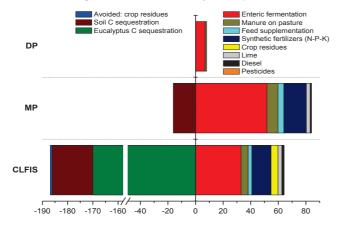


Greenhouse gas mitigation and offset options for beef cattle production under contrasting pasture management systems in Brazil

Eduardo Barretto DE FIGUEIREDO¹, Susantha JAYASUNDARA², <u>Carlos Cesar RONQUIM³*</u>, Ricardo de Oliveira BORDONAL¹, Telma Teresinha BERCHIELLI¹, Ricardo Andrade REIS¹, Claudia WAGNER-RIDDLE², Newton LA SCALA JR¹

¹FCAV/UNESP, São Paulo State University, Jaboticabal, SP, Brazil, ²School of Environmental Sciences, University of Guelph,, Ontario, Canada, ³Embrapa Monitoramento por Satélite Campinas, SP, Brazil E-mail address of presenting author*: carlos.ronquim@embrapa.br


Introduction This study estimates the GHG balance (emissions and sinks) related to the beef cattle production in three contrasting production scenarios on *Brachiaria* pasture in Brazil: 1) Degraded pasture (DP), 2) Managed pasture (MP), and 3) Crop–livestock–forest integration system (CLFIS). **Material and Methods**

The calculation of GHG balance was performed using the IPCC (2006) methodology combined with Brazil specific database of several scenarios of Brazilian pasture management systems, considering inputs and outputs from 1 hectare of land within the farm for each scenario over a 10-yr time span, taking into account only fattening phase of cattle.

Results and Conclusions

Figure 1 presents emissions (positive) and sinks (negative) distinguishing sources for each of the production scenarios. Carbon footprint of beef cattle estimated was 19.2 kg CO₂eq per kg LW (Live weight) in DP, followed by 14.7 kg CO₂eq per kg LW in CLFIS and 9.3 kg CO₂eq per kg LW in MP. Taking into account the technical potential for C sequestration to offset related emissions in MP (soil C) and CLFIS (soil and *Eucalyptus* C), C footprint from beef cattle could be reduced to 7.5 and -28.1 kg CO₂eq per kg LW respectively.

Fig. 1. GHG emission per source (right bars) and potential for C sink (left bars) (Mg CO₂eq ha⁻¹) accumulated over the 10-year period for each pasture management system: Degraded Pasture (DP), Managed Pasture (MP) and Crop-Livestock-Forest-Integration system (CLFIS) in Brazil.

Acknowledgements

We are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support.

Practical quantification of greenhouse gas emissions and removals across ICLF systems

Carlos Cesar Ronquim

Greenhouse gas mitigation and offset options for beef cattle production under contrasting pasture management systems in Brazil

http://www.eventweb. com.br/specific-files/ manuscripts/wcclf2015/36788_1432583536. pdf

GO TO

■ KEYNOTE SPEAKERS

■ ORAL PRESENTATIONS

■ POSTERS

