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ABSTRACT 

This paper presents an algorithm for automatic classification of diseases that produce 

symptoms in soybean leaves. The algorithm is based on digital image processing techniques 

and on a modified pairwise voting system that yields, at its output, a list of diseases with the 

respective likelihoods of being present in that leaf. Only color information is used, which is 

done by transforming the original RGB format into the HSV, L*a*b* and CMYK color 

spaces, and then extracting the intensity histograms from the grayscale representations of each 

one of the ten resulting channels. The capabilities of the algorithm were stressed by 

considering nine different diseases, and the results revealed that most diseases can be 

distinguished, however in some cases the symptoms are so closely related that information 

other than visual may be necessary for a reliable estimation.   

KEYWORDS: disease classification, soybean leaves, digital image processing, color 

transformation 

 

RESUMO 

Este artigo apresenta um algoritmo para classificação automática de doenças que produzem 

sintomas em folhas de soja. O algoritmo é baseado em técnicas de processamento digital de 

imagens e em um sistema de votação por pares que produz, em sua saída, uma lista de 

doenças com as respectivas probabilidades de estarem presentes naquela folha. Apenas 

informação de cor é usada, o que é feito transformando o formato RGB original nos espaços 

de cor HSV, L*a*b* e CMYK, e então extraindo os histogramas de intensidade das 

representações em escala de cinza de cada um dos dez canais resultantes. As capacidades do 

algoritmo foram testadas a fundo pela inclusão de nove doenças diferentes, e os resultados 

revelaram que a maior parte das doenças pode ser distinguida, porém em alguns casos os 
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sintomas são tão similares que informações além das visuais podem ser necessárias para uma 

estimativa confiável. 

PALAVRAS-CHAVE: classificação de doenças, folhas de soja, processamento digital de 

imagens, transformação de cor. 

 

 

INTRODUCTION 

The detection of diseases in plants has been traditionally carried out by visual detection of 

symptoms in the field. The identification (classification) of those diseases is also usually 

manual, either by analyzing the characteristics of the symptoms, or by performing some 

laboratorial analysis. Despite the steady growth of automation in agriculture, phytopathology 

processes remain largely unchanged. Although some activities will always depend on 

agricultural engineers and phytopathologists to be carried out properly, many losses could be 

prevented and much faster responses could be achieved if reliable computer-aided detection 

and classification of diseases was available. 

 Many automatic methods for detecting and identifying diseases were proposed so far in 

the literature (BARBEDO, 2013), however most of them are very limited in their scope, being 

able to discriminate only a few diseases, such as those proposed by Pydipati, Burks and Lee 

(2006), Sanyal and Patel (2008) and Phadikar, Sil and Das (2013). In practice, however, the 

number of diseases and other problems, such as nutritional deficiencies and pests, is much 

higher, and there may be a lot of confusion regarding the visual cues provided by the 

symptoms. This fact motivated the development of a strategy that was specifically designed to 

deal with a large number of diseases and other disorders (BARBEDO AND COSTA, 2015). 

This computer-aided disease identification method was based on a pairwise classification, 

combined with a modified voting system that outputs a lists of diseases with the respective 

probability, and it was developed and validated using maize leaf images. 

The research presented in this paper took the ideas presented in Barbedo and Costa 

(2015) and repurposed them for the classification of nine different soybean diseases, always 

having digital images of symptomatic leaves as the sole source of information. The original 

algorithm was improved by fully automating the segmentation of the symptoms, which was 

originally done manually. The results confirmed that the method can be applied to plant 

species other than maize, and that the automation of the segmentation process did not have 

adverse effects over the method's performance. Additionally, the proposed method is easy to 

implement, and its modularity makes it straightforward to include more diseases and to retrain 



certain parts of the algorithm without the need to go through the complete training process 

again. 

 

MATERIAL AND METHODS 

 

Image Dataset  

The dataset used in this work was composed by 372 images of soybean leaves containing 

symptoms of 9 different diseases. Approximately 70% of the images were used for training 

and tuning the algorithm, and the remainder ones were used in the tests, as shown in Table 1. 
 

Table 1 - Image dataset composition.  

Disease Training Tests Total 
Bacterial Blight 38 18 56 
Rust 45 20 65 
Phytotoxicity 16 7 23 
Stem Canker 15 7 22 
Corynespora Leaf Spot 43 19 62 
Myrothecium Leaf Blight 1 1 2 
Downy Mildew 31 15 46 
Powdery Mildew 52 24 76 
Septoria Brown Spot 14 6 20 
All 255 117 372 
  

 

Most images were captured under controlled conditions, however about 10% of them (35) 

were captured in the field, under different lighting conditions, in order to test the algorithm 

with situations that were not contemplated in the training. 

 

The Algorithm  

As commented before, the algorithm used in this work is roughly the same as the one used in 

Barbedo and Costa (2015) for maize leaves, with the only difference being found in the 

second box of Figure 1: here, the symptom segmentation is performed automatically, while in 

the original algorithm this step was manual. 

Basic Processing 

The first step of the algorithm is the segmentation of the symptoms. It was determined 

empirically that the best color channel for this purpose is H, from the HSV (Hue, Saturation, 

Value) color space. The grayscale representation of this channel is taken, and the pixel values 

are rescaled so the value of the darkest pixel is zero, and the value of the brightest pixel is 

one. Then, a threshold is applied so that only those pixels with values smaller than 0.31 in this 



channel are kept in the original RGB (Red, Green, Blue) image. This value was chosen 

because, considering the image database used in this work, all symptoms were always 

considered in their entirety. The disadvantage of using such a fixed threshold is that parts of 

the healthy tissue will also be considered in most cases. This has a limited impact on the 

algorithm performance though, because the histogram-based procedure described later in this 

section is capable of at least partially compensating for this problem. 

 
Fig. 1 - Basic structure of the algorithm. 

 

Source: Barbedo and Costa (2015) 

 

After the unsuitable pixels are blackled out, the original image is transformed from the 

original RGB format to the HSV, L*a*b* (Lighness and color opponent components) and 

CMYK (Cyan, Magenta, Yellow and Key). 

 



Training 

The training stage was ran only once, and is only necessary if the algorithm is to be 

updated with new images and/or new diseases. The first step of the training was the 

calculation of the reference histograms. This was done by taking each image of each disease 

in the training set and determining one 100-bin intensity histogram for the each color channel. 

Thus, for each image in the training set, ten histograms were generated. After that, all images 

corresponding to the same disease were combined by summing the respective histograms, 

thus generating ten reference histograms (one for each color channel) for each disease. 

One way to deal with classification problems whose classes may not be well defined, 

as is the case here, is to divide the problem containing c classes into c(c-1)/2 two-class 

problems, an approach known as pairwise classification (Park and Fürnkranz, 2007). Here, 

since nine diseases were considered, there were 36 pairs of diseases. At this point, the color 

channels whose reference histograms correlated the least for each pair of diseases were taken 

as the ones with the best discriminative capabilities for those pairs. Therefore, each pair of 

diseases have two histograms associated, which are the histograms of the selected color 

channel that correspond to the two diseases in that pair. 

Finally, the consistency values were calculated. For that, the cross-correlations 

between each selected reference histogram and the histograms of all corresponding images in 

the training set were calculated and averaged. The closer the resulting value was to one, the 

more consistent was the color channel for that disease, and hence the stronger the results 

based on it. Since there were 36 pairs of diseases, and the calculations were performed for 

both diseases in each pair, 72 consistency values were stored. 

Core 

After an image goes through the basic part of the algorithm, the intensity histograms 

for all ten resulting channels are calculated. In the following, the cross-correlations Xc,d 

between those intensity histograms and the reference ones are calculated, where c is the color 

channel and d is the disease. 

In the next step, each pair of diseases is analyzed as an independent problem. For each 

pair, the two corresponding cross-correlations Xc,d are selected, where c is the selected color 

channel for that pair and d corresponds to the two diseases in that pair. The correlation 

differences are then calculated according to 

ௗభܦܥ = ܺభ,మ,ௗభ − ܺభ ,మ,ௗమ  (1) 

ௗమܦܥ = ܺభ,మ,ௗమ − ܺభ ,మ,ௗభ  (2) 



where d1 and d2 are the first and second disease in the pair, respectively, and cd1,d2 is the color 

channel corresponding to the (d1,d2) disease pair. The larger is the correlation difference CD 

for a given disease, the stronger is the indication that the symptoms are more closely related to 

such disease, and vice versa. CDd1 and CDd2 are then stored in the correlation difference 

vectors v1 and v2. The same procedure is repeated for all pairs of diseases, so the vector 

corresponding to each disease will have nine correlation difference values. 

The next step is the calculation of the likelihood that the symptoms were produced by 

each of the diseases, according to: 

ௗܮ =
 ൫௩,∙,൯సವ,ಯ  
   ൫,൯సವ,ಯ

, (3) 

where L is the likelihood, d indicates the current disease, D is the set of all diseases, and c are 

the consistency values calculated in the training part. The index (d,i) indicates that the value 

corresponds to the pair containing the current disease d and disease i, with ݅ ∈  Finally, all .ܦ

diseases are ranked from the highest to the lowest likelihood.  

 

RESULTS AND DISCUSSION 

Table 2 shows the percentage of times each disease appears in each position of the disease 

ranking returned by the algorithm. 

 
Table 2 - Percentage of times each disease appears in each position of the ranking. 

Correct Disease 
Position 

1 2 3 4 5 6 7 8 9 
Bacterial Blight 37.5 55.4 1.8 0.0 1.8 1.8 1.8 0.0 0.0 
Rust 74.6 3.4 0.0 0.0 3.4 11.9 6.8 0.0 0.0 
Phytotoxicity 73.9 21.7 4.3 0.0 0.0 0.0 0.0 0.0 0.0 
Stem Canker 9.1 22.7 27.3 22.7 13.6 4.5 0.0 0.0 0.0 
Corynespora Leaf Spot 19.4 41.9 21.0 9.7 4.8 3.2 0.0 0.0 0.0 
Myrothecium Leaf Blight 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Downy Mildew 91.3 8.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Powdery Mildew 61.8 25.0 1.3 0.0 0.0 0.0 0.0 3.9 7.9 
Septoria Brown Spot 20.0 5.0 20.0 20.0 25.0 10.0 0.0 0.0 0.0 
All 54.2 20.4 8.4 5.8 5.4 3.5 1.0 0.4 0.8 
 

Table 3 shows the resulting confusion matrix if an absolute approach was adopted and 

the first ranked disease was taken as the algorithm's final diagnosis. 

As it can be seen in Table 3, some diseases, like Myrothecium Leaf Blight and Downy 

Mildew, are almost always unequivocally correctly identified as the one that produced the 

corresponding symptoms. On the other hand, diseases like Stem Canker and Septoria Brown 

Spot are often confounded with other ones. There are three main reasons for those errors: 



Table 3 - Confusion matrix considering the first ranked disease as the algorithm's diagnosis. 

 Bacterial 
Blight Rust Phytoto- 

xicity 
Stem 

Canker 
Coryn. 

Leaf Spot 
Myrot. leaf 

blight 
Downy 
Mildew 

Powdery 
Mildew 

Septoria 
brown spot 

Bacterial 
Blight 37.5 0.0 48.2 0.0 5.4 5.4 1.8 0.0 1.8 

Rust 8.1 71.0 0.0 3.2 8.1 0.0 0.0 0.0 9.7 

Phytoto- 
xicity 13.0 0.0 73.9 0.0 0.0 0.0 0.0 0.0 13.0 

Stem 
Canker 40.9 9.1 9.1 9.1 13.6 0.0 4.5 0.0 13.6 

Coryn. 
Leaf Spot 56.5 0.0 4.8 1.6 19.4 0.0 6.5 0.0 11.3 

Myrot. leaf 
blight 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 

Downy 
Mildew 0.0 0.0 0.0 0.0 0.0 0.0 91.3 8.7 0.0 

Powdery 
Mildew 10.5 0.0 1.3 0.0 0.0 0.0 26.3 61.8 0.0 

Septoria 
brown spot 30.0 5.0 10.0 0.0 10.0 0.0 25.0 0.0 20.0 

 
 

1) Similarity of symptoms between diseases: some diseases produce visually similar 

symptoms. This is the case of the example shown in Figure 2 (bacterial blight versus 

Corynespora leaf spot), in which the differences are so subtle that even experienced 

technicians may have problems identifying the diseases correctly. In cases like this, it may be 

necessary to either couple the digital image processing-based algorithm with some other tool, 

such as an Expert System (JACKSON, 1999), or resort to external results, such as laboratorial 

analysis, in order to resolve the ambiguity. 

2) Diseases with significant symptom variations: sometimes a disease may produce 

quite different symptoms depending on the stage of its life cycle, position on the leaf, and 

interaction with a variety environmental variables. Figure 3 shows an example of symptom 

variation for the bacterial blight disease. A way to deal with this problem is to identify all 

possible variations and populate the database with a large number of samples for all those 

variations. This is a very difficult task, as it is highly dependent on the existence of the right 

conditions, on the opportunity for the image capture being identified by an expert, and on the 

availability of personnel to capture the images under the right conditions. 

3) Conditions variations: the conditions under which the images were captured may 

have a strong influence on the results. Some color channels may partially compensate for 

illumination differences, however of those are too marked, the algorithm will have problems. 

Figure 4 shows an example of condition variations for two images showing symptoms of 

powdery mildew. 



Fig. 2 - Example of different diseases producing similar symptoms. 

 
Source: authors. 

 
Fig. 3 - Example of a disease (bacterial blight) producing very different symptoms. 

 
Source: authors. 

 

Other factors, like specular light and shadows cast over the leaves may also cause the 

algorithm to misestimate the likelihoods for the diseases. 

These results are a strong indication that, although digital image processing-based 

methods can be very useful to aid in the diagnosis of diseases, when more complex scenarios 

(such as considering several diseases) are tackled, the use of other sources of information may 



be unavoidable if unambiguous answers are expected. This also explains why all methods 

proposed in the literature so far only were successful when they tackled just a few diseases 

with highly dissimilar characteristics. Because there are no methods in the literature designed 

to identify a large number of diseases, no tests comparing different algorithms is presented 

here. As a final remark, it seems unlikely that computer-based systems will ever be able to 

completely replace plant pathologists and other specialists in plant sciences, even if the best 

tools from different disciplines are combined into a single powerful system. This is so because 

there are so many particularities and variables that interfere with the diagnosis process, that is 

impractical, at least in the near future, to fully take into consideration all those variations, in 

which case the creativity and flexibility of human assessments are invaluable. On the other 

hand, computer aided systems may provide valuable information for a quick first response, 

may monitor vast areas that would be inaccessible otherwise, and may very useful for farmers 

that do not have access to agricultural engineers, which is still the case for many people 

around the world.   

 
Fig. 4 - Example of a images of symptoms of a same disease captured under different conditions. 

 
Source: authors. 

 

CONCLUSIONS 

This paper presented the application of a digital image processing-based algorithm for 

identification of diseases in soybean plants. The original algorithm was developed for maize, 

and uses images of leaves to calculate the likelihood that the symptoms that are visible in the 

surface of the leaves were produced by each of the diseases considered during the algorithm's 

development. The algorithm applied to soybean leaves was identical to the original, with the 

exception that here the symptom segmentation was performed automatically. The results have 

shown that some diseases are very successfully identified, while others may have 



characteristics that make an unambiguous identification very difficult if other kinds of 

information external to the algorithm are not included. The problem of plant disease diagnosis 

is of such a complexity that it is unlikely that unambiguous answers will ever be possible 

without human involvement. However, computer-aided tools may be very useful in many 

situations, and there is still much room for improvement. Future research will concentrate on 

five  fronts: a) improving the symptom segmentation by including an adaptive threshold; b) 

better exploring the differences between pairs of diseases; c) expanding the image database to 

include both more diseases and more samples of the diseases already considered; d) extending 

the algorithm to other plant species; e) coupling the proposed digital image-based algorithm 

with a expert system capable of resolving some of the ambiguities observed in the tests. The 

database and the latest implementation of the algorithm will be made available at 

https://www.agropediabrasilis.cnptia.embrapa.br/web/digipathos as soon as copyright and 

license issues are resolved.  
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