

VARIAÇÃO DO BALANÇO DE CARGAS SUPERFICIAIS AO LONGO DO PERFIL DO SOLO E SUA INFLUÊNCIA NA MOBILIDADE DE ÂNIONS (NO₃, SO₄, CL) NA ZONA NÃO SATURADA

Borba, R.P1.; Camargo, O.A1.; Bettiol, W.2 e Costa, V.L.3

1.—Instituto Agronômico, CP 28, 13001-970, Campinas-SP, borba@iac.sp.gov.br; ocamargo@iac.sp.gov.br; 2- Embrapa Meio Ambiente (Jaguariúna – SP), bettiol@cnpma.embrapa.br; 3-Bolsista de Iniciação Científica/IAC/Unicamp, van_leca@yahoo.com.br

Palavras-Chave: anions, mobilidade, zona não saturada, carga superficial, solo

INTRODUÇÃO

As características químicas e mineralógicas do solo sofrem modificações nos diferentes horizontes do perfil, e também dentro de um mesmo horizonte, com o aumento da profundidade. As variações dos diferentes atributos do solo ao longo do perfil tais como composição mineralógica, pH, matéria orgânica, capacidade de troca de cátions e anions, ponto de carga zero (PCZ), influenciam na mobilidade dos íons em solução na zona não saturada. Esta influência é decorrente da retenção ou liberação destes íons em solução pelas superficies reativas disponíveis no solo, presentes nos minerais, na matéria orgânica e em substâncias amorfas.

A caulinita e os oxi-hidróxidos de ferro e alumínio (cristalinos ou amorfos) são usualmente os minerais e fases constituintes dos Latossolos. A adsorção ou dessorção de cátions e anions em solução nas superficies destes minerais dependerá, entre outros fatores, do balanço das cargas superficiais, se negativo ou positivo. As cargas superficiais destes minerais são controladas pelo pH; o balanço de cargas varia de positivo a negativo com a elevação do pH do meio, estas cargas superficiais de natureza anfotérica são denominadas cargas variáveis. Deste modo, o pH exerce uma grande influência na capacidade de um solo, com cargas variáveis, em retardar ou não o movimento de íons em solução na zona não saturada e mesmo na zona saturada, podendo,

Foto 1 - Poço de amostragem de água da zona não saturada

dependendo da natureza e concentração destes íons, levar à contaminação da água subterrânea.

O objetivo deste trabalho é avaliar o transporte de anions (NO₃-, SO₄²- e Cl⁻) através da zona não saturada de um Latossolo que apresentou variações em seus atributos químicos ao longo do perfil.

MOBILIDADE DE ANIONS EM LATOSSOLO

Há cerca de sete anos é desenvolvido um projeto de utilização agrícola do lodo de esgoto, que é aplicado num Latossolo vermelho amarelo distroférrico no campo experimental da EMBRAPA Meio Ambiente (Jaguariúna-SP). O lodo é composto principalmente por C, N, P, K, Ca, Mg e S; além destes elementos podem ocorrer metalóides e metais pesados como As, Cd, Cr, Cu, Ni, Pb, Fe, Co, Mn, Mo, Hg, Sn e Zn. Os elementos presentes no lodo são liberados a partir de sua degradação e podem ser absorvidos pelas plantas, acumulados no solo ou ainda transportados para a água subterrânea, podendo causar toxicidade às plantas, aos animais e ao homem.

MÉTODOS

No campo experimental da EMBRAPA Meio Ambiente (Jaguariúna-SP) foram coletadas amostras de solo e de água (solução do solo) nas profundidades 100; 200; 300; 400 e 500 cm, de uma parcela que recebeu lodo de Barueri, SP (Fotos 1 e 2).

Foto 2 - Visão do poço com todos os lisímetros instalados, 3 em cada nível (100, 200, 300, 400, 500cm de profundidade), com as garrafas de coleta de amostras de água acopladas.

Nas amostras de solo, após a obtenção por peneiramento da fração argila, foram determinados o p H_{CaCl2} , a matéria orgânica (MO), as capacidades de trocas de cátions (CTC) e anions (CTA), o ponto de efeito salino nulo (PESN) e o teor de oxi-hidróxidos de Fe e de Al (cristalinos e amorfos), segundo os métodos propostos em Camargo *et al.* (1986). As determinações mineralógicas foram obtidas por difratometria de raios-X.

As amostragens de água foram feitas entre os meses de janeiro a julho de 2004. Após a filtragem das amostras de água, em membrana de 0,45 µm de porosidade, foram determinados: pH, Eh, condutividade elétrica, Na, K, Ca, Mg, Fe, Mn, Cl, NO₂, NO₃, SO₄, alcalinidade total e Al.

Os anions foram analisados por cromatografia liquida de alta performance e os cátions por ICP-OES. A alcalinidade total foi determinada por titulação e assumida como sendo HCO₃.

Utilizando-se o programa PHREEQC-2.11 (Parkhurst & Appelo, 1999) foi feita uma modelagem hidrogeoquímica das amostras de água com o intuito de

se obter os índices de saturação dos possíveis compostos formados por estes ions.

RESULTADOS

Ao longo do perfil do solo a mineralogia permaneceu invariável; os principais minerais determinados, com suas distribuições relativas foram: caulinita>quartzo>gibbsita>goethita.

Dentre os atributos do solo avaliados no perfil (Tab. 1) com o aumento da profundidade foi observada a redução dos teores: i) de matéria orgânica em 88%, variando de 35 a 4g/dm³ de solo; ii) dos oxi-hidróxidos de Fe amorfo (1 a 0,2mg/g de solo); iii) dos oxi-hidróxidos de Al amorfo (14 a 10mg/g de solo) e iv) dos oxi-hidróxidos Al cristalino (27 a 17mg/g de solo). Os oxi-hidróxidos de Fe cristalinos sofreram um pequeno aumento com a profundidade (70 a 76mg/g de solo). A CTC e a CTA tiveram comportamentos antagônicos: a CTC diminuiu pela metade (18 a 9mmol_{carga}/kg de solo) enquanto a CTA aumentou cerca de 30 vezes em profundidade (5 a 154mmol_{carga}/kg de solo).

Tabela 1: Atributos químicos do solo

Profundidade		metal (mg) / g	de solo		g/dm³	PESN	pH _{CaCD}	mmol _c /kg	
	Al-amorfo	Fe - amorfo	Al crist	Fe crist	MO			CTC	CTA
0-15 cm	14	1	27	70	35	3,2	5,2	18	5
100-120 cm	21	0,8	28	71	11	3,6	4.2	14	89
180-200 cm	18	0,5	28	71	12	3,5	4,1	14	98
280-300 cm	15	0.2	26	72	5	6,2	4.3	10	133
375-400 cm	11	0,2	18	73	5	7,4	4,9	10	163
475-500 cm	10	0,2	17	76	4	7.5	4,6	9	154

Os valores do PESN encontrados no perfil cresceram com o aumento da profundidade, variando de 3,18 em superfície a 7,5 a 500cm de profundidade, ao contrario do que ocorreu com o pH_{CaC12} do solo, que diminuiu de 5,2 para 4,6.

As amostras de água da zona não saturada, coletadas de 100 a 500 cm de profundidade (Tab. 2), apresentaram valores de pH e de alcalinidade crescentes, variando de 5,5 a 6,4 e de 15 a 38 mg/L, respectivamente. As concentrações dos ânions decresceram ao longo do perfil.

O sulfato foi encontrado praticamente apenas a 100 cm de profundidade, diminuindo sua concentração de cerca de 300 mg/L para menos de 2 mg/L a partir de 200 cm de profundidade. O nitrato e o cloreto tiveram uma oscilação de suas concentrações: 100 para 200 cm de profundidade houve um aumento de 238 para 1113 mg/L e 11 para 19 mg/L, respectivamente. No intervalo entre 300 e 400 cm as concentrações de NO₃ e de Cl variaram de 772 a 1,2mg/L e de 28 a 0,2 mg/L.

Tabela 2 - Composição química média de todas as amostras de água coletadas do poço (5 amostragens em cada profundidade)

Profundidade	pН	Eh	cond	Na	K	Ca	Mg	Mn	NO_2	CI	NO3	SO_4	Al	Mn	Alcalinidade Total
(em)		(mV)	(µS/cm)	(mg/L)											
100	5,5	494	1126	4	1	165	32	0,3	7	11	238	304	0,2	0,3	15
200	4.2	600	2187	5	2	246	72	1,0	25	19	1113	1,4	16	0,9	6
300	5,4	528	1542	4	3	95	95	2,3	9	28	772	0,5	0,4	2,3	13
400	6,2	474	36	1	1	5	0,5	0,0	0,3	0,3	1,2	0,5	0	0,1	23
500	6,5	459	60	1	1	10	0,4	0,0	0,5	0,2	0,8	0,6	0	0.1	38

DISCUSSÕES

A aplicação do lodo de esgoto no solo para fins agrícolas eleva seu teor de MO, N, P, K, Ca, Mg e S. A MO presente no lodo, que pode ser liberada para o solo em função da degradação do lodo, contribui para o aumento das cargas superficiais negativas disponíveis no

solo, em função do seu baixo PCZ da MO que é geralmente inferior ao pH dos solos (Sparks, 1995).

O PCZ é definido como o valor de pH no qual a carga liquida nas superfícies das partículas é igual a zero (Fontes *et al.*, 2001). Nos solos constituídos por minerais com predominância de carga variável, tais como argilas 1:1 e oxi-hidróxidos de ferro e alumínio (cristalinos ou

amorfos), nos quais as cargas superficiais provenientes de substituições em suas estruturas são desprezíveis, o PESN se iguala ao PCZ (Essington, 2004). Como esta situação é observada nos principais minerais presentes no Latossolo aqui estudado (caulinita, gibsita e goethita), o PESN será considerado como o PCZ. Valores de pH do meio superiores ao PCZ propiciam a formação de cargas negativas nas superficies das partículas, ao passo que valores de pH inferiores ao PZC favorecem a geração de cargas positivas superficiais.

A redução de 88% da MO observada ao longo do perfil do solo (Tab. 1) proporcionou a diminuição das cargas negativas superficiais do solo, o que é refletido na redução da CTC e no aumento dos valores da CTA e do PESN. Com a redução da MO, a goethita e a gibsita, que possuem PZC>7 (Essington, 2004), passam a ter influência maior no PESN do solo, proporcionando sua elevação.

As variações do PESN, do pH do solo e do pH da água (Fig.1) indicam que até 200 cm de profundidade o solo possui um balanço de cargas superficiais negativas. A inversão do balanço de cargas superficiais do solo, de negativa para positiva, ocorreu a partir dos 300 cm de profundidade, quando o PESN se torna superior ao pH do solo e do pH da água.

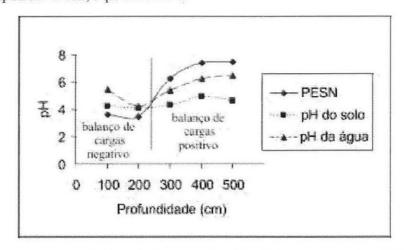


Figura 1 - As variações do PESN, do pH do solo e do pH da água e as relações as cargas superficiais predominantes no solo.

Com a inversão do balanço de cargas superficiais das partículas do solo abaixo de 200 cm (Fig. 1), a porção superior do solo possui maiores possibilidades de adsorção de cátions, enquanto que a adsorção dos anions deve prevalecer abaixo dos 200 cm.

A degradação do lodo no solo libera em solução a maior parte dos anions (NO₃, SO₄²⁻ e Cl) encontrados na água da zona não saturada. A modelagem hidrogeoquímica das amostras de água revelou que a partir dos os íons presentes nas amostras apenas os oxihidróxidos de Fe e de Al (cristalinos e amorfos) apresentaram índices de saturação positivos, ou seja, que dos possíveis compostos a serem formados por estes ions presentes nas soluções, apenas os oxi-hidróxidos de Fe e de Al (cristalinos e amorfos) teriam condições químicas para serem precipitados a partir das amostras de água. Deste modo, a concentração dos anions na água da zona não saturada deve ter sido controlada por processos de adsorção nas superfícies carregadas dos minerais e dos amorfos.

A mobilidade dos anions na parte superficial do perfil é favorecida pelo balanço de cargas negativo das superfícies, que além de serem menos favoráveis à adsorção, causam ainda uma repulsão elétrica nos íons em solução. Para o sulfato, entretanto, ao alcançar a profundidade de 200 cm tem uma redução em sua concentração de 304 mg/L, a 100 cm de profundidade, para 1,4 mg/L. Neste ponto do perfil o balanço de cargas ainda é negativo (Fig. 1), porém o pH do meio, representado pelo pH da água, é extremamente favorável para a adsorção do sulfato pelos oxi-hidróxidos de Fe (Dzombak & Morel, 1990). Este deve ser o motivo pelo qual o sulfato foi seqüestrado da água da zona não saturada no intervalo entre 100-200 cm de profundidade.

Na presença do sulfato em solução, os experimentos de adsorção de nitrato em solo tem demonstrado que a adsorção do nitrato diminui, em relação a experimentos sem a presença do sulfato, e chega até a ser negativa, o que significa a expulsão de nitrato previamente adsorvido no solo pelo sulfato (Kinjo & Pratt, 1971; Oliveira et al., 2000). Em experimentos de lixiviação de nitrato em colunas de solo foi constatado que a presença do sulfato na solução de lixiviação aumenta a velocidade de deslocamento do nitrato pela coluna de solo, em relação à lixiviação somente do nitrato (Kinjo et al., 1971). Esta competição entre o nitrato e o sulfato por sítios de adsorção, associada ao fato do balanço de cargas negativo no intervalo 100-200cm de profundidade, podem ser os fatores responsáveis pela elevação dos valores de nitrato observados em 200 cm de profundidade. Quando a solução alcança os 300cm de profundidade, numa situação onde o balanço de cargas superficiais já é

positivo, há uma diminuição na concentração do nitrato, provavelmente devido a sua adsorção nas superficies dos minerais e dos sólidos amorfos. Ao ser transportado para maiores profundidades, atravessando um solo com balanço de cargas positivo, o nitrato é praticamente todo adsorvido ao alcançar os 300 cm de profundidade.

Apesar da retenção, as concentrações encontradas de nitrato na solução do solo a 300cm de profundidade são superiores àquelas permitidas para o consumo humano, que é de 44mg/L de nitrato.

O cloreto apresentou um comportamento semelhante ao do nitrato em relação ao sulfato: sua concentração aumentou quando a do nitrato diminuiu, o que pode indicar uma expulsão do cloreto já adsorvido pelo nitrato.

CONCLUSÕES

Ao longo do perfil do solo foi observada uma inversão no balanço das cargas superficiais do solo, de negativa para positiva. A inversão de cargas se deve principalmente à diminuição da concentração da MO com o aumento da profundidade.

A parte superior do perfil do solo com balanço de cargas superficiais negativa, até 200cm de profundidade, dificultou a adsorção dos anions da água da zona não saturada, que são provenientes principalmente da degradação do lodo de esgoto aplicado no solo.

A competição do sulfato e do nitrato por sítios de adsorção, aliada a uma predisposição da adsorção do sulfato pelos oxi-hidróxidos de Fe a pH ≈ 4, fizeram com que o sulfato fosse praticamente todo adsorvido no intervalo 100-200cm de profundidade.

Com a predominância de cargas superficiais positivas e sem a competição com o sulfato, o nitrato passou a ser adsorvido pelo solo, sendo praticamente eliminado da água da zona não saturada aos 400cm de profundidade.

Uma vez que não houve reações de precipitação de minerais, a mobilidade dos anions na zona não saturada esteve condicionada às cargas superficiais do solo. Como estas cargas superficiais são variáveis e dependentes do pH, a adsorção dos anions pelo solo fica condicionada a relação entre o PESN, que depende dos constituintes do solo, e o pH da água que transporta os anions na zona não saturada.

Deste modo a retenção dos anions não pode ser considerada definitiva: os anions permanecerão retidos enquanto o pH do meio for favorável ou então não surgirem anions competidores por sítios de adsorção, como é o que ocorre entre o nitrato e o sulfato.

AGRADECIMENTOS

Projeto Financiado com recursos da FAPESP (Processos: 02/09667-3, 02/12671-2, 03/10949-6).

REFERÊNCIAS

- Camargo, O. A.; Moniz, A. C.; Jorge, J. A.; Valadares, J. M. A. S., 1986. Métodos de análise química, mineralógica e física de solos do IAC. Campinas, IAC, 94 p.
- Dzombak, D.A.; Morel, F.M.M. 1990. Surface complexation modeling: hydrous ferric oxide. 1st ed. New York, John Wiley and Sons, 393p.
- Essington, M.E. 2004. Soil and water chemistry: an integrative approach. CRC Press, New York, 534p.
- Fontes, M.P.F.; CAMARGO, O.A.; SPOSITO, G. 2001. Eletroquímica das partículas coloidais e sua relação com a mineralogia de solos altamente intemperizados. Scientia Agricola, v. 58, n. 3, p. 627 – 646.
- Kinjo, T. & Pratt, P.F. 1971. Nitrate adsorption: II. In competition with chloride, sulfate and phosphate. SSSA, 35: 725-728
- Kinjo, T.; Pratt, P.F.; Page, L. 1971. Nitrate adsorption: III. Desorption movement and distribution in andepts. SSSA, 35: 728-732.
- Oliveira, J.R.a.; Vilela, L.; Ayarza, M. 2000. Adsorção de nitrato em solos de cerrado do Distrito Federal. Pesq. Agropec. Bras., 35:1199-1205.
- Parkhurst, D. & Appelo, C.A.J., 1999. User's guide to PHREEQC (Version 2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochem. Calculations. USGS Water-Resources Investigations Report n°99-4259, 312p
- Sparks, D. 1995. Environmental soil chemistry. Academic Press, San Diego, 267p.