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Chapter 4

Spatial Relationships Between Soil Water
Content and Hydraulic Conductivity

in a Highly Structured Clay Soils

Sidney Rosa Vieira, Célia. Regina Grego, George Clarke Topp,
and Willian Daniel Reynolds

Abstract  The water, element essential for life, is present as a large reservoir in the
soil. Soil water content vakies in space as a consequence of the variability of other
related properties and its study is necessary ' to kmow how this variation occurs in
space and time. The objective of this study was to assess the spatial and temporal
variability of soil water content. and its relationships = with hydraulic conductivity.
Soil water content was measured with a TDR equipment and the hydraulic
conductivity was measured with a constant head well permeameter at 15 and 50 em
depth, in a neagly flat 1,2 ha field at the Central Experimental Farm of the Agri-
culture Canada, Ottawa. The soil is classified as a Rideau soil seties, is pkimarily
clay to silty clay texture.. Sampling was made on a 10 m spacing square grid with
164 sampling points.. Soil water content was measured on 33 dates during the frost
free months in 1987, 1988 and 1989. The rate of change in soil water content was
calgulated for the pegiods which did not have any rain. The spatial vatiability was
analyzed examining the descriptive statistical parameters; . the parameters of the
models fitted to individual semivariograms as a function of time and the maps
obtained by kriging interpolation. . It was concluded that soil structure played a very
important role on the spatial distiibution of hydraulic conductivity and water
content., Temporal stability of water in the soil is quite different duking the year
probably because of the hydtaulic conductivity = role. Parabolic trend removal
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worked well ali theough the year probably because of the topography. The behavior
of spatial variability the rate of change in water of soil did not repeat in different
times of the year' studied.

Keywords = TDR: - Temporal stability < Semivariogram_. = Geostatistics

4.1 Introduction

The water, element essential. for life, is present as a large reservoir. in the soil. Their
disteibution in space is variable due to fluctuations of other related properties, so
knowledge of this variation in space and time becomes important in studies of soil
physical properties. . Soil water changes over landscape have been identified in
several studies.. Vauchaud et al. (1985) found temporal stability of frequency
distribution of water in the soil, Kachanoski_ and De Jong (1988) studied the
temporal persistence of spatial pattems of soil water storage, Vieira et ai (1997)
reported on the scaling of spatial vaciability over time and Gongalves et al (1999)
observed a temporal stability of soil water content stored in an irrigated area.
Duking the last few decades geoestatistical.. methods have been intensively used
for descriptions of spatial variability in depth (Nielsen et al. 1983; Vieira
et al. 1983; Vieira 2000; Grego and Vieira 2005; Vieira et ai 2008). Most of the
authors reported that geoestatistics ~ is useful for evaluate the spatial dependence, use
this spatial. dependence * to interpolate values. for the places where they have not been
measured, and to provide information to construct maps and design sampling
strategies as a function of the spatial variability. The difference of statistics and
geostatistics . is that classical statistics require normality and spatial independence of
the dates while geostatistics requires correlation and spatial dependence.

Variability " in time, and in patticular, with repeating pattems is being a challenge
to soil research.. Adequate information about soil properties showing spatial distzibu-
tion stable in time could conttibute to significantly reduce the number  of measure-
ments, (Vauchaud et al. 1985; Kachanoski. and De Jong 1988). Soil water content
analyzed in consecutive sampling dates have been reported of having temporal
stability (Vauchaud et al. 1985; Gongalves et al. 1999). Vauchaud et al. (1985)
addeessed the occurrence of temporal stability' of the spatial disttibution of soil
water content and coneluded that the places where higher water content. occur in
one moment may remain. that way at other moments.. Vieira et al. (1991) expanded
this concept and considered the scaling of semivariograms to simultaneously examine
the spatial variability in consecutive sampling dates. Scaling semivariograms = of
several variables measured over the same field provides a simple but powenful
integration method (Vieita et al. 1988; Vieita et al, 1991; Vieita et al. 1997) in the
sense that the more the semivariograms = scale the more similar the variability of the
corresponding  variables are.

Therefore, if semivariograms. scale, it indicates  that not only the mean values and
dispersion” coefficients occur at the same locations but all variability repeats in time,
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although the absolute values may be different.. Besides, the analysis. of the parameters
of the models fitted to the semivariograms as a function of the time of successive
samplings may be of help in assessing the temporal_stability of the spatial variability.
Thus, in order to analyze temporal and spatial vatiability of water content it is
important calculate. and compare scaled semivatiograms for different dates, compare
semivatiogram . madel parameters and construct and compare contour maps. for
different dates and variables.
The objective of this chapter was:

- To describe the spatial vaciability as well as the temporal stability of the spatial
distribution  for soil water content..

— To use geostatistics to evaluate the spatial vaciability of soil water content and of
hydraulic conductivity.

- To analyze the temporal stability of the spatial dependence of soil water content
and its relations with the soil hydraulic conductivity.

4.2 Methodology

4.2.1 Study Area and Soil Sampling

The study was developed in a Rideau clay loam soil (Gleyed Melanic Brunisol)
with clay loam to clay suiface texture, in the Central Experimental Farm. of
Agriculture Canada,. Ottawa, with grasses vegetation maintained low. One hundred
and sixty four TDR (time domain. refiectometry) rods for measuring volumettic
water content were installed. Therefore, soil water content measurements could be
obtained on the same poinis as many times as wanted since the IDR rods remained
in-place at the same points in the field. The TDR rods were installed at 45° angle
and kept there for 3 years. All the soil water content contents. measured were done
with the TDR method according to Topp and Davis (1985).

All water content measurements . over the field were collected within, a two-hour
time period. The triangular field, kept vegetated with natural pasture grass, measured
110 m in the x-dikection (base) and 220 m in the y-direction (height), was divided. into
a 10 x 10m grid with 164 points. The grid and topographic. map of the study area are
shown in Fig. 4.1.

The study periad. extended from early September of 1987 until early May 1989
during the ground surface frost-free months, The dates of samplings in 1987 were
September  11,14,17,21,24, and October 29 with two samplings on the same day
with different TDR insttuments.. There were 19 samplings dates in 1988: May 06,
13 and 30, June 06, 13, 21 and 27, July 04, 15, 22 and 28, August 11, 18 and 25,
September 02, 08, 15, 22 and 29, and October 06. The dates of samplings in 1989
were April 14, 18,21,25 and 28 and May 01. Figure 4.2 shows the precipitation in
mm, duting the study petiodo
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Fig. 4.2 Rainfall as a function of time during the years 1987 until 1989

The sampling dates were converted to Julian days in order to make the parameters
plot a function of time during the year:

Figure 4.2 shows a distaibution = of rainfall_ during the entire research period for
the thiee years. Except for a few peaks of very high rainfall most of them are
somewhere around 5 and 10 mm. Therefore, except for some days right after the
peaks of rainfall, it is expected that the major contribution for soil water content is
the snow melt.

The field saturated hydraulic conductivity, Kg, was measured in each one of the
locations - shown in Fig. 4.1 using the constant head well permeameter (Reynolds
and Elrick 1986) and calculated using the one head approach as recommended by
Reynolds et al. (1992). At the time the hydraulic conductivity were measured, TDR
readings were made in each one of the 164 sampling points in order to have the
initial soil water content..
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Fig. 4.3 (a) Characteristics of a typical semivariogram. with Co (nugget effect), C, (structural
variance) and a (range); (b) Mos! commonly used models: spherical, exponential and Gaussiani

4.2.2 Spatial Variability Theory

In order to be able to evaluate the spatial variability with geostafistics the basic
requikements. are: Cartesian. coordinates, intrinsic hypothesis, semivasiogram | showing
a well-detined sill and similarity hetween neighbors.. The equations that represent
bypothesis for geostatistics are:

E{Z(x)} =m (41)

Where a random function Z(Xj) is stationary' of order two if the expected value,
E{Z(x)} exists and does not depend on the position Xx.

In addition to the condition in Eq. 4.1, the Eq. 4.2 represent a random function
Z(xJ when is a intginsic. hypothesis. The inerement [Z(X])- Z(Xj+h)] has a finite
variance, and does not depend on xi for all vectors h.

VAR[Z(x;) — Z(x; + h)] = E[Z(x;) — Z(x: + h)] 4.2)

The function y (h) is the semivatiogram_. (Matheron 1963) estimated by

N(h)
() = s 2 206) = 2+ 1)’ 3
i=1

where N(h) is the number of paits of measured values Z(Xj), Z(Xj+h), separated by
a vector h (distance).
The main characteristies = of a semivatiogram are shown in Fig. 4.3a.
Expetimental . semivasiograms need to be fitted to some mathematical model which
must meet the criteria of conditional positive definiteness MaeBratney and Webster
11986).. Amongst all the vakiety of models which satisfy that condition, the fitting
muneters that desetihe them are: the nugget effect Co, the sill (Co +C1), (C1is the
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structured variance coefficient to be defined later), and the range of spatial
dependence a.

The models most frequently used (McBratney and Webster 1986) are the
spherical, the exponential and the gaussian. models. A graph of these models is
shown in Fig. 4.3b for illustration purposes.

When data shows. a trend (semivariogram | without a sill), according to Vieira
et ai (2010b), an altemative is fit a trend surface using mimimization of the sum of
squares . of the deviations  and subtract this sutface from the original data generating
a residual vakiable.

For instance,. the equation for a parabolic trend sucface is:

Zest(x, y) = AOFTAIX +A2Y +A3X2 + A4XY + A5Y2 (4.4)

Where Zest(x, y) is a estimate value for parabolic trend surface to measured
values (AO, ... ,ASY2)
Thus, the residuais, Zres(x, y), can be calculated

Zres(x, y) = Z(X, y) - Zest(x, y) (4.5)

With the objective of compating the vaiability of different samplings, Vieira
et al. (1997) proposed a scaling technique for the sernivariogram expressed by:

ysch =ylLhaL.L =12, .. ,m (4.6)

Where a i is the scaling factor for semivariance (y) and m is the number of
measured vakiables.

The scale factor a, is a constant that can take the value of the calculated variance,
the sill (the highest value of the semivariance) ' or the square of the mean values. The
scaling concept proposed by Vieira et al. (1997) may be helpful in the analysis of
the temporal stability of the spatial vatiability of soil water content corresponding
to different sampling dates for the same location.. Withini each data. set (year' of
sampling) the scaled semivariograms for all sampling dates can be plotted together
in order to mak.e comparisons and verify if and when the spatial vatiability loses
temporal stability.. When data. of several dates coalesce into a unified semiva-
riogram  structure, it is possible to take advantage of vatiables having the same
spatial structure and, hence, reduce the number of semivatiograms: needed to
analyze and draw interpretations: regarding their spatial vatiability.

Two: facts are very important about the above theoretical concepts: (i) The
semivariogram | y (h) is assumed to be isottopic, i.e., either there is no significant
anisotropy or there is a transformation  to remove the anisotropy before scaling is
applied; (ii) y (h) can take the value of the calculated vatiance Var(z) no matter
whether it represents the true vatiance or not, since the scaling factor is simply a
number chosen to mak.e the semivariograms coalesce into a single curve. The
reason why scaled semivatiograms may provide an adequate way to analyze
temporal = evolution of the spatial vartiability is that it will be noticeable when the
spatial vartiability pattern changes, and thus the possible cause can be examined.
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Therefore, scaling is used in this paper only for the comparison between
semivariograms . for different samplings on the same field,

The examination of the spatial variability for soil water content as the time
duting the year progresses may reveal information about some water content
threshold value at which the soil hydraulic conductivity begins to cause changes
in the spatial variability patterns.

4.2.3 Water Content Change Over Successive
Sampling Dates

The rate of change of water content over time, .1 (8i,8; can be expressed as the
difference  in water content (% vol.) measured at times i and j divided by the time
interval (day).

1.8, 8] = (Si - 8j)ti - t) .7

The rate of change in water content over time, ..1(8;,8;) was calculated for the
peciod when there was no rain. Therefore, all the change in water content was
caused strictly by water loss to the atmosphere. When the soil has enough water to
satisfy the atmospheric demand without resttictions, assuming that the energy
available for the evaporation process is not variable in space at the scale of the
field under study (lOx220 'm), then the variability of the evaporation rate is likely
to reflect the soil sutface conditions.. Besides, because the soil cover constituted
primarily of pasture grasses and it was maintained . at low height, then not much

spatial variability due to vegetation evaporation is expected for this field.

4.3 Result and Discussion

The descriptive statistical moments. for hydraulic conductivity at 15 and 50 em depths
and soil water content measured in 164 points are shown. in Table 4.1. The hydraulic
conductivity = for the two depths showed very high coefficients of skewness and

Table 4.1 Desciptive statistical moments for hydraulic conductivity and soil water content
measured at 15 and 50 em depth

Variable Num Mean Vatiance CV Min Max  Skew Kurt

Hydtaulic Conductivity - 164 -677 291 -2,620 -1,135' -285 009 -042
15em (logs)

Soil water content - 15em 164 2,372 3,520 2,502 1,D70 3,640 -012 -065

Hydraulic Conductivity - 164 -826 270 -1,991 -1,340 -495 -079 016
50 em (logs)

Soil water content ~50em 164 3,951 5,174 1,821 1,690 5,360 -033 -038
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Table 4.2 Semivariogram modei parameters. for hydraulic conductivity* and soil water content
measured at 15 and 50 em depth

Variable Model Co Ci a 2  RMSE
Hydraulic Conductivity 15em (logs)  Exponential 228 087 7,211 045 0.005
Soil water content 15em Spherical 000 2,908 7,000 080 0.139
Hydraulic Conductivity 50 em (logs)  Spherical 052 203 7,000 084 0.008
Soil water content 50 em Gaussian 1,670 2,997 7,000 094 0.080

kurtosis. For that reason it was decided to work on the logs rather than the original
values.. This transfonnation, = although it is always better' not to need it, it does make
the coefficients. of skewness and kurtasis to approach O (zero). In this condition the
data has a frequency disttibution close to Ihe normal and it makes the analysis easier
according to Vieira (2000).

It can be seen in Table 4.1 that mean hydeaulic conductivity is much higher at
15 em than at 50 em depth. which is caused by the strong blocky structure at depths.
near the surface and massive structure at deeper depths. On the other hand the moisture
content is much higher at 50 em than at 15em depth. The coefficients. of variation are
withi the nonnal range expected for physical soil data of this type. Similar results
have been reported. by Vieika et al. (1988). One aspect of Table 4.1 which is initially
difficult to explaim: is the large range in water content (approximately 25 % for 15em
depth. and 36 % for 50 em depth). It should be considered that after the snow melt
redisteibution  of water not very much change should be expected for moisture content
at 50 em depth this without a crop growing cultivated in this area.

The hydraulic conductivity and soil water content at 15 and 50 em depth showed
enough spatial dependence to influence on the interpolation of values at any spacing
finer than that they were measured (10 m) without bias and with minimum vaciance,
as the parameters  for the models fitted to the semivatiogram = (Table 4.2) indicate.
The range of spatial dependence was 70.0 m or more for allof them.. The spatial
dependence  for the hydraulic conductivity for the 15em depth was somewhat weak
due to the randomness of the macro pores at the surface layer which causes a lot
vatiable in the water flow.

The Fig. 4.4a, b show the scaled! semivariograms . for hydraulic conductivity and
soil water content, respectively, at 15 and 50 em depth.. The Rideau soil at this site
has a very strong blocky structure at the first 25 em. On the other hand, at 50 em
depth this soil has a very massive structure or no structure at all. Therefore, at 15em
depth the water moves much faster in between the structure blocks while the soil
water content is mostly retained inside the blocks.. That is the main reason why the
scaled semivariograms:  for 15 em depth are so different because they represent
different soill physical processes.. On the other hand, at 50 em depth the water moves
faster where there is more water and for that reason, the spatial vaciability of soil
water content is so similarto that ofthe hydraulic conductivity. According to Vieira
etal. (1997) the soil physical process is the main reason why scaled semivariograms
are so alike.
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Fig, 44 Semivariograms for hydraulie eonduetivity and water eontent: (a) sealed semivasiogram
:or hydraulie eonduetivity and water eontent at 15 em depth: (b) sealed semivariogram for
laydraulic eonduetivity and water eontent at 50 em depth; (c) semivariogram for hydrawlie
conductivity (logs) at 15 em depth; (d) semivakiogram. for water eontent at 15 em depth;
(e) semivatiogram for hydraulie eonduetivity (logs) at 50 em depth; (f) semivatiogram for water
content at 50 em depth

Figure 4.4c-f.. show that the models chosen to fit the semivariograms worked very
wvell for all of them as the models follow the experimental. semivariograms with strong
spatial dependence as it is also indicated. by the r* values shown in Table 4.2.

The spatial dependence expressed by the semivariograms parameters shown in
Table 4.2 are validated by the jack knifing procedure whose parameters are shown
m Table 4.3. According to Vieira et al. (2010a) the main parameters  in Table 4.3 are
the mean error and the variance ofthe errors, which should be, respectively, O(zero)
and 1 (one). Thus it can be concluded that all 4 semivariograms. are validated as
their parameters; approach the ideal values.

The maps for hydraulic conductivity and soil water content measured at the time
Zae hydraulic conductivities = were measured are shown in Fig. 4.5. The region in the
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Table 4.3 Jaek knifing results for the semivariogram model parameters for hydraulie eonduetivity
and soil water eontent measured at 15 and 50 em depth

Mean Varianee of

Variable Neighbors A b - error errors UK RMSE Dist

Hydraulie Conduetivity 16 -6.17 0.09 0.25 0.00 0.97 -1.68 165 61
15em (logs)

Soi! water eontent 15em 16 419 082 091 0.00 1.08 -0.18 . 241 61

Hydraulie Conduetivity 12 -391 053 0.73 -0.01 124 081 1.2 51
50 em (logs)

Soi! water eontent 50 em 12 17.93 0,55 0.76  0.00 112 -0.57 4.67 51

field with low water content values for 15 em depth falls exactly in the region of
higher topographic heights (Fig. 4.1b). It is amazing to see that this same region
had also low soil water content for the 50 em depth. The maps for hydraulic
conductivity and water content for 15 em depth illustrate the reason why their
semivariograms . are so different when they are scaled which simply is that they
represent a very distinct variability. . On the other hand, the maps for hydraulic
conductivity ~and soil water content for 50 em depth have variability almost exactly
the reverse, with low values of conductivity where the soil water content . is high.
That was exactly the idea reported by Vieira et al. (1997) that if the semivariograms
scale well it is an indication that the two variables either vary almost equally or
almost opposite to each other.,

The scaled semivariograms = for rate of change in soil water content shown in
Fig. 4.6 indicate that the variability for water loss is not stable in time. Similar
results were found by Grego et al. (2006) showing that the scaled semivariograms
for soil water content may be used to indicate time stability ofthe spatial variability.
Five out of twenty nine semivariograms . showed pure nugget effect.. All the nuggets
happened after a large previous rain.. Twenty three models were spherical and one
was exponential. .,

The in Fig. 4.7 show that the rate of change of water content does not repeat in
time. It should be noticed that these rate of change in water content are for the three
years. period which means that there might be climate variability involved in these
numbers.. The intervals at the beginning of the year' (April, May) probably reftect
the amount of snow cover.. Beginning of May 1988 and beginning of April 1989
seem to agree with each other probably of snow melt. The two rates for 1988
(05/30-06/06 and 06/06-13/06) do not seem to have anything in common  and rather
are completely the opposite.. Beginning of September 1987 seem to agree with end
of April 1989 but are not related to topography and/or surface texture but rather
with the hydraulic conductivity at 50 em depth. Buttafuoco et al. (2005) showed a
high temporal correlation  between the soil water contents measured at different
times, declining as the interval between the observations increases.. The autumn rain
events on dry soil produced an erratic distribution pattem of water in the soil and the
kriged maps of soil water revealed the dynamics . of soil water redistribution owing
to evapotranspiration or rainfall,

Y, r=ie

Y, meters
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semivariograms ~ was similar for summer and fall, and different for winter and
Spring. In the present work it appears that the spatial behavior for water content is
cfferent  at the beginning and at the end of the year.. Even for a short petiod of time
z.ght after snow melt (March or Aptil) the spatial. behavior seem to change from one
week to the next. It seem like two weeks at this time of the year is the limit. for the
stability of spatial vakiability. It should be noticed aiso that the semivariograms

were alieady close to each other before the scaling (Fig. 4.8).. The parabolic trend
removing process produced semivariograms with very well defined sills for all thiee
vears,
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44 C
4.3.2 Soil 'memory’
Y The follo
The length of time that soil water content expresses correlation with soil water ~ Soil sy
content at an initial time is what may be called as soil 'memory’. . The reason for condw
this is in the question 'how long does the soil "remember™ the initial soil water — Tempe
content? In order to illustrate this idea with these thiee year data, the correlation hydrag
between water content at some initial time and subsequent soil water content was — Parabe
caleulated and plotted in the graphs in Fig. 4.9. For compakison purposes, . these the top
caleulations | were done for both the original values and the residuals of a parabolic = Ratc o
trend.. The initial times were September/ll, ~ May/06 and April/14, respectively for [Clme“
— Correk
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Fig.4.9 Persistence of correlation between soi! water content for the initial sampling date and soil
water content in subsequent dates in 1987 (a), 1988 (b) and 1989 (c)

1987, 1988 and 1989. The correlation between any soil water content and the
initial one was never lower than 0.6, even for 1988 when the length of time is

lar

ger than 150 days.. That means that the time stability of the water content is

quite high. For 1989, when the data covers. only the beginning of the frost free
year (April) and the soil is very wet due to snow melt, the correlation remains at
approximately  0.8.

4.4  Conclusions

The following conglusions can be extracted in accordance with the text:

Soil structure played avery important role on the spatial disttibution of hydraulic
conductivity and water content..

Temporal stability is quite different duting the year probably because of the
hydraulic  conductivity role.

Parabolic trend removal worked well all through the year probably because of
the topography.

Rate of change in water content with time did not repeat vatiability in different
times of the year.

Correlation of water content remains for a long time (more than 100 days).
Unique field topography and surface texture may have been the reason for the results.
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