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Introduction

Probabilistic climate information, including 
climate forecasts, often rely on time series data 
of prognostic variables (Y, eg. rainfall or yield), 
represented as cumulative distribution 
probabilities functions (CDFs) or their 
complement, probability of exceeding functions 
(POEs). Useful information for decision-making 
is then derived from such distributions and 
expressed as Y percentiles or the probability of 
Y exceeding a certain threshold c (Pr[Y> c]). 
Such estimates are frequently reported without 
any measure of uncertainty. The degree of 
uncertainty associated with such estimates 
depends on the length of the time series and 
their internal variability. Lack of uncertainty 
assessments can lead to misguided beliefs 
about the true performance of the forecast 
systems, possibly resulting in inappropriate 
actions by the decision maker (Potts et al. 1996; 
Jolliffe 2004; Maia et al. 2006).

However, even when uncertainty estimates are 
provided, these are often based on methods that 
rely on assumptions of data being normally 
distributed. This is in spite of the well-known fact 
that distributions of important climate variables, 
such as rainfall, are notoriously skewed, 
particularly in areas with strong seasonality (eg. 
high frequencies of ‘zero’ rainfall amounts). As 
an alternative for Normal-based procedures, we 
therefore propose the use of distribution free 
methods for constructing percentile and POE 
confidence limits as described in Hahn and 
Meeker (1991) and implemented into “The 
Capability Procedure” of the SAS® System. 
Such distribution-free tools are particularly useful 
for spatial uncertainty assessments that would 
otherwise require a tedious, location-by-location 
checking of assumptions regarding underlying 
probability distributions (Maia et al., 2006).

Data & Methods

To demonstrate the application of distribution- 
free methods we quantified uncertainties of 3- 
monthly rainfall percentile and POE estimates 
from historical climate records at selected case 
study sites (64 stations from Australia and 60 
stations from South America, from which we 
selected 4 and 2 stations for an in-depth 
analysis). The aim of this study was to 
demonstrate the utility of distribution-free 
methods across a wide range of location- 
dependent distributional properties (eg. different 
means and medians as well as various degrees 
of internal variability). The case studies were 
specifically chosen to represent these 
differences.

Here we only assessed uncertainties of 
‘unconditional climatologies’, ie. uncertainties 
associated with POEs derived from all available, 
historical rainfall records at given locations, 
regardless of climatological conditions such as 
ENSO. For statistical, ENSO-based forecasts, 
such unconditional climatologies can be 
partitioned further into conditional climatologies 
based on either SOI or ENSO classes. Such 
‘analogue’ distributions serve as probabilistic 
forecasts that demonstrate past ENSO impacts 
when similar conditions to the current situation 
prevailed. This is a convenient and robust way to 
generate a forecast distribution (Stone, 1996; 
Podesta et al., 2002). An extension of the 
methods proposed here will eventually include 
the ability to provide uncertainty assessments for 
POEs arising from a number of classes.For each 
location we deliberately selected 3-monthly 
rainfall periods when the class effect was either 
low or non-existent. These selections were 
based on p-values > 0.2 when applying the 
multisamle Kruskal-Wallis test (KW).

Here, we discuss the rationale, advantages and We used descriptive statistics (sample size,
limitations of both, parametric and non- median, variance and standard error) to
parametric approaches. We illustrate the use of characterise and rank rainfall distributions. This
distribution-free methods by assessing the provided an objective basis to explore
uncertainty of percentiles and POEs estimates relationships between location and dispersion
for 3-monthly rainfall series from selected parameters, 
locations in Australia and the Southeast of South 
America.
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Here we present case studies for a) two stations 
in South America with different sample sizes 
(time series length) and similar rainfall 
variances, and b) four stations in Australia with 
identical sample sizes but vastly different 
variances. For all case studies we calculated 
confidence limits for unconditional POEs and 
respective 5, 50 and 95th percentiles based on 
distribution-free methods (see later).

In order to provide empirical evidence about the 
postulated violation of normality assumptions, 
we evaluated Normal goodness-of-fit (GOF) 
assessment using three GOF tests 
(Kolmogorov-Smirnov, Anderson- Darling and 
Cramer-von-Mises tests; Stephens, 1974).

Normal-based as well as distribution-free 
methods used for calculating two-sided 
confidence limits (CLs) for percentiles of the Y 
distribution are described in Hahn and Meeker, 
1991. Both methods are available in T he  
Capability Procedure” (PROC CAPABILITY) of 
the Statistical Analysis System (SAS11 version 7 
and latter releases).

Distribution-free CLs are based on order 
statistics while Normal-based CLs are derived 
from the sample standard deviation (s) and a 
factor (t) related to the non-central t-distribution 
(SAS 2004; Hahn and Meeker 1991). Let 
Y(ih Y(2), Y(j}... ,Y(n) be the time series of the 
prognostic variable Y, rearranged in increasing 
order of magnitude. is referred to as the j-th 
order statistic. The lower (Yffl ) and upper limits 
(Y(u)) of the distribution-free confidence interval 
for the 100.p-th percentile are chosen so that Y(i) 
and Y(U) are as close as possible to? Y([n+i].P), 
while satisfying the coverage probability 
requirement (y=100(1-a)). In some cases is 
necessary to relax the symmetry requirement in 
order to get a pre-specified minimum coverage 
probability {]).

Calculation of CLs for percentiles is requested 
by the options CIPCTLNORMAL (Normal-based 
CLs) and CIPCTLDF (distribution-free CLs) of 
the PROC CAPABILITY (SAS® 2004). Using 
estimates of lower (LCL) and upper (UCL) 
confidence limits we calculated range (UCL- 
LCL) and relative range (range expressed as 
percent of the respective point estimates) of 
percentile confidence intervals (Cl). Influence of 
variance and sample size on ranges of 
percentile CIs were illustrated using data from 
selected stations.

Confidence limits for the probability of exceeding 
a particular threshold c (Pr[Y>c]) are based on 
Binomial distributions with parameters n and pc, 
where n is the series length and pc= Prp/>c]. 
CLs for the Binomial parameter Pr[Y>c]) can be

calculated using either Normal approximations 
or distribution free methods, which rely on 
iterative processes. Calculation of confidence 
limits for Prp/>c] are requested by the option 
CIPROBEX of the PROC CAPABILITY (SAS 
2004).

Results & Discussion 

Exploratory analysis

Periods selected were March-May (MAM) for 
Australia (KW p-value>0.20 for 75% of stations) 
and January-March (JFM) for South America 
(KW p-value>0.20 for 70% of stations). Rainfall 
time series from Australia had all the same 
length (n=103 years) while in South America 
series length ranged form 57 to 87 years. 
Graphical analysis of rainfall data for those 
selected periods showed that variance tends to 
increase with median (Figure 1). That tendency 
helps to explain patterns of observed CL relative 
ranges for percentiles (Table 2, Figure 2).

MAM rainfall - Australia

Median (mm)

JFM rainfall - Southeast of South America

250 350 450 

Median (mm)

550

Figure 1. Relationship between 3-monthly 
rainfall median and respective standard 
deviation in Australia (64 stations) and the 
Southeast of South America (60 stations).

Normal goodness-of-fit assessments indicated 
that normality assumptions for most case study
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sites were inappropriate. P-values for all GOF 
tests applied did not exceeded 0.01 for Australia 
and 0.10 for South America, constituting high 
evidence against normality assumption. Those 
results indicate the need for distribution-free 
approaches as proposed in this paper.

Stations from Australia (n=103) were selected 
for different MAM rainfall variances in order to 
show influence of the data dispersion on 
estimates uncertainties: minimum variance 
(Nihill), intermediate variances (Walgett and 
Bundaberg) and maximum variance (Cairns). 
For evaluating influence of sample size on CL 
ranges, we used data from stations in South 
America with similar variances but different 
series length: Castro (n=57) and Concordia 
(n=87) (Table2).

Distribution-free confidence limits for rainfall 
percentiles and POEs

Distribution-free percentile estimates and 
respective confidence limits for the selected 
locations (stations) and periods are shown in 
Table 2. Notice that Normal based CLs use a 
factor (f) related to the non-central t distribution 
that requires normality assumption while 
distribution-free CLs, based on order statistics 
do not require assumptions about the distribution 
family (e.g. Normal, Lognomal, Gamma). 
Therefore, distribution-free tool are particularly

useful for spatial uncertainty assessments using 
data from a dense net of stations.

As expected, for stations with same record 
length, Cl absolute ranges increased with 
variance (selected stations from Australia, 
Figure 2a). For stations with similar variance, Cl 
range decreased with sample size (Castro and 
Concordia, Brazil, Figure 2b). As large absolute 
Cl ranges for medians are frequently associated 
with high variances/high medians, when Cl 
absolute ranges are expressed as percent of 
respective median estimates, relative ranges 
tend to become similar, even amongst locations 
with different data dispersion (Table 2, Figure 2).

Graphical displays of POEs and respective CLs 
are a simple and useful way for summarizing 
information uncertainties arising from 
probabilistic forecasts (Figure 3 and 4).

Vertical and horizontal lines can be used to 
highlight CL ranges at some specified percentile. 
Segments defined by interception between 
horizontal lines placed at a specific POE level 
(e.g. 0.50), the POE and respective confidence 
bands corresponds to the POE CL. Similarly, a 
vertical line placed at the correspondent 
percentile (e.g. POE=0.50 => percentile=median) 
defines the respective percentile CL.

Table 2. Distribution-free 3-monthly rainfall percentile estimates and respective confidence limits (CLs)

Station Period N STD
(mm)

Percentile
(%)

Estimate
(mm)

Lower CL 
(LCL,mm)

Upper CL 
(UCL,mm)

Cl
range3
(mm)

Relative
Rangeb

(%)

Nhill
(Australia)

5 34 26 40 14 41.18
MAM 103 41 50 85 74 90 16 18.82

95 161 146 252 106 65.84

Walgett
(Australia) MAM 103 76

5
50

11
100

0
77

21
116

21
39

190.91
39.00

95 264 221 328 107 40.53
Bundaberg 5 88 53 96 43 48.86
(Australia) MAM 103 163 50 244 211 312 101 41.39

95 595 470 907 437 73.44

Cairns
(Australia)

5 325 201 378 177 54.46
MAM 103 371 50 689 631 828 197 28.59

95 1377 1277 2281 1004 72.91

Castro
(Brazil)

5 274 177 354 177 64.60
JFM 57 154 50 512 437 553 116 22.65

95 733 700 949 249 33.97

Concordia JFM 87 160
5 117 64 214 150 128.20

(Brazil) 50 374 316 400 84 22.46
95 680 607 903 296 43.53

CL range = UCL-LCL;'
5 CL relative range= (UCL-LCL)/Percentile Estimate
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□ Nhill □ Walgett □ Bundaberg m Cairns □ Castro (n= 57) □ Concórdia (n=87)

Figure 2. Influence of rainfall variability and series length (n) on the ranges of confidence intervals 
for median: (A) selected stations from Australia ranked accordingly MAM rainfall standard deviation 
(mm) and (B) stations with maximum and minimum series length in the Southeast of South America 
(JFM rainfall).

Nihill Walgett Bundaberg

MAM rainfall imrm

Figure 3. MAM rainfall probability of exceeding functions and respective 95% distribution-free 
confidence limits at four stations over Australia. Stations were selected accordingly to magnitude of MAM 
rainfall variances: minimum variance (Nihill), intermediate variances (Walgett and Bundaberg)) and 
maximum variance (Cairns). Horizontal and vertical dashed lines correspond to median and probability 
of exceeding the median respectively.

cro
? 150 
E
O 100H—
S 50

200

1250
I

IG00
—I— 
1950

—T 
2300

Relative (%)

200

■g 150 
E

100

Cairns

Absolute (mm) Absolute (mm) Relative (%)

572



Proceedings of 8 ICSHMO, Foz do Iguaçu, Brazil, April 24-28, 2006, INPE, p. 569-573.

Concordia (n=87) Ca$tro(n=57)

JFM lainfall (mm) JFM rainfall (mm)

Figure 4. JFM rainfall probability of exceeding functions and respective 95% distribution-free confidence 
limits at Castro (n=57) and Curitiba (n=87), Brazil. Rainfall series from those stations have similar 
variances, but different lengths. Horizontal and vertical dashed lines correspond to median and 
probability of exceeding media respectively.

Concluding remarks

Parametric methods based on non-Normal 
distributions (e.g. Gamma, Tweedie) are also 
available for assessing uncertainties associated 
with CDF estimation. However, such methods 
become time-consuming for spatial uncertainty 
assessments which would require location-by- 
location checking of parametric assumptions, 
indicating a role for distribution-free approaches.

However, distribution-free methods for 
assessing uncertainties of percentiles and POE 
estimates are not widely used in climate science, 
although such procedures are readily available 
via statistical software packages (e.g. The 
Capability Procedure of SAS System),. 
Divulgation on such tools and their subsequent 
adoption by the science community are key 
issues that need to be addressed so that 
uncertainty assessments will become routine 
steps in the process of probabilistic climate 
analysis.

Confidence intervals express the level of 
knowledge (or ignorance) about forecasts arising 
from probabilistic systems. Meinke et al. (2006) 
stressed the importance of quantifying 
uncertainties for decisions makers so that the 
best possible decisions can be made in the face 
of inevitable uncertainty. This is particularly 
important when only short climate time series 
are available.
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