COMPÓSITO À BASE DE POLI(HIDROXIBUTIRATO) (PHB) REFORÇADO COM FIBRAS DE RAMI ESPÉCIE Bohemeria nivea

Nelson P. Marinho ^{1*}(D), Graciela I. B. de Muñiz ², Silvana Nisgoski ³, Umberto Klock ⁴, Alan S. de Andrade ⁵, Washington L. E. Magalhães ⁶

1 - Centro Universitário Autônomo do Brasil - UniBrasil, Curitiba -PR, nelsonmarinho@unibrasil.com.br 2,3,4,5 - Universidade Federal do Paraná – UFPR, Depto de Eng. e Tecnol. Florestais, Curitiba – PR. 6 - Embrapa Floresta - Colombo -PR

Resumo: Fibras de rami da espécie *Bohemeria nivea* foram usadas como elemento de reforço, nas proporções de 5%, 10% e 15%, para melhorar as propriedades mecânicas nos esforços de tração do poli(hidroxibutirato). Para obtenção das fibras foi utilizado o processo de polpação *organosolv* com uma taxa de lignina residual (kappa) de k=46,2. Nas diferentes etapas de branqueamento das fibras foram obtidos k=29,2 (1ª etapa com ClO₂); k=24,3 (2ª etapa com H₂O₂); k=19,0 (3ª etapa com ClO₂) e k=7,6 (4ª etapa com H₂O₂). Nos ensaios mecânicos de tração o Módulo de Elasticidade (MOE) apresentou baixos Coeficientes de Variação (CV) entre 12,45% e 17,35% e pouca dispersão no Desvio Padrão estando entre 50,41MPa e 65,93MPa para amostras de PHB/rami-15% e PHB/rami-5%, respectivamente. Na média o MOE ficou entre 404,86Mpa e 379,93MPa para PHB/rami-15%, e PHB/rami-5%, respectivamente. Com estes resultado é possível inferir que a adição de rami melhora as propriedades mecânicas do poli(hidroxibutirato).

Palavras-chave: Compósito, poli(hidróxiButirato), Rami, organosolv, MOE.

Composite produced from a poly(hydroxybutyrate) (PHB) strengthened with fiber rami species Bohemeria nivea

Abstract: Fiber of the ramie species *Boehmeria nivea* was used as a reinforcing element, in proportions of 5%, 10% and 15%, for improvement of mechanical properties in tensile stress in poly(hydroxybutyrate) (PHB). For obtaining the fibers was used organosolv pulping process with a residual lignin rate (kappa) moderate k=46.2. In different bleaching were obtained k = 29.2 (1st step with ClO₂); k = 24.3 (2nd stage with H₂O₂); k = 19.0 (3rd step with ClO₂) and k = 7.6 (H₂O₂ step 4st). In the tensile test the MOE showed low Coefficient of Variation (CV) between 12.45% and 17.35% and little dispersion in the standard deviation (SD) being among 50,41MPa and 65,93MPa for samples of PHB/ramie-15% and PHB/ramie-5% respectively. On average (A) MOE was between 404,86Mpa and 379,92MPa for PHB/ramie-15% and PHB/ramie-5% respectively. With these results it is possible to infer that the addition of ramie fiber improves the mechanical properties of poly(hydroxybutyrate).

Keywords: Composite, poly(hydroxybutyrate), Rami, Organosolv, MOE.

Introdução

O desenvolvimento de novos produtos a partir de processos não poluentes de fabricação utilizando matérias-primas renováveis e biodegradáveis gera novas possibilidades de aplicações. Atualmente é a demanda de vários setores industriais e de uma sociedade mais sustentável.

O poli(hidroxibutirato) (PHB) é um biopolímero bacteriano cuja produção começa pelo cultivo de bactérias da espécie *Alcaligenes eutrophus* em biorreatores, as quais são alimentadas por diversos tipos de açúcares extraídos da cana de açúcar, principalmente a sacarose [1-3]. Em seu metabolismo, estes micro-organismos ingerem a sacarose e as transformam em grânulos milimétricos intracelulares que funcionam como reserva de energia. Este material, após a sua purificação em solvente orgânico, transforma-se no plástico biodegradável (poliéster) [4,5].

Entretanto, ainda é pouco difundido nos meios industriais, pois além de ser mais onerosa a sua produção, suas propriedades, tais como a resistência à tração, necessitam de melhorias [6,7].

Uma possível alternativa para o aumento de sua resistência é a adição de materiais de reforço como as fibras naturais (materiais baratos, resistentes e acessíveis), pois são obtidos das plantas em geral, e podem ser incorporadas dentro de vários tipos de polímeros gerando compósitos estruturados.

Com formas hexagonais, as dimensões das fibras do rami são variadas, e podem estar entre 40 e 250 mm e a largura entre 16 a 126 μ m. Sua composição química apresenta um dos maiores teores de α -celulose e β -celulose, elevado percentual de celulose pura e celulose nativa I, isto lhe confere excepcionais propriedades de resistência superior a diversas fibras, principalmente aquelas obtidas de entrecasca, sendo assim indicado como elemento de reforço para materiais compósitos [8,9].

Neste contexto, esta pesquisa buscou extrair fibras de rami da espécie *Boehmeria nivea* pelo processo de polpação *organosolv*, procedimento considerado como de baixo impacto ambiental, e incorporá-las ao polímero poli(hidroxibutirato) (PHB) em diferentes percentuais (5%, 10% e 15%). O objetivo é melhorar suas propriedades mecânicas nos esforços de tração. O estudo compreendeu: preparação das fibras por meio da polpação *organosolv*; branqueamento em 4 etapas diferentes; estimativa da lignina residual (número Kappa) após cada fase; preparação dos compósitos; análise de suas propriedades mecânicas no módulo de elasticidade (MOE).

Experimental

Preparação das fibras de rami

A partir de fibras de rami industrializadas na forma de barbante, adquiridos no comércio local, foi produzida polpa celulósica por meio do processo o*rganosolv*. Primeiramente os barbantes foram fragmentados em partes menores medindo aproximadamente 2 e 4 cm. Deste material, amostras foram retiradas para extração da umidade por meio de balança de infravermelho, para cálculo do balanceamento dos componentes do licor de cozimento.

Processo Polpação Organosolv

Em digestor rotativo laboratorial de aço inoxidável (Regmed modelo AUE - 20) do tipo autoclave, dotado de aquecimento elétrico e sistemas de controle de temperaturas programável, foram colocados 100 gramas de fibras de rami, base peso seco, em uma cápsula fechada hermeticamente. A carga de NaOH correspondeu a 6% do material processado. O hidromódulo utilizado no processo foi 6:1, sendo a parcela de etanol correspondente à proporção 1:1 da quantidade total de água utilizada.

Neste processo a rampa de aquecimento foi de 50 minutos até atingir temperatura máxima de 160°C, que foi mantida durante 60 minutos. A polpa celulósica obtida foi lavada em solução alcoólica de baixa consistência (etanol/água) na relação de 1:1 e desagregada no desfibrador tipo Bauer (Regmed MD-3000) em baixa consistência. Em seguida foram centrifugadas e secas em temperatura ambiente.

O processo de branqueamento foi realizado em 4 etapas, conforme demonstrado na tabela1.

Tabela 1 - Parâmetros utilizados nas 4 etapas do processo de branqueamento na polpa de rami.

-	1 🗗	2.54	2 54	4.54 (*)
	1 Etapa	2 Etapa	3 Etapa	4 Etapa ^(*)
Parâmetros do	Dióxido de	Peróxido de	Dióxido de	Peróxido de
Branqueamento	Cloro	Hidrogênio	Cloro	Hidrogênio
	(ClO ₂)	(H_2O_2)	(ClO ₂)	(H_2O_2)
Quantidade (%)	2%(**)	0,5	2% (***)	0,3
Temperatura (°C)	90	90	90	90
Tempo (min)	60	60	60	60
Consistência (%)	10	10	10	10
NaOH (%)	-	1%	-	0,6
$MgSO_4(\%)$	-	-	-	0,3
Tampão (Buffer)	100 ml	-	10 ml	-
(ml)				

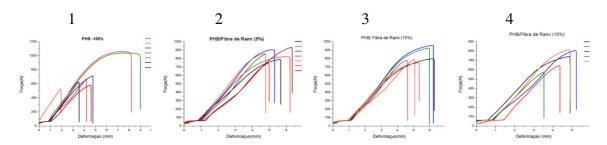
(*) Na última etapa foi adicionado Sulfato de Magnésio (MgSO₄) com a finalidade de reduzir o consumo de Peróxido de Hidrogênio (H₂O₂); (***) Equivalente a 100 ml; (****) Equivalente a 10 ml.

A cada etapa de branqueamento foi realizado a determinação do número Kappa(K), análise que indica o grau de deslignificação ou a quantidade de lignina residual na polpa. Esta estimativa é importante, pois além de determinar a quantidade de reagentes usados no branqueamento avalia a eficiência do processo de polpação. A análise foi realizada conforme normas e procedimentos da TAPPI T-236 om-99 [10].

Preparação do compósito

Para a preparação dos compósitos, inicialmente foi extraída a umidade das fibras por meio de balança de infravermelho. Em seguida, as fibras foram pesadas e misturadas ao PHB na proporção de 5%, 10% e 15%, base seca, totalizando o sistema uma massa de 100 gramas. Posteriormente foram acrescidos 400 ml de água para hidratação das fibras e a homogeneização dos componentes (fibra+) por meio de um liquidificador. Em seguida o compósito foi colocado em estufa com ventilação durante 36 horas e temperatura de 70°C. Por se tratar de material lignocelulósico, contêm em sua estrutura molecular grupos de hidroxilas, que no processo de perda de água, formam fortes ligações de hidrogênio e proporciona significativa rigidez. Deste modo, foi necessário um novo procedimento de fragmentação. O processo de preparação do compósito foi finalizado com a passagem do material por um homogeneizador laboratorial (mod. MH-6060) com rotação de 3500 rpm até atingir 70°C por aproximadamente 30 segundos.

A confecção dos corpos de prova foi realizada por meio de uma prensa térmica hidráulica de laboratório marca Marconi (mod. MA 098/AR15) e moldes metálicos de aço inox para tração conforme ASTM D 638M-10 [11]. Os parâmetros para prensagem foram: temperatura de 180°C; tempo prensagem de 6 minutos; temperatura de resfriamento 60°C.


Os ensaios mecânicos de tração foram realizados em uma máquina de ensaio universal eletromecânica e microprocessada, marca "EMIC", modelo DL2000, com capacidade de 2.000 Kgf com células de carga de 200 kgf.

Resultados e Discussão

Após o processo de polpação *organosolv* as fibras apresentaram baixos índices de lignina residual com k=46,2. Após a primeira etapa de branqueamento obteve-se k=29,2. Na segunda etapa de branqueamento atingiu-se k=24,3, na terceira etapa de branqueamento foi k=19,0 e após a última etapa obteve-se k=7,6. Para efeito comparativo, polpas produzidas com palha de cana de açúcar pelo processo *organosolv*,

nas mesmas condições, apresentaram k=53,0 [12]. Para a produção de embalagens rígidas como chapas e caixas de papelão ondulado, indústrias do setor papeleiro utilizam pasta Kraft de espécies de *Pinus taeda* e *P. elliottii*, que apresentam número kappa entre 70 e 100 [13].

A fig. 1 apresenta o comportamento mecânico dos corpos de prova submetido ao ensaio de tração elaborados com 100% de PHB e com a adição de 5%, 10% e 15% de fibras de rami obtidas pelo processo organosolv e branqueadas em 4 diferentes etapas .

Figura 1 – Resistência à tração com PHB/100% (1) e com a adição de fibras de rami nas proporções de 5%(2), 10%(3) e 15%(4).

Analisando o comportamento das curvas é possível identificar poucas variações entre os tratamentos, com exceção dos corpos de prova (CP) 4 e 5 no PHB/100% que atingiu a Força Máxima de 1038,71N e 1059,36N elevando a média dos valores de MOE, possivelmente ocorrida pela maior concentração de PHB em uma região do molde no momento de sua produção.

A tabela 2 apresenta o resumo dos resultados dos ensaios mecânicos de tração (MOE) de amostras com 100%/PHB e PHB/rami (5%, 10% e 5%).

		a)	
Amostras	Média	Desvio Padrão	Coeficiente de variação (%)
PHB 100%	404,68	60,11	14,85
PHB/rami (5%)	379,92	65,93	17,35
PHB/ rami (10%)	400,59	56,16	14,01
PHB/rami (15%)	404.85	50.41	12.45

Tabela 2 - Módulo de Elasticidade (MOE) de compósitos PHB e fibras de rami

Conclusões

Os parâmetros adotados no processo de polpação *organosolv* produziram os efeitos desejados, bem como nas quatro etapas de branqueamento reduzindo drasticamente o teor de lignina na polpa.

De modo geral, a incorporação de porcentagem de fibra de rami produziu melhoria nas propriedades mecânicas (MOE). Analisando o comportamento das curvas dos ensaios de tração é possível inferir que os melhores desempenhos foram para PHB/rami (5%) e PHB/rami (10%). Nas amostras de PHB/rami (15%) foi identificado visualmente problemas na dispersão das fibras prejudicando seu desempenho.

Agradecimentos

Laboratório de Polpa e Papel da UFPR / Embrapa Floresta / Laboratório de Anatomia e Qualidade da Madeira (LANAQM) da UFPR / PHB Industrial S/A

Referências Bibliográficas

- 1. G. F. Brito; P. Agrawal; E. M. Araujo; T. J. A. Mélo. Revista *Eletrônica de Materiais e Processos*, 2011, v.6.2,127-139.
- 2. S. O. Adeosun; G. I. Lawal; S. A. Balogun; E. I. Akpan. *Journal of Minerals & Materials Characterization & Engineering*, v.11, n.4, 385-416, 2012.
- 3. F. S. Ortega. São Paulo: Faculdade de Ciências Farmacêuticas. 2006. Disponível em: http://www.fcf.usp.br/
 Departamentos/FBT/HP_Professores/Penna/EstudoDirigido/Agroindustria_Canavieir a.pdf>. Acesso em: 09 jul. 2013.
- 4. E. Silveira. *Revista Pesquisa FAPESP Edição Especial 50 anos*. Disponível em: http://revistapesquisa.fapesp.br/revista/ver-edicao/?e_id=35. Acesso em: 10 jul 2013.
- 5. F. B. Ambrósio; D. A. Alves; G. J. M. Fechine. *Revista Mackenzie de Engenharia e Computação*, 2011, v.11, n.1, 46-55.
- 6. J. G. C. Pradella. *Laboratório de Biotecnologia Industrial LBI/CTPP*. 2006. Relatório técnico n. 84396-205.
- 7. A. C. Mottin. Dissertação (Programa de pós-graduação em engenharia de materiais da REDEMAT). Universidade Federal de Ouro Preto. Escola de Minas, 2011.
- 8. S. K. Batra, *Handbook of Fiber Chemistry*, ed. Lewin, M., CRC Press, Boca Raton, 3rd ed., 453–520,2007.
- 9. R. M. Rowell; H. P. Stout *In*: Handbook of Fiber Chemistry. Ed. Lewin, M., CRC Press, Boca Raton, , 3rd ed. 405–452, 2007.
- 10.Technical Association of Pulp and Paper Industry. TAPPI. Testing and methods. Useful method T 236 om-99: Kappa number of pulp. Atlanta, GA, USA, 1999.
- 11.ASTM D638 The American Society for Testing and Materials Standard Test Method for Tensile Properties of Plastics, USA. 2010.
- 12.R. Y. Moriya. Tese de Doutorado. Escola de Engenharia. Universidade de São Paulo-USP, Lorena, 2007.
- 13.E. M. D. Frinhani; R. Daltoé. Unoesc & Ciência ACET, 2012, Joaçaba-SC, v. 3, n. 1, 65-74.