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Introduction

Seasonal probabilistic forecast systems (SPFS) 
based on the analogue years approach (AYA) are 
used worldwide and provide valuable information 
for decision makers managing climate-sensitive 
systems (Sivakumar et al. 2000; Ferreyra et al. 
2001; Selvaraju et al. 2004; Meinke and Stone 
2005). Providing such categorisations are based 
on scientifically well understood mechanisms, 
such forecasts (or, more appropriately, scenarios) 
allow climate time series to be partitioned into 
‘year- or season-types’ (analogue years) based on 
prevailing ocean and atmospheric conditions (i.e. 
Southern Oscillation Index, SOI and/or Sea 
Surface Temperatures SST anomalies), resulting 
in SOI or ENSO phases.

These time series are usually represented by their 
respective cumulative distribution functions 
(CDFs) or their complement, probability of 
exceeding functions (POEs): a conditional CDFK 
for each class K and an unconditional CDF 
(CDFa ll). Current oceanic and atmospheric 
conditions can then be assigned to a particular 
category K and the correspondent CDFK is then 
adopted for probabilistic assessments.

To take action, decisions makers need to know: a) 
whether or not probabilistic forecasts provided by 
conditional distributions are sufficiently different 
from their respective from 'climatology’; b) if so, 
what is the magnitude of change in the prognostic 
variable that might lead to a change in the 
decision; c) is there sufficient improvement in 
accuracy over the ‘climatology’ and d) if so, what 
is the improvement in accuracy of this forecast 
over the unconditional case (Maia et al. 2006). 
From a methodological perspective, the 
assessment of questions (a) and (c) requires 
inferential tools such as statistical tests for the 
hypothesis of 'no class effect'. The assessment of 
questions (b) and (d) requires intuitive, descriptive 
statistics that are relevant for the question at hand. 
We propose using descriptive measures coupled 
with inferential methods to evaluate such SPFS. 
Detailed discussion about forecast quality

assessments can be found in Potgieter et al. 
(2004).

We illustrate these approaches by quantifying 
signal of a SOI-based forecast system across 
Australia and an ENSO-based forecast system 
across Southeast of South America.

Data & Methods

Rainfall data

For illustration purposes, we used 3-monthly 
rainfall data from: a) Australia (June-August -  JJA, 
64 stations, all rainfall series with a record length 
of 103 years) and b) Southeast of the South 
America (October-December -  OND, 60 stations, 
series length ranging from 57 to 87 years).

Analogue-based seasonal forecast systems

The seasonal probabilistic forecast systems 
evaluated were: a 3-phase forecast system based 
on El Nino/Southern Oscillation (ENSO) for the 
Southeast of South America (Ropelewski and 
Halpert, 1987) and a 5-phase forecast system 
based on the Southern Oscillation Index for 
Australia (Stone et al. 1996).

Descriptive quality assessments

Descriptive assessments allow exploring 
characteristics of the class effects over time and 
space. We are proposing measures that account 
for divergences among the entire CDFs of the 
decision variables (Table 1) or their percentiles 
such as median values (Table 2); equivalent 
measures could be calculated for any other 
statistic of interest, e.g. the 95th percentile, 
probability of exceeding a critical value etc). 
Descriptive measures indicate how much the 
“statistic of interest” changes due to the FS class 
information. In other words, these measures 
quantify how much the ‘conditional climatology’ 
derived from the forecast system differs from the 
‘unconditional climatology’ (i.e. the CDF derived 
from the entire climate record).
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Table 1. Descriptive measures used to quantify divergences between conditional and unconditional probability 
of exceeding functions at each station.___________________________________________________________
Measure Description
POEk

POEall

VDiStyk
AbsVDistyk
MaxAbsVDist

MaxVDist

MaxRelAbsDiff
MaxRelDiff

Probability of exceeding function representing observed values of decision variable (Y) time 
series corresponding to class k of the forecast system adopted, also referred to as 
conditional POE;
Probability of exceeding function representing observed values of decision variable (Y) time 
series corresponding to “climatology”, also referred to as unconditional POE;
Vertical distance between POE« and POEALL at the position Y=y;
Absolute vertical distance between POEK and POEALl at the position Y=y;
Maximum absolute vertical distance between POEK and POEALL at the position Y=y (over all 
y and k);
Maximum absolute vertical distance between POE« and POEALL at the position Y=y, 
considering the signal (+ or-)
MaxAbsVDist expressed as percent of POEALL at the respective position Y=y (%);
MaxVDiff expressed as percent of PQEALL at the respective position Y=y (%)._____________

Table 2. Descriptive measures used to quantify divergences between conditional and unconditional 
medians* at each station.
Measure | Description
Mediank Median of the decision variable CDF corresponding to class K of the forecast system

adopted, also referred to as conditional median (mm);
MedianALL Median of the the decision variable CDF corresponding to “climatology”, also referred to

as unconditional median (mm);
DiffK Difference between Median« and MedianALL (mm);
AbsDiff« Absolute difference between Median« and MedianALU (mm);
MaxAbsDiff Maximum absolute difference between Median« and MedianALL (mm);
MaxDiff maximum absolute difference between Median« and MedianAII, considering the signal (+

or -) (mm);
MaxRelAbsDiff MaxAbsDiff expressed as percent of MedianAII (%);
MaxRelDiff MaxDiff expressed as percent of MedianAII (%);

* Similar measures can be calculated for any other percentile.

Inferential quality assessments

For inferential analysis, we suggest to use 
distribution free statistical tests related to the 
descriptive measures adopted: for example, 
multisample Kruskal-Wallis or Median test can be 
used in conjunction with MaxDifMed, while the 
multisample Kolmogorov-Smirnov or Log-rank test 
can be used in conjunction with MaxVDist. 
Alternatively, Monte Carlo methods (e.g. 
randomised tests) can also be applied to develop 
specific inferential procedures for any descriptive 
measure of interest (Conover 1990; Manly, 1991).

Here we used the multisample Kruskal-Wallis test 
(Kruskal and Wallis, 1952) to quantify evidences 
against ‘no class effect’ on 3-monthly rainfall 
medians across Australia (SOI FS) and Southeast 
of South America (ENSO FS). Tests were applied 
to each location and corresponding nominal 
significance levels (p-values) were mapped to

display spatial patterns of the signal of the 
underlying climate phenomena. For detailed 
discussion about the inferential assessments 
proposed here, see Maia et al. (2006).

Results & Discussion

Quantifying SOI signal over Australia

For case studies of detailed descriptive analysis, 
stations were selected accordingly to three 
different criteria: MaxDifMed, MaxRelDiff and 
MaxVDist. For each criteria stations corresponding 
to minimum (maximum negative), minimum 
absolute (values closest to zero), and maximum 
(maximum positive) were chosen, aiming to 
represent variability of SOI influence over the 
region. Depending on the criteria, different sets of 
stations were selected. Descriptive measures of 
divergence between conditional and unconditional
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medians and POEs at those locations are shown 
in Tables 3-5.

High relative differences frequently occur at 
seasonally dry stations (Figure 1-A2). As in the 
example showed below (Table 5) and in spite of 
the high relative values, the evidence of class 
effect on medians at those locations is very low 
(KW p-values were 0.92 and 0.32, for Ayr and 
Burketown, respectively). On the other hand, low 
relative differences can correspond to high 
evidence of class effect (e.g. Cape Leeuwin, KW 
p-value=0.0004). Spatial patterns of MaxAbsDiff, 
MaxRelAbsDiff, MaxAbsVDist and
MaxRelAbsVDist over the region are shown in

Figure 1. JJA rainfall probability of exceeding 
functions for stations selected accordingly 
MaxAbsDiff criteria (Bundaberg, Darwin and 
Albany) are shown in Figure 2. Vertical dashed 
lines highlight distances between conditional and 
unconditional POEs while horizontal lines highlight 
distances between medians.

As example of inferential quality assessment, 
pattern of SOI signal across Australia, as 
measured by KW p-values is shown in Figure 3. 
That map displays spatial variability of SOI classes 
influence on JJA rainfall medians.

Table 3. Descriptive measures of divergence between conditional and unconditional POEs at locations 
selected accordingly to maximum absolute vertical distance (MaxAbsVDist) criteria.

Location
POEAII

At
Maximum

Class POE at maximurr 
Vertical Distance*

i Maximum Vertical 
Distance Signal

1 2 3 4 5 Absolute Relative
(%)

Albany 0.69 0.31 0.82 0.79 0.81 0.64 0.38 0.55 -

Old Halls Creek 0.25 0.19 0.14 0.36 0.23 0.36 0.12 0.46 -
Cape Leeuwin 0.45 0.25 0.23 0.14 0.81 0.56 0.36 0.81 +

‘ Values in red correspond to classes at which the maximum vertical distances were observed.

Table 4. Descriptive measures of divergence between conditional and unconditional JJA rainfall POEs at
locations selected accordingly to maximum absolute difference (MaxAbsDiff) criteria.

Location MedianAII Class Median Maximum difference between Signal(mm) (mm) medians

1 2 3 4 5 Absolute
(mm)

Relative
(%)

Bundaberg 117.2 58.4 58.8 130.4 120.9 147.1 58.8 50.2 -

Darwin 0.7 2.0 1.3 1.0 1.5 0.0 1.3 185.7 +
Albany 395.6 342.0 66.5 395.3 461.1 399.6 65.5 16.8 +

*Values in red correspond to classes at which the maximum differences were observed.

Table 5. Descriptive measures of divergence between conditional and unconditional JJA rainfall POEs at 
locations selected accordingly to maximum relative absolute difference (MaxRelAbsDiff) criteria.

Location
MedianAII

(mm)

Class Median 

(mm)

Maximum difference 

between medians
Signal

1 2 3 4 5
Absolute

(mm)

Relative

(%)
Ayr 11.3 3.6 15.0 14.8 9.1 6.9 7.7 68.1 -
Cape Leeuwin 511.7 472.9 475.4 504.5 532.2 546.6 38.8 7.6 -

Burketown 0.4 1.9 0.9 0.00 1.80 0.00 1.5 387.5 +

*Values in red correspond to classes at which the maximum differences were observed.
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Figure 1. Spatial patterns of descriptive measures for quantifying SOI class influence on JJA rainfall 
POEs. A) Maximum absolute (MaxAbsDiff, A l) and maximum relative absolute difference 
(MaxRelAbsDiff, A2) among conditional and unconditional median and B) Maximum absolute 
(MaxAbsVDist, B l) and maximum relative absolute vertical distance (MaxRelAbsVDist, B2) among 
conditional and unconditional POEs. Point size and color intensity proportional to data values.
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Figure 2. Probability of exceeding functions representing JJA rainfall series by SOI class at Bundaberg, Darwin and 
Albany. Stations correspond to the maximum negative, nearest zero and maximum positive observed MaxDiff, 
respectively, selected from 64 high quality stations across Australia. Vertical and horizontal dashed lines correspond 
to unconditional median and probability of exceeding unconditional median, respectively.
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Figure 3. Example of inferential quality assessment: 
spatial patterns of Kruskal-Wallis nominal 
significance levels (p-values), used to quantify 
evidences of SOI classes influence on JJA rainfall 
medians. Data from 64 stations across Australia.

Quantifying ENSO signal across the Southeast 
of South America

Stations corresponding to minimum (maximum 
negative), minimum absolute (values closest to 
zero), and maximum (maximum positive) 
MaxDifMed, São Luiz (Brazil), Frias (Argentina) 
and Bella Union (Uruguay), respectively, were 
selected for detailed analysis (Table 6).

As expected for the ENSO FS, positive 
differences were observed for El Nino and 
negative differences at La Nina classes. In 
contrast to Australia (Figurei-A1 and Figurei-A2), 
where seasonally dry stations are frequent, spatial 
patterns of MaxRelDiff and MaxRelAbsDiff over 
the region followed similar patterns (Figure 4). 
Figure 5 shows OND rainfall POEs corresponding 
to each ENSO class at three selected locations.

As an example of an inferential approach for 
analogue-based FS quality assessment, we used 
the Kruskal-Wallis test (KW) for quantifying 
evidences of ENSO class effects on OND 
medians. KW p-values were mapped (60 stations) 
for displaying spatial patterns of ENSO signal for

the selected period over Southeast of South 
America (Figure 6).

A

ENSO - OND MaxAbsDiff

Longitude (°) 

B

ENSO - OND MaxRelAbsDiff

Longitude (°)

Figure 4. Spatial patterns of ENSO class 
influences on OND rainfall medians over 
Southeast of South America, as measured by (A) 
MaxAbsDiff and (B) MaxRelAbsDiff. (n=60 
stations; point size and color intensity 
proportional to data values)
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Figure 5. Probability of exceeding functions representing OND 
(Brazil), Frias (Argentina) and Bella Union (Uruguay).

200 400 600 
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Nina —  Neutral
rainfall series for each ENSO class at Sao Luiz

Table 6. OND rainfall medians at each ENSO class and respective maximum absolute difference between
conditional and unconditional medians (MaxAbsDiff), at three selected locations.________________________
Location MedianAII Class Median MaxAbsDiff

(mm) (mm) (mm)
El Ninõ Neutral La Nina value signal*

São Luiz (n=86) 456 524 474 324 132 -

Frias (n=86) 93 93 91 94 2 -

Bella Union (n=71) 325 498 355 272 173 +

*Values in red correspond to classes at which the maximum differences were observed.
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Figure 6. Kruskal-Wallis p-values applied to 
quantify evidences of the ENSO class influence on 
OND rainfall medians from 60 stations over 
Southeast of South America (point size and color 
intensity are inversely proportional to KW p- 
values, ranging from 0 to 1).

KW p-values indicated high ENSO signal for the 
region and for the 3-monthly period analysed 
(OND). P-values exceeded 0.10 in only three 
cases: Santiago del Estero (p=0.12,; MaxDiff=- 43 
mm), Rio Cuarto (p=0.13; MaxDiff=-88mm) and 
Frias (p=0.97; MaxDiff=-2 mm).

Concluding remarks

Descriptive assessments quantify the magnitude 
of class effects while inferential approaches 
quantify the probability of observed changes in 
measure of interest (median, probability of 
exceeding median, probability of exceeding a 
critical threshold) arising by chance. Proper 
scenario planning requires both -  inferential 
approaches to quantify the likelihood of spurious 
‘signals’ arising by chance (eg. artificial skill) as 
well as thorough, quantitative assessments of 
signal strength for decision making.

High relative divergences between conditional and 
unconditional descriptive measures (MaxRelDiff or 
MaxRelVDist) are frequently observed for dry 
areas, even when evidences of class effects are 
negligible. Therefore, careful analyses of both 
relative and absolute measures, in conjunction 
outcomes from appropriate distribution-free tests 
are required in order to assess forecast quality 
and use such forecasts for decision making.
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