FERTILIDADE E MATÉRIA ORGÂNICA DO SOLO EM DIFERENTES SISTEMAS DE MANEJO DO SOLO

Henrique Pereira dos Santos¹, Renato Serena Fontaneli¹, Anderson Santi¹, Ana Maria Vargas² e Amauri Colet Verdi²

¹Pesquisador, Centro Nacional de Pesquisa de Trigo – CNPT (Embrapa trigo), Rodovia BR 285, km 294, CEP 99001-970, Passo Fundo - RS. E-mail: henrique.santos@cnpt.embrapa.br; ²Acadêmicos de Agronomia da UPF, Passo Fundo, RS, Bolsistas de Iniciação Científica do CNPq.

Relevantes alterações nos atributos químicos de Latossolos Vermelhos distróficos têm sido observadas com o passar dos anos de uso. Santos et al. (2008) verificaram, em um Latossolo Vermelho distrófico, acumulação de P, K e de matéria orgânica do solo (MOS), na camada superficial do solo de parcelas submetidas aos manejos conservacionistas sistema plantio direto e cultivo mínimo em relação às parcelas manejadas com arado de discos e de aivecas. Estes autores observaram, também, aumento da acidez do solo nas camadas abaixo de 10 cm. De acordo com Andreotti et al. (2008), a aplicação de calcário na superfície do solo, associada ao manejo de resíduos vegetais, proporciona aumento do pH e dos valores de Ca e Mg e diminuição da acidez potencial e dos teores de Al nas camadas mais profundas. O presente estudo teve como objetivo avaliar à fertilidade do solo e da matéria orgânica do solo em diferentes tipos de manejo do solo.

O ensaio vem sendo conduzido na área experimental da Embrapa Trigo, município de Passo Fundo, RS, desde 1985, em um Latossolo Vermelho distrófico típico argiloso. Os tratamentos consistem em quatro tipos de sistemas de manejo de solo (SMS): 1) sistema plantio direto - SPD, 2) preparo de solo com cultivo mínimo com escarificador de hastes – CM; 3) preparo convencional de solo com arado de discos mais grade de discos - PCD e; 4) preparo convencional de solo com arado de aivecas mais grade de discos – PCA, e em três sistemas de rotação de culturas (SRC): I - trigo/soja; II - trigo/soja e

ervilhaca/sorgo e; III - trigo/soja, ervilhaca/sorgo e aveia branca/soja. O delineamento experimental usado foi blocos ao acaso, com parcelas subdivididas e três repetições. A parcela principal foi constituída pelos SMS e a sub-parcela, pelos SRC. Nesse resumo serão tratados somente os tipos de SMS. Em maio de 2008, foi aplicado 4,0 t ha⁻¹ de calcário dolomítico, com base no método SMP (pH 6,0), nos PCD e PCA, em todas as parcelas, enquanto que a aplicação de calcário no SPD e CM foi dividida em duas aplicações de 2,0 t ha⁻¹ de calcário dolomítico, uma em maio de 2008 e outra em maio de 2009. Em abril de 2008, 2010 e 2012, após a colheita das culturas de verão, o solo foi amostrado nas camadas de 0-5, 5-10, 10-15 e 15-20 cm. As análises (pH em água, P, K, matéria orgânica (MOS), Al, Ca e Mg) seguiram o método descrito por Tedesco et al. (1995). O C orgânico total, em cada camada, foi calculado pela expressão: C_{acumulado} = C*Ds*L, onde C_{acumulado} corresponde ao C acumulado, em Mg ha⁻¹; C é o conteúdo de C em g kg⁻¹ de solo; Ds é a densidade do solo em g cm⁻³; e L é a espessura da camada em centímetros. Os SMS foram comparados, para cada propriedade química de solo, na mesma camada por ano amostrada. As médias dos SMS foram comparadas pelo teste de Tukey ao nível de 5% de probabilidade de erro.

Na avaliação de 2010 e de 2012, o pH do solo (Tabela 1) nas camadas de 0-5 e 5-10 cm a maioria dos SMS apresentaram valores maiores do que os observados em 2008. Isso foi devido à aplicação de calcário dolomítico (4 t ha¹) em duas parcelas iguais, nos anos de 2008 e 2009. Em 2010 e 2012 foram verificadas diferenças de pH entre os SMS em todas as camadas estudadas. Em 2010, o PCD e PCA, mostraram maior valor de pH do que o SPD, nas camadas de 0-5, 10-15 e 15-20 cm. Em 2012, essa diferença nos valores de pH do PCD e PCA, em relação ao SPD ocorreram nas camadas 0-5, 5-10 e 15-20 cm. Porém, em 2010, na camada de 5-10 cm e em 2012, na camada 10-15 cm, o PCA foi superior aos demais SMS, para o valor de pH. Em 2010 e 2012, nas camadas de 0-5 e 5-10 cm, a floresta subtropical (FST) apresentou valores menores do que os SMS. Em 2010 e 2012, os valores de pH dos SPD foram maiores na camada de 0-5 cm, em relação as camadas de 5-10 e 10-15 cm. No SPD e PCD, os valores de pH aumentaram de 2008 para 2012, nas

camadas de 0-5, 5-10 e 10-15 cm. Para o PCA, essa tendência foi verdadeira nas camadas de 0-5, 10-15 e 15-20 cm, enquanto que para o CM, isso só ocorreu, nas camadas de 5-10 e 10-15.

O valor de Al do solo, em 2010 e 2012, na camada de 0-5 cm, na maioria dos SMS foi menor do que o verificado em 2008. Em 2010, nas camadas de 5-10 e 10-15 cm, o SPD apresentou maiores valores de Al em relação aos demais SMS. Em 2012, o CM mostrou maior valor de Al, na camada 0-5 cm, em relação ao PCD e PCA. Todavia, nas camadas 5-10 e 10-15 cm, o SPD apresentou valor de Al mais elevado do que o PCD, PCA e CM. Em ambos os anos estudados, a FST apresentou maior valor de Al, em comparação a todos os SMS, em todas as camadas estudadas. Em 2010 e 2012, os valores de Al no SPD, foram menores na camada de 0-5 cm, em relação às camadas de 5-10, 10-15 e 15-20 cm. No PCD e PCA, os valores de Al diminuíram de 2008 para 2012, nas camadas de 0-5, 5-10, 10-15 e 15-20 cm, enquanto que, para CM, isso ocorreu somente nas três primeiras camadas.

Os teores de Ca e Mg na camada superficial do solo em todos os SMS, em 2010 e 2012, foram maiores do que os valores críticos (40 e 20 mmol_c dm⁻³, respectivamente). Na avaliação de 2010 e de 2012, o Ca e o Mg do solo nas camadas de 0-5, 5-10 e 10-15 cm, na maioria dos SMS mostraram valores maiores do que os observados em 2008. Em 2010 e na camada de 5-10 cm, o PCA foi superior ao SPD e CM para os valores de Ca e Mg. Em 2012, o SPD apresentou valor de Ca e Mg maior, em comparação ao PCD e CM, na camada 0-5 cm. Porém, em 2010, na camada 5-10 cm, o PCA foi superior ao SPD para o valor de Ca e Mg. Já, em 2010 e 2012, o PCD e PCA mostraram maior valor de Ca e Mg do que o SPD e CM, na camada de 15-20 cm. Em 2010 e 2012, os valores de Ca e Mg na maioria dos SMS, na camada de 0-5 cm, foram mais elevados, em relação as camadas de 5-10, 10-15 e 15-20 cm. Os valores de Ca e Mg aumentaram em todas as camadas e SMS, de 2008 para 2010.

O teor de MOS, em 2010 e 2012, no SPD em todas as camadas amostradas foi menor do que o verificado em 2008. No CM, isso só foi verdadeiro, nas camadas de 10-15 e 15-20 cm. Em 2010 e 2012, o SPD mostrou teor de MOS maior do que o PCD e PCA, na camada 0-5 cm.

O teor de P do solo, em 2010 e 2012, em todas as camadas e em todos os SMS, foi superior ao valor considerado crítico (9,0 mg kg⁻¹). Na comparação entre os anos estudados, não houve diferença entre os teores de P, em todos os SMS, na camada de 5-10 cm. Porém, em 2008, o teor de P no SPD, nas camadas de 10-15 e 15-20 cm, diminuiu, em relação a 2010 e 2012. Em 2010, o teor de P do SPD foi superior ao do PCD e PCA, nas camadas de 0-5 e 5-10 cm. Em 2012, o teor de P do SPD, foi mais elevado do que o PCD, PCA e CM, somente na camada de 5-10 cm. Em 2010, todos os SMS mostraram, na maioria das camadas estudadas, maior teor de P do que os da FST.

O teor de K, em 2010 e 2012, em todas as camadas e SMS, foi superior ao valor considerado crítico (80 mmol_c dm⁻³). Na comparação dos anos estudados, não houve diferença para os valores de K entre os SMS, na camada de 0-5 cm. Em 2010, o teor de K no PCA foi maior do que o do SPD, na camada de 0-5 cm. Em 2010, o teor de K, na camada de 5-10 cm, aumentou em todos os SMS, em relação a 2008 e depois, em 2012 diminuiu. Porém, na camada de 10-15 cm, o teor de K diminuiu de 2008 para os anos de 2010 e 2012, no SPD, PCD e PCA.

Os teores de C acumulado, na camada de 0 a 20 cm, no SPD, em 2010 e 2012 foram menores do que os níveis observados em 2008, enquanto que para os demais SMS, não houve diferença entre os anos estudados. Em 2010, o SPD mostrou maior teor de C do que o do PCA e foi semelhante aos teores de C do PCD, CM e FST. Porém, em 2012 o CM apresentou maior valor de C acumulado do a FST e igual aos demais SMS.

O calcário promoveu o aumento do pH e dos teores de Ca e Mg do solo e ocasionou a diminuição do AI, principalmente nas camadas de 0-5 e 5-10 cm, em todos os tipos de SMS. Camadas do solo mais profundas exibiram redução nos teores de Ca, Mg, MOS, P e K. Os tipos de SMS apresentaram, na camada 0-5 cm, menor teor de MOS do que na FST, indicando que o uso agrícola do solo não tem favorecido, nas condições do estudo, incrementos de MOS.

Referências bibliográficas

ANDREOTTI, M.; ARALDI, M.; GUIMARÃES, V.F.; FURLANO JR., E.;

BUZETTI, S. Produtividade do milho safrinha e modificações químicas de um

latossolo em sistema plantio direto em função de espécies de cobertura após calagem superficial. **Acta Scientiarum. Agronomy**, Maringa, v.30, n.1, p.109-115, 2008.

SANTOS, H.P. dos; TOMM, G.O.; SPERA, S.T.; KOCHHANN, R.A.; ÁVILA, A. Efeito de sistemas de manejo de solo e de rotação de culturas na fertilidade do solo, após vinte anos. **Bragantia**, Campinas, v.67, n.2, p.441-454, 2008. TEDESCO, M.J.; GIANELLO, C.; BISSANI, C.A.; BOHNEN, H.; VOLKWEISS, S.J. 2. ed. rev. e ampl. **Análise de solos, plantas e outros materiais.** Porto Alegre, Universidade Federal do Rio Grande do Sul, 1995. 174p. (Boletim Técnico, 5.)

Tabela 1. Médias de pH em água, AI, Ca, Mg, matéria orgânica, P, K e carbono acumulado, avaliados após as culturas de verão, em 2008, 2010 e 2012, em quatro camadas de solo e em quatro sistemas de manejo de solo (SMS)

Sistema	Camadas (cm)												
manejo	0-5			5-10			10-15			15-20			
solo	2008	2010	2012	2008	2010	2012	2008	2010	2012	2008	2010	2012	
000		50014	- 441	40015	4.07.14.7		H (água 1:1)	4041 -	5 40 11	- 10 AF	40015	- 4-1 :	
SPD	5,00 aB	5,29 bA	5,41 bA	4,93 bB	4,97 dAB		5,00 bAB	4,84 bcB	5,12 dA	5,13 aAB	4,96 bB	5,17 bA	
PCD	5,11 aB	5,68 aA	5,74 aA	5,17 aB	5,64 bA		5,21 aB	5,62 aA	5,80 bA	5,20 aC	5,44 aB	5,77 aA	
PCA	5,10 aB	5,66 aA	5,88 aA	5,14 aB	5,96 aA		5,16 aB	5,84 aA	5,98 aA	5,19 aB	5,48 aB	5,85 aA	
CM	5,01abB	5,42 abA	5,31 bA	5,07 aB	5,34 cA		5,06 bB	5,08 aB	5,31 cA	5,08 aAB	4,99 bB	5,24 bA	
Flo	4,60 cA	4,70 cA	4,65 cA	4.56 cA	4,70 eA	Alumínio (mmol _c dm ⁻³)							
SPD	10,2 cA	7,2 bAB	4,9 bcB	16,4 bA	13,4 bA	17,4 bA	19,4 bA	17,6 bA		18,1 bAB	13,7 bB	20,1 bA	
PCD	13,8 bA	3,6 bB	4,0 cdB	14,6 bA	3,4 cdB	3,7 dB	14,1 dA	3,7 dB	3,9 dB	14,1 cA	4,9 cB	4,7 cB	
PCA	14,8 bA	4,8 bB	1,8 dB	15,1 bA	0,8 dB	2,5 dB	14,9 cdA	2,8 dB	3,1 dB	14,7 bcA	5,9 cB	4,9 cB	
CM	12,8 bcA	5,4 bB	7,5 bB	15,1 bA	5,8 cC	10,7 cB	17,4 bcA	11,2 cB		16,9 bcA	13,8 bB	17,8 bA	
Flo	21,7 aA	17,0 aA	19,4 aA	27,6 aA	24,0 aA	25,8 aA	38,1 aA	26,9 aA	32,5 aA	38,4 aA	23,9 aA	31,1 aA	
		Cálcio (mmol₀ dm³³)											
SPD	31 aB	43 abA	50 aA	28 aA	35 cA	32 cA	25 bA	27 bA	27 bA	27 aA	31 bA	29 bA	
PCD	26 cB	48 aA	43 bA	28 aB	47 abA	43 abA	29 aC	48 aA	42 aB	29 aB	43 aA	40 aA	
PCA	25 cB	46 aA	46 abA	27 aC	54 aA	47 aB	28 abB	53 aA	46 aA	28 aB	42 aA	41 aA	
CM	27 bcB	44 abA	41 bA	28 aB	42 bcA	37 bcA	26 abB	34 bA	31 bA	27 aA	30 bA	30 bA	
Flo	31 abA	36 bA	33 cA	21 bA	21 dA	21 dA	11 cA	_ 15 cA	13 cA	9 bA	11 cA	10 cA	
						Magné	sio (mmol _c dm	1 ⁻³)					
SPD	12 abB	25 aA	29 aA	11 aB	19 cA	19 bA	10 bB	13 bcA	14 cA	10 bA	14 bA	13 bA	
PCD	11 bB	28 aA	25 bcA	12 aB	27 bA	26 aA	12 aB	28 aA	26 bA	12 aB	24 aA	25 aA	
PCA	11 bB	26 aA	28 abA	11 aC	34 aA	29 aB	12 aB	33 aA	29 aA	12 aB	26 aA	27 aA	
CM	11 bB	24 aA	23 cA	11 aB	24 bcA	21 bA	10 bB	18 bA	17 cA	10 bB	14 bA	15 bA	
Flo	14 aA	13 bA	14 dA	10 aA	10 dA	10 cA	6 cA	8 cA	7 dA	5 cA	7 cA	6 cA	
						Matéria	a Orgânica (g k	(g ⁻³)					
SPD	41 bA	33 bB	37 bAB	37 bA	32 aB	26 dC	29 bA	24 cB	23 cB	26 cA	24baB	22 cB	
PCD	28 dA	26 cA	30 cA	29 dA	27 bA	28 cdA	28 bA	26 bcB	27 bB	27 bcA	26 bB	26 bB	
PCA	28 dAB	27 cB	29 cA	29 dAB	27 bB	29 bcA	28 bA	25 bcB	28 bA	28 bA	25 bB	25 bB	
CM	34 cA	29 bcB	35 bA	34 cA	30 aB	31 bAB	29 bA	27 abB	27 bB	27 bcA	24 bB	25 bB	
Flo	45 aA	46 aA	46 aA	41 aA	31 aB	36 aAB	35 aA	29 aA	32 aA	29 aA	28 aA	29 aA	
						Fós	sforo (mg kg ⁻³)						
SPD	58 aA	44 aA	51 aA	66 aA	57 aA	55 aA	52 aA	32 abB	29 aB	33 aA	19 aB	12 bB	
PCD	34 cAB	29 bcB	40 abA	33 bcA	30 cA	30 bA	33 bA	28 abA	27 aA	25 aA	23 aA	23 aA	
PCA	32 cA	25 cB	36 bA	32 cA	31 cA	29 bA	28 bA	25 bA	24 aA	24 aA	23 aA	19 abA	
CM	46 bA	36 abA	44 abA	44 bA	45 bA	39 bA	38 bA	37 aA	27 aB	29 aA	24 aAB	17 abB	
Flo	7 dA	6 dA	7 cA	5 dA	3 dA	4 cA	3 cA	2 cA	3 aA	3 bA	2 bA	3 aA	
							ássio (mg kg ⁻³)						
SPD	271 aA	227 bA	250 aA	211 aA	222 aA	168 aB	191 aA	175 aAB	158 aB	190 aA	185 aAB	156 aA	
PCD	284 aA	250 abA	251 aA	217 aA	229 aA	170 aB	193 aA	191 aA	153 aB	184 aA	173 aA	135 aB	
PCA	281 aA	277 aA	289 aA	226 aA	235 aA	208 aA	205 aA	185 aA	182 aA	195 aA	162 aB	153 aB	
CM	285 aA	268 abA	265 aA	216 aAB	243 aA	190 aB	187 aA	190 aA	167 aA	168 aAB	184 aA	141 aB	
Flo	81 bA	74 cA	78 bA	61 bA	45 bA	53 bA	37 bA	36 bA	37 bA	28 bA	28 bA	28 bA	
			Carbono acumulado (g kg ⁻³)										
	0-20 cm 2008					0-20 cm 2010				_	0-20 cm 2012		
SPD				93 aA				89 aAB				84 abB	
PCD				81 cA				84 abA				83 abA	
PCA				80 cA				81 bA				83 abA	
CM				87 bA				85 abA				90 aA	
Flo				74 dA				84 abA				79 bA	

SPD: plantio direto; PCD: preparo convencional de solo com arado de discos: PCA: preparo convencional de solo com arado de aivecas; CM: cultivo mínimo; e flo: floresta subtropical.

Médias seguidas da mesma letra minúscula, na coluna, entre SMS e maiúscula, na horizontal, dentro de cada camada, para cada SMS, não diferem entre si, pelo teste de Tukey ao nível de 5% de probabilidade de erro.