
ORIGINAL RESEARCH
published: 18 June 2015

doi: 10.3389/fmicb.2015.00616

Frontiers in Microbiology | www.frontiersin.org 1 June 2015 | Volume 6 | Article 616

Edited by:

Agostinho Carvalho,

University of Minho, Portugal

Reviewed by:

Fernando Rodrigues,

University of Minho, Portugal

Lucía Monteoliva,

Universidad Complutense de Madrid,

Spain

*Correspondence:

Maristela Pereira,

Laboratório de Biologia Molecular,

Instituto de Ciências Biológicas,

Universidade Federal de Goiás,

Goiânia, Goiás 74690-900, Brazil

maristelaufg@gmail.com

Specialty section:

This article was submitted to

Fungi and Their Interactions,

a section of the journal

Frontiers in Microbiology

Received: 03 April 2015

Accepted: 03 June 2015

Published: 18 June 2015

Citation:

Prado RS, Bailão AM, Silva LC, de

Oliveira CMA, Marques MF, Silva LP,

Silveira-Lacerda EP, Lima AP, Soares

CM and Pereira M (2015) Proteomic

profile response of Paracoccidioides

lutzii to the antifungal argentilactone.

Front. Microbiol. 6:616.

doi: 10.3389/fmicb.2015.00616

Proteomic profile response of
Paracoccidioides lutzii to the
antifungal argentilactone

Renata S. Prado 1, Alexandre M. Bailão 1, Lívia C. Silva 1, Cecília M. A. de Oliveira 2,

Monique F. Marques 2, Luciano P. Silva 3, Elisângela P. Silveira-Lacerda 4, Aliny P. Lima 4,

Célia M. Soares 1 and Maristela Pereira 1*

1 Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil,
2 Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Brazil, 3 Laboratório de

Espectrometria de Massa (PBI), Centro Nacional de Pesquisa de Recursos Genéticos e Biotecnologia, Empresa Brasileira de

Pesquisa Agropecuária, Brasília, Brazil, 4 Laboratório de Genética Molecular e Citogenética Humana, Instituto de Ciências

Biológicas, Universidade Federal de Goiás, Goiânia, Brazil

The dimorphic fungi Paracoccidioides spp. are the etiological agents of

paracoccidioidomycosis (PCM), a mycosis of high incidence in Brazil. The toxicity

of drug treatment and the emergence of resistant organisms have led to research

for new candidates for drugs. In this study, we demonstrate that the natural product

argentilactone was not cytotoxic or genotoxic to MRC5 cells at the IC50 concentration

to the fungus. We also verified the proteomic profile of Paracoccidioides lutzii after

incubation with argentilactone using a label free quantitative proteome nanoUPLC-MSE.

The results of this study indicated that the fungus has a global metabolic adaptation in

the presence of argentilactone. Enzymes of important pathways, such as glycolysis, the

Krebs cycle and the glyoxylate cycle, were repressed, which drove the metabolism to

the methylcytrate cycle and beta-oxidation. Proteins involved in cell rescue, defense and

stress response were induced. In this study, alternative metabolic pathways adopted by

the fungi were elucidated, helping to elucidate the course of action of the compound

studied.
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Introduction

The fungi of the genus Paracoccidioides are thermally dimorphic and cause paracoccidioidomycosis
(PCM), a human systemic mycosis prevalent in residents of Latin America (Brummer et al., 1993).
In Brazil, systemic mycoses are a major cause of mortality considering infectious diseases and the
PCM contributes by more than half of the deaths caused by fungal infections (Prado et al., 2009).
An essential step for the establishment of the Paracoccidioides spp. infection is the transition from
mycelium to the yeast form. The fungus lives in the environment as mycelial form, which produces
propagules that can be inhaled by the host where change to the yeast phase, causing the infection
(Franco, 1987).

Due to toxicity of drug treatment (Travassos et al., 2008) and the appearance of resistance
strains (Hahn et al., 2003), new therapeutic approaches for the treatment of PCM have been
suggested (Rittner et al., 2012). Natural compounds, synthetic, and semi-synthetic derivatives
with antifungal activity against Paracoccidioides spp. have been investigated (Johann et al., 2012;
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Zambuzzi-Carvalho et al., 2013). Argentilactone, the major
component of Hyptis ovalifolia essential oil, a natural Brazilian
plant, inhibits the growth of P. lutzii yeast cells, the dimorphism,
and the activity of the glyoxylate cycle key enzyme isocitrate lyase
(PbICL) (Prado et al., 2014). In addition, argentilactone inhibits
the proliferation of Cryptococcus neoformans, Candida albicans,
Tricophyton rubrum, Tricophyton mentagrophyte, Microsporum
gypseum, andMicrosporum canis (Oliveira et al., 2004).

Several antifungals drugs act by mechanisms poorly
understood. New approaches such as genomics and proteomics
were used to investigate the mode of action of new antifungal
agents (Mercer et al., 2011; Chan et al., 2012), to identify new
targets (Bruneau et al., 2003; Kley, 2004; Hooshdaran et al., 2005;
Delom et al., 2006; Rogers et al., 2006; Hoehamer et al., 2010),
and to study the synergistic effects among compounds (Xu
et al., 2009; Agarwal et al., 2012). This approach was also used
to investigate the clinical action of antifungals and new drugs
against Paracoccidioides spp. (Zambuzzi-Carvalho et al., 2013;
Neto et al., 2014).

The study aimed to investigate the cytotoxicity and
genotoxicity of argentilactone, as well as, the proteomic profile
of P. lutzii after incubation with argentilactone. In addition, the
work aimed to evaluate the lipids and glucose levels, and in vivo
methylcitrate dehydrogenase transcript level in P. lutzii.

Experimental

Extraction of (R)-argentilactone (2H-Pyran-2-one,
6-(1-heptenyl)-5,6-dihydro-,[r-(z)])
The essential oil of H. ovalifolia was obtained as described
previously and the NMR data are consistent with the literature
(Oliveira et al., 2004).

Reduction of 3-(4,5- Dimethylthiazol-2-yl)-2,
5-diphenyl Tetrazolium Bromide (MTT) Method
The MTT colorimetric method described by Mosmann (1983)
was used to evaluation of the cell viability after treatment with
9, 18, 36, and 72µg/mL argentilactone. The cell viability was
measured by the mitochondrial dehydrogenase enzyme activity
of living cells. Human lung fibroblast normal cell line (MRC5;
CCL-171) used in this study were obtained from the American
Type Culture Collection—ATCC, Rockville, Maryland. For the
MTT assay, 1×104 cells were seeded in 96well microtiter plates in
the absence or presence of argentilactone and incubated at 37◦C
at atmospheric pressure containing 5% CO2. After incubation
for 24 h, 10µL MTT (5mg/mL) was added to the cells, and
following 4 h of incubation with MTT, 200µL PBS/20% SDS
(sodium dodecyl sulfate) was added. A quantification of optical
density was measured using a spectrophotometer (Awareness
Technology, Palm City, Florida). The percentage of cell viability
was calculated by GraphPad Prism 4.02 software (GraphPad
Software, San Diego, California).

Comet Assay
The effect genotoxic of argentilactone was examined by comet
assay according to Singh et al. (1988). Argentilactone was added
at concentrations of 9, 18, 36, and 72µg/mL to 1 × 105 MRC5

cells and was incubated at 37◦C for 24 h. After incubation,
15µL of the cells was added to 100µL of a low melting point
agarose (0.5%), spread onto microscope glass slides pre-coated
with a normal melting point agarose (1.5%), and covered with
a coverslip. The slides were incubated for 15min at 4◦C and
after were immersed in cold lysis solution (2.4M NaCl; 100mM
EDTA; 10mM Tris, 10% dimethylsulfoxide, and 1% Triton-
X, pH 10) for 24 h. After lysis, the slides were subjected to
electrophoresis for 25min at 25V and 300mA. Thereafter, the
slides were neutralized for 15min in buffer 0.4M Tris–HCl,
pH 7.5, dried at room temperature and fixed in 100% ethanol
for 5min. The slides were stained using 20µg/mL ethidium
bromide. Two slides were prepared for MRC5, and 50 cells were
screened per sample using a fluorescence microscope interfaced
with a computer. Analysis of the nucleoids was performed in
software Comet Score 15 according to the migration of the
fragments, as previously described (Kobayashi et al., 1995). The
damage index was calculated according to Tice et al. (2000).

P. lutzii and Culture Conditions
P. lutzii (ATCC-MYA-826) has been extensively studied in
different laboratories (Pereira et al., 2010; Cruz et al., 2011;
Oliveira et al., 2013; Teixeira et al., 2013). The fungus was
cultivated in Fava-Netto’s medium (1.0% w/v peptone, 0.5% w/v
yeast extract, 0.3% w/v proteose peptone, 0.5% w/v beef extract,
0.5% w/v NaCl, 4% w/v glucose, and 1.4% w/v agar, pH 7.2)
(Fava-Netto and Raphael, 1961) at 36◦C for growth of the yeast
phase.

Culture and Cell Viability
P. lutzii yeast cells were sub-cultured for 1 week in solid
Fava-Netto’s medium at 36◦C. For viability experiments, yeast
cells were cultured in a liquid chemically defined medium
McVeigh Morton (MMcM) (Restrepo and Jiménez, 1980) in
the absence or presence of a sub-inhibitory concentration of
9µg/mL argentilactone (Prado et al., 2014) at 36◦C. Aliquots
were collected after 0, 6, 8, 10, and 12 h of incubation. The cell
viability was determined by counting stained cells in a Neubauer
chamber using trypan blue, based on the principle that live cells
with intact cellular membranes expelled the dye (Strober, 2001).
All experiments were performed in triplicate.

Preparation of Protein Extracts
P. lutzii yeast cells were collected after 10 h of contact with
9µg/mL argentilactone and the total proteins were extracted.
Centrifugation of the cells was performed at 10,000 g for 15min
at 4◦C and disrupted by glass beads. The extraction buffer
(20mM Tris- HCl pH 8.8; 2mM CaCl2) added of a mixture of
protease inhibitors (serine, cysteine and calpain inhibitors) (GE
Healthcare, Uppsala, Sweden) was added to the yeast cells. After
the addition of glass beads (0.45mm), the cells were vigorously
mixed for 1 h at 4◦C, followed by centrifugation at 10,000 g for
15min at the same temperature. The supernatant was collected,
and the protein concentrations were determined by the Bradford
reagent (Sigma Aldrich, St. Louis, Missouri). The samples were
stored in aliquots at 80◦C.
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Protein Digestion and Label Free Quantitative
nanoUPLC-MSEproteomics
Equimolar amount of three biological replicates were pooled
were pooled and submitted to the proteomic analysis. A total
of 300µg of each sample in 50mM ammonium bicarbonate
was submitted to tryptic digestion. First, 25µL of the surfactant
RapiGEST™ (0.2% v/v) (Waters Corp, Milford, Massachusetts)
was added and then incubated at 80◦C for 15min. The protein
samples were reduced with 2.5µL of a 100mM DTT solution
for 30min at 60◦C; and then alkylated with 2.5µL of 300mM
iodoacetamide in the dark for 30min. After, 10µL of 50 ng/µL
(in 50mM ammonium bicarbonate) trypsin solution (Promega,
Madison, Wisconsin) was added. The sample was digested
at 37◦C overnight. Following the digestion, RapiGEST™ was
hydrolyzed with 10µL of 5% (v/v) trifluoroacetic acid at 37◦C
for 90min. The sample was centrifuged at 10,000 g at 4◦C for
30min, and the supernatant was transferred to a Total Recovery
vial (Waters Corp). The digests were dried and the peptides
were resuspended in 20mM ammonium formate pH 10. The

FIGURE 1 | Percentage of viable MRC5 normal human cells after

exposure to different concentrations of argentilactone. Significance was

accepted *p < 0.05. Analysis was performed by a One-Way ANOVA followed

by a Tukey post-test.

FIGURE 2 | Effect of argentilactone on the induction of MRC5 cells

DNA damage. Cells were treated with 9, 18, 36, and 72µg argentilactone for

24 h and analyzed by comet assay. Analysis was performed by a One-Way

ANOVA followed by a Tukey post-test.

obtained peptides were further separated by RP-RP-HPLC using
a nanoACQUITY™ system (Waters Corp), as described before
(Geromanos et al., 2009). Each sample was run in three technical
replicates. The column loads were 5µg of protein digests for the
analysis of samples in triplicate. First, the samples were separated
in 5 fractions in the mobile phase at pH 10. Each fraction
was further separated by reverse phase chromatography with a
mobile phase at pH 2.5. Label-free data-independent scanning
(MSE) experiments were performed with a Synapt HDMS mass
spectrometer (Waters,Manchester, UK), which switched between
low collision energy MS (3 eV) and elevated collision energies
MSE (12–40 eV) applied to the trap “T-wave” CID cell with argon
gas (Curty et al., 2014).

The protein identifications and quantitative packaging were
generated using specific algorithms (Silva et al., 2005, 2006)
and search was performed against a P. lutzii specific database.
The ProteinLynx Global server v.2.5.2 (PLGS) with ExpressionE

informatics v.2.5.2 was used to proper spectral processing,
database searching conditions and quantitative comparisons.
The database was randomized to access the false-positive
rate of identification (4%). Trypsin was the primary digest
reagent, allowing for 1 missed cleavage. Carbamidomethyl-C
was specified as fixed modification and phosphorylation STY
and oxidationM were used as variable modifications. The
minimum fragment ion matches per peptide, the minimum
fragment ion matches per protein, and the minimum peptide
matches per protein were, respectively set as 2.5 and 1. It
was used 50 ppm as mass variation tolerance. A protein
detected in all replicates presenting a variance coefficient less
than 10% was used to normalize the expression data to
compare the protein levels between control and argentilactone-
treated conditions. The confidence interval of 95% was used.
The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium (Vizcaíno et al., 2014)
via the PRIDE partner repository with the dataset identifier
PXD002285.

FIGURE 3 | Effect of argentilactone on P. lutzii cells growth. Yeast cells

were cultured at 36◦C in the absence (black) and presence (gray) of 9µg/mL

argentilactone for 12 h. Aliquots were taken and the cells were counted in a

Neubauer chamber. *p < 0.05.
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TABLE 1 | P. lutzii more abundant proteins after incubation with argentilactone.

Functional categorya Protein description Accession numberb Protein score Fold change

METABOLISM

Amino acid metabolism 1-pyrroline-5-carboxylate dehydrogenase PAAG_05253 1803.48 1.768

4-aminobutyrate aminotransferase PAAG_00468 1503.69 1.804

Homogentisate 1,2-dioxygenase PAAG_08164 739.59 1.878

Methylmalonate-semialdehyde dehydrogenase PAAG_07036 1184.68 1.336

O-acetylhomoserine (Thiol)-lyase PAAG_08100 3986.80 1.323

Serine hydroxymethyltransferase PAAG_08512 1347.52 1.221

Pyruvate decarboxylase PAAG_02050 1361.75 1.323

Sulfite oxidase PAAG_07811 1481.90 1.221

Aminopeptidase B PAAG_09004 450.66 *

Aspartyl aminopeptidase PAAG_04205 526.39 *

Aspartyl aminopeptidase PAAG_00664 568.78 *

Cysteine synthase PAAG_07813 412.94 *

Hydroxymethylglutaryl-CoA lyase PAAG_06215 1087.40 *

Formate dehydrogenase-III PAAG_03599 1012.38 *

Carbohydrate metabolism Triosephosphate isomerase PAAG_02585 10825.00 1.246

Pyruvate dehydrogenase complex component Pdx1 PAAG_00666 997.13 1.768

Pyruvate dehydrogenase complex PAAG_00050 877.32 1.616

Fumarate reductase Osm1 PAAG_04851 2013.07 1.234

4-hydroxyphenylpyruvate dioxygenase PAAG_07875 4971.33 1.568

N-acetylglucosamine-phosphate mutase PAAG_01931 398.11 *

Aldehyde dehydrogenase PAAG_05392 399.42 *

Fumarylacetoacetase PAAG_08163 2404.04 1.234

Nitrogen metabolism Formamidase PAAG_03333 1620.07 1.209

Nucleotide metabolism Rad4 family protein PAAG_05019 2058.26 1.377

Coenzyme metabolism Riboflavin synthase subunit alpha PAAG_01934 554.30 *

Cell rescue, defense and

virulence

Proteasome component C5 PAAG_00866 1414.16 *

Superoxide dismutase [Cu-Zn] PAAG_04164 2348.64 1.297

Sulfur metabolite repression control protein C PAAG_07339 4835.50 *

ENERGY

Eletron transport Cytochrome c oxidase polypeptide VI PAAG_07246 2376.00 1.477

Cytochrome c oxidase polypeptide IV PAAG_06796 711.90

Associate energy conservation Cytochrome c PriAC=F2TJX0 PAAG_06268 1307.21 1.522

Glycolysis and gluconeogenesis 6-phosphogluconolactonase PAAG_05621 688.50 1.297

Glyoxylate cycle Malate synthase PAAG_04542 617.40 *

Krebs cycle Succinyl-CoA: PAAG_05093 770.38 *

Methyl citrate cycle 2-methylcitrate dehydratase PAAG_04559 20407.15 1.297

Oxidation of fatty acids Enoyl-CoA hydratase PAAG_06309 3244.11 1.716

Acetyl-CoA acetyltransferase PAAG_03447 1578.04 *

Peroxisomal 3-ketoacyl-coA thiolase PAAG_03689 1248.76 *

Siderophore-iron transport Siderophore peptide synthase PAAG_02354 1582.68 *

Protein fate Chaperone DnaK PAAG_01339 14261.80 1.259

(Continued)
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TABLE 1 | Continued

Functional categorya Protein description Accession numberb Protein score Fold change

Chaperonin PAAG_05142 71219.03 1.584

Chaperonin GroL PAAG_08059 36257.80 1.336

GrpE protein homolog PAAG_06255 6685.85 1.649

Glutathione S-transferase PAAG_08162 766.51 1.405

Peptidylprolyl isomerase PAAG_05788 3381.68 1.284

CORD and CS domain-containing protein PAAG_02973 1899.14 *

Miscellaneous Thiol methyltransferase PAAG_06955 1027.93 1.391

Translation Endoribonuclease L-PSP PAAG_08313 12115.91 1.234

Unclassified Uncharacterized protein PAAG_00297 870.53 1.649

Uncharacterized protein PAAG_07772 1786.94 1.209

aFunctional category—based on the MIPS Functional categories database and GO.
bAccession number—accession number of matched protein from Paracoccidioides database (http://www.broadinstitute.org/annotation/genome/paracoccidioides_brasiliensis/Multi

Home.html).

*Proteins detected only during incubation with argentilactone.

Cell Culture and Macrophage Infection Assay
The J774 A1 macrophage cells were cultured in 75 m2 flasks and
incubated at 37◦C with 5% CO2 in an RPMI medium (RPMI
1640, Vitrocell, São Paulo, São Paulo) supplemented with 10%
(v/v) fetal bovine serum. The J774 macrophage cells were plated
at 5 × 105 cells per well on 6-well culture plates and infected
with P. lutzii yeast cells at a 1:5 ratio macrophage:yeast. The
cells were co-cultivated for 12 h at 37◦C in 5% CO2 to allow for
fungi adhesion and/or internalization. After this, the treatment
with 9µg/mL argentilactone and controls in the absence of
argentilactone and presence of sulfametoxazole were conducted.

RNA Extraction, cDNA Synthesis, and
Quantitative Real Time Reverse Transcription
PCR (qRT-PCR) Analysis
The samples of P. lutzii infected macrophages in the presence
of 9µg/mL argentilactone and 0.01 mg/mL sulfametoxazole
(control) were washed three times with sterile water. After
centrifugation, the pellets were frozen in liquid nitrogen.
The cells were disrupted with glass beads for 10min in the
presence of Trizol reagent (Invitrogen™, Carlsbad, California)
according to the manufacturer’s instructions. The cDNAs were
obtained using Superscript II reverse transcriptase (Invitrogen)
and an oligo (dT)15primer. The qRT-PCR reactions were
performed in triplicates of three independent experiments using
a StepOnePlus™ RT-PCR system (Applied Biosystems, Foster
City, California). The SYBR green PCR master mix (Applied
Biosystems) was used as the reaction mixture, with 10 pmol of
each primer and 40 ng of template cDNA at a final volume
of 25µL. A melting curve analysis and electrophoresis were
performed to confirm a single PCR product. The qRT-PCR
thermal cycling consisted of 40 cycles of 95◦C for 15 s and
60◦C for 1min. Constitutively expressed alpha tubulin (sense:
GAGCGATTCATTGGAGGGATT; anti-sense: ATCAGGGAAA
ACAGAGTAAGTC) (Zambuzzi-Carvalho et al., 2013) was

selected to normalize the samples. A non-template control
was included to eliminate contamination or non-specific
reactions. The standard curve was generated from a pool of
cDNA from each sample. The standard cDNA was serially
diluted in a ratio of 1:5. The relative expression levels
of selected genes were calculated using the standard curve
method for relative quantification (Bookout et al., 2006). The
oligonucleotides used in the qRT-PCR analyses are relatives to the
methylcitrate dehydrogenase gene (sense: CAACTCTGACCTT
GCATTTGAT; anti-sense: GATGTTGAAAGCACCGTTGAC).
The experiments were performed in triplicate. A Student’s t-
test was performed to analyze significant differences between the
different samples and a p-value p < 0.05 was considered as
significant.

Dosage of Glucose
The concentration of glucose was determined following the
instructions of the enzymatic glucose kit (Doles Ltda, Goiânia,
Goiás). A total of 1 × 105 cells was treated with 9µg/mL of
argentilactone by 0, 2, 4, 6, 8, 10, 12 and 24 h. The control cells
were grown in the absence of argentilactone. Aliquots of 10µL
were collected in each time, adding 1mL of color solution and
incubated for 5min at 37◦C. The absorbance was measured by
spectrophotometer at 510 nm.

Determination of Intracellular Lipid Content
Intracellular lipid content was determined by flow cytometry
using lipophilic dye Nile Red. Aliquots were collected after 0, 6,
10, 12 and 24 h of incubation with 9µg/mL of argentilactone and
in the absence of the compound. The cells were washed twice with
PBS and incubated with 2µg/mL Nile red (Sigma Aldrich), for
15min at room temperature. Nile red intracellular fluorescence
was determined by guava easyCyte™ Flow Cytometers (Merck
Millipore, Billerica, EUA) on emission channel of 585 nm and
excitation 488 nm. A total of 5000 cells were collected to analysis.
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TABLE 2 | P. lutzii less abundant proteins after incubation with argentilactone.

Functional categorya Protein description Accession numberb Protein score Fold change

METABOLISM

Amino acid metabolism Acetolactate synthase PAAG_00221 849.43 0.726

Argininosuccinate synthase PAAG_07114 6934.38 0.522

Cobalamin-independent methionine synthase MetH/D PAAG_07626 2518.10 0.577

Isovaleryl-CoA dehydrogenase, mitochondrial PAAG_04102 953.65 0.811

NADP-specific glutamate dehydrogenase PAAG_07689 1723.70 0.600

Ornithine aminotransferase PAAG_06431 1262.54 0.684

Lysine decarboxylase-like protein PAAG_03537 800.11 *

NAD-specific glutamate dehydrogenase PAAG_01002 1969.33 *

Saccharopine dehydrogenase PAAG_02693 1249.65 *

Serine hydroxymethyltransferase PAAG_07412 4659.48 0.677

Carbohydrate metabolism Mannitol-1-phosphate dehydrogenase PAAG_06473 4920.79 0.726

Eukaryotic phosphomannomutase PAAG_00889 1400.74 0.691

GDP-mannose pyrophosphorylase A PAAG_08174 860.91 *

Transketolase TktA PAAG_04444 2581.21 0.763

Coenzyme metabolism Adenosylhomocysteinase PAAG_02859 14585.17 0.440

Dihydropteroate synthase PAAG_01324 870.83 0.779

Pyridoxine biosynthesis protein pyroA PAAG_07321 2354.97 0.787

S-adenosylmethionine synthase PAAG_02901 6069.65 0.357

Nucleotide metabolism Bifunctional purine biosynthesis protein ADE17 PAAG_00731 4517.89 0.811

Adenylosuccinate lyase PAAG_04974 686.76 *

S-methyl-5-thioadenosine phosphorylase PAAG_01302 1274.52 *

UDP-N-acetylglucosamine pyrophosphorylase PAAG_06885 768.34 0.779

Phosphate metabolism Inorganic pyrophosphatase PAAG_00657 4020.00 0.771

Cell cycle and dna

processing

Cell division cycle protein 48 PAAG_05518 1782.70 0.719

D-tyrosyl-tRNA(Tyr) deacylase PAAG_03334 22078.91 0.741

Nascent polypeptide-associated complex subunit alpha PAAG_04571 4281.41 0.779

Peptidyl-prolyl cis-trans isomerase PAAG_06168 2417.21 0.795

Proliferating cell nuclear antigen PAAG_00923 5676.48 0.748

TCTP family protein PAAG_09083 23693.70 0.463

Thioredoxin PAAG_02364 25560.74 0.719

UV excision repair protein Rad23 PAAG_04949 1953.93 0.651

Cell rescue, defense and

virulence

Heat shock protein 30 PAAG_00871 6591.33 0.492

Heat shock protein 88 PAAG_07750 15855.80 0.811

Heat shock protein SSB PAAG_07775 5550.62 0.487

ENERGY

Eletron transport and

membran associate energy

conservation

ATP synthase D chain, mitochondrial PAAG_04570 1983.65 0.748

ATP synthase gamma chain PAAG_05576 4554.87 0.595

ATP synthase subunit alpha PAAG_04820 17850.35 0.670

ATP synthase subunit beta PAAG_08037 19311.82 0.726

Glycolysis and

gluconeogenesis

Phosphoenolpyruvate carboxykinase AcuF PAAG_08203 2953.75 0.554

Pyruvate dehydrogenase E1 component alpha subunit PAAG_08295 904.41 0.748

Glucokinase glkA PAAG_06172 746.76 *

Phosphoglucomutase PAAG_02011 2057.00 0.482

Phosphoglycerate kinase PAAG_02869 3428.25 0.619

(Continued)
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TABLE 2 | Continued

Functional categorya Protein description Accession numberb Protein score Fold change

Pyruvate kinase PAAG_06380 9829.55 0.657

Enolase PAAG_00771 39472.25 0.779

Phosphofructokinase subunit PAAG_01583 587.46 *

Pyruvate dehydrogenase E1 component beta subunit PAAG_01534 2794.88 0.733

Glyoxylate cycle Isocitrate lyase PAAG_04549 923.71 0.827

Krebs cycle Malate dehydrogenase PAAG_00053 47991.24 0.795

Malate dehydrogenase PAAG_08449 7490.87 0.756

Isocitrate dehydrogenase subunit 1 PAAG_00856 1820.37 *

Isocitrate dehydrogenase subunit 2 PAAG_07729 1604.29 *

Succinate dehydrogenase flavoprotein subunit, mitochondrial PAAG_01725 1798.19 0.827

Oxidation of fatty acids Short-chain specific acyl-CoA dehydrogenase PAAG_05454 1028.15 *

Transport Carbonic anhydrase PAAG_05716 854.25 0.795

Clathrin light chain PAAG_08252 1049.51 0.741

GTP-binding nuclear protein ran-1 PAAG_04651 3676.19 0.527

Nipsnap family protein PAAG_05960 4593.91 0.677

Vesicular-fusion protein sec17 PAAG_06233 559.70 *

Rab GDP-dissociation inhibitor PAAG_06344 1958.40 0.625

Protein fate G-protein comlpex beta subunit CpcB PAAG_06996 2600.70 0.741

Protein disulfide-isomerase PAAG_00986 14896.18 0.670

Miscellaneous Thiol-specific antioxidant PAAG_03216 4271.92 0.427

Translation Cytosolic large ribosomal subunit protein L30 PAAG_01050 6746.86 0.756

40S ribosomal protein S0 PAAG_02111 10467.63 0.741

40S ribosomal protein S11 PAAG_06367 3129.84 0.512

40S ribosomal protein S14 PAAG_01433 1642.34 0.712

40s ribosomal protein s15 PAAG_04690 6547.01 0.625

40s ribosomal protein s26 PAAG_07847 9205.88 0.477

40S ribosomal protein S5 PAAG_05484 5524.47 0.625

40S ribosomal protein S7 PAAG_07182 7212.75 0.670

40S ribosomal protein S8 PAAG_00264 3915.07 0.651

40S ribosomal protein S9 PAAG_01435 2407.07 0.487

40S ribosomal protein S9 PAAG_03828 2402.26 0.502

60S ribosomal protein L13 PAAG_06320 5338.78 0.589

60S ribosomal protein L15 PAAG_00969 4623.56 0.468

60S ribosomal protein L18A PAAG_00952 3245.52 0.571

60S ribosomal protein L2 PAAG_00430 2292.83 0.517

60S ribosomal protein L43 PAAG_06569 12650.10 0.543

60S ribosomal protein L4-A PAAG_08888 5405.80 0.619

60S ribosomal protein L5 PAAG_00548 911.54 0.795

60S ribosomal protein L7 PAAG_06487 3961.73 0.748

60S ribosomal protein PAAG_01834 4195.17 0.538

60S ribosomal protein L31E PAAG_04965 2514.61 *

Ribosomal protein S23 PAAG_00385 923.83 *

Elongation factor 1-alpha PAAG_02024 13081.64 0.284

Elongation factor 1-beta PAAG_03028 26825.63 0.427

Elongation factor 1-gamma PAAG_03556 9096.78 0.317

(Continued)
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TABLE 2 | Continued

Functional categorya Protein description Accession numberb Protein score Fold change

Elongation factor 2 PAAG_00594 11304.17 0.403

Polyadenylate-binding protein PAAG_00244 1647.87 0.631

Ribosomal protein L19 PAAG_08497 3909.55 0.607

Ribosomal protein P0 PAAG_00801 2669.74 0.560

Ribosomal protein S20 PAAG_03322 1872.13 0.763

Ribosomal protein S6 PAAG_02634 1918.03 0.589

40S Ribosomal protein S3 PAAG_01785 6921.45 0.595

U5 small nuclear ribonucleoprotein component PAAG_07785 372.29 0.242

Unclassified Hypothetical protein PAAG_07955 2234.10 0.507

Uncharacterized protein PAAG_07989 907.76 0.657

Uncharacterized protein PAAG_04274 841.04 0.726

Uncharacterized protein PAAG_02434 1488.40 *

Uncharacterized protein PAAG_07841 11750.10 0.458

Uncharacterized protein PAAG_00724 3895.92 0.492

aFunctional category—based on the MIPS Functional categories database and GO.
bAccession number—accession number of matched protein from Paracoccidioides database (http://www.broadinstitute.org/annotation/genome/paracoccidioides_brasiliensis/Multi

Home.html).

*Proteins detected only in control conditions.

Results and Discussion

Evaluation of Argentilactone Cytotoxicity against
Human Cells
The cytoxicity of argentilactone was evaluated for human
cells MRC5 (Figure 1). The data show a dose-dependent
relationship between the number of dead cells and argentilactone
concentration. The concentration of 9µg/mL argentilactone did
not promote cell cytotoxicity for MRC5. For the MRC5 cells,
the IC50 was 32µg/mL. For the P. lutzii yeast cells, the IC50

was 18µg/mL (Prado et al., 2014). These data suggest that
the argentilactone is more toxic to the fungus than for human
cells.

Aiming to evaluate if argentilactone induces DNA damage
in human cells, the comet assay was performed to MRC5 cells
treated with different concentrations of this compound. This
assay has achieved the status of a standard test in the battery of
tests used to assess the safety of novel pharmaceuticals or other
chemicals and is now well-established as a sensitive assay for
detecting strand breaks in the DNA of single cells (Fairbairn et al.,
1995). Figure 2 shows the effect of argentilactone in MRC5 cells.
In the MRC5 normal cells the compound did not induce DNA
damage when compared to the negative control (p > 0.05). The
data above suggest that this compound is safe to human.

Determination of Incubation Time with
Argentilactone
Metabolic response and survival strategies of P. lutzii were
discussed at the molecular level using genomic and proteomic
approaches (Desjardins et al., 2011;Weber et al., 2012; Grossklaus
et al., 2013; Zambuzzi-Carvalho et al., 2013). In this study, we
investigated the response of P. lutzii to the antifungal prototype
argentilactone.

A viability curve of P. lutzii yeast cells was constructed at
time 0, 6, 8, 10, and 12 h in the presence of a sub-inhibitory
concentration of 9µg/mL argentilactone aiming to determine the
time point to be used for the proteomic experiments. The time
of 10 h with a cell viability of 90% (Figure 3) was chosen for
proteomic studies.

Proteomic Response of P. lutzii Upon Exposure
to Argentilactone
A nanoUPLC-MSE-based proteomics approach was employed to
identify the P. lutzii yeast cell differentially regulated proteins in
response to argentilactone. A total of 211 proteins were identified
of which 155 had significant regulation at a 1.2-fold change or
more. This cut off ratio was used in order to identify broader
cellular processes regulated by the compound instead to focus
in specifically regulated proteins. From these, 32 were more
abundant, 88 less abundant, 20 detected only in treated cells and
15 detected only in the control. A total of 7% of the proteins
had no predicted function; the other 93% were classified in
functional categories using the FunCat2 system. The regulated
proteins were clustered in proteins with increased expression
after incubation with argentilactone (Table 1) and proteins
with decreased expression after incubation with argentilactone
(Table 2).

The proteomic analysis, including all regulated proteins,
showed proteins associated with metabolism 35.4%, translation
21.9%, protein fate 5.8%, unclassified 5.8%, transport 4.5%, cell
cycle 3.2%, cell rescue 3.2%, energy 1.5% and miscellaneous
1.3% (Figure 4A; Tables 1, 2). The proteome analysis that
included up-regulation and proteins exclusive to the presence
of argentilactone showed proteins associated with metabolism
49%, energy 21.5%, protein fate 11.7%, unclassified 7.8%, cell
rescue 3.9%, transport 1.9%, translation 1.9% and miscellaneous
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1.9% (Figure 4B; Table 1). The proteome analysis that included
down-regulation and proteins exclusive to the control condition
showed proteins associated with translation 30.7%, metabolism
28.8%, energy 12.5%, cell cycle 7.6%, unclassified 6.7%, transport
5.7%, cell rescue 2.8%, protein fate 1.9% and miscellaneous 0.9%
(Figure 4C; Table 2).

The proteins involved in cell rescue, defense, and virulence
confer protection to the cell and assure survival upon various

FIGURE 4 | Diagram depicting the breakdown of P. lutzii proteins. (A)

Proteins differentially expressed in the absence and presence of

argentilactone; (B) More abundant proteins in the presence of argentilactone;

(C) Less abundant proteins in the absence of argentilactone.

stresses. Molecular chaperones are very conserved and has the
function related to maintenance of conformational equilibrium
of proteins (Hartl, 1996). In this study, as could be expected,
were identified stress-related proteins regulated in the presence
of argentilactone (Tables 1, 2). In addition to the heat shock
proteins, proteasome component C5 and sulfur metabolite
repression control protein C were exclusive to P. lutzii exposed
to argentilactone. This result could indicate the involvement of
these proteins in protecting the fungus from the stress generated
by argentilactone.

Our proteomic analyses indicate a global reorganization
of P. lutzii carbohydrate metabolism during the exposure
to argentilactone. One change detected here is the decrease
of several enzymes of glycolytic pathway such as enolase,
phosphoglucomutase, phosphoglycerate kinase, pyruvate
kinase, and those exclusive to the absence of argentilactone
as glucokinase and phosphofructokinase (Table 2). The
down-regulation of succinate dehydrogenase, two malate
dehydrogenases, and isocitrate dehydrogenase subunits 1
and 2 (Table 2), shows that Krebs cycle is not completely
functioning in P. lutzii. In the presence of argentilactone, P. lutzii
decreased the glucose consume (Figure 5), suggesting that
glycolysis is partially blocked. In addition, the gluconeogenesis
is also not completely functioning, as phosphoenolpyruvate
carboxykinase is less abundant (Table 2). Phosphoenolpyruvate
carboxykinase plays an importantl role in the pathogenesis
of tuberculosis, sinceit is essential for Mycobacterium
tuberculosis during mouse infection. M. tuberculosis utilizes
primarily gluconeogenic substrates for in vivo persistence,
suggesting that this enzyme represents a target for treatments
(Marrero et al., 2010).

The glyoxylate cycle is not completely functioning in the
presence of argentilactone as the enzyme isocitrate lyase is
less abundant (Table 2). This finding is consistent with our
previous results showing that the P. lutzii isocitrate lyase
recombinant and native forms were inhibited in the presence
of argentilactone (Prado et al., 2014). On the other hand,
malate synthase is more abundant. Under the absence of six-
carbon elements, the glyoxylate cycle is induced (Fernandez

FIGURE 5 | Glucose quantification. The level of glucose was quantified by

enzymatic kit after 0, 2, 4, 6, 8, 10, 12 and 24 h. The control was performed

with cells in the absence of argentilactone. The Student’s t-test was used for

statistical comparisons, and the observed differences were statistically

significant (*p ≤ 0.05).

Frontiers in Microbiology | www.frontiersin.org 9 June 2015 | Volume 6 | Article 616

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Prado et al. Antifungal response to argentilactone

et al., 1993). The glyoxylate pathway is important in the
generations of C4 dicarboxylic acids from acetyl-CoA units,
bypassing the decarboxylation steps in the TCA cycle. The
cycle is important to fungal pathogenesis. For example, many
of the genes highly induced in phagocytized C. albicans were
members of the glyoxylate cycle (Lorenz and Fink, 2001; Lorenz
et al., 2004). The C. albicans isocitrate lyase gene is essential for
gluconeogenic carbon source utilization and starvation rather
than a marker for lipid metabolism (Brock, 2009; Otzen et al.,
2013).

The methylcitrate cycle is an alternative route of carbon
through pyruvate production (Bramer et al., 2002) and an
important pathway for propionyl-CoA metabolism is the
methylcitrate pathway. The 2-methylcitrate dehydratase that
participates in the methylcitrate cycle is more abundant

(Table 1). In addition, methylmalonate-semialdehyde
dehydrogenase that produces propionyl-CoA seems to
lead to the production of pyruvate (Table 1). Pyruvate
produces acetaldehyde from the action of pyruvate
decarboxylase that is more abundant in the presence of
argentilactone (Table 1). Up-regulation of o-acetylhomoserine
(thiol)-lyase leads to the production of L-methionine
and acetate. Acetate is converted to acetoacetyl-CoA by
the action of acetyl-CoA acetyltransferase, which was
only detected during the treatment with argentilactone
(Table 1).

The β-oxidation is a pathway for the utilization of
fatty acids (Poirier et al., 2006) in which the 3-ketoacyl-
CoA thiolases enzymes are so important (Otzen et al.,
2013). The enzymes 3-ketoacyl-CoA thiolase, which was

FIGURE 6 | Effect of argentilactone on intracellular lipid content of P.

lutzzi. The presence of lipids was determined by flow cytometry. Cells was

stained with dye Nile Red (A). The analysis of yeast cells in presence and

absence of argentilactone for (B) 0 h, (C) 6 h, (D) 10 h, (E) 12 h, and (F) 24 h

was performed. Line histograms represent the cells treated with argentilactone

and dotted histograms represent control cells without treatment.
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only detected in P. lutzii exposed to argentilactone, and
enoyl-CoA hydratase from β-oxidation were also more
abundant (Table 1). The lipids content from P. lutzzi
was decreased in the presence of argentilactone mainly
after 24 h (Figure 6) reinforcing the importance of the β-
oxidation and methylcitrate cycle for P. lutzzi responding to
argentilactone.

Glyoxylate is not produced from isocitrate because
isocitrate lyase is less abundant in the presence of
argentilactone. The high production of succinate is
indicated by up-regulation of fumarylacetoacetase, which
uses 4-fumarylacetoacetate to produce fumarate, and then
fumarate reductase uses fumarate to produce succinate
(Table 1).

It is important to mention that argentilactone weakened the
protein synthesis of P. lutzii. Translation was the functional
category most affected with 33 less abundant proteins. In general,
we could observe that energy-producing pathways, such as
glycolysis, gluconeogenesis, and TCA, were less abundant in
the presence of argentilactone. An overview of the metabolic

changes of P. lutzii in presence of the compound is shown in
Figure 7.

Validation of nanoUPLC-MSE data
The innate immune cells like resident macrophages and dendritic
cells are the first barriers of defense system that interact with
Paracoccidioides spp. cells (Calich et al., 2008). It is known that
the phagosome is poor in nutrients and was reported to not are a
good environment as evidenced by the little quantities of glucose,
other sugars, and amino acids (Lorenz et al., 2004; Fan et al., 2005;
Tavares et al., 2007; Cooney and Klein, 2008; Silva et al., 2008).

Methylcitrate dehydrogenase is an important enzyme of
the methylcitrate cycle. Thus, aiming to verify whether the
transcript is regulated in vivo when P. lutzii is exposed
to argentilactone, the compound was added to the medium
during J744 A.1 macrophage infection. The relative expression
analysis of transcripts encodingmethylcitrate dehydrogenase was
performed using qRT-PCR. Figure 8 shows that genes encoding
methylcitrate dehydrogenase were induced, corroborating the
observations from proteomic data. This finding indicates that the

FIGURE 7 | Metabolic changes of P. lutzii yeast cells exposed to

argentilactone. The less abundant proteins during treatment are not

highlighted. The more abundant proteins are underlined. GC, glyoxylate

cycle; TCA, tricarboxylic acid cycle; MCC, methylcitrate cycle; GLK,

glucokinase; PFK-1, phosphofructokinase-1; PGK, phosphoglycerate kinase;

ENO, enolase; PYK, pyruvate kinase; ICL, isocitrate lyase; MLS, malate

synthase; MDH, malate dehydrogenase; FAH, fumarylacetoacetase; FRD,

fumarate reductase; ECH: enoyl-CoA-hydratase; KAT, acetyl-CoA

acetyltransferase; SDH, succinate dehydrogenase; IDH, isocitrate

dehydrogenase; MCD, methylcitrate dehydrogenase.
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FIGURE 8 | Quantification of the mRNA expression of the

methylcitrate dehydrogenase gene of P. lutzii infecting macrophage

during exposure to argentilactone and sulfamethoxazole by

quantitative qRT-PCR. (1) P. lutzii (Pl); (2) P. lutzii (Pl) + argentilactone (Al);

(3) P. lutzii (Pl) + argentilactone (Al) + ø; (4) P. lutzii (Pl) + sulfamethoxazole

(S); (5) P. lutzii (Pl) + sulfamethoxazole (S) + ø; (6) P. lutzii(Pl) + ø. Data were

normalized to the tubulin transcript. Data were analyzed by a One-Way

ANOVA and a Tukey’s multiple comparison post-test. *p ≤ 0.05.

methylcitrate cycle composes the response of yeast cells during
macrophage infection and not only in vitro.

Conclusions

The global characterization of the proteomic profile of P. lutzii
responding to argentilactone enabled the visualization of the
metabolic adaptation of the fungus to drug exposure. Important
metabolic pathways were regulated, explaining the strong action
of the compound on fungus growth and viability. In this
study, alternative metabolic pathways adopted by the fungi were
elucidated and helped to elucidate the course of action of the
compound studied.
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