Caracterização do perfil de fibras e minerais de cultivares de sorgo biomassa¹

Iasmine da Cruz Silva Oliveira², Lilandra Silva de Souza², Maria Lúcia Ferreira Simeone³, Rafael Augusto da Costa Parrella³, André May³

¹ Trabalho financiado pela Fapemig

Vigência da bolsa: março a fevereiro/2015

Introdução

Atualmente, o Brasil passa por um momento de fortes demandas energéticas, em virtude da dificuldade dos sistemas convencionais de geração de energia em ofertarem para o mercado toda a quantidade necessária. Apesar de a matriz energética brasileira estar fundamentada na geração de energia por hidrelétricas, muitas usinas termelétricas estão sendo instaladas no Brasil. Dessa forma, o processo de cogeração de energia em caldeiras de alta pressão com a queima direta de biomassa vegetal vem aumentando em todo o país.

Entre as diferentes matérias-primas vegetais utilizadas para cogeração de energia, o sorgo biomassa tem se apresentado como uma cultura promissora (MAY et al., 2013) por apresentar produtividades de até 150 t/ha de massa fresca, em ciclo de apenas em 5 meses, com cultivo totalmente mecanizável. Contudo, ainda existe a necessidade de melhorar o conhecimento das proporções dos diversos constituintes da biomassa para determinar a escolha da variedade/híbrido mais adequado para o processo de cogeração de energia.

Para tanto, torna-se necessário realizar estudos de caracterização química do sorgo biomassa para se conhecer a variabilidade existente e a subsequente otimização do processo visando à consolidação de uma cadeia de biomassa organizada e lucrativa.

Neste trabalho, realizou-se a caracterização química do perfil de fibras e de minerais de 14 genótipos de sorgo originados do Programa de Melhoramento da Embrapa Milho e Sorgo, localizada em Sete Lagoas-MG.

Material e Métodos

O plantio em campo dos 14 genótipos de sorgo foi conduzido em Sete Lagoas – MG e as amostras foram coletadas após 150 dias. Foram utilizados também dois genótipos de sorgo forrageiro (BRS 655 e Volumax), como testemunha. As análises

² Estudante do Curso Técnico em Química da Escola Técnica Municipal de Sete L , Bolsista BIC-JR do Convênio Fapemig/Embrapa

³ Pesquisador da Embrapa Milho e Sorgo

foram realizadas pelos Laboratórios de Composição Centesimal e de Análise Foliar da Embrapa Milho e Sorgo, em Sete Lagoas-MG.

As amostras de sorgo biomassa (planta completa) foram obtidas após secagem em estufa a 65 °C, marca Solab e moídas em moinho de facas tipo Willey, marca Marconi.

A composição de fibras foi analisada por infravermelho próximo, utilizando os modelos de calibração multivariada desenvolvidos pela Embrapa Milho e Sorgo, para os seguintes parâmetros: fibra detergente ácido - FDA, fibra detergente neutro - FDN e lignina (GUIMARÃES et al., 2014). A quantidade de celulose foi determinada pela diferença entre FDA e lignina e o teor de hemicelulose foi encontrado como a diferença entre FDN e FDA. A análise de cinzas foi realizada conforme método de referência descrito por Nogueira e Souza (2005).

Para a análise do teor de minerais, as amostras de planta completa foram digeridas em solução nitro-perclórica em bloco de aquecimento, marca Tecnal e analisadas por ICP-OES, marca Varian, para os seguintes elementos: Ca, Mg, K, S, P, Cu, Zn, Mn e Fe.

Os dados foram submetidos à Análise de Variância e para comparação de médias foi utilizado o teste Scott-Knott (SCOTT; KNOTT, 1974) ao nível de significância de 5%. As análises estatísticas foram realizadas utilizando o software SISVAR® versão 5.0.

Resultados e Discussão

A análise do perfil de fibras e minerais dos 16 genótipos de sorgo pode ser observada nas Tabelas 1 e 2.

Os genótipos avaliados não apresentaram diferença significativa para os teores de lignina e cinzas, mas apresentaram diferenças significativas (p>0,05) para os teores de celulose e hemicelulose.

Os teores de celulose e hemicelulose variaram entre 40,0 a 44,4% e 26,6 a 29,4%, respectivamente. Sendo que os genótipos CMSXS7021, CMSXS7026, CMSXS7016 e CMSXS7022 foram os que apresentaram os menores teores de celulose e hemicelulose. Os dois genótipos de sorgo forrageiro analisados não apresentaram diferença estatística em relação aos demais genótipos para o teor de lignina e cinzas.

Damasceno et al. (2013) realizaram a análise de um painel de sorgo e encontraram resultados para os teores de celulose entre 23,49 a 44,79%, hemicelulose entre 18,79 a 29,44% e lignina variando entre 1,69 a 9,22%, mostrando que os genótipos estudados apresentaram variabilidade fenotípica entre si quanto a essas características avaliadas.

Tabela 1 - Composição de fibras de planta completa para os genótipos de sorgo avaliados.

Genótipo*	Celulose (%)	Hemicelulose (%)	Lignina (%)	Cinzas (%)	
CMSXS7016	40,1a	26,88a	7,7a	2,5a	
CMSXS7026	40,0a	26,4a 7,7a		2,5a	
CMSXS7022	40,3a	27,44a	7,8a	3,1a	
CMSXS7021	39,8a	26,7a	7,8a	2,8a	
CMSXS7023	43,5b	27,6a	8,1a	2,9a	
CMSXS7015	42,1b	28,6b	8,2a	2,3a	
CMSXS7025	43,24b	28,3b	8,3a	2,7a	
CMSXS7012	43,7b	28,9b	8,4a	3,1a	
CMSXS7027	43,5b	28,7b	8,5a	2,8a	
CMSXS7031	43,5b	28,4b	8,5a	2,7a	
CMSXS7024	43,13b	28,3b	8,7a	2,5a	
CMSXS7029	44,3b	28,7b	8,7a	3,3a	
BRS655	44,3b	27,54a	8,7a	2,9a	
CMSXS7028	43,5b	29,4b	8,8a	3,1a	
Volumax	42,44b	28,5b	8,9a	3,3a	
CMSXS7030	44,4b	28,9b	8,9a	3,3a	

^{*}Médias seguidas de mesma letra não diferem entre si ao nível de 5% de probabilidade pelo teste de Scott-Knott.

A matéria mineral tem grande importância no processo de cogeração de energia, uma vez que as cinzas são indesejáveis, pois estas são resíduos da combustão. A sua alta concentração afeta negativamente o poder calorífico e a transferência de calor. Os riscos de corrosão de caldeiras e incrustações são maiores com o alto teor de cinzas, o que pode diminuir a vida útil destes dispositivos.

Dessa forma, para conhecer os principais minerais presentes nas amostras de sorgo realizou-se a análise de macro e micronutrientes (Tabela 2).

Tabela 2 – Teor de minerais avaliados por ICP-OES em amostras de sorgo.

	P	K	Ca	Mg	S	Cu	Fe	Mn	Zn
Genótipo*	g.kg ⁻¹				mg.kg ⁻¹				
CMSXS7016	1,0a	9,6a	2,8a	2,1a	0,7a	2,8a	241,3a	29,4a	10,8a
CMSXS7026	0,8a	9,6a	2,4a	1,4a	0,7a	2,5a	223,3a	28,7a	8,5a
CMSXS7022	1,0a	11,1a	3,0a	2,1a	1,1a	3,0a	218,0a	27,1a	8,2a
CMSXS7021	0,7a	7,3a	1,9a	1,3a	0,6a	2,1a	145,0a	20,0a	4,7a
CMSXS7023	0,6a	8,1a	2,7a	1,7a	0,5a	2,5a	144,8a	27,1a	8,2a
CMSXS7015	0,8a	12,0a	3,3b	2,3a	0,6a	3,1a	372,7a	26,8a	11,4a
CMSXS7025	0,6a	13,3a	3,2b	2,0a	0,6a	2,6a	180,0a	28,5a	9,4a
CMSXS7012	0,7a	14,5a	3,4b	2,0a	0,7a	3,0a	196,6a	41,2a	13,9a
CMSXS7027	0,5a	12,3a	2,8a	1,5a	0,5a	2,7a	172,5a	29,7a	5,6a
CMSXS7031	0,7a	8,7a	2,9a	2,0a	0,5a	2,7a	152,2a	31,8a	10,6a
CMSXS7024	0,6a	11,7a	3,0b	1,8a	0,6a	2,8a	204,6a	28,0a	9,3a
CMSXS7029	0,5a	13,0a	3,0b	2,0a	0,6a	2,8a	205,7a	38,7a	10,7a
BRS655	0,9a	20,4a	3,3b	1,8a	0,9a	5,8b	322,7a	37,7a	24,3a
CMSXS7028	0,7a	14,1a	3,3b	0,2a	0,1a	0,5a	29,3a	10,2a	3,7a
Volumax	1,8a	13,9a	4,1b	2,7a	1,1a	4,3b	193,9a	37,0a	23,8a
CMSXS7030	0,7a	10,9a	2,8a	1,8a	0,7a	2,9a	183,6a	34,7a	10,5a

^{*}Médias seguidas de mesma letra não diferem entre si ao nível de 5% de probabilidade pelo teste de Scott-Knott.

Para os genótipos avaliados, houve diferença significativa apenas para o teor dos elementos cálcio e cobre (p<0,05).

As maiores concentrações de minerais encontradas foram para o elemento alcalino e alcalinos-terrosos: potássio, cálcio, magnésio, respectivamente. Em seguida os não metais: fósforo e enxofre. Para os metais, as concentrações decresceram na seguinte ordem: ferro, manganês, zinco e cobre, respectivamente.

Os teores encontrados dos diferentes minerais analisados para os genótipos de sorgo biomassa são inferiores aos encontrados para a palha da cana-de-açúcar, que apresenta teores de cinza de aproximadamente 7,5%, com destaque para os metais alcalinos e alcalinos terrosos (BIZZO et al., 2014). Quando comparados aos resultados

encontrados para o bagaço da cana-de-açúcar, que apresenta teores em torno de 2 a 3% de cinzas, estes apresentaram concentração dos minerais analisados muito similares.

Conclusão

A caracterização química dos genótipos de sorgo biomassa revelou materiais genéticos com teores de celulose, hemicelulose, lignina e cinzas que o tornam como uma fonte potencial para uso no processo de cogeração de energia.

O perfil de minerais encontrado para o sorgo biomassa foi muito similar a outras matérias-primas utilizadas no processo de cogeração de energia, como o bagaço da cana-de-açúcar.

Referências

BIZZO, W. A.; LENÇO, P. C.; CARVALHO, D. J.; VEIGA, J. P. S. The generation of residual biomass during the production of bio-ethanol from sugarcane, its characterization and its use in energy production. **Renewable and Sustainable Energy Reviews**, v. 29, p. 589-603, 2014.

DAMASCENO, C. M. B.; PARRELLA, R. A. da C.; SOUZA, V. F. de; SIMEONE, M. L. F.; SCHAFFERT, R. E. **Análise morfoagronômica e bioquímica de um painel de sorgo energia para características relacionadas à qualidade da biomassa**. Sete Lagoas: Embrapa Milho e Sorgo, 2013. (Embrapa Milho e Sorgo. Circular Técnica, 190).

GUIMARÃES, C. C.; SIMEONE, M. L. F.; PARRELLA, R. A. C.; SENA, M. Use of NIRS to predict composition and bioethanol yield from cell wall structural components of sweet sorghum biomass. **Microchemical Journal**, New York, v. 117, p. 194-201, 2014.

MAY, A.; SILVA, D. D. da; SANTOS, F. C. dos (Ed.). **Cultivo do sorgo biomassa para a cogeração de energia elétrica**. Sete Lagoas: Embrapa Milho e Sorgo, 2013. 65 p. (Embrapa Milho e Sorgo. Documentos, 152).

NOGUEIRA, A. R. A.; SOUZA, G. B. **Manual de laboratório**: solo, água, nutrição vegetal, nutrição animal e alimentos. São Carlos: Embrapa Pecuária Sudeste, 2005. 334 p.

SCOTT, A. J.; KNOTT, M. A cluster analysis method for grouping means in the analysis of variance. **Biometrics**, Washington, v. 30, n. 2 p. 507-512, 1974.

Agradecimentos

Os autores agradecem à Fapemig, Embrapa, à Petrobras e à Agência Nacional do Petróleo, Gás Natural e Biocombustíveis - ANP pelo apoio financeiro no desenvolvimento do presente trabalho.