MICROSATELLITE LETTERS

Isolation and characterization of 23 microsatellite loci in the stingless bee *Melipona subnitida* using next-generation sequencing

Isis G. B. Souza · Ian Paterson · Meghan C. McBride · Bruno A. Souza · Fabia M. Pereira · Maria T. R. Lopes · Paul Bentzen · Fabio M. Diniz

Received: 24 September 2014/Accepted: 27 September 2014/Published online: 4 October 2014 © Springer Science+Business Media Dordrecht 2014

Abstract We described the isolation and characterization of 23 microsatellite loci from the stingless bee (*Melipona subnitida*). Out of 52 microsatellite primer pairs screened, 17 loci displayed polymorphism and 6 were monomorphic. The analysis of variability was performed in 56 individuals. The number of alleles per locus ranged from 2 to 22 among populations; values for expected and observed heterozygosities ranged from 0.125 to 1.000 and from 0.121 to 0.923, respectively. These are the first microsatellite markers characterized for *M. subnitida* and they will be useful in obtaining estimates of population-level genetic diversity studies in a near future.

Keywords Genetic diversity · Microsatellite · Polymorphism · Stingless bee

Melipona subnitida Ducke is a stingless bee endemic to the semi-arid region of northeastern Brazil. The species has great ecological significance as a pollinator of the local native and cultivated flora. Their existence, however, is currently threatened by the progressive destruction of native vegetation and by the intensification of agriculture in the Caatinga biome. In response, populations of the stingless bee are declining, resulting in local extinction (Silva et al. 2014). Next-generation sequencing technology is a promising approach for species with limited genomic

I. G. B. Souza · B. A. Souza · F. M. Pereira ·

M. T. R. Lopes · F. M. Diniz (🖂)

I. Paterson · M. C. McBride · P. Bentzen Marine Gene Probe Laboratory, Biology Department, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada information (e.g. *M. subnitida*), the breeding programs of which would greatly benefit from the use of genomic tools, such as molecular markers, but for which these markers are not currently available.

Genomic DNA was extracted from the thorax of five individuals using standard proteinase-K digestion and phenol/chloroform method. An Illumina paired-end library was created using 1 ng of genomic DNA, following the standard protocol of the Illumina Nextera Sample Preparation Kit (Illumina Inc.). DNA sequencing was conducted using a MiSeq Benchtop Sequencer (Illumina Inc.). Contigs were created from the resulting paired-end sequence data using CLC Genomics Workbench 7.0.4 (Qiagen).

The library was loaded as 16 % of a MiSeq Reagent Kit v2 300 cycle sequencing run and produced 1,995,104 reads, which were assembled into 141,412 contigs. The program Msatcommander 0.8.2 (Faircloth 2008) identified 6,422 microsatellite loci, being in the majority dinucleotide repeats (5,998). For ease of imaging and scoring, we chose to examine only tri- and tetranucleotide loci. Of these, 52 loci were suitable for primer design and further testing. Microsatellites were individually amplified in 5 µL consisting of 2.15 μ L of dd.H₂O, 0.5 μ L of 10 × reaction buffer (Thermo Scientific Inc.), 2.5 mM of MgCl₂ (Thermo Scientific Inc.), 0.1 µM of fluorescently labeled CAG tag, 0.1 µM of un-tailed primer (either forward/reverse), 0.01 µM of CAG tailed primer (either forward/reverse), 200 µM dNTPs (New England BioLabs Inc.), 0.25 U Taq DNA Polymerase (Thermo Scientific Inc.), and ~ 15 ng of genomic DNA. Samples (n = 4) were initially amplified under the following thermocycling conditions: 95 °C for 5 min, followed by 30 cycles of 95 °C for 40 s, primer specific annealing temperature using gradient PCR (50-65 °C) for 30 s, 72 °C for 40 s, and a final extension at 72 °C for 7 min.

Laboratory of Molecular Biology & Biotechnology, EMBRAPA Meio-Norte, CP: 01, Teresina, PI CEP: 64.006-220, Brazil e-mail: fabio.diniz@embrapa.br

Table 1 Characteristics of 23 microsatellite loci developed for Melipona subnitida

Locus	Primer sequence $(5'-3')$	Repeat motif	T_a (°C)	N_a	Size range (bp)	Ν	GenBank accession no.
Msub02	F: GCCCAAAGATGGTATGCCG	(ACG) ₁₄	60	6	146–173	56	KM494946
	R: ACGAGGCGGATTCAACGAG						
Msub03	F: CTCGGCGCACAATTCGAG	(CGTT)11	60	6	171–191	56	KM494947
	R: GGTTATTTCGCCGGCAAGC						
Msub04	F: AAACTTGGTTCAGGTGCCC	(CTT) ₁₅	60	7	146–173	56	KM494948
	R: CAGGGCGGGTTCAATACC						
Msub07	F: ACACCAACCCTAATGCTCATCGC	(ACTG) ₁₃	60	4	160-180	56	KM494949
	R: CTCGCTTGTAAAGCTGCCC						
Msub08	F: GGAAGAAGTCTCTCGAGTAAAG	(AAG) ₁₄	60	7	146–185	56	KM494950
	R: TATCTCTGGCAGGTTCGCC						
Msub09	F: TGGTCTTCTTTATGGCAGCG	(CTT) ₁₇	60	8	155–188	56	KM494951
	R: GCATCCGACAAGTTGGCTC						
Msub11	F: TCTCGCGCATACCTAACC	(CTT) ₁₃	60	3	175-181	56	KM494952
	R: GCTGACTCGGAACAATGGC						
Msub18	F: TCCCGATTTCCACCGATCC	(ACG) ₁₈	62	17	154–232	56	KM494953
	R: GCCGACCTCTTCGACGG						
Msub26	F: CAACACCTCCTGCTTTATCGT	(ATGT) ₁₂	60	8	171-203	56	KM494954
	R: CACACTCACTTTGTTTCCCTTT						
Msub30	F: CCTGTTATTTGCTCCTCGAAAT	(CCTT) ₁₂	60	5	142-170	56	KM494955
	R: AACTCAAGGTTTCCCCGAAC						
Msub31	F: TTACCGTCTGTGCTACTGATCC	(AGAT) ₁₄	60	12	162-210	56	KM494956
	R: TGTCTGTCTGTCTGTCTATCTTTCTG						
Msub37	F: AAATGCAGGCAGAAATGG	(ACGC) ₁₄	60	17	150-226	56	KM494957
	R: TTGGACGAAAGTCAAATGC						
Msub38	F: AATACTCTGTTTCTTCCAGGGG	(AAAG) ₁₅	60	7	134–184	56	KM494958
	R: CTGAAATTGCTTTCGTGCC						
Msub41	F: ATCTCCTTCCTTGCACTCACTC	(ACTC) ₁₅ (TC) ₁₁	60	22	146-218	56	KM494959
	R: GTGGACAGAGGTTGGAAAAGAC						
Msub46	F: CACTGTTTCTCCAGTTGCTGTC	(AAAG) ₁₂	60	6	118–146	56	KM494960
	R: GTTTCGTTCGCGTGATTTC						
Msub48	F: AAAGAGCGTAGGACTTCCACAG	(GGAT) ₁₀	60	2	181-185	56	KM494961
	R: CATCCATCTATCCGTACATCCA						
Msub51	F: GGCGTTACAAAGGGGAGAA	(AGAA) ₉	62	4	147-159	56	KM494962
	R: AGTTGACAGCGTTTCCTACCTC						
Msub01	F: GGGCGTGGACTAAGTAGC	(CTT) ₁₁	60	1	161	56	KM494963
	R: GTGAGGAGAAACGTCGCAG						
Msub20	F: GCAGAGTTGACAGCGTTTCC	(CTTT) ₉	60	1	100	56	KM494964
	R: TGTATAAGAGACAGGCTCGGC						
Msub32	F: AAAACTCGAAGAAAACGAGGG	(AACG) ₁₄	60	1	158	56	KM494965
	R: GCTTGTCGTAAGGCACCG						
Msub35	F: GGCTTAGATACAGATCGGGTGT	(ACGC) ₁₆	60	1	134	56	KM494966
	R: GGGTGGGGTGATGGG						
Msub49	F: AAACACCGTCGAGAGCCAT	(CCTT) ₁₃	60	1	120	56	KM494967
	R: CTGACAAGCAAAGAAGCAAAGA						
Msub52	F: ATCAGGCATCAGACACAATCC	(CCTT) ₉	60	1	110	56	KM494968
	R: ACTACTGAAATATGGCGTCGTG						

 T_a , annealing temperature; N_a , number of observed alleles; N, number of individuals

Table 2 Variability of 17 microsoftallite logi and	Locus	Ceara (N $= 21$)		Piaui $(N = 15)$			Rio Grande do Norte ($N = 20$)			F_{ST}	
F-statistic in Melipona		H_o	H_e	P_{HWE}	H_o	H _e	P_{HWE}	H_o	H_e	P _{HWE}	
subnitida populations	Msub02	0.563	0.688	0.022	0.909	0.558	0.025	0.789	0.679	0.500	0.144
	Msub03	0.882	0.804	0.940	0.467	0.370	0.527	0.947	0.721	0.034	0.156
	Msub04	0.722	0.717	0.855	0.643	0.627	0.074	0.727	0.675	0.051	0.037
	Msub07	0.316	0.474	0.144	0.667	0.515	0.414	0.600	0.483	0.562	-0.009
	Msub08	0.611	0.675	0.355	0.933	0.828	0.004	0.474	0.568	0.292	0.100
	Msub09	0.800	0.650	0.040	0.500	0.632	0.063	0.600	0.687	0.295	0.104
	Msub11	0.750	0.578	0.460	0.600	0.683	0.010	0.650	0.606	0.030	0.060
	Msub18	1.000	0.863	0.052	1.000	0.869	0.003	0.867	0.862	0.060	0.069
	Msub26	1.000	0.656	0.006	0.571	0.794	0.001	0.842	0.819	0.000	0.089
	Msub30	0.611	0.570	1.000	0.667	0.653	0.005	0.450	0.383	1.000	0.063
	Msub31	0.947	0.868	0.021	0.929	0.828	0.050	0.889	0.852	0.003	0.040
*Locus that deviated	Msub37	0.842	0.898	0.035	0.769	0.886	0.002	0.750	0.798	0.098	0.096
significantly from <i>HWE</i> after	Msub38	0.789	0.757	0.190	0.786	0.767	0.036	0.471	0.526	0.092	0.142
Bonferroni correction (adjusted critical $P < 0.0029$)	Msub41	0.842	0.923	0.001*	0.643	0.810	0.000*	0.737	0.865	0.000*	0.094
H observed beterozygosity:	Msub46	0.368	0.367	0.457	0.333	0.287	1.000	0.625	0.597	0.455	0.083
H_e , expected heterozygosity;	Msub48	0.143	0.136	1.000	0.200	0.480	0.034	0.200	0.185	1.000	0.142
P_{HWE} , probabilities of departure	Msub51	0.125	0.121	1.000	0.308	0.280	1.000	0.417	0.467	0.117	0.069
from Hardy–Weinberg Equilibrium	Mean	0.665	0.632	-	0.643	0.639	-	0.649	0.634	_	0.083

Imaging of PCR products was conducted using Li-COR 4200/4300 DNA analyzers (Li-COR Biosciences). For polymorphic markers, a subsequent set of 56 individuals from three Brazilian populations (Ceara, Piaui and Rio Grande do Norte) were chosen for further testing in order to obtain estimates of basic population level statistics.

The genotyped data was analyzed using Micro-checker 2.2.3 (van Oosterhout et al. 2004) to test for the presence of null alleles or other possible scoring inconsistencies. Tests for Hardy–Weinberg Equilibrium (HWE) and linkage disequilibrium were conducted using Arlequin 3.5.1.2 (Excoffier and Lischer 2010). Bonferroni-corrected *P*-values were used to assess the significance (P < 0.05).

Of the 52 tested loci, 17 were identified as polymorphic with allele numbers ranging between 2 (Msub48) and 22 (Msub41). A further six microsatellites were identified as monomorphic (Table 1) and the remaining exhibited unclear allelic pattern and/or unspecific products. Observed and expected heterozygosities ranged from 0.125 to 1.000 and from 0.121 to 0.923, respectively (Table 2). No evidence of null alleles or scoring error was detected using Micro-checker. A departure from HWE was detected for locus Msub41 (adjusted *P* value < 0.0029).

The first microsatellite loci for *M. subnitida* will be used for genetic analyses of distinct populations across the northeast region of Brazil, and to reveal how environmental degradation affects this endangered species.

Acknowledgments Sequencing was conducted on a MiSeq DNA sequencer purchased with a bequest from Elizabeth Ann Nielsen to the Marine Gene Probe Laboratory. The authors acknowledge financial support from Embrapa Macroprograma2 grant (02.11.01.029.00.00) and the Brazilian Federal Government (Science without Borders program) scholarship.

References

- Excoffier L, Lischer HEL (2010) Arlequin suite v 3.5: a new series of programs to perform population genetic analysis under Linux and Windows. Mol Ecol Res 10:564–567
- Faircloth B (2008) Msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Res 8:92–94
- Silva GR, Souza BA, Pereira FM et al (2014) New molecular evidence for fragmentation between two distant populations of the threatened stingless bee *Melipona subnitida* Ducke (Hymenoptera, Apidae, Meliponini). J Hymenopt Res 38:1–9
- van Oosterhout C, Hutchinson WF, Wills DPM et al (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Eco Notes 4:535–538

241