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ABSTRACT 
 
Numerous classifiers have been developed and different classifiers have their own characteristics. Controversial 
results often occurred depending on the landscape complexity of the study area and the data used. Therefore, this 
paper aims to find a suitable classifier for the tropical land cover classification. Five classifiers – minimum distance 
classifier (MDC), maximum likelihood classifier (MLC), fisher linear discriminant (FLD), extraction and 
classification of homogeneous objects (ECHO), and linear spectral mixture analysis (LSMA) – were tested using 
Landsat Thematic Mapper (TM) data in the Amazon basin using the same training sample data sets. Seven land 
cover classes – mature forest, advanced succession forest, initial secondary succession forest, pasture, agricultural 
lands, bare lands, and water – were classified. Overall classification accuracy and kappa analysis were calculated. 
The results indicate that LSMA and ECHO classifiers provided better classification accuracies than the MDC, MLC, 
and FLD in the moist tropical region. The overall accuracy of LSMA approach reaches 86% associated with 0.82 
kappa coefficient. 
 
 

INTRODUCTION 
 

Classification methods can be roughly grouped into two categories: supervised and unsupervised classification. 
The supervised classification methods are closely controlled by the analyst. Samples of spectral data from each 
feature of interest are provided for “training” the classifier to identify pixels that are spectrally similar to feature 
classes. Training sample data must be spectrally representative of the features of interest to effectively implement a 
supervised classification. Unsupervised classification is more computer-automated. Its implementation depends on 
the image spectral data itself to group pixels with similar spectral characteristics into the same spectral category or 
cluster. After classification, an analyst has the responsibility to ascertain the physical nature of each cluster and then 
often merges spectrally similar clusters into meaningful land-cover classes.  

Land-cover classification accuracy is a major concern in remote sensing applications. In order to improve 
classification accuracy, scientists have made great efforts to develop advanced classification algorithms such as 
Extraction and Classification of Homogeneous Objects (ECHO) classifier (Kettig and Landgrebe, 1976; Landgrebe 
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1980), neural network (Chen et al., 1995; Foody et al., 1995; Foody, 1996a; Bruzzone et al., 1997; Foschi and 
Smith, 1997; Paola and Schowengerdt, 1997; Augusteijn and Warrender, 1998; Tso and Mather, 2001), fuzzy set 
classification (Foody, 1996b; Maselli et al., 1996; Mannan et al., 1998; Metternicht, 1999), spectral mixture analysis 
(Adams et al., 1995; Roberts et al., 1998; Mustard and Sunshine, 1999; Lu et al., in press), expert classifier 
(ERDAS Inc., 1999), subpixel classifier (Huguenin et al., 1997; Applied Analysis Inc., 2000), and per-field 
classification (Pedley and Curran, 1991; Aplin et al., 1999). However, classification results are often greatly 
influenced by a variety of factors, including (1) ground truth data and ancillary data available; (2) the complexity of 
landscape and analyst’s knowledge about the study area; (3) image band selection and processing; and (4) the 
classification algorithm and analysts experience with the classifiers used. 

In practice, it is difficult to identify a suitable approach for a given study area, but using a suitable classifier is 
of considerable importance in improving land-cover classification accuracy. Different results and conclusions can be 
reached depending on the classifiers used, the characteristics of the study area, the image data used, and training 
sample data available. In this paper, five classifiers – minimum distance classifier (MDC), maximum likelihood 
classifier (MLC), fisher linear discriminant (FLD), extraction and classification of homogeneous objects (ECHO), 
and linear spectral mixture analysis (LSMA) – were applied in classification using Landsat Thematic Mapper (TM) 
data in an Amazon basin study area, using identical training samples and test data sets. Seven land-cover classes – 
mature forest, advanced secondary succession forest (SS2), initial secondary succession forest (SS1), pasture, 
agricultural lands, bare lands, and water – were classified. Overall accuracy and kappa analysis were determined for 
each classification approach tested and results were compared among the classifiers. The purpose of this paper is to 
identify the classifier or classifiers most suitable for land-cover classification in the moist tropical study area.   
 
 

METHOD 
 
Description of the Study Area 

Rondônia had high deforestation rates in the Brazilian Amazon during the last twenty years (INPE, 2002). 
Following the national strategy of regional occupation and development, colonization projects initiated by the 
Brazilian government in the 1970s played a major role in this settlement process (Schmink and Wood, 1992). Most 
colonization projects in the state were designed to settle landless migrants. Settlement began in this area in the mid-
1980s, and the immigrants transformed the landscape into a mosaic of forest remnants, cultivated crops, pastures, 
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and fallow land. The dominant pristine vegetation is tropical moist forest, associated with some bamboo and palms. 
The terrain is undulated, ranging from 100 to 450 m above sea level. The data used in this study were collected in 
Machadinho d’Oeste in northeastern Rondônia (Figure 1).  
 
Data Collection and Image Preprocessing 

Field data were collected during the dry season of 1999 and 2000. Preliminary image classification and band 
composite printouts were used to identify candidate areas to be surveyed, and a flight over the areas provided visual 
insights about the size, condition, and accessibility of each site. After driving extensively throughout the settlements, 
field observations gave a sense about the structure of regrowth stages, mainly regarding total height and ground 
cover of dominant species. Indicator species, such as Cecropia sp., Vismia sp., palms, grassy vegetation, and lianas 
also helped to assign the successional stages. During the fieldwork every plot was registered with a Global 
Positioning System (GPS) device to allow integration with spatial data in Geographic Information Systems (GIS) 
and image processing systems. The field data were randomly separated into two groups. One group was used for 
training data for supervised classification, and another group was used for test data for accuracy assessment. 

TM data (18 June 1998) were atmospherically corrected into apparent reflectance using an image-based dark 
object subtraction model (Lu et al., 2002). The path radiance was identified based on clear water for each band. The 
atmospheric transmittance was ignored because of lack of atmospheric data to estimate the value for each band. The 
image was geometrically rectified based on control points taken from topographic maps at 1:100,000 scale (UTM 
south 20 zone). A nearest-neighbor resampling technique was used and a root-mean squared error (RMSE) of less 
than 0.5 was obtained. 
 
Classification Methods 

MDC and MLC are the two most common methods used in remote sensing classification applications. MDC is 
a non-parametric classifier that has no assumption of data normality for features of interest. It is also fast and simple 
in computation. MLC is a parametric classifier that assumes normal or near normal spectral distribution for each 
feature of interest. Equal prior probability among the classes are also assumed. MLC requires sufficient 
representative spectral training sample data for each class to accurately estimate the mean vector and covariance 
matrix needed by the classification algorithm. When the training samples are limited or non-representative then 
inaccurate estimation of the elements often results in poor classification. Thus, MDC is possibly more suitable to use 
when training samples are few because the estimation of covariance matrix is not required (Jensen, 1996). Detailed 
descriptions of both classifiers can be found in many textbooks (Jensen, 1996; Richards and Jia, 1999). Almost all 
commercial image processing software and GIS software provided these functions. The FLD, ECHO, and LSMA 
classifiers are relatively new or less commonly used, consequently they are not found in many remote sensing 
textbooks or software packages. These three classifiers are described below and the characteristics of all five 
classifiers are described in Table 1. 

FLD.  Fisher linear discriminant analysis was first proposed for classification by Fisher (1936) in which a linear 
combination maximized differences among classes while minimizing variation within classes. The key assumption 
is that variance/covariance matrices of variables are homogeneous across groups (Klecka, 1980; McGarigal et al., 
2000). There are as many classification functions as there are classes. Each function allows computing classification 
scores for each pixel for each class using the formula: 
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Where the subscript i denotes the respective class; the subscripts j, j=1, 2, …, m denote the m bands; ci is a constant 
for i’th class, wij is the weight for the j’th band in the computation of the classification score for the i’th class; xi is 
the observed value for the respective case for the i’th class. Si is the score for class i. In this model, the independent 
variables are the spectral image bands, while the dependent variable is the measure of support. The candidate pixels 
are assigned the class with the highest score. Detailed description about the FLD for classification can be found in 
Klecka (1980) and McGarigal et al. (2000). 

ECHO.  ECHO classifier was developed by Kettig and Landgrebe at the Laboratory for Applications of Remote 
Sensing (LARS) at Purdue University (Kettig and Landgrebe, 1976; Landgrebe, 1980; Biehl and Landgrebe, 2002). 
ECHO was initially part of LARS’ experimental classification algorithms found in their LARSFRIS software. 
Currently ECHO is supported in both Windows and Mac formats in the Purdue/NASA MultiSpec software package 
that is available at no cost from the MultiSpec website (http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/).   
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Table 1. Characteristics of Selected Classifiers 
 

Classifier Code Characteristics 
Minimum 
distance classifier 

MDC MDC is a non-parametric classifier. It is computationally simple and fast 
that it only requires the mean vectors for each band from the training data. 
Candidate pixels are assigned to the class that is spectrally closer to the 
sample mean. This method does not consider class variability, thus big 
differences in the variance of the classes often lead to misclassification. 

Maximum 
likelihood 
classifier 

MLC MLC is a parametric classifier that assumes normal distribution for the 
training data statistics for each class in each band. It is based on the 
probability that a pixel belongs to a particular class. It takes variability of 
classes into account by using the covariance matrix, thus it requires more 
computation per pixel than MDC. Insufficient numbers of training samples 
or multimode distributions often result in poor classification. 

Fisher linear 
discriminant 

FLD FLD is also a parametric classifier in which homogeneous 
variance/covariance matrices of variables are assumed. A linear 
discriminant analysis of the training data is implemented to form a set of 
linear functions that express the degree of support for each class. The 
independent variables are the image bands and dependent variable is the 
measure of support. This method maximizes the variance between classes 
and minimizes the variance within classes. The assigned class for each 
pixel is the class that receives the highest support after evaluation of all 
functions.  

Extraction  
and classification 
of homogeneous 
objects 
 
 
 
  

ECHO ECHO is a multistage spatial-spectral classifier that has elements of a 
parametric per-pixel classifier and elements related to texture 
classification, hence it is hybrid in character. Four stages are involved in 
this classification: (1) an analyst partitions the feature space into cells (2x2, 
3x3, 4x4, etc.); (2) homogeneity of pixels within each cell is determined by 
user set thresholds and each cell is either considered a single entity or 
individual pixels within the cell remain as single pixels; (3) cells and 
individual pixels are aggregated based on spectral statistical associations 
between them; and (4) the aggregate of cells of pixels and single pixels are 
processed by a MLC to provide final results.   

Linear spectral 
mixture analysis 

LSMA 
 
 
 

LSMA assumes that the spectrum measured by a sensor is a linear 
combination of the spectra of all components within the pixel. Selection of 
suitable endmembers and image bands are two most important aspects to 
develop high quality fraction images. Constrained or unconstrained 
solutions can be used to unmix the image into different fractions. The 
fractions represent the areal proportions of the endmembers within a pixel. 
Thus, different land-cover types have different proportion compositions. 
The classification is based on the fraction images through using a decision 
tree classifier. Training sample data are important to define the thresholds 
for each class. 

 
Research has indicated that incorporation of textural or spatial or object-oriented data enhances the information 

content of per pixel spectral data in many applications (Woodcock and Strahler, 1987; Alonso and Soria, 1991; Arai, 
1993; Kartikeyan et al., 1994; Foody et al., 1996). ECHO was one of the algorithms to incorporate 
spatial/contextual data into remote sensing classifications and has proven to be successful in several humid moist 
forest applications in Brazil. ECHO was used successfully to accurately delineate three classes of secondary 
succession using Landsat TM data supported by very detailed field measured data near Altamira, Brazil (Mausel et 
al., 1993; Moran et al., 1994).  An application of ECHO in Marajo Island in the Amazon Estuary area had similar 
successful results in differentiating three secondary succession forest types as well as other flood-plain forest 
features not present in Altamira using TM data (Brondízio et al., 1996).  Similar classification success was achieved 
in another distinctly different part of the Amazon in Tome Acu using TM data (Batistella, 2000). Thus, several 
different research project directors in very different parts of the Amazon have had classification success using 
ECHO.  In every instance excellent ground truth support was available to support ECHO classification. 
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In unpublished research, one of the authors of this article (P. Mausel) used ECHO extensively in classifying 
typical crops of the Midwestern U.S. (corn, soybeans, and wheat).  Classification accuracy using ECHO in this 
context was no better than using more standard classifiers such as MLC.  It is hypothesized that ECHO does best 
where classes of interest are very mixed with high variance that typically causes per pixel classifiers to have great 
difficulty in feature discrimination.  ECHO simplifies complex mixtures of pixels and often can extract the essence 
of a mass of seemingly complex spectral responses and often accurately extract the dominant class.  In the Amazon 
study areas, spectral-spatial relationships were very complex and ECHO did a good job of penetrating this 
complexity better than other classifiers initially used.  However in the Midwest croplands, the spectral-spatial 
framework was relatively simple and ECHO just became one of many classifiers that could be used to do an 
adequate job of feature discrimination. Thus, like many classifiers, but perhaps more so for ECHO, there are optimal 
uses for a given classifier and an analyst must understand the relationships between the structure of a classifier’s 
algorithm and the spectral nature of features to be classified. 

LSMA.  LSMA is regarded as a physically based image processing tool. It assumes that the spectrum measured 
by a sensor is a linear combination of the spectra of all components within the pixel (Adams et al., 1995; Roberts et 
al., 1998; Ustin et al., 1998; Petrou 1999). It supports repeatable and accurate extraction of quantitative sub-pixel 
information (Smith et al., 1990; Roberts et al., 1998). The fractions of the endmembers represent the areal 
proportions within the pixel. The LSMA approach involves four steps: (1) image processing, (2) endmember 
selection, (3) unmixing solution, and (4) analysis of fraction image.  

Image preprocessing, including geometric rectification and atmospheric correction, was conducted as 
previously described. Before implementing the LSMA approach, it is necessary to reduce the correlation between 
TM bands because high correlations exist between visible TM bands. Standardized principal component analysis 
(SPCA) was used to transform the atmospherically calibrated TM images into principal components (PC). The last 
two PCs were discarded due to their very limited information contents. The first four PCs were used in the LSMA 
approach to convert the image signatures into physically based fraction images. 

 Different endmember selection methods have been used (Adams et al., 1993; Settle and Drake 1993; Boardman 
et al., 1995; Bateson and Curtiss 1996; Tompkins et al., 1997; Mustard and Sunshine 1999). For many remote 
sensing applications of LSMA, the image-based endmember selection method is often used because they are 
obtained easily and represent spectra measured at the same scale as the image data (Roberts et al., 1998). The 
endmembers are regarded as the extremes of the triangles of an image scattergram. Thus, the image endmembers are 
derived from the extremes of the image feature space, assuming they represent the purest pixels in the images 
(Mustard and Sunshine 1999). In this paper, three endmembers (shade, soil, and green vegetation or GV) were 
identified from the scattergram of the first two PCs derived from SPCA. An average of 30 to 50 pixels of these 
vertices was calculated for each endmember. When selecting the endmembers, caution needs to be taken to identify 
outliers. Appropriate selection of image endmembers is often an iterative process. Checking fraction images and 
RMSE images are a feasible way to assess whether the selected endmembers are appropriate or not.  

After selection of endmembers, an unconstrained least RMSE solution was used to unmix the first four PCs into 
three endmember fraction images. Because the fractions represent the biophysical characteristics, different 
vegetation stand structure and land-cover types will have different proportion compositions. A detailed description 
of LSMA approach can be found in Adams et al. (1995), Roberts et al. (1998), and Mustard and Sunshine (1999). In 
this paper the fraction images were used to classify the seven land-cover types in the Brazilian Amazon basin 
previously identified and used in the decision tree classifier. The threshold of each class was identified based on the 
integration of sample data and fraction images. A detailed description of the definition of thresholds was described 
in Lu et al., (in press). 
 
Accuracy Assessment 

A common method for classification accuracy assessment is through the use of an error matrix. Previous 
literature has provided the meanings and calculation methods for overall accuracy (OA), producer’s accuracy (PA), 
user’s accuracy (UA), and Kappa coefficient (Congalton et al., 1983; Congalton 1991; Janssen and van der Wel 
1994; Kalkhan et al., 1997; Khorram 1999; Smits et al., 1999). The Kappa coefficient is a measure of overall 
agreement of a matrix. It takes non-diagonal elements into account. Kappa analysis was recognized as a powerful 
technique used for analyzing a single error matrix and comparing the difference between different error matrices 
(Congalton 1991; Smits et al., 1999). A detailed description about the Kappa analysis can be found in Congalton et 
al. (1983), Hudson and Ramm (1987), Congalton (1991), Kalkhan et al. (1997), and Smits et al. (1999). In this 
paper, an error matrix for each classification method was produced. UA, PA, OA were calculated for each 
classification method. The KHAT statistic, Kappa variance, and Z statistic were used to compare the performance 
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among different classification methods. A total of 320 sample sites, covering different land-cover types, were 
randomly allocated and examined using field data and IKONOS data. 

 
 

RESULTS AND DISCUSSION 
  

The seven land-cover classes: mature forest, SS2, SS1, pasture, agricultural lands, bare lands, and water, were 
classified using five different classifiers and classification accuracy assessments were conducted. Table 2 provides 
the UA and PA for each land-cover types and OA for each classifier. The classification accuracies of forest, pasture, 
agricultural land, and water were satisfactory, but the accuracy of forest successional stages, especially the SS2, was 
poor. In this study area, SS2 was often confused with some SS1 sites and some coffee plantations in the agricultural 
land class. SS1 was confused with selected degraded pastures and some agricultural lands. Sparse pasture sites were 
sometimes confused with bare lands. The LSMA approach to classification generally provided the highest 
accuracies of successional forests, pasture, and agricultural lands. Considering the overall accuracy, LSMA provided 
the best classification results with 85.9% and MDC provided the poorest results with overall accuracy of 77.2%. 
 
Table 2. Comparison of Classification Percent Accuracy among Different Classifiers 
 

MDC MLC FLD ECHO LSMA Land-cover types 
UA PA UA PA UA PA UA PA UA PA 

Forest 94.33 98.71 93.65 98.71 94.28 98.65 94.71 99.47 95.73 98.77 
SS2 29.30 59.35 31.37 58.39 32.08 52.73 28.26 48.79 35.02 62.58 
SS1 74.04 67.74 84.98 69.31 88.91 68.23 92.87 58.16 91.43 70.95 
Pasture 85.25 58.98 86.95 65.83 85.00 74.68 83.97 87.96 84.96 89.02 
Agriculture 80.53 80.66 72.17 83.14 82.70 79.01 75.33 82.03 87.71 84.96 
Bare land 60.98 93.77 65.96 97.66 56.62 100.00 85.75 100.00 98.22 86.68 
Water 100.00 87.17 100.00 88.18 100.00 90.91 100.00 91.82 100.00 92.73 
OA 77.17 79.75 81.26 83.11 85.90 

 
Figure 2 illustrates three land-cover classification images using MDC, FLD, and LSMA, respectively. A road 

layer was overlaid to illustrate the land-cover distribution. It is evident that agricultural lands, pasture, and 
successional forests were mainly distributed near the roads and mature forest was primarily located away from the 
roads.  

Table 3 provides a comparison of kappa analysis results among the different classifiers. It indicates that LSMA 
has a significantly better KHAT than MDC and MLC at a 90% confidence level and better than FLD at 80% 
confidence level. ECHO has a significant better KHAT than MDC at a 90% confidence level. FLD, MLC, and MDC 
do not have a significant difference in the KHAT coefficients. 
 
Table 3. Comparison of Kappa Analysis Results among Different Error Matrices 
 
Classifier No.  KHAT Variance Combination Z_stat Sig. Combination Z_stat Sig. 
MDC 1 0.7162 0.000871 (5) vs. (1) 2.6912 S (95%) (4) vs. (2) 0.9196 NS 
MLC 2 0.7560 0.000788 (5) vs. (2) 1.6693 S (90%) (4) vs. (3) 0.6482 NS 
FLD 3 0.7668 0.000765 (5) vs. (3) 1.3806 S (80%) (3) vs. (1) 1.2505 NS 
ECHO 4 0.7920 0.000745 (5) vs. (4) 0.6787 NS (3) vs. (2) 0.2744 NS 
LSMA 5 0.8160 0.000503 (4) vs. (1) 1.8850 S (90%) (2) vs. (1) 0.9762 NS 

Note: Z_stat = Z statistic; S = significant; NS = not significant. 
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    Figure 2. Comparison of Land-Cover Distributions Derived from Different Classifiers 
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The classification results indicate that confusion existed among SS2, SS1, degraded pasture, and coffee 
plantations classes. Also the variance within the classes varies depending on the land-cover types. For example, 
mature forest has relative smaller variance than successional forests, pasture, and agricultural lands. This 
characteristic makes mature forest easier to classification using any of the different classifiers. For those land covers, 
such as pasture, with relatively larger variance, MDC produced lower classification accuracy due to the fact that 
MDC only use the mean vector and ignored the covariance between the classes. So the MLC and FLD produced 
relatively higher accuracy than MDC because they take the covariance into consideration in their classifiers. 
However, MLC and FLD assume that the histograms of the classes are normally distributed and such assumptions 
are not always true. Also the MDC, MLC, and FLD only consider per-pixel information and ignored texture or 
contextual information. Study areas with complex landscape benefit from incorporation of texture information in 
improving the classification results, thus ECHO provided better classification results, for selected classes, in this 
study area.   

The landscape and environmental conditions are very complex in the moist tropical region of Amazon. Mixed 
pixels are common in TM data due to the heterogeneity of landscape and limitation of 30 m spatial resolution of the 
image data. Traditional per-pixel classifiers such as MLC and MDC are difficult to use to accurately classify the 
land covers based purely on remote sensing spectral signatures. Three major methods can be implemented  to 
improve classification accuracy: (1) assuming abundant and high quality of ground truth data are available,  the FLD 
method can slightly improve the classification accuracy through linear transform of the image data, by maximizing 
the variance between the classes, based on the sample data; (2) using advanced classifiers, such as ECHO, that 
incorporate spectral and textural information in the classification; and (3) unmixing the image data into fractions 
using LSMA through selection of endmembers. Another possible method is to combine different classifiers. For 
example, using LSMA to convert image data into fractions, then using ECHO classifier to classify the fraction 
images into different land-cover types using training sample data. 

 
 

CONCLUSIONS 
 
Different classifiers have their own advantages and disadvantages. For a given study area and project, deciding 

which classifier is best suitable depends on a variety of factors. If good training sample data and different classifiers 
are available, selecting a suitable classifier has considerable significance. This research indicates that LSMA and 
ECHO classifiers are the two recommended approaches suitable for moist tropical land-cover classification.  Even 
though some classifiers provide more accurate results than others, all five used in this research are useful in 
extracting information in the study area. 

It is interesting to note that the overall accuracies of the five classifiers used in this study are basically in the 
order of the least complex or most automated algorithms having the lowest accuracy and the most complex or 
multistage classifiers having the highest accuracy.  The LSMA approach is conceptually the most complex 
algorithm and ECHO has four decision stages requiring analyst input. Analysts with extensive experience working 
with the more complex classification approaches often will get good results, but analysts with limited experience 
with certain complex classifiers may get poor results initially. Thus consideration of an analysts’ experience and 
understanding of a given classifier also should be an important factor in selecting which algorithm to use in addition 
to which algorithms might theoretically be most powerful. 
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