuracy of 93.2 to 95.6 % and Kappa index from 0.924
to 0.951 (Tables 5 and 7). Excluding the variable profile
curvature, set 12, the overall accuracy ranged from
93.9 to 95.4 % and the Kappa index from 0.932 to
0.948 (Table 4). In these two sets, the majority of
trained networks with single and double-layer, had
an excellent classifier performance, with Kappa values
greater than 0.75, according to the reference values
suggested by Landis & Koch (1977) and Monserud &
Leemans (1992).

The final choice and selection of the best ANN
architecture for soil type prediction was based on the
Kappa index and overall accuracy results, which were
obtained with validation samples through confusion
matrix (Tables 3 and 6) and by analyzing the Kappa
significance matrix among the selected networks
(Tables 4 and 7). It was observed that the Kappa index
varied depending on the neuron number within the
inner layer and discriminant variables.

Partly corroborating Foody & Arora (1997), who
claimed that larger and more complex networks are

more efficient in characterizing a training set
properly. The increasing complexity of networks with
additional inner layer  neurons, the use of two internal
layers, and more  training cycles contributed to
enhance the classification accuracy. Similarly, geology
information used as input variable improved the final
classification accuracy, as confirmed in tests and
validations, comparing networks with a double inner
layer of block 1, with and without the geological
information. For example, among the compared
networks, there was a 26 % increase from Rd88_9G
to Rd88_9d; 25.3 % from Rd11_9G to Rd11_9d; and
42.88 % from Rd22_9G to Rd22_9d. Results for all
trained and validated network architectures were
provided by Calderano Filho (2012). Thus, geology
information as discriminant variable was critical to
demonstrate significant differences in the final
classification, when used in combination with other
predictor variables. The influence of lithology on soil
distribution in the landscape was confirmed in studies
of McKenzie & Ryan (1999), McKenzie & Austin (1993)
and Thomas et al. (1999).

Double-layer had a slightly better performance
than single-layer networks in all tests and validations.
For set 12 in the double-layer networks, from the 12th

neuron onwards, the overall accuracy was above
81 % and from the 16th neuron on, above 84 % for all
trained networks. From this set, the best results in
training time 2 were obtained with R4444_TP12d
networks with an overall accuracy of 94.6 % and Kappa
index of 0.940, and R4848_TP12d with overall
accuracy of 95.4 % and Kappa index of 0.948 (Table
3). The networks showed excellent classification results
for all output classes, with balanced performance
among pre-established output classes. Tables 3 show
the Kappa index and overall accuracy results obtained
by the confusion matrix of the best ANN architectures
of set 12.

The classification results (Table 3) of both networks
were high, classifying all pre-established output
classes with good performance among the classes. In
network R4444_TP12d, the largest percentage of hits
(100 %) refers to classes 2 and 10, wherein Haplic
Cambisols (Inceptisols) and Yellow Argisols (Ultisols)
are found. The worst performance was observed for
Class 6, with a Dystrophic Red Latosols (Oxisols), with
an accuracy of 76.8 %. From the total pixels
considered in class 6, 42 were assigned to class 2, 12
to class 5, and 4 to class 7 (Table 3). The highest
percentage of incorrectly allocated pixels was 23 % in
class 6, followed by class 3 with 8 %, class 8 with 7 %
and class 4 with 6 %. The misallocations were 4 % in
class 9 and below 2 % in the others, except for classes
2 and 10.

In network R4848_TP12d, the largest percentage
of hits (100 %) is related to class 10, Yellow Argisols
(Ultisols). The classification performance was worst
in Class 4, containing Humic Dystrophic Yellow
Latosols (Oxisols), with an accuracy of 88.8 % (Table
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3). Following the previous trend, in this network,
excluding class 10, incorrect allocations occurred in
class 4 with 11 %, class 6 with 10 %, class 8 with 7 %
and in classes 3 and 9 with 6 %, while in the others
misallocations were below 2 %.

From confusion matrix results and statistical
values of ANN validation and due to its performance,
set 12 was one of those selected for local soil prediction.
Thus, a Kappa significance matrix was calculated
between the networks to verify the significance of
differences among results and choose the best network
architecture for final data classification (Table 4). This
table shows that the networks containing 48, 44 and
55 neurons in the inner layers have higher values of
overall accuracy and Kappa index. However, networks
with 48 and 44 neurons in the inner layers are
superior and were chosen for the final soil type
discrimination.

Set 13, combining all terrain attributes with
geology and the three indices derived from the

LANDSAT 7 sensor image, performed best in several
trained networks with excellent results in the output
classes (Table 6). In this set, the highest overall
accuracy, Kappa index, and therefore the best results
were obtained with the architectures of 43, 45, 47, 54
and 55 neurons in the inner layers and training time
2 (Tables 5 and 6).

Table 6 presents validation results of the networks
R4343_TP13d and R4545_TP13d. The highest
percentage of hits (100 %) refers to classes 5 and 10,
in landscapes with Red-Yellow Latosols (Oxisols) and
Yellow Argisols (Ultisols) (Table 6). On the other hand,
the worst classification performance was observed for
class 8, Red Argisols (Ultisols), with an accuracy of
85.6 %. In this soil class, major confusion occurred,
in which from 250 pixels considered as being of class
8, 18 were allocated to classes 3 and 10.

In table 6, the greatest percentage of hits (100 %)
refers to classes 2 and 10, containing landscapes with
Haplic Cambisols (Inceptisols) and Yellow Argisols

[R4444_TP12d]

Class 1 2 3 4 5 6 7 8 9 10 Total User Z

1 243 0 0 4 0 0 0 0 0 0 247 98.4 110.231

2 0 250 19 10 0 42 0 0 0 0 321 77.9 30.209

3 0 0 231 0 0 0 0 18 0 0 249 92.8 50.822

4 7 0 0 234 0 0 0 0 0 0 241 97.1 80.751

5 0 0 0 0 249 12 0 0 0 0 261 95.4 66.213

6 0 0 0 0 0 192 0 0 0 0 192 100.0 0.000

7 0 0 0 2 0 4 245 0 0 0 251 97.6 91.097

8 0 0 0 0 0 0 0 232 0 0 232 100.0 0.000

9 0 0 0 0 1 0 5 0 240 0 246 97.6 89.255

10 0 0 0 0 0 0 0 0 10 250 260 96.2 72.544

U 0 0 0 0 0 0 0 0 0 0 0 0.0

Total 250 250 250 250 250 250 250 250 250 250 2500

Produced 97.2 100.0 92.4 93.6 99.6 76.8 98.0 92.8 96.0 100.0

Overall accuracy = 94.6; Kappa =0.940; Variance = 0.000025; Z calc. = 188.036; Z tab. = 1.96

[R4848_TP12d]

1 245 0 0 7 0 0 0 0 0 0 252 97.2 84.505

2 0 247 0 19 0 3 0 0 0 0 269 91.8 49.430

3 5 0 234 0 0 0 0 18 0 0 252 92.9 51.463

4 0 0 0 222 0 0 0 0 0 0 227 97.8 90.318

5 0 0 0 2 249 17 0 0 1 0 269 92.6 52.059

6 0 3 0 0 0 226 0 0 0 0 229 98.7 118.185

7 0 0 12 0 0 4 245 0 13 0 274 89.4 43.262

8 0 0 0 0 1 0 0 232 0 0 233 99.6 209.238

9 0 0 4 0 0 0 5 0 234 0 243 96.3 71.503

10 0 0 0 0 0 0 0 0 2 250 252 99.2 159.727

U 0 0 0 0 0 0 0 0 0 0 0 0.0

Total 250 250 250 250 250 250 250 250 250 250 2500

Produced 98.0 98.8 93.6 88.8 99.6 90.4 98.0 92.8 93.6 100.0

Overall accuracy = 95.4; Kappa = 0.948; Variance = 0.000022; Z calc. = 202.950; Z tab. = 1.96

Table 3. Confusion matrix obtained through classification of networks [R4444_TP12d] and [R4848_TP12d]

of set 12
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(Ultisols); however, the worst performance in
classification was obtained for class 8 again (Red
Argisols - Ultisols), with an accuracy of 83.6 %. Form
the total pixels considered as being of class 8, 12 were
assigned to class 5 and 23 to class 10 (Table 6).

The lower performance for the classes of Red
Argisols (Ultisols) and Red Latosols (Oxisols) coincides
with the difficulty of separating them in the field,
where they occur in very similar positions of the
landscape. Although the classifier performance and
the proportion of correctly allocated pixels was high
according to the reference values of Landis & Koch
(1977), the neural networks had greater difficulty in
distinguishing these classes. This is explained by the
small differences between the covariates curvature
plan and profile. The exclusion of the variable
curvature profile in the input layer of network
R4848_TP12d, from set 12, increased the proportion
of correctly allocated pixels in these two classes,
reaching an accuracy of 92.8 % in Argisols (Ultisols)
and 90.4 % in Red Latosols (Oxisols) (Table 3).

From the results of confusion matrices and other
statistical values from the ANN validation (Tables 5
and 6), and according to its performance, set 13 was
also chosen to assist the discrimination of soils in the
area. Thus, a Kappa significance matrix was generated
among the networks to verify the existence of
differences, significant or not, among the results and
to choose the best network architecture for the final
data classification (Table 7).

As shown in table 7, the highest values of overall
accuracy and Kappa index were obtained by the double
inner layer architectures, and the best performances
with the networks R4343_TP13d (207.525) and
R4545_TP13d (176.320), which appear to be different
from all the others and were also selected to
discriminate soil types. At the end of the validation
process, the networks [R4444TP_12d],
[R4848TP_12d], [R4343_TP13d], and [R4545_TP13d]
were defined to generalize the information of the entire
study area and discriminate soil types. Classification
resulting from ANN application, selected from the sets
12 and 13 with their respective digital soil maps, are
shown in figures 4 and 5 and the simplified pedological
map in figure 3.

The conventional soil map, produced specifically
to serve as reference in the visual assessment of neural
network predicted maps, is a map of medium intensity
recognition at a scale of 1:50,000, and its legend is
found in Calderano Filho (2012). The purpose was not
to compare soil map generation methods, mainly
because they cannot be contrasted. However, the ANN
efficiency in discriminating and spacing soil types over
an area with a high degree of biogeophysical
complexity (soils, lithology, climate, topography, and
vegetation cover) was tested, using easily available
and cheap products. Within this framework, areas of
difficult access, such as the Amazon region for
example, could obtain this information at medium
scales, i.e. between 1:50,000 and 1:250,000.

Table 5. Evolution of overall accuracy and Kappa index within double inner layer networks from set 13

Network Overall accuracy Kappa Network Overall accuracy Kappa

% %

R4343_13d(1) 90.2 0.892 R4343_TP13d(2) 95.6 0.951

R4545_13d 90.1 0.890 R4545_TP13d 94.0 0.933

R4747_13d 90.6 0.896 R4747_TP13d 93.2 0.924

R5454_13d 90.1 0.890 R5454_TP13d 93.7 0.930

R5555_13d 90.2 0.891 R5555_TP13d 93.4 0.927

(1) d: double-layer. (2) TP: training time 2.

Network R4343TP R4444TP R4646TP R4848TP R5555TP

Overall accuracy (%) 93.9 94.6 94.0 95.4 94.4

Kappa 0.932 0.940 0.933 0.948 0.938

Variance(1) 0.280 0.250 0.280 0.220 0.260

R4343TP 176.131

R4444TP 1.099 188.000

R4646TP 0.134 0.962 176.320

R4848TP 2.263 1.167 2.121 202.114

R5555TP 0.816 0.280 0.680 1.443 183.957

Table 4. Kappa significance matrix and respective indices for the different neural network architectures

selected from set 12_TP12d

(1) Values multiplied by 103.
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[R4343_TP13d]

Class 1 2 3 4 5 6 7 8 9 10 Total User Z

1 240 0 0 7 0 0 0 0 0 0 247 97.2 82.799

2 2 240 0 1 0 10 0 0 0 0 253 94.9 61.476

3 0 0 246 0 0 5 0 18 0 0 269 91.4 48.242

4 8 10 0 242 0 0 0 0 0 0 260 93.1 53.175

5 0 0 0 0 250 0 0 0 8 0 258 96.9 80.798

6 0 0 0 0 0 222 0 0 0 0 222 100.0 0.000

7 0 0 0 0 0 13 245 0 0 0 258 95.0 62.732

8 0 0 0 0 0 0 0 214 0 0 214 100.0 0.000

9 0 0 4 0 0 0 5 0 240 0 249 96.4 73.311

10 0 0 0 0 0 0 0 18 2 250 270 92.6 52.262

U 0 0 0 0 0 0 0 0 0 0 0 0.0

Total 250 250 250 250 250 250 250 250 250 250 2500

Produced 96.0 96.0 98.4 96.8 100.0 88.8 98.0 85.6 96.0 100.0

Overall accuracy = 95.6; Kappa = 0.951; Variance = 0.000021; Z cal. = 207.761; Z tab. = 1.96

[R4545_TP13d]

1 242 0 0 5 0 0 0 0 0 0 247 98.0 98.386

2 0 250 0 9 1 27 0 0 0 0 287 87.1 39.600

3 0 0 220 0 0 0 0 6 0 0 226 97.3 81.887

4 8 0 0 234 0 0 0 0 0 0 242 96.7 75.668

5 0 0 0 0 247 0 0 12 0 0 259 95.4 65.691

6 0 0 0 0 2 214 0 0 0 0 216 99.1 136.797

7 0 0 11 0 0 5 245 0 0 0 261 93.9 56.868

8 0 0 0 2 0 0 0 209 0 0 211 99.1 133.612

9 0 0 19 0 0 0 5 0 239 0 263 90.9 46.011

10 0 0 0 0 0 4 0 23 11 250 288 86.8 39.142

U 0 0 0 0 0 0 0 0 0 0 0 0.0

Total 250 250 250 250 250 250 250 250 250 250 2500

Produced 96.8 100.0 88.0 93.6 98.8 85.6 98.0 83.6 95.6 100.0

Overall accuracy = 94.0; Kappa =0.933; Variance = 0.000028; Z calc. = 176.967; Z tab. = 1.96

Table 6. Confusion matrix obtained through classification of [R4343_TP13d, R4545_TP13d] networks from

set 13

Network R4343TPd R4545TPd R4747TPd R5454TPd R5555TPd

Overall accuracy 95.6 94.0 93.2 93.7 93.4

Kappa 0.951 0.933 0.924 0.930 0.927

Variance(1) 0.21 0.28 0.31 0.29 0.30

R4343TPd 207.525

R4545TPd 2.571 176.320

R4747TPd 3.744 1.172 165.955

R5454TPd 2.970 0.397 0.775 172.697

R5555TPd 3.361 0.788 0.384 0.391 169.246

(1) Values multiplied by 103.

Table 7. Kappa significance matrix and respective indices for the different neural network architectures

selected from set 13_TPd

By analyzing figures 3, 4 and 5, considering that
in the conventional map most mapping units are
composed by soil associations, it was stated that the
neural network classifier always allocated one of the
component members of the mapping unit correctly.

Even by the traditional method, it was difficult to
establish components and boundaries between the
polygons (soil patches), especially for areas with Red
and Red-Yellow Argisols (Ultisols), which occur in
similar landscape positions. Similarly, this behavior
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was found for Humic Dystrophic Yellow Latosols
(Oxisols) and Humic Cambisols (Inceptisols), which
also occur in very similar landscape positions.

In terms of the visual aspect of classifications, a
good design along with a classification consistent with
digital maps were observed for the selected networks
in all output classes. Litholic Neosols (Entisols)
associated with rocky outcrops (RO), Haplic Cambisols
(CXbd) (Inceptisols) and Humic Dystrophic Yellow
Latosols (LAdh) (Oxisols) follow the lines of the
conventional map in a consistent and very similar
form in all four classifications. The inconsistency is
higher and neural classifier performance is lower when
smooth and rough areas are compared in the
landscape, as reported in previous studies (Zhu, 2000).

In this type of visual assessment, a clear
separation of boundaries among output classes in the
resulting maps was also observed, consistent with the
conventional map for practically all four networks,
except for the classes Fluvic Neosols (Entisols) and
Red Argisols (Ultisols), and for some networks tending

to overestimate or underestimate data. Even though
classifier performance and ratio of correctly allocated
pixels were high, as seen in Fluvic Neosols (Entisols),
the distribution of this class in the predicted map was
overestimated, differing from the pattern of the
conventional map (Figure 3).

In the Red-Yellow, Yellow and Red Latosols
(Oxisols) classes, the distribution was most similar
to the conventional map with the classification of
R4444_TP12d and R4848_TP12d networks. In the
networks R4343_TP13d and R5345_TP13d, there is
a certain dominance of Red Latosols (Oxisols)
compared to Red-Yellow Latosols (Oxisols). In addition,
the Yellow Latosols (Oxisols) are practically suppressed
in the R4343_TP13d network classification. Although,
in all classifications, the networks allocated these soil
occurrence areas correctly, there was an
overestimation of Yellow Latosols (Oxisols) distribution
and an excess in Red Latosols (Oxisols) distribution,
especially in the R4343_TP13d classification. This
occurred similarly for the Red and Yellow-Red Argisols
(Ultisols) classification and distribution, with

Figure 4. Resulting prediction from application of

architectures of networks [R4444TP_12d] (a)

and [R4848TP_12d] (b) in the training area.

Figure 5. Resulting prediction from application of

architectures of networks [R4343TP_13d] (a)

and [R4545TP_13d] (b) in the training area.

(a)

(b)

(a)

(b)
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predominance of Yellow-Red Argisols (Ultisols). In the
class with predominantly Yellow Argisols (Ultisols),
all networks allocated this soil occurrence area and
distribution correctly and consistently with the
conventional map. The soil type had an irregular and
dotted distribution at various landscape points with
low representativeness per area.

In the domain of Red Argisols (Ultisols), the best
classification occurred for [R4444_TP12d] and
[R4848_TP12d] networks of set 12, while in the
networks of set 13, the classification result was slightly
inferior. This was also the case with the Red Latosols
(Oxisol) class, with superior performance for
[R4848_TP12d], when compared to set 13 networks.
Table 8 shows the classification performance for each
predicted type, in the four selected networks (sets 12
and 13), with their respective overall accuracy values.
Thus, it can be inferred that the variable curvature
profile slightly obscures the result when used together
with curvature plan, as in set 13. Chagas (2006)
reported a low efficiency of curvature plan to
differentiate some soil types, in spite of being important
to separate others at concave curvature locations.

The classification matches and overall accuracy
for Fluvic Neosols (Entisols) were high in all networks,
with less than 6 % of incorrectly allocated  pixels, but
its distribution on the terrain was the most irregular,
compared to the conventional map, and appeared to
be more scattered across the whole study area.
Network R4848_TP12d distributed this soil type
consistently with the conventional map. In all other
classifications, there was excess in the distribution of
areas belonging to this type, to a greater or lesser
degree. Although the occurrence sites were correct,
the network generalization process for Fluvic Neosols
(Entisols) standard was inconsistent in the class
distribution. This can be explained by the fact that
small areas of intermontane alveoli occur throughout
the study area, with smooth relief and very similar
declivity values, inserted in rough, undulating and

hilly relief areas. This information was already
detected by the digital elevation model (DEM), reported
by Dantas (2001). If the intermontane alveoli were
eliminated from DEM, the results for this soil
distribution would possibly be better.

The confusion degree in some classes of the resulting
maps was due to the difficulty of establishing more
accurate soil-landscape relations in the study area.
According to the used pixel size and large geological
heterogeneity in the area, diverse source materials
can be produced, with occurrence of polychrome soils
(bicolor) in a same profile. In addition, a high degree
of pedological complexity in the area, with very similar
landscape patterns, where some soil types occur and
how they are distributed within landscape. Sometimes,
they occupy the same position in landscape, making
it difficult to separate them with 100 % accuracy by
the SiBCS characteristics (Embrapa, 2006), where
some criteria are too subtle to establish a clear
differentiation in the landscape.

McKenzie & Austin (1993) emphasize the presence
of geological structures such as dikes that can control
the soil distribution pattern in a landscape. Dikes of
basic material are frequent in the area, however,
because of the generalization degree, the geological maps
of Matos et al. (1980) and DRM (1982) fail to show their
occurrence and spatial distribution. Another cause may
be the unsuitability of the environmental variables in
representing variations in soil characteristic, or even
in their proper generation, where their accuracy is
determined by  the spatial resolution of the DEM, by
which they were calculated (Thompson et al., 2001).
In this study, a 30-m spatial resolution DEM was used,
which is considered appropriate and compatible with
scale of original topographic maps, and the
interpolation method used for the construction is
suitable for rough relief areas.

Of all combinations tested, the potential to predict
soil types of the variables of sets 12 and 13 was best,

Output class
Overall accuracy within Neural Networks (Sets 12(1) and 13 TP)

R4444_TP12d R4848_TP12d R4343_TP13d R4545_TP13d

%

1 RO 97.2 98.0 96.0 96.8

2 CXbd 100.0 98.8 96.0 100.0

3 LAd 92.4 93.6 98.4 88.0

4 LAdh 93.6 88.8 96.8 93.6

5 LVAd 99.6 99.6 100.0 98.0

6 LVd 76.8 90.4 88.8 85.6

7 PVAd 98.0 98.0 98.0 98.0

8 PVd 92.0 92.8 85.6 83.6

9 RY 96.0 93.6 96.0 95.6

10 PAd 100.0 100.0 100.0 100.0

Table 8. Performance of ANN classifications of the sets 12 and 13

(1) Set 12 without the variable curvature profile.



Braz Calderano Filho et al.

R. Bras. Ci. Solo, 38:1681-1693, 2014

1692

with a percentage of hits above 90 % of training
samples, high Kappa index and lower variance values
(Tables 3 to 8). Although the results for the Kappa
index were excellent for all four selected classifiers
(>0.90) when using sets of validation samples, as
suggested by the reference values stipulated by Landis
& Koch (1977) and Monserud & Leemans (1992), the
predicted soil maps differed.

CONCLUSIONS

1. Using the same set of soil profiles as by the
conventional approach, the concurrent use of terrain
attributes, geological information and indices derived
from Landsat 7 images allowed the establishment of
soil-landscape relations as they occur in the study
area, improving the discrimination among component
members of the mapping units.

2. Results confirm the potential of using neural
network approach, since the resulting maps were
consistent with and similar to the conventional soil
map, but show more spatial details.

3. As well as facilitating soil mapping in medium
scale, this approach contributes to the development of
digital soil mapping in Brazil, especially considering the
availability of remote sensing data at zero cost, ease of
obtaining terrain attributes and use of free software.
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