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ABSTRACT: The treatment of swine manure through composting is seen as an 

alternative to minimize environmental impact and improve nutrient recycling. 

However, the degradation of organic matter during the composting process promotes 

greenhouse gas emissions (GHG: CO2, CH4, N2O), NH3 and water vapor. The 

objective of this study was to measure the flux of these gases to perform the mass 

balance (DM, TN, C and P) of composting piles. Three compost piles (3 m
3
, initial 

mass 2.935 kg of sawdust and slurry) were mounted inside PVC tunnels with 

controlled ventilation (flow 1.526 m
3
/h). We evaluated temperatures and humidity 

(Datalogger TESTO 174H) inside and outside the tunnels and inside the biomass 

(TESTO Mod. 926, Type T), performed physical-chemical analysis of compost and 

measured GHG, NH3 and water vapor emissions every 4 min through infrared 

photoacoustic spectroscopy (INNOVA 1412). The average temperature observed in 

the biomass during composting was 45.53 ± 5.48ºC. The average H2O balance error 

(between input and output) recorded was 5.52%. Gaseous losses of N-NH3 and N-

N2O totaled 1.21 kg, representing 10.4% of the original 11.63 kg of N applied in the 

compost piles. NH3 represented 78% of measured total N gaseous losses (NH3+N2O). 

The total C emitted as CH4 and CO2 gases totaled 80.96 kg, representing 40.2% of the 

original 201.28 kg of TOC in compost piles (sawdust+slurry). CO2 emission 

accounted for 97% of total C losses. Considering the global warming potential (GWP) 

of each GHG, 615.3 kg of CO2eq were emitted during composting. CO2 emissions 

accounted for 46.8% of total CO2eq emission, while CH4 and N2O represented 11.1 

and 42.2%, respectively. Mitigation of CH4, and especially N2O emissions, during 

composting is critical due to the higher GPW of these gases. The presence of 

pathogenic microorganisms (Escherichia coli and coliform bacteria) was observed in 

the input slurry, but those microorganisms were not detected in the final compost. It 

was possible to accurately measure and verify gas emissions with the association of 

direct measurements and mass balance. 

 

Keywords: swine manure, manure treatment, global warming potential, carbon 
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INTRODUCTION: Residues from animal production systems are responsible for 

greenhouse gas (GHG) emissions and water and soil contamination in Southern Brazil 

(Sardá et al., 2010). These residues have an important role in ammonium (NH3) and 

methane (CH4) emissions to the atmosphere (IPCC, 1995). Composting has been 

appointed as an alternative to minimize the environmental impact of the animal 

production residue management allowing nutrient recycling (Oliveira and Higarashi, 

2006). However, during organic matter degradation, other gases could be emitted 

beyond CH4 and NH3, such as nitrous oxide (N2O) (Paillat et al. 2005). The reason for 

these emissions is not completely understood, mainly in Brazil, where the composting 

process developed by Oliveira and Higarashi (2006) is currently widely adopted for 

the treatment of swine slurry. The objective of this study was to determine GHG  
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(N-N2O, C-CH4 and C-CO2) and N-NH3 fluxes and to perform mass balance in the 

swine slurry composting process in Southern Brazil. 

1. METHODS: Three tunnels (12 m
3
) with controlled aeration were built and covered 

with PVC film. Inside each tunnel 2.52 m
3
 static composting piles were mounted in 

wooden boxes. Composting was divided into two phases. The first was the absorption 

phase where swine slurry was applied to the piles and was considered a period with 

high carbon/nitrogen ratio (C/N) in the compost piles. During this first phase swine 

slurry was applied to the piles once a week. The pile was rotated 3 days after every 

slurry application or when the composting pile moisture was over 80%. The second 

phase was the maturation of the biomass, when slurry was no longer applied to the 

composting piles. During this phase, the composting piles were rotated once a week. 

Gas emissions were monitored only in the absorption phase when GHG and NH3 

emissions are expected to be higher (Paillat et al., 2005). The absorption phase lasted 

35 days and 2,600 L of swine slurry was incorporated into compost piles in 7 

applications. Each application was performed observing the maximum incorporation 

rate (3 L/kg of sawdust) (Oliveira and Higarashi, 2006) to avoid slurry percolation 

and runoff from composting piles. Gas emissions were calculated based on the air flux 

inside each tunnel determined by a hot wire anemometer (TESTO 435), and gas 

concentrations in the tunnels’ inlets and outlets every 4 minutes by trace gas analyzer 

INNOVA 1412 (infrared photoacoustic spectroscopy),  

following the equation proposed by Robin et al. (2006): 

  Equation (1) 

Where, � is the gas emission rate (g/h in dry air);
 arQ is the air flow (m

3
/h);

 
ρi  is the 

conversion factor from air flow volume to air mass flow, allowing the implementation 

of mass and energy conservation laws (m
3
/h to kg/h). The ideal gas law was used 

considering the air temperature as 20ºC for the conversion of the gas using equation 2: 

 

 Equation (2) 

Where, C
m

i is the equivalent concentration of C and N in gases (mg/m
3
), measured at 

time i (C-CH4; C-CO2; N-NH3; N-N2O); C
v
i is the concentration of the measured gas 

(ppmv); Mm is the equivalent molecular mass of C and N in the considered gas (ie. 

CH4=12, NH3=14, N2O=28 g de N.mol
-1

); Mmol is the molar mass in each gas 

molecule (CO2=44, CH4=16, NH3=17). Vm is molar volume (L/mol) corresponding to 

the molecular mass of a perfect gas at pressure (P) and temperature of 20°C (T). 

Beyond gas emissions, other parameters were evaluated, such as air temperature and 

moisture inside and outside the tunnels. Compost was submitted to physical-chemical 

analysis. Mass balance was performed based on C and N inputs in the system through 

swine slurry and sawdust, along with the concentration of these elements of the 

compost biomass. The differences in C and N mass were considered losses of these 

elements as gaseous emissions and were compared to measured C-CH4, C-CO2, N-

NH3, and N-N2O emissions. Phosphorus balance and water concentration in the 

compost pile were used to estimate errors on mass balance, considering the used 

methodology. The characteristics of sawdust and swine slurry used in the experiment 

are shown in Table 1. 
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Table 1.Physical-chemical characteristics of materials used in the composting 

(g.kg
-1

). 

Material Dry matter (%) Tot. Nitrogen Organic Carbon
 

Phosphorus (PO4) 

Swine 

slurry 

3,8 – 36,4 2,3 – 6,7 13,3 – 57,1 0,8 – 3,9 

Sawdust 89,31 2,17 537 0,20 

 

Sawdust substrate granulometry was characterized by coarse particles with a high 

superficial area. Phosphorus content in sawdust was minimal. Total organic carbon in 

sawdust was 161 kg per compost pile. C/N ratio in sawdust was 200/1, while C/N 

ration in swine slurry was 7/1. On average, of three compost piles, 11.03 kg of N were 

applied and incorporated into the sawdust substrate. The initial compost biomass C/N 

ratio was 46/1. After 35 days, the C/N ratio of the biomass decreased to 26/1, pH 

maintained alkaline during the whole absorption phase. 

2. RESULTS AND DISCUSSION: The temperature of the compost biomass ranged 

between 40 and 50ºC during the absorption phase. The moisture was maintained 

between 70 and 80%. When biomass moisture increased beyond 70%, the temperature 

of the compost pile decreased. Higher moisture content could allow the formation of 

anaerobic zones inside compost biomass, which is not desirable in this process. The 

C-CO2 and C-CH4 fluxes measured during the absorption phase are presented in the 

Figure 1. The letters A and R identify the days when slurry was applied and compost 

piles were rotated, respectively. 

 

 

Figure 1. C-CO2 and C-CH4 fluxes during composting. Letter A identifies the days 

when slurry was applied to the substrate and R identifies the days when compost piles 

were rotated. 

C-CO2 and C-CH4 emission profiles showed that increase of oxygen saturation when 

compost piles were rotated decreased emissions of these gases. However, slurry 

application increased C-CO2 and C-CH4 emissions. These results reinforce evidence 

for the presence of moments of higher reduction of oxygen concentration in compost 

piles, since the production of CH4 occurs under anaerobic conditions, while CO2 

emissions are mainly aerobic. 
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Figure 2. N-NH3 and N-N2O emission profile during swine composting. 

The observation of  N-N2O and N-NH3 emissions during the 35 days of the absorption 

period is shown in Figure 2. N-N2O emissions became significant only when N-NH3 

emissions started to decrease after 18 days. By comparing the measured emissions for 

both gases and by results reported by Fukumoto et al. (2003), it is possible to 

conjecture that microorganisms had oxygen as the main energy source for the 

oxidation of organic carbon in the compost piles, limiting nitrate formation in the first 

18 days. With the exhaustion of labile organic carbon, nitrate started to be produced. 

When compost piles were rotated, nitrate was displaced from the top to the bottom of 

the piles under anaerobic conditions, increasing N-N2O emissions. Therefore, N2O 

produced in the bottom layers of the compost piles was released when the substrate 

was rotated. The results of the mass balance for water, natural matter, dry matter, 

organic matter, carbon and nitrogen in compost piles are presented in Table 2. Mass 

balance indicates that 38.9% and 40.8% of the total nitrogen and organic carbon 

added to the system were lost during the composting process. 

Table 2. Mass balance of water, natural matter (NM), dry matter (DM), organic 

matter (OM), organic carbon and total nitrogen in the compost piles. 

 Water NM DM OM C N 

 kg 

Inputs (1) 2,485.16 2,935.97 450.80 406.90 233.77 11.63 

Output (2) 1,124.49 1,448.26 323.77 288.32 142.82 6.88 

Losses (1-2) 1,360.67 1,487.71 127.03 118.58 90.95 4.75 

Measure emissions* 1,221.55 - - - 80.96 1.21 

Gases/Losses (%) 89.77 - - - 89.01 25.47 

Mass/Losses (%) 54.75 50.67 28.18 29.14 38.90 40.84 

*Gases emissions: sum of C-CO2 + C-CH4, and N-NH3+N-N2O. 

Total C and N losses measured by the mass balance of the compost piles were 

compared with the results of measured N-NH3, N-N2O, C-CO2, and C-CH4 emissions. 

The average N losses, as N-NH3 and N-N2O, accounted for 1.21 kg of nitrogen in 

relation to a total nitrogen loss of 4.75 kg, as determined in the mass balance. In the 

composting process, the main nitrogen losses occur as N2 emissions (Paillat et al., 

2005; Robin et al., 2006). Thus, considering that N-NH3 and N-N2O represented 
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25.47% of the total N losses, the remaining 74.53% could be considered as N2 

emissions.  

Total C losses, as C-CO2 + C-CH4, totaled 80.96 kg during the 35 days absorption 

composting phase. C-CO2 emissions accounted for 97% of the total C losses from 

composting piles. 

 

CONCLUSIONS: In this study we found agreement between gas emissions 

assessment for C-CH4, C-CO2, N-NH3, and N-N2O, and the C and N mass balance in 

composting piles. When the compost piles were managed to ensure proper aeration, 

low emissions of N2O and CH4 were verified. Main gaseous losses of C and N 

occurred as N2, NH3 and CO2, which are gases that present low global warming 

potential. 
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