

Brachiaria genotypes yield under integrated crop-livestock-forest system in the Brazilian Cerrado

Mariana PEREIRA^{1*}, Roberto Giolo de ALMEIDA², Davi J. BUNGENSTAB², Maria G. MORAIS³, Beatriz LEMPP⁴

¹ MS in Animal Science, Univ. Federal de Mato Grosso do Sul, Campo Grande, 79090-900, MS, Brazil; ² Embrapa Beef Cattle, Campo Grande, 79106-550, MS, Brazil; ³ Univ. Federal de Mato Grosso do Sul; ⁴ Laboratory of Forage, Univ. Federal da Grande Dourados, Dourados, 79825-070, MS, Brazil.

E-mail address of presenting author*: mary_xp_@hotmail.com

Introduction

To better explore the production potential of integrated systems, information is needed about forage behavior under such systems. In this context, this work addressed dry matter yield of six *Brachiaria* genotypes under different levels of shading in an integrated crop-livestock-forest system in the Brazilian Cerrado.

Material and Methods

The experiment is located at Embrapa Beef Cattle, Campo Grande-MS, Brazil (20°27'S and 54°37'W; mean altitude of 530 m). Experimental design was randomized blocks in split split plots with two replicates. Plots corresponded to the forages: Brachiaria brizantha cultivars Marandu, Paiaguás, Piatã, Xaraés, B. brizantha access B4 and Brachiaria hybrid BRS RB 331 Ipyporã. Split plots corresponded to sample points (A, B, C, D, E and F, with different levels of shading) and the split split plots corresponded to harvesting period in 2014 (February, April and June). The system is based on 22 m distant single rows of eucalyptus trees (227 trees ha⁻¹) planted in 2009. Pastures are kept for three years, followed by one season of soybeans crop. As reference, a similar system with no trees was also established. Forages evaluated were seeded in October 2013, in 20 x 1.5 m plots with 0.25 m space between grass rows, receiving 50 kg ha⁻¹ NPK 0-20-20 at seeding and 90 kg ha⁻¹ after the second forage harvest. Seeding rates were adjusted for 60 pure viable seeds ha⁻¹. Forage samples were taken at five equidistant points (A, B, C, D and E) between eucalyptus rows. Point F was located in the reference system. Photosynthetically active radiation (PAR) was measured in the morning and in the afternoon using a ceptometer (Accupar, model PAR-80). Plants were cut close to the ground, weighted and dried in forced-air oven at 65°C until constant weight was reached. Analysis of variance was performed and means were compared through Tukey test (p<.05).

Results and Conclusions

PAR in grass canopy at sampling points A, B, C, D, E and F averaged 302; 599; 538; 591; 365 and 1,027 µm m⁻² s⁻¹, respectively. Grasses performed similarly for all harvests, with higher yields at point F and direct relationship between the yield and light incidence (Table 1). There was no statistical difference in dry matter yield of the different grasses, averaging 2,541 kg ha⁻¹.

Table 1. Dry matter yield (kg ha⁻¹) of *Brachiaria* genotypes for three harvest periods in 2014 on sampling points with different levels of shading.

Harvest / Point	A	В	С	D	E	F
February	838 bB	1,418 abB	1,846 abB	1,263 abB	1,109 abB	2,378 aC
April	2,330 cdA	4,087 bA	3,513 bcA	2,734 cdA	1,998 dAB	5,594 aA
June	2,582 bA	3,039 abA	2,459 bAB	2,005 bAB	2,221 bA	4,331 aB

Means followed by the same letter, lowercase in lines and uppercase in columns, do not differ by Tukey test (p>.05).

Acknowledgements

Embrapa, Unipasto.