

RESPOSTA DO FEIJÃO-VULGAR À ADUBAÇÃO COM FÓSFORO E POTÁSSIO EM LICHINGA, NIASSA, MOÇAMBIQUE, CAMPANHA 2013/2014

Maria da Conceição Santana Carvalho¹; Leonardo Cunha Melo¹; Gilvan Barbosa Ferreira²; José Eloir Denardin³; Celso Américo Pedro Mutadiua⁴; Henoque Ribeiro da Silva⁵; Cesar Heraclides Behling Miranda⁵; Simone Palma Favaro⁵; Pedro Moreira da Silva Filho⁶; Norman Neumaier⁶; Ivan Cruz⁷; Maurisrael de Moura Rocha⁸; Raul Porfirio de Almeida²; Valério Mussa⁹; Guilherme Damba⁹; John B. Kaunda⁹

¹Embrapa Arroz e Feijão, maria.carvalho@embrapa.br; ²Embrapa Algodão; ³Embrapa Trigo; ⁴MRE-ABC; ⁵Embrapa SRI; ⁶Embrapa Soja; ⁷Embrapa Milho e Sorgo; ⁸Embrapa Meio Norte; ⁹IIAM-CZINw.

Introdução

O feijão-vulgar (*Phaseolus vulgaris* L.) é uma das leguminosas mais importantes para o consumo humano devido ao seu alto valor nutritivo e teor de proteínas (Shinano et al., 1993; Fageria, 2002), sendo relevante para a segurança alimentar. Trata-se de uma planta exigente em nutrientes e, assim, a baixa fertilidade natural do solo é um dos principais fatores que podem limitar a produtividade dessa cultura em regiões tropicais.

As plantas de feijão-vulgar quando cultivadas em solos com baixa disponibilidade de P perdem o vigor, apresentam desenvolvimento lento, redução da quantidade de vagens e grãos pequenos; nessas condições, com a aplicação de fósforo por meio da adubação ocorre aumento do número de vagens e da massa de grãos e, consequentemente, da produtividade de grãos (Fageria et al., 2004). Embora seja absorvido em menor quantidade pelas plantas, em comparação com o nitrogênio e o potássio, o fósforo é um dos nutrientes que mais provocam respostas positivas das culturas nas adubações devido às diversas reações de adsorção e precipitação no solo que reduzem a sua disponibilidade para as plantas. O potássio (K) é o segundo nutriente mais absorvido e exportado pelo feijoeiro depois do nitrogênio. Nas

condições do Cerrado do Brasil, o feijoeiro necessita acumular cerca de 27 kg de K para produzir 1.000 kg de grãos (Fageria et al., 2007).

Um trabalho de pesquisa conduzido recentemente nas condições de Cerrado brasileiro, em três safras, demonstrou que a exportação P₂O₅ e K₂O nos grãos foi 9 e 14 kg t⁻¹ de grãos, respectivamente, de modo que a quantidade exportada aumenta linearmente com o aumento da produtividade (Carvalho et al., 2013). Portanto, é necessário repor as quantidades exportadas desses nutrientes para evitar empobrecimento gradual do solo e consequente redução dos níveis de produtividade ao longo do tempo.

Nesse trabalho são apresentados os resultados de um estudo conduzido na safra 2013/2014 para avaliar a resposta do feijoeiro-vulgar à adubação com doses crescentes de fósforo e de potássio nas condições ambientais de Lichinga, Niassa, Moçambique. O objetivo final do trabalho foi produzir informações que possam ser utilizadas para gerar recomendações de adubação visando aumentar a produtividade do feijão-comum em sistemas intensivos de cultivo na região.

Material e Métodos

O experimento foi conduzido no Centro Zonal de Investigação (CZINw) do Instituto de Investigação Agrária de Moçambique (IIAM), em Lichinga, província de Niassa, na campanha agrícola de 2013/2014. Na Tabela 1 são apresentados os resultados de alguns atributos guímicos do solo argiloso da área.

O desenho experimental utilizado foi o de blocos ao acaso com quatro repetições em arranjo fatorial 5x4, formado por cinco doses de fósforo (0, 35, 70, 140 e 280 kg/ha de P_2O_5) combinadas com cinco doses de potássio (0, 50, 100 e 200 kg/ha de K_2O). Os fertilizantes utilizados foram superfosfato triplo e cloreto de potássio. As parcelas foram constituídas por cinco linhas de 6 m e espaçamento entre linhas de 0,50 m, totalizando $15m^2$. Consideraram-se como área útil, para fins de avaliações na parcela, as três linhas centrais, descartando-se 1,5 m de cada extremidade.

A semeadura foi realizada manualmente em 15/01/2013, utilizando-se sementes da cultivar brasileira BRS Pontal e densidade de nove sementes por metro linear. Realizou-se uma adubação de cobertura com 90 kg/ha de N na forma de ureia, em 23/02/2014, quando as plantas encontravam-se no estádio V₄ (três folhas trifoliadas totalmente expandidas). As datas de floração e colheita foram 12/03/2014 e 09/05/2014, respectivamente. As parcelas foram mantidas no limpo por meio de capinas manuais. Foram observados sintomas das doenças antracnose e mancha angular e de alguns insetos-pragas, porém com baixa infestação.

As avaliações realizadas foram estande final de plantas, número de vagens por planta, número de grãos por vagem, massa de 100 grãos e produtividade de grãos. Os dados foram analisados estatisticamente por meio de análise de variância (Teste F, P<0,05), análise de regressão e análise de superfície de resposta, utilizando-se o software SAS 9.2.

Resultados e Discussão

Os resultados indicaram que houve efeito positivo da adubação com fósforo e potássio na produtividade de grãos de feijão, com maior magnitude para o fósforo (Tabela 2). Essa resposta positiva à adubação, mesmo com os teores altos desses nutrientes no solo (Tabela 1), ocorreu porque as produtividades alcançadas foram relativamente altas, inclusive nos tratamentos sem adubação com P e K (Tabela 2). A produtividade média obtida no experimento, considerando todos os tratamentos, foi de 2.499 kg/ha, que é superior à produtividade média do Brasil em áreas de sequeiro, que variou de 900 a 1.400 kg/ha (Silva & Wander, 2013) no período de 2006 a 2011.

Pode-se observar na Figura 1 que a variação da produtividade em resposta à adubação com P e com K foi ajustada ao modelo quadrático, atingindo o máximo valor nas doses de 166 kg/ha de P₂O₅ e 107 kg/ha de K₂O, respectivamente. Mesmo com teores considerados altos de P e K no solo, os teores de Ca e Mg estavam baixos e o teor de Al trocável estava alto, resultando em baixa saturação por bases na CTC do solo (Tabela 1), o que implica em condições desfavoráveis para o desenvolvimento do sistema radicular do feijoeiro e, consequentemente, menor absorção de nutrientes pelas plantas. Com isso, o efeito positivo da aplicação dos fertilizantes pode ser creditado ao aumento da disponibilidade desses nutrientes próximo às raízes.

O decréscimo de produtividade após o ponto máximo (Figura 1) foi resultado, provavelmente, da ocorrência de interações negativas do excesso de P e K, nas doses mais elevadas, com outros nutrientes na rizosfera. Já é fato conhecido que o excesso de fósforo, por exemplo, provoca diminuição na absorção de zinco. Já o excesso de K deve ter estreitado ainda mais as relações (Ca+Mg)/K, Ca/K e Mg/K, que já estavam muito baixas (5, 4 e 2, respectivamente), conforme pode-se calcular com os dados da Tabela 1. No Cerrado brasileiro, considerando-se que os teores absolutos desses cátions no solo não estejam baixos, admite-se que os valores adequados das relações entre eles: (Ca+Mg)/K= 20 a 30; Ca/K= 15 a 25; e Mg/K= 5 a 15 (Sousa & Lobato, 2002). Portanto, nas condições desse trabalho, além dos teores absolutos de Ca e Mg no solo estarem baixos (Tabela 1), as relações desses dois nutrientes com K também estão muito baixas. Isso implicou, provavelmente, em prejuízo na absorção de Ca e,

principalmente, de Mg pelas raízes nas doses mais altas de potássio aplicadas no solo.

A análise de variância dos dados indicou, também, que houve efeito negativo da aplicação de doses de potássio no estande final de plantas, causando pequena redução (Tabela 2). É possível que tenha ocorrido efeito salino do fertilizante cloreto de potássio nos estádios iniciais do desenvolvimento da planta, em condições de baixa umidade do solo, ocasionando a morte de algumas plantas. Por isso, em regiões onde é provável a ocorrência de veranicos no período de plantio é recomendável não aplicar o potássio no sulco de semeadura. Por se tratar de um nutriente relativamente móvel no solo, a aplicação de fontes solúveis de K pode ser feita na superfície do solo, antes do plantio ou em adubação de cobertura.

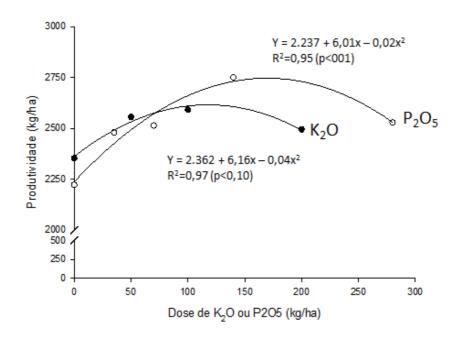
Observando-se o gráfico de superfície de resposta da Figura 1, verifica-se que houve efeito aditivo entre adubação potássica e fosfatada, ou seja, o efeito da adubação fosfatada foi aumentado pela adubação potássica, até um determinado limite. Esse resultado confirma a importância de fornecimento de nutrientes em proporções equilibradas, com base no conhecimento do potencial de suprimento pelo solo e da exigência nutricional das culturas no sistema de produção. Nesse sentido, é de fundamental importância a utilização das ferramentas disponíveis para o diagnóstico da fertilidade do solo e do estado nutricional das plantas como bases para a recomendação de adubação das culturas.

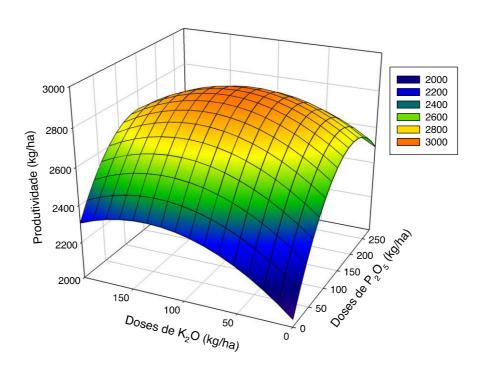
Conclusão

O feijão-vulgar apresentou excelente potencial produtivo nas condições edafoclimáticas de Lichinga e respondeu à adubação com fósforo e potássio mesmo com teores altos desses nutrientes no solo.

Bibliografia consultada

- CARVALHO, M. da C. S.; NASCENTE, A.S.; FAGERIA, N. K. Produtividade e balanço de NPK em feijão afetados por níveis de adubação e correção do solo. In: CONGRESSO NACIONAL DE PESQUISA DE FEIJÃO, 11., 2014, Londrina. Tecnologias para a sustentabilidade da cultura do feijão: anais. Londrina: IAPAR, 2014.
- FAGERIA, N. K., BALIGAR, V. C. AND ZOBEL, R. W. Yield, Nutrient Uptake, and Soil Chemical Properties as Influenced by Liming and Boron Application in Common Bean in a No-Tillage System. Communications in Soil Science and Plant Analysis, v.38, n.11, p.1637-1653, 2007.


- FAGERIA, N. K.; BARBOSA FILHO, M. P.; STONE, L. F. Nutrição de fósforo na produção de feijoeiro. In: YAMADA, T.; ABDALLA, S. R. S. (Ed.). Fósforo na agricultura Brasileira. Piracicaba: Associação Brasileira para Pesquisa da Potassa e Fosfato, 2004, p. 435-455.
- FAGERIA, N.K. Nutrient management for sustainable dry bean production in the tropics. Communication in Soil Science and Plant Analysis, New York, v. 33, p. 1537-1575, 2002.
- SHINANO, T.; OSAKI, M.; KOMATSU, K.; TADANO, T. Comparison of production efficiency of the harvesting organs among field crops. I. Growth efficiency of the harvesting organs. Soil Science Plant Nutrition v. 39, n. 2, p. 269-280, 1993.
- SILVA, O.F. da; WANDER, A.E. O feijão-comum no Brasil: passado, presente e futuro. Santo Antônio de Goiás: Embrapa Arroz e Feijão, 2013. 63p. (Documentos, 287)
- SOUSA, D. M. G.; LOBATO, E. (Ed.). **Cerrado**: correção do solo e adubação. Planaltina, DF: Embrapa Cerrados, 2002. 416 p.


Tabela 1. Resultados da análise de solo da área experimental de Lichinga, Niassa, Campanha 2013/2014.

Camada	рН	Р	K ⁺	Al ³⁺	Ca ²⁺	Mg ²⁺	H+AI	CTC	CTCe	SB	V	МО	Argila
	em água	mg/dm ³		mmol ₀ /dm ³						%	g/dm ³		
0-20cm	6,1	24	116	6.5	11,5	4,5	54,9	73,8	25,5	19,0	25,7	24	440
Interpretação	Moderada- mente ácido	Alto	Alto	Alto	Baixo	Baixo	Alto	Médio	Baixo	Baixo	Baixo	Médio	Argiloso

Tabela 2. Efeito de doses crescentes de P e K no estande final de plantas, número de vagens por planta (NVP), número de grãos por vagem (NGV), massa de 100 grãos (M100) e produtividade de grãos (PROD) de feijão-comum, cultivar BRS Pontal, em Lichinga, Niassa, Moçambique. Campanha 2013/2014.

Doses de P ₂ O ₅ ou K ₂ O	Estande	NGV	NGP	M100	PROD					
kg/ha	pl/m			g	kg/ha					
Doses de P ₂ O ₅										
0	5,0	12,7	5,6	25,3	2223					
35	5,0	13,1	6,1	25,1	2480					
70	4,8	13,6	6,3	25,2	2513					
140	5,1	12,8	5,7	25,4	2750					
280	4,5	13,5	6,3	25,6	2528					
Média	4,9	13,1	6,0	25,3	2499					
Doses de K ₂ O										
0	5,5	13,7	6,3	25,4	2353					
35	4,8	13,2	6,1	25,4	2556					
70	4,6	12,9	5,7	25,7	2592					
140	4,7	12,9	5,9	24,8	2495					
Média	4,90	13,2	6,0	25,3	2499					
Probabilidade do teste F										
Doses de P	0,270	0,55	0,36	0,91	0,003					
Doses de K	0,047	0,44	0,48	0,31	0,073					
PxK	0,263	0,64	0,75	0,77	0,115					
C.V. (%)	20,59	14,79	19,19	6,40	12,05					

Figura 1. Produtividade (kg/ha) de feijão-comum cultivar BRS Pontal em resposta à adubação com P e K, em Lichinga, Niassa, campanha 2013/2014. Produtividade máxima estimada= 2.854 kg/ha (Dose de P₂O₅=166 kg/ha; Dose de K₂O=107 kg/ha).

Foto 1. Vista geral do experimento de adubação do feijão-vulgar BRS Pontal em Lichinga, Niassa, Mocambique, na campanha 2013/2014.