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Spider silk fibres share unprecedented structural and mechanical properties which span from the
macroscale to nanoscale and beyond. This is possible due to the molecular features of modular proteins
termed spidroins. Thus, the investigation of the organizational scaffolds observed for spidroins in spider silk
fibres is of paramount importance for reverse bioengineering. This dataset consists in describing a rational
screening procedure to identify the nanoscale features of spider silk fibres. Using atomic force microscopy
operated in multiple acquisition modes, we evaluated silk fibres from nine spider species. Here we present
the complete results of the analyses and decrypted a number of novel features that could even rank the silk
fibres according to desired mechanostructural features. This dataset will allow other researchers to select
the most appropriate models for synthetic biology and also lead to better understanding of spider silk fibres
extraordinary performance that is comparable to the best manmade materials.

Design Type(s) in vitro design • species comparison design
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clavipes • Nephilengys cruentata • Parawixia bistriata • gland
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Background & Summary
Spider silk fibres represent the most impressive biological archetypes of high performance fibres. This
stems from the fact that spider silk fibres can surprisingly merge strong tensile strength and high elasticity
which are similar to those observed for steel and nylon, respectively. The last few decades have been
marked by an explosion of studies describing molecular, structural, and mechanical properties of spider
silk fibres1–11. The major reason for this interest is that spider silk fibres are one of the most promising
next-generation candidates for bioinspired polymers12.

Among the challenges to the widespread use of spider silk fibres as models for novel materials is the
understanding how spider silk proteins (spidroins) interact among them to form supramolecular
nanostructures in the fibre13,14. This fact, together with the limited number of species represented by
available molecular and mechanostructural data15, led to a demand for the development of methods and
datasets organized to identify specific features reliable for synthetic biology approaches.

A systematic proposal toward a rational use of nanoscale features of spider silk fibres was presented
in our recent Nature Communications paper1. There, we explored the biodiversity of spider silk
fibres by several atomic force microscopy (AFM) imaging and spectroscopic modes. Using that
method1 we and others are able to systematically select, on demand, high-performance fibres for
nanoengineering purposes. However, we suggested that other researchers could experience difficulty in
reproducing our experiments with exactly the same instrumental setup and conditions. Thus, we avoided
reporting absolute quantities and instead relied on normalised values and ratios during comparisons
among fibres in that study1. Here we present the datasets from that study1, which would be valuable to
many other researchers studying the nano- and microscale mechanostructural properties of spider silk
fibres.

Methods
Experimental design
We performed AFM analyses of natural silk fibres from nine spider species with focus on the use of
multiple operation-acquisition modes under imaging and force spectroscopic approaches. A dataset of
quantitative nanoscale parameters were obtained from silk fibres images and force spectroscopic data
under near-native conditions (Figure 1).

Sample preparation
Spider silks were supplied by Dr Paulo C. Motta (Institute of Biology, University of Brasilia, Brazil) under
IBAMA/MMA license number (0128753 BR) and Dr Randolph V. Lewis (Utah State University, USA).
Silks were reeled from adult specimens of Aglaoctenus lagotis (Araneomorphae, Lycosidae), Argiope
argentata (Araneomorphae, Araneidae), Argiope lobata (Araneomorphae, Araneidae), Avicularia
juruensis (Mygalomorphae, Theraphosidae), Avicularia sp. (Mygalomorphae, Theraphosidae), Gaster-
acantha cancriformis (Araneomorphae, Araneidae), Nephila clavipes (Araneomorphae, Nephilidae),
Nephilengys cruentata (Araneomorphae, Tetragnathidae), and Parawixia bistriata (Araneomorphae,

Figure 1. Representative scheme of the experimental design including AFM modes and corresponding

quantitative parameters of the spider silk fibres.
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Araneidae). Silk fibres extruded from major ampullate gland spigots (or acinous gland spigots for
Avicularia species) were rolled around a rotating tubular graphite at 5 mm/s, taking care to avoid
contamination by silks that did not originate in the desired glands. Two synthetic silk fibres termed
Recombinant-1 (MaSp-1, 16 ×GGLGGQGGLGGLGSQGAGLGGYGQGGAGQGGAAAAAAAAS
module, a segment from a sequence previously obtained from Parawixia bistriata16 and under GenBank
accession no. ADG57596.1) and Recombinant-2 (MaSp-2, 16 ×GPGGYGPGQQGPGGYGPGQQGPS
GPGSAAAAAAAA module, a segment from a sequence previously obtained from Nephila clavipes17 and
under Swiss-Prot accession no. P46804.1) were expressed, purified, and polymerised according to
previously described methods18 and deposited on a glass coverslip. Silk fibre samples were stored in a
dust-free and light-protected Petri dish under ambient conditions until analysis. Commercial nylon and
steel yarns were used as controls.

Multimode atomic force microscopy imaging analyses
AFM analyses were performed in contact, soft contact, force modulation, lateral force (trace-minus-
retrace data), dynamic, phase imaging, and Kelvin force microscopy operation/acquisition modes on a
commercial SPM-9600 (Shimadzu, Japan) with suitable probes1 in a temperature-controlled room (23 °C)
under atmospheric conditions. AFM scans of similar areas were acquired at a maximum resolution of
512 × 512 pixels and a rate of 0.5–1 Hz. The scanned areas were perfect squares that ranged in size from
40 μm×40 μm (lower magnification) to 250 nm× 250 nm (higher magnification). We used four AFM
off-line software packages to qualitatively and quantitatively analyse the acquired images (SPM-9600
off-line v. 3.304—Shimadzu, Japan; SPIP v. 5.1.5—Image Metrology, Denmark; WSxM v. 5.0 Develop
3.2—Nanotec Electronica, Spain; and Gwyddion v. 2.22 for Windows—Czech Metrology Institute, Czech
Republic).

All the images (including all modes) were plane-fitted automatically to compensate for any sample tilt
due to misalignments of tip and fibres using SPM-9600 off-line software. Height images were also
3D-rendered using WSxM software for visual inspection and qualitative investigation. Linear roughness
amplitude, spatial, and hybrid parameters were calculated along the longitudinal extension (10 μm) of five
single fibres for each spider species using Gwyddion software.

Surface quantitative nanoroughness (from contact mode—height images), nanostiffness (from
force modulation mode—phase images), nanofriction (from lateral force mode—horizontal deflection
images), nanoviscoelasticiy (from viscoelastic mode—phase images), nanoamplitude (from viscoelastic
mode—amplitude images), and nanopotential (from Kelvin force mode—phase images) were obtained
using Gwyddion statistical quantities tool by measuring the mean, standard error of the mean (s.e.m.)
values of each parameter; and further by calculating the relative standard error of the mean values of ten
to fifteen images acquired at higher magnification (250 nm× 250 nm) of each spider silk fibre for each
acquisition mode.

Single-fibre force spectroscopy analyses
Force spectroscopy experiments were performed in ambient air with the same AFM-imaged fibres. The
approach-release curves were recorded at 23 °C, 30% relative humidity, and a pulling rate of 1 Hz. Twelve
force-distance curves were obtained from distinct regions in five different fibres. Data for the complete
sample set were acquired with the same contact or dynamic mode tips at the same AFM acquisition
setup. Static nanomechanics parameters from force-distance curves were calculated using SPIP software.
Maximum load, maximum pulling, and snap in forces; detachment separation and zero indentation
distances; Young’ modules; and energies dissipated were calculated.

Data Records
The dataset produced by this study have been deposited at figshare. Link to the data depositions are
provided in the Data Citations section. The format, content and availability of the depositions are
described in the following subsections and in Table 1.

Data record 1—imaging and force spectroscopic data
The quantitative imaging and force spectroscopic data are contained in worksheets indicating
the raw data and at the bottom of the worksheets are the calculated mean values, standard
errors of the mean (s.e.m.) values, and also relative standard errors of the mean (r.s.e.m.) values
(Data Citation 1). The quantitative data in figshare are organized by AFM imaging (Files 1–7), force
spectroscopic (File 8) modes and AFM probes technical data (File 9). The column details are given
bellow.

File 1. linear roughness parameters.xlsx
This data file carries three worksheets containing raw data and descriptive statistics regarding roughness
(amplitude, spatial and hybrid) parameters obtained in the longitudinal direction of the spider silk fibres
using Gwyddion software (Windows, v. 2.22). These parameters are described in the English version
of Gwyddion user guide available on-line at http://gwyddion.net/documentation/user-guide-en/ (pages
60–61) and also shared in the slides of a developers talk available on-line at http://gwyddion.net/
presentations/talk-roughness-David-Necas-2012.pdf.
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The column descriptions for the raw data worksheets are as follows:

Amplitude parameters
COLUMN A—Sample Label.
COLUMN B—Roughness Average (Ra)—Arithmetical mean deviation. The average deviation of all points
roughness profile from a mean line over the evaluation length.
COLUMN C—Root mean square roughness (Rq)—The average of the measured height deviations taken within
the evaluation length and measured from the mean line.
COLUMN D—Maximum height of the roughness (Rt)—Maximum peak-to-peak-valley height. The absolute
value between the highest and lowest peaks.
COLUMN E—Maximum roughness valley depth (Rv)—Lowest valley. There is the depth of the deepest valley
in the roughness profile over the evaluation length.
COLUMN F—Maximum roughness peak height (Rp)—Highest peak. There is the height of the highest peak in
the roughness profile over the evaluation length.
COLUMN G—Average maximum height of the roughness (Rtm)—Mean peak-to-valley roughness. It is
determined by the difference between the highest peak ant the lowest valley within multiple samples in the
evaluation length.
COLUMN H—Average maximum roughness valley depth (Rvm)—The mean valley depth based on one peak
per sampling length. The single deepest valley is found in five sampling lengths (m= 5) and then averaged.
COLUMN I—Average maximum roughness peak height (Rpm)—The mean peak height based on one peak per
sampling length. The single highest peak is found in five sampling lengths (m= 5) and then averaged.
COLUMN J—Average third highest peak to third lowest valley height (R3z)—The distance between
the third highest peak and the third lowest valley. A peak is a portion of the surface above the mean line crossings.
COLUMN K—Average third highest peak to third lowest valley height (R3z ISO)—The height of the third
highest peak from the third lowest valley per sampling length. The base roughness depth is found in five
sampling lengths and then averaged.
COLUMN L—Average maximum height of the profile (Rz)—The average absolute value of the five highest
peaks and the five lowest valleys over the evaluation length.
COLUMN M—Average maximum height of the roughness (Rz ISO)—The average peak-to-valley roughness
based on one peak and one valley per sampling length. The single largest deviation is found in five sampling
lengths and then averaged.
COLUMN N—Skewness (Rsk)—Skewness is a parameter that describes the shape of the amplitude distribution
function (ADF) that is the probability function that gives the probability that a profile of the surface has a
certain height z at any position x. Skewness is a simple measure of the asymmetry of the ADF, or, equivalently,
it measures the symmetry of the variation of a profile about its mean line.
COLUMN O—Kurtosis (Rku)—Kurtosis is the ADF shape parameter considered. Kurtosis relates to the
uniformity of the ADF or, equivalently, to the spikiness of the profile.
COLUMN P—Waviness average (Wa)—A typically used number to describe waviness of the surface and that is
closely related to the Ra.
COLUMN Q—Root mean square waviness (Wq)—The average of the measured waviness value deviations.
COLUMN R—Waviness maximum height (Wy=Wmax)—The difference value between the highest point and
the lowest point of a measurement curve.
COLUMN S—Maximum height of the profile (Pt)—The maximum peak to valley height of the profile in the
assessment length.

Spatial parameters
COLUMN A—Sample Label.
COLUMN B—Average wavelength of the profile (lambda a)—The average wavelength that can be calculated
from average roughness (nm) and average absolute slope (degree).
COLUMN C—Root mean square (RMS) wavelength of the profile (lambda q)—The average of the measured
wavelength of the profile deviations.

AFM mode Measured parameters Tabulated data
(worksheets)

Raw data (images and force curves)

Contact/Dynamic modes (height) Linear roughness All All

Contact/Dynamic modes (height) Surface roughness All All

Force modulation mode (phase) Surface nanostiffness All Representative for 4 species

Lateral force mode (deflection) Surface nanofriction All Representative for 7 species

Viscoelastic mode (phase) Surface nanoviscoelasticity All All

Viscoelastic mode (amplitude) Surface nanoamplitude All All

Kelvin probe mode (potential) Surface nanopotential All Representative

Force-distance curves (contact) Static Mechanical All Representative for 8 species and manmade materials

Table 1. Availability of measured AFM data as deposited on FigShare (Data Citation 1).
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Hybrid parameters
COLUMN A—Sample Label
COLUMN B—Average absolute slope (delta a)—The average absolute slope of the profile.
COLUMN C—Root mean square (RMS) slope (delta q) (10− 6)—The average absolute slope of the profile
deviations.
COLUMN D—Length (L)—The length of the profile.
COLUMN E—Developed profile length (L0)
COLUMN F—Profile length ratio (Lr)

File 2. surface nanoroughness parameters.xlsx
This data file carries one worksheet containing raw data and descriptive statistics regarding surface
roughness parameters obtained from square areas of height images (dynamic mode) of the spider silk
fibres using Gwyddion software (Windows, v. 2.22). These parameters are described in the English
version of Gwyddion user guide available on-line at http://gwyddion.net/documentation/user-guide-en/
(pages 53–54) and also shared in the slides of a developers talk available on-line at http://gwyddion.net/
presentations/talk-roughness-David-Necas-2012.pdf.
The column descriptions for the raw data worksheet are as follows:
COLUMN A—Sample Label
COLUMN B—Average Value
COLUMN C—Minimum
COLUMN D—Maximum
COLUMN E—Median
COLUMN F—Ra
COLUMN G—Rms
COLUMN H—Skewness
COLUMN I—Kurtosis
COLUMN J—Surface Area
COLUMN K—Projected Area
COLUMN L—Inclination (theta)
COLUMN M—Inclination (phi).

File 3. surface nanostiffness parameters.xlsx
This data file carries one worksheet containing raw data and descriptive statistics regarding surface
stiffness parameters obtained from square areas of phase images (force modulation mode) of the spider
silk fibres using Gwyddion software (Windows, v. 2.22). These parameters are described in the English
version of Gwyddion user guide available on-line at http://gwyddion.net/documentation/user-guide-en/
(pages 53–54) and also shared in the slides of a developers talk available on-line at http://gwyddion.net/
presentations/talk-roughness-David-Necas-2012.pdf.
The column descriptions for the raw data worksheet are as follows:
COLUMN A—Sample Label
COLUMN B—Average Value
COLUMN C—Minimum
COLUMN D—Maximum
COLUMN E—Median
COLUMN F—Ra
COLUMN G—Rms
COLUMN H—Skewness
COLUMN I—Kurtosis.

File 4. surface nanofriction parameters.xlsx
This data file contains one worksheet containing raw data and descriptive statistics regarding surface
frictional parameters obtained from square areas of horizontal deflection images (lateral force mode) of
the spider silk fibres using Gwyddion software (Windows, v. 2.22). These parameters are described in the
English version of Gwyddion user guide available on-line at http://gwyddion.net/documentation/user-
guide-en/ (pages 53–54) and also shared in the slides of a developers talk available on-line at http://
gwyddion.net/presentations/talk-roughness-David-Necas-2012.pdf.
The column descriptions for the raw data worksheet are as follows:
COLUMN A—Sample Label
COLUMN B—Average Value
COLUMN C—Minimum
COLUMN D—Maximum
COLUMN E—Median
COLUMN F—Ra
COLUMN G—Rms.

www.nature.com/sdata/

SCIENTIFIC DATA | 1:140040 | DOI: 10.1038/sdata.2014.40 5



File 5. surface nanoviscoelasticiy parameters.xlsx
This data file contains one worksheet containing raw data and descriptive statistics regarding surface
viscoelastic parameters obtained from square areas of phase images (viscoelastic-phase mode) of the
spider silk fibres using Gwyddion software (Windows, v. 2.22). These parameters are described in the
English version of Gwyddion user guide available on-line at http://gwyddion.net/documentation/user-
guide-en/ (pages 53–54) and also shared in the slides of a developers talk available on-line at http://
gwyddion.net/presentations/talk-roughness-David-Necas-2012.pdf.
The column descriptions for the raw data worksheet are as follows:
COLUMN A—Sample Label
COLUMN B—Average Value
COLUMN C—Minimum
COLUMN D—Maximum
COLUMN E—Median
COLUMN F—Ra
COLUMN G—Rms
COLUMN H—Skewness
COLUMN I—Kurtosis.

File 6. surface nanoamplitude parameters.xlsx
This data file contains one worksheet containing raw data and descriptive statistics regarding surface
stiffness parameters obtained from square areas of amplitude images (viscoelastic-phase mode) of the
spider silk fibres using Gwyddion software (Windows, v. 2.22). These parameters are described in the
English version of Gwyddion user guide available on-line at http://gwyddion.net/documentation/user-
guide-en/ (pages 53–54) and also shared in the slides of a developers talk available on-line at http://
gwyddion.net/presentations/talk-roughness-David-Necas-2012.pdf.
The column descriptions for the raw data worksheet are as follows:
COLUMN A—Sample Label
COLUMN B—Average Value
COLUMN C—Minimum
COLUMN D—Maximum
COLUMN E—Median
COLUMN F—Ra
COLUMN G—Rms
COLUMN H—Skewness
COLUMN I—Kurtosis.

File 7. surface nanopotential parameters.xlsx
This data file contains one worksheet containing raw data and descriptive statistics regarding surface
potential parameters obtained from square areas of Kelvin force microscopy images (surface potential
mode) of the spider silk fibres using Gwyddion software (Windows, v. 2.22). These parameters are
described in the English version of Gwyddion user guide available on-line at http://gwyddion.net/
documentation/user-guide-en/ (pages 53–54) and also shared in the slides of a developers talk available
on-line at http://gwyddion.net/presentations/talk-roughness-David-Necas-2012.pdf.
The column descriptions for the raw data worksheet are as follows:
COLUMN A—Sample Label
COLUMN B—Ra
COLUMN C—Rms.

File 8. static mechanical parameters.xlsx
This data file contains one worksheet containing raw data and descriptive statistics regarding static
mechanical parameters obtained from force-distance curves of the spider silk fibres using SPIP software
and are described in its manual.
The column descriptions for the raw data worksheet are as follows:
COLUMN A—Sample Label.
COLUMN B—Maximum Load Force (Max Ld)—The maximum loading force usually at the left end of
the approach curve.
COLUMN C—Maximum Pulling Force (Max Pull)—The maximum pulling force on the
retraction curve.
COLUMN D—Snap In (Snap In)—The magnitude of the force immediately after snap in.
COLUMN E—Detachment Separation (Detach Sep)—The separation (distance between tip apex and the
maximum indentation point) at detachment.
COLUMN F—Young’s Modulus (Youngs Mod)—The elastic modulus calculated by one of the
indentation fitting models on the Force versus Separation curve.
COLUMN G—Zero Indentation (Zero Ind)—The point in the Force versus Separation graph which is
used as zero point for indentation fitting.
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COLUMN H—Dissipated Energy (Energy)—The area between the approach curve and the retraction
curve of the force versus separation curve.

File 9. AFM probes technical data.doc
This data file contains one table with the description of the AFM probes used to obtain the images and
force curve spectra of the spider silk fibres.
COLUMN 1—AFM operation/acquisition mode.
COLUMN 2—Cantilever type.
COLUMN 3—Cantilever metal coating.
COLUMN 4—Cantilever length.
COLUMN 5—Cantilever resonant frequency.
COLUMN 6—Cantilever spring constant.
COLUMN 7—Tip type.
COLUMN 8—Tip curvature radius.
COLUMN 9—Tip material.
COLUMN 10—Probe manufacturer/model.

File 10. linear roughness parameters.zip
This data file contains raw data AFM height mode images in ASCII format and which were used for
obtain linear roughness parameters.

File 11. surface roughness parameters.zip
This data file contains raw data AFM height mode images in Shimadzu proprietary format and which
were used for obtain surface roughness parameters.

File 12. surface nanostiffness parameters.zip
This data file contains raw data AFM force modulation mode (phase) images in Shimadzu proprietary
format and which were used for obtain surface nanostiffness parameters.

File 13. surface nanofriction parameters.zip
This data file contains raw data AFM lateral force mode (horizontal deflection—trace and retrace) images
in Shimadzu proprietary format and which were used for obtain surface nanofriction parameters.

File 14. surface nanoviscoelasticity parameters.zip
This data file contains raw data AFM viscoelastic mode (phase) images in Shimadzu proprietary format
and which were used for obtain surface nanoviscoelasticity parameters.

File 15. surface nanoamplitude parameters.zip
This data file contains raw data AFM viscoelastic mode (amplitude) images in Shimadzu proprietary
format and which were used for obtain surface nanoamplitude parameters.

File 16. surface nanopotential parameters.zip
This data file contains raw data AFM Kelvin probe mode (potential) images in Shimadzu proprietary
format and which were used for obtain surface nanopotential parameters.

File 17. static mechanical parameters.zip
This data file contains raw data AFM force spectroscopy mode (force curves) in ASCII format and which
were used for obtain static mechanical parameters.

Technical Validation
Validation of the study
The experimental design presented in this dataset has been validated in several ways. Firstly, forward
(trace) and backward (retrace) scans were performed for all imaging modes as well as approach and
retraction curves were performed for all force spectroscopic modes both to ensure that no distortion was
occurring at any level. Secondly, the same AFM tip was used when direct comparisons were required to
ensure similar tip geometry and cantilever spring constant. Finally, it has been largely demonstrated that
spider silk fibres show high degree of variability in their structural and mechanical properties at
interspecific, intraspecific and intraindividual levels15. Thus, absolute values of the present data descriptor
must be taken with careful consideration.

Usage Notes
There are several predictable uses for these datasets. Firstly, they suggest candidate spider species and
consequently their silk fibres for further molecular studies based on nanoscale characteristics. Secondly, it
could be used to select which fibres display desired mechanostructural features. Lastly, these datasets can
be used to compare with nanoscale features of several other materials, including synthetic fibres, plastics,
metals, ceramics, glasses, papers, woods, and resins.
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