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ABSTRACT: Lower and medium (Illumina 3K, 7K, 50K) 
density SNP markers have been shown to be less informa-
tive and explains a small proportion of the total additive 
genetic variance for most traits, in Bos indicus dairy and 
beef cattle breeds. The objective of this study was to esti-
mate the proportion of additive genetic variance explained 
by actual Illumina 50K and imputed 777K (HD) genotypes 
in Guzera (Bos indicus) breed for milk (MY), fat (FY) and 
protein (PY) yield. We also studied the accuracy of genomic 
prediction. Imputation of 936 cows was done with FImpute 
using 75 sires. The proportion of the total additive genetic 
variance explained by markers increased from 0.62 (actual 
50K SNPs) to 0.91 for the imputed HD. Imputed HD mark-
ers increased prediction accuracy by 13%, 2% and 10% for 
MY, FY and PY respectively, compared to the actual 50K. 
Keywords: Additive variance; Accuracy; Imputation; FIm-
pute; Bos indicus 
 
 

Introduction 
 

Practical application of genomic selection (GS) in 
the breeding industry depends among other factors, on the 
price of genotyping. The current medium or high density 
SNP chips are still expensive for widespread use consider-
ing the number of individuals needed to constitute sufficient 
reference population (RP) in order to achieve reasonable 
accuracies. To reduce the cost of GS for breeding programs, 
imputation approaches have been used (Khatkar et al. 
(2012); Badke et al. (2013); Hozé et al. (2013); VanRaden 
et al. (2013)). Imputation utilizes the genotyping of very few 
informative individuals on a medium to high density SNP 
panels and while the remaining individuals are genotyped 
on lower density SNP chips. Subsequently, imputation strat-
egies are used to infer the un-typed markers. Lower (Illumi-
na 3K, 7K), medium (Illumina 50K) or high (Illumina 
777K) density SNP markers are particularly useful for ge-
nome wide association studies (GWAS) and GS. However, 
Illumina lower density or even medium density SNP mark-
ers have been shown to be less informative (ascertainment 
bias) and appear to explain a small proportion of the total 
genetic variance for most economically important traits in 
beef cattle in Bos indicus breeds (Elzo et al., 2013). In our 
current dataset of about 950 animals with Illumina 50K 
genotypes, initial analysis showed that, SNP markers only 
account for about 55-65% of the additive genetic variance 
for milk production traits. An obvious strategy to increase 
this proportion, and hence increase accuracies of GS and 
fine-tune regions of interest in GWAS studies is to use im-
putation. Thus, the objective of this study is to a) compare 

the estimate of the proportion of total additive genetic vari-
ance captured by actual Illumina 50K and imputed Illumina 
HD 777K genotypes in Guzera, a Bos indicus dual purpose 
cattle breed of Brazil; b) prediction accuracy of actual 50K 
and imputed HD genotypes; c) effect of imputation accuracy 
on the total additive genetic variance captured by SNP 
markers and estimated breeding value (EBV) rankings.  
 

Materials and Methods 
 

Phenotypic and Pedigree Data: Traits under 
study were deregressed estimated breeding values (dEBV, 
Garrick et al. (2009)), of 305 day Milk (MY, kg), Fat (FY, 
kg) and Protein (PY, kg) of both sires and dams. Variance 
components were estimated with the WOMBAT software 
(Meyer, 2007). The mean ± SD MY, FY and PY was 
2142.92 ± 1032.82, 112.40 ± 57.38 and 70.50 ± 29.77 
respectively. Pedigree data consisted of 6,039 animals (698 
sires and 2558 dams). Heritabilities were estimated at 0.26, 
0.28 and 0.26 for MY, FY and PY respectively. Reliabilities 
of 936 animals with genotypes and phenotypes ranged from 
0.17 to 0.90 with an average of 0.47.  

 
Genotypic data and Quality control: 75 sires 

were genotyped with the Illumina Bovine HD (777K) Bead-
chip and 973 cows were genotyped with the BovineSNP50 
v2 BeadChip. Quality control (QC) was undertaken separa-
tely for the HD (777,962) and 50K (54,609). The following 
criteria were used for SNP quality control; SNPs mapped to 
the same position or with unknown positions were removed, 
SNPs with GenCall Score of <0.5 were set to missing, SNPs 
with minor allele frequency (MAF) < 0.02, call rate <95% 
and with exact p-value for HWE test <10-6 were removed. 
Individuals with 10% missing genotypes were also removed 
from the data set. After QC, all the 75 animals remained 
with 508,334 for the HD whiles, 965 (8 deleted) cows with 
28,546 SNPs remained. As stated above, only 936 animals 
with genotypes and phenotypes were used for subsequent 
analysis. The remaining SNPs from the QC of the 50K had 
24,106 SNPs in common with the HD. Since cows were not 
genotyped on HD, imputation accuracy could not be asses-
sed. Additionally, the effect of using the imputed HD geno-
types for estimating marker effect, variance component and 
genomic EBVs (GEBV) could not be studied. Thus to try 
and mimic the potential effect of using imputed HD data on 
the estimates of variance component and GEBVs, the com-
mercial Illumina 3K and 7K markers were subset from the 
actual 50K and imputed to 50K. We could thus directly 
estimate imputation accuracies using their actual 50K geno-
types. The imputed 50K from the two scenarios (50K_3K 



and 50K_7K) are then used for estimating variance compo-
nent and genomic EBVs (GEBV). Rank correlations 
between the estimated breeding values from the actual 50K 
and imputed 50K are studied. Additionally, predictive abili-
ty of the imputed 50K are also reported (details below). The 
authors note here that, these 2 SNP chips have been shown 
to have lower imputation accuracy when imputed to 50K 
than imputation of 50K to HD (Berry et al. (2013)). None-
theless, this strategy, gives us a fair approximation of the 
impact of the imputed data on our results. The Illumina 3K 
and 7K SNPs markers had 1,987 (91.8 % SNPs to be imput-
ed) and 4,653 (80.7 % SNPs to be imputed) SNPs in com-
mon with the quality controlled 50K markers respectively. 

  
Imputation: Genotype imputation was undertaken 

using the 75 sires with HD genotypes as RP. 965 cows were 
imputed from 50K (24,106 SNP markers) to HD (508,334). 
Additionally, as stated above, the 3K and 7K markers were 
imputed to 50K. FImpute v2 (Sargolzaei et al. (2012)) was 
used with prior pedigree information to link the RP and 
imputed set. Imputation accuracies were computed as the 
percentage of correctly called markers (%Ccall) and correla-
tion (cor) between true 50K and imputed 50K_3K or 
50K_7K markers. Genomic relationships (GRM) between 
the reference and imputed set were calculated using Van-
Raden (2008). Information from GRMs allows for easy 
comparison of imputation accuracies with other studies. 
Summary statistics on GRM were computed based on max-
imum (relmax), mean top 5 (rel5), 10 (rel10) and 20 (rel20) 
relationships for each individual.  

 
Statistical analysis: Single trait genomic-

polygenic model was fitted for MY, FY and PY to predict 
EBVs. The model was fitted on the actual 50K, imputed 
50K_3K, imputed 50K_7K and imputed HD. 

 
Y = Xb + Za + Wu + e 

 
Where 𝑌  is a vector of DrEBV for each traits on 

the genotyped animals; 𝑋 is a vector of 1’s, 𝑎  is a vector of 
additive genetic effects with 𝜎!!, 𝑍  is an incidence matrix 
coded as the dosage of the B allele (“2”). 𝑊 is the incidence 
matrix and 𝑢  is a vector of animal polygenic effects esti-
mated from the pedigree data. Random polygenic effect 𝑢 
was assumed to follow 𝑢~  𝑁 0,𝐴𝜎!! ; where 𝐴 = Numera-
tor relationship matrix. Random residuals e were assumed to 
be ~  𝑁 0,𝑅𝜎!! ;𝑤ℎ𝑒𝑟𝑒  𝑅 = 𝑤!!!!;   𝑤!! = 𝑟!(1 − 𝑟!)!!.   

 
The program GS3 (Legarra, 2009) was used to es-

timate variance components (𝜎!!,𝜎!!,𝜎!! ) with the VCE 
option (MCMC; Number of iteration=250,000; Burn-
in=50,000; Thinning = 50). The total genetic variance ex-
plained by all SNP markers ( 𝜎!! ) was computed as 
𝜎!!× 2𝑝! 1 − 𝑝!

!"#$"
!!! , where 𝑝! is the allele frequency of 

marker i. EBVs were computed for an individual i as 
𝑢! + 𝑧!𝑔  . All animals were used for variance component 
estimation. 

 

Predictability and Rank correlations: The da-
taset was split into training and validation set in an 8-fold 
cross validation procedure. The same model above was used 
to estimate marker effect from the training set and GEBVs 
in the validation set (MCMC sampling; Number of itera-
tion=50,000; Burn-in=10,000; Thinning = 50). However, 
the newly generated variances from the earlier MCMC 
procedure were used as initial values. Predictability (accura-
cy) was calculated as correlation between dEBV and GEBV 
estimated with genomic polygenic model for imputed 50K 
(3K and 7K) and HD. Spearman rank correlation of GEBVs 
between the actual 50K data and imputed 50K were calcu-
lated as an indicator of the effect of imputation on GEBV 
rankings. 

 
Results and Discussion 

This study was aimed at estimating the proportion 
of total additive genetic variance explained by actual Illu-
mina 50K and imputed 777K (HD) genotypes as well as its 
effect on genomic evaluations. Table 1 shows the estimated 
GRM within the reference and between the reference and 
imputed dataset. On average, the maximum relation for 
animals in the RP were around 0.42 (parent-offspring or 
full-sibs) while between reference and imputed set the rela-
tionship was lower (0.37). The relationship between imputa-
tion accuracy and GRM have been found to be positively 
correlated, although other factors like size of RP also plays a 
key role in imputation accuracy (Hozé et al. (2013)). We 
observed a strong linear relationship between rel5 GRM and 
accuracy of imputation (results not shown).  
 
Table 1: Average genomic relationships (GRM) within 
reference set (RP) and between RP and imputed set for 
50K SNP chips 

GRM RP : RP RP : Imputed 
relmax 0.426 (0.117) 0.374 (0.135) 
rel5 0.261 (0.090) 0.205 (0.070) 
rel10 0.185 (0.071) 0.142 (0.051) 
rel20 0.113 (0.049) 0.087 (0.034) 

 
 

Imputation accuracies for the two tested scenarios 
of 50K_7K and 50K_3K are shown in Figure 1. Accuracies 
for imputing 3K to 50K were expectedly lower (87%; 0.89) 
than 7K to 50K (92%; 0.94). Weigel et al. (2010) reported 
similar imputation accuracy (90%) for Jersey bulls when 
they imputed approximately 3K SNPs to 48K. It is im-
portant to note that although 3K to 50K is similar to 50K to 
HD (92% vs. 95%) in terms of the number of un-typed 
markers imputed, results from VanRaden et al. (2013) and 
Berry et al. (2013) show much higher accuracies for 50K to 
HD than 3K to 50K or 7K to HD. Presumably, imputation 
accuracy for 50K to HD in this study is expected to be simi-
lar to or higher than the 7K to 50K. Imputation accuracies 
reported here, are much lower than in most other studies, 
this might be due to the small number of animals in the RP 
needed to build a comprehensive haplotype library as well 
as differences in population structure leading to different 
pattern of linkage disequilibrium. The effect of RP on impu-



tation accuracies have been comprehensively discussed by 
Badke et al. (2013) and Hozé et al. (2013).  

 

 
Figure 1: Boxplot of imputation accuracy from 3K and 
7K to 50K 

 
 
Proportion of total additive variance captured by 

SNP markers increased from 0.67 to 0.97; 0.59 to 0.88 and 
0.59 to 0.88 for MY, FY and PY respectively (Table 2). 
Although imputation accuracies were lower than 93%, this 
seems to only affect the estimation of variance components 
slightly as shown in Table 2 for imputed 50K with either 3K 
or 7K. Similar trend was also observed by Weigel et al. 
(2010) in scenarios where imputation accuracies were about 
90%. Imputation accuracies <90% resulted in a huge under-
estimation of variance component. Results from the spear-
man rank correlation between GEBV estimated from imput-
ed 50K (from 3K or 7K) and actual 50K are high (>0.94). 
These results are important because it validates extension to 
imputed HD genotypes which can be used for GEBV esti-
mation with little effect on ranking of animals. Elzo et al. 
(2013) also reported similar spearman rank correlations of 
>93% for genomic-polygenic models studying Brangus 
heifers using actual and imputed 50K.  

 
Genomic predictions using imputed HD genotypes 

were slightly more accurate (8% averaged across all traits) 
than using actual 50K genotypes (Table 4). Weigel et. al 
(2010) and Vazquez et al. (2010) all reported higher accura-

cies of prediction using denser SNP markers. There was a 
small loss in accuracy of prediction using imputed 50K 
from 3K, while prediction accuracy remained the same for 
the imputed 50K from 7K scenario (Table 4). The higher 
accuracies observed for all the traits with imputed HD, 
might be due to the resultant increase in marker variance 
and precise estimation of marker effect using the imputed 
HD. Accuracy was similar to the results of Erbe et al. (2012) 
on Jersey sires using a GBLUP model for MY, FY and PY. 
Prediction accuracy increases for  

 
Table 3: Spearman rank correlation between dEBVs 
estimated with actual 50K SNPs and imputed 50K (from 
3K and 7K) and Imputed HD for milk yield (MY, kg), 
Fat yield (FY, kg) and Protein yield (PY, kg) 
Scenario Correlation MY FY PY 
50K_3K GEBV; 50K 0.952 0.945 0.946 
 G-PEBV; 50K 1.000 0.998 0.998 
50K_7K GEBV; 50K 0.961 0.956 0.957 
 G-PEBV; 50K 1.000 1.000 1.000 
Imputed HD GEBV; 50K 0.994 0.986 0.986 
 G-PEBV; 50K 1.000 0.994 0.993 
G-PEBV = GEBV-Genomic breeding values estimated with 
SNP markers; PEBV-Pedigree breeding values; p-value 
were highly significant (depending on scenario >10-3). 
 
 
Table 4: Accuracies of genomic predictions for milk 
yield (MY, kg), Fat yield (FY, kg) and Protein yield (PY, 
kg) using actual 50K, imputed 50k (from 3k and 7k) and 
imputed HD 
dataset MY FY PY 
Actual 50K 0.39 ± 0.10 0.43 ± 0.08 0.41 ± 0.08 
50K_3K 0.36 ± 0.09 0.41 ± 0.08 0.40 ± 0.07 
50K_7K 0.41 ± 0.10 0.43 ± 0.08 0.41 ± 0.07 
Imputed HD 0.44 ± 0.03 0.44 ± 0.02 0.45 ± 0.03 

 
 
HD genotype data compared to 50K mostly when 

there is a corresponding increase in phenotypes. Thus, ge-
nomic prediction models that combine genotypes with pedi-
gree like the single-step GBLUP can be used to maximize 
gain in accuracy. K-fold cross validation was used because, 
correlation of inaccurate EBVs (below 0.2 in this study) to 

Parameters dataset MY FY PY 
𝜎!! Actual 50K 4.418±0.402 1.686±0.122 1.394±0.095 

 50K_3K 4.247±0.390 1.630±0.116 1.352±0.091 
 50K_7K 4.382±0.396 1.664±0.117 1.373±0.093 
 Imputed HD 16.190±0.802 13.750±0.682 13.364±0.703 
𝜎!!/(𝜎!! + 𝜎!!)

1 Actual 50K 0.670±0.047 0.590±0.025 0.592±0.022 
 50K_3K 0.666±0.045 0.582±0.025 0.584±0.022 
 50K_7K 0.681±0.046 0.588±0.024 0.588±0.022 
 Imputed HD 0.960±0.013 0.879±0.011 0.880±0.011 

Table 2: Posterior means and SD of genomic additive variance and proportion of total additive variance1 explained by 
markers for milk yield (MY, kg/105), Fat yield (FY, kg/103) and Protein yield (PY, kg/103). 
 
 
 
 
 
 
 
 
 
𝜎!! – total additive genetic variance captured by all markers;  𝜎!! – polygenic variance estimated with pedigree information. 



GEBVs might lead to incorrect prediction accuracy. A K-
fold cross validation allows each individual to be predicted 
once. We do note that, there can be slight overestimation of 
genomic prediction accuracy with this kind of validation. 
 

Conclusion 
 

The proportion of total additive genetic variance 
captured by SNP markers increased by about 49% (average 
across all traits; MY, FY and PY) using imputed HD geno-
types. Using imputed genotypes in genomic prediction 
models, the estimation of GEBV and ranking of animals 
was only slightly affected by imputation accuracy. Imputed 
HD genotypes increased prediction accuracy by about 8% 
on average.  
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