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Abstract

Background: Genotype imputation has been used to increase genomic information, allow more animals in
genome-wide analyses, and reduce genotyping costs. In Brazilian beef cattle production, many animals are
resulting from crossbreeding and such an event may alter linkage disequilibrium patterns. Thus, the challenge
is to obtain accurately imputed genotypes in crossbred animals. The objective of this study was to evaluate
the best fitting and most accurate imputation strategy on the MA genetic group (the progeny of a Charolais
sire mated with crossbred Canchim X Zebu cows) and Canchim cattle. The data set contained 400 animals
(born between 1999 and 2005) genotyped with the Illumina BovineHD panel. Imputation accuracy of
genotypes from the Illumina-Bovine3K (3K), Illumina-BovineLD (6K), GeneSeek-Genomic-Profiler (GGP) BeefLD
(GGP9K), GGP-IndicusLD (GGP20Ki), Illumina-BovineSNP50 (50K), GGP-IndicusHD (GGP75Ki), and GGP-BeefHD
(GGP80K) to Illumina-BovineHD (HD) SNP panels were investigated. Seven scenarios for reference and target
populations were tested; the animals were grouped according with birth year (S1), genetic groups (S2 and
S3), genetic groups and birth year (S4 and S5), gender (S6), and gender and birth year (S7). Analyses were
performed using FImpute and BEAGLE software and computation run-time was recorded. Genotype
imputation accuracy was measured by concordance rate (CR) and allelic R square (R2).

Results: The highest imputation accuracy scenario consisted of a reference population with males and
females and a target population with young females. Among the SNP panels in the tested scenarios, from
the 50K, GGP75Ki and GGP80K were the most adequate to impute to HD in Canchim cattle. FImpute reduced
computation run-time to impute genotypes from 20 to 100 times when compared to BEAGLE.

Conclusion: The genotyping panels possessing at least 50 thousands markers are suitable for genotype
imputation to HD with acceptable accuracy. The FImpute algorithm demonstrated a higher efficiency of
imputed markers, especially in lower density panels. These considerations may assist to increase genotypic
information, reduce genotyping costs, and aid in genomic selection evaluations in crossbred animals.
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Background
The recent implementation of genomic selection in cattle
breeding programs has allowed the rate of genetic pro-
gress to increase, especially in the dairy industry [1]. Selec-
tion based on genetic markers requires a large number of
genotyped individuals and thousands of single nucleotide
polymorphisms (SNP) scattered throughout the genome
[2]. The improvement in accuracy of genomic selection in
beef cattle, which often includes data from different breeds
and crossbred animals, depends on conservation of link-
age disequilibrium, consistency of the linkage phase be-
tween QTL (quantitative trait loci) and genetic markers
across breeds, and similarity of QTL effects between
breeds [3, 4].
In some dairy breeds, animals have been genotyped with

50,000 SNPs (50K). However, the 50K panel generally does
not increase genomic selection accuracy in combined data
from different breeds [1, 5]. According to de Roos et al.
[6], more than 300,000 informative SNPs are required to
detect conserved linkage disequilibrium and allow multi-
breed genomic selection. High-density panels have higher
coverage of SNPs in smaller genomic distances, greater
linkage disequilibrium and conserved linkage disequilib-
rium across breeds, and are better for genomic selection
and genome-wide association studies in beef cattle and
crossbred animals [3, 7]. However, genotyping with high-
density panels remains costly and can limit the number of
animals used in genomic studies. An alternative that re-
duces these costs is genotype imputation [8, 9].
Genotype imputation is a method that allows for infer-

ring the missing marker genotypes from individuals geno-
typed with low and medium density (LD) panels by using
information from a reference population genotyped with
high-density panels [10, 11]. This makes it possible to in-
crease the genomic information and predict missing geno-
types [7, 12], reduce genotyping costs and intensify
genomic selection [13, 14], and combine data from differ-
ent breeds [11, 15].
Imputation methods may be based on family informa-

tion (using pedigree), thus using Mendelian segregation
rules and linkage to predict genotypes, and/or on
population-based information; wherein genotypes are
predicted by means of linkage disequilibrium observed
between markers in the reference population [11]. Im-
putation accuracy is influenced by several factors such
as population structure, reference population size, the
number of SNPs in the LD panel, marker frequency, re-
latedness between the reference and the target popula-
tions, and the imputation tools [10, 16, 17].
In Brazil, crossbreeding schemes have been used to de-

velop composite breeds such as the Canchim, originating
from alternate crosses between Charolais (Bos taurus
taurus) and Zebu breeds (Bos taurus indicus) [18]. Gener-
ally, the final genetic composition of Canchim animals is

62.5 % Charolais and 37.5 % Zebu; however, different pro-
portions of Charolais/Zebu genes may be present in Can-
chim animals due to the various mating schemes which
have been used to expand the genetic base for this breed
[19]. One such scheme produces the “MA” genetic group,
which is the progeny of a Charolais sire mated with cross-
bred Canchim X Zebu cows. The expected proportion of
genes for MA is approximately 65.6 % Charolais and
34.4 % Zebu.
In Brazilian beef cattle production, many animals result

from crossbreeding between or within Bos taurus taurus
and Bos taurus indicus. Therefore, genotype imputation in
crossbred animals remains a challenging task; leading to
the development of methodologies and imputation strat-
egies that can maximize accuracy in the population of
interest. The objective of this study was to evaluate the
best fitting and most accurate imputation strategy for the
MA genetic group and Canchim cattle.

Methods
Ethics statement
This study had the approval of the Embrapa Southeast
Livestock Ethical Committee of Animal Use (CEUA-
CPPSE), under protocol number 02/2009.

Data set and genotype
The genomic database used in this study was pro-
vided by the Brazilian Corporation of Agricultural Re-
search (Embrapa), located in São Carlos, SP, Brazil.
Four hundred animals, born between 1999 and

2005, were genotyped with the BovineHD BeadChip
(Illumina, Inc., San Diego, CA) panel, consisting of
786,799 SNPs distributed throughout the genome.
There were 205 females and 195 males in the data
set. Approximately half of the animals (194) were
from Embrapa, originating from 17 different bulls;
186 were Canchim and 8 were MA. The remaining
animals were from farms located in São Paulo (38
Canchim and 9 MA) and Goiás (60 Canchim and 97
MA animals) states, and 1 Canchim bull and 1

Table 1 Number of SNPs in common between LDa panel and
the HDb panel

LD Panel Label SNPs in original
LD panel

SNPs in common
after QCc

Illumina® Bovine 3K 3K 2,900 2,341

Illumina® Bovine LD 6K 6,909 6,280

GGP Beef LD GGP9K 8,762 7,548

GGP Indicus LD GGP20Ki 19,721 14,305

Illumina® BovineSNP50 50K 54,609 38,802

GGP Indicus HD GGP75Ki 74,085 50,038

GGP Beef HD GGP80K 76,992 67,143
aLD: low-density, bHD: high-density panel, cQC: quality Control
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Charolais bull that were parents of 7 and 14 geno-
typed individuals, respectively.
The pedigree relationship matrix of these animals

consisted of 4,095 animals and the average inbreeding
was equal to 0.02, calculated by the CFC program
[20]. The Canchim animals were progeny from 40
Canchim bulls and presented an average relatedness
of 0.005, while the MA animals were progeny from
10 Charolais bulls, and presented an average related-
ness of 0.018.
The average linkage disequilibrium between adjacent

markers in the original HD panel (Additional file 1)
was calculated using the SNPPLD software [21], with
r2 as the linkage disequilibrium measure [22].

Data quality control
Only the autosomal chromosomes and SNPs with
known positions in the UMD_3.1 bovine assembly
map [23] were considered. Genotype quality control
(QC) excluded SNPs with a call rate lower than 0.90,
SNPs with deviations from the Hardy-Weinberg equi-
librium (p < 10−6) as calculated by means of the Fish-
er’s Exact Test, SNPs with proportion of expected
heterozygous higher than 0.85 [24], and SNPs with
minor allele frequency (MAF) lower than 0.0025. For
the QC of the samples, animals with a call rate lower
than 0.90 were excluded from analysis. The final file
contained 396 animals and 616,565 SNPs.

Low and medium density SNP panels
The low and medium density panels were created by
masking SNPs originally present in the Illumina®

BovineHD SNP panel by selecting the markers in
common with the Illumina® Bovine3K (3K), Illumina®
BovineLD (6K), GeneSeek® Genomic Profiler (GGP)
Beef LD (GGP9K), GGP Indicus LD (GGP20Ki), Illu-
mina® BovineSNP50 version 2 (50K), GGP Indicus HD
(GGP75Ki), and GGP Beef HD (GGP80K) (Table 1).
The number of SNPs that remained after QC for the
GGP75Ki (for indicine breeds) and GGP80K (for tau-
rine breeds) may reflect the genetic composition of
Canchim, because as previously mentioned, the contri-
bution of the Charolais breed (taurine) is higher than
the Zebu.

Genotype imputation
According to the possible situations, seven scenarios
for reference and target populations were tested in
order to identify the scenario that fit our data set
and, as an extension, for composite beef cattle breeds

Table 2 Description of imputation scenarios and number of animals in referencea and targetb population

Scenarios Description Number of animals

Charolais Canchim MA Total

S1 Animals born prior to 2005a 1 184 68 253

Animals born in 2005b 0 99 44 143

S2 All Canchim animalsa 0 283 0 283

All MA animalsb 0 0 112 112

S3 All MA animalsa 0 0 112 112

All Canchim animalsb 0 283 0 283

S4 All Canchim +MA animals born prior to 2005a 0 283 68 351

MA animals were born in 2005b 0 0 44 44

S5 All MA + Canchim animals born prior to 2005a 0 184 112 296

Canchim animals were born in 2005b 0 99 0 99

S6 All malesa 1 128 63 192

All femalesb 0 155 49 204

S7 All Males + Females born prior to 2005a 1 228 86 315

Females born in 2005b 0 55 26 81
aReference population; bTarget Population

Table 3 Genomic relationship statistics between reference
population and target population

Scenariosa Genomic Relationship

Minimum Mean Maximum

S1 0.023 0.198 0.390

S2 0.010 0.050 0.220

S3 0.003 0.040 0.225

S4 0.028 0.193 0.330

S5 0.050 0.198 0.390

S6 0.090 0.210 0.409

S7 0.108 0.228 0.390
aAs described in the section “Genotype imputation” of “Methods”
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(Table 2). Briefly, animals were grouped in scenarios
considering birth year (S1), genetic groups (S2 and
S3), genetic groups and birth year (S4 and S5), gender
(S6), and gender and birth year (S7).
The population genotype imputation was imple-

mented using the FImpute v2.2 [25] and BEAGLE
v3.3.2 software [26]. We used population-based im-
putation for both programs. The imputation accuracy
was calculated by means of two criteria:
i. Concordance rate (CR) - The imputed markers

were compared with the actual markers present in
the original HD panel, and thus the proportion of ge-
notypes that were imputed correctly or erroneously
was calculated. The concordance rate represents the
proportion of correctly imputed genotypes.
ii. Allelic r-squared correlation (allelic R2) - The allelic

R2 is determined by the square of the correlation between
the allele dosage of the most likely imputed genotype and
the allele dosage of the true genotype [26].
The effect of genetic relatedness between the valid-

ation and reference animals (Table 3) on imputation ac-
curacy was assessed by regressing the concordance rate
on the maximum genomic relationship between each
animal in the validation set and all the animals in the
reference set [27]. The average genomic relationship (G)
was calculated according to VanRaden [28]:

G ¼ MM0
X

2pi 1−pið Þ ð1Þ

in which M is the incidence matrix of markers whose el-
ements in the ith column are 0-2pi, 1-2pi, and 2-2pi for
genotypes AA, AB and BB, respectively; M’ is the trans-
pose of the incidence matrix; and pi is the frequency of
allele B in the ith marker.

Results and discussion
Imputation accuracy
When the Flmpute software was used, the overall average
imputation accuracy from LD to HD by concordance rate

Table 4 Imputation accuracy from low-density panel to
high-density panel using FImpute and BEAGLE software

Scenariosa LD
panel

FImpute BEAGLE

CR%b R2c CR%b R2c

S1 3K 75.70 0.59 66.27 0.44

6K 87.72 0.79 80.79 0.68

GGP9K 88.64 0.81 82.19 0.70

GGP20Ki 92.43 0.87 87.50 0.71

50K 95.20 0.92 92.14 0.87

GGP75Ki 96.68 0.94 95.03 0.92

GGP80K 96.96 0.95 95.26 0.92

S2 3K 62.86 0.37 59.73 0.33

6K 76.17 0.58 72.23 0.58

GGP9K 77.54 0.61 73.78 0.55

GGP20Ki 83.61 0.71 79.75 0.65

50K 89.55 0.82 86.66 0.77

GGP75Ki 92.48 0.87 90.85 0.84

GGP80K 93.24 0.88 91.51 0.85

S3 3K 60.21 0.33 54.83 0.25

6K 71.46 0.51 63.00 0.38

GGP9K 72.93 0.54 64.15 0.40

GGP20Ki 79.19 0.65 69.91 0.49

50K 85.92 0.76 79.95 0.66

GGP75Ki 89.54 0.82 85.79 0.76

GGP80K 90.60 0.84 87.35 0.79

S4 3K 72.75 0.53 64.55 0.40

6K 85.17 0.74 79.32 0.65

GGP9K 86.12 0.76 80.85 0.67

GGP20Ki 90.60 0.84 86.55 0.77

50K 94.12 0.90 91.24 0.85

GGP75Ki 95.94 0.93 94.36 0.90

GGP80K 96.28 0.93 94.53 0.91

S5 3K 77.74 0.62 68.57 0.47

6K 89.84 0.83 83.86 0.73

GGP9K 90.67 0.84 85.23 0.75

GGP20Ki 94.15 0.94 90.23 0.84

50K 96.36 0.90 93.90 0.90

GGP75Ki 97.55 0.96 96.10 0.94

GGP80K 97.74 0.96 96.30 0.94

S6 3K 76.52 0.60 65.80 0.43

6K 88.71 0.81 80.35 0.67

GGP9K 89.56 0.82 81.71 0.70

GGP20Ki 93.13 0.88 87.33 0.80

50K 95.60 0.93 92.23 0.87

GGP75Ki 96.98 0.95 95.25 0.92

GGP80K 97.19 0.95 95.40 0.92

Table 4 Imputation accuracy from low-density panel to
high-density panel using FImpute and BEAGLE software
(Continued)

S7 3K 78.69 0.64 69.06 0.48

6K 89.98 0.83 84.16 0.73

GGP9K 90.76 0.85 85.42 0.76

GGP20Ki 94.06 0.90 90.20 0.84

50K 96.27 0.94 93.82 0.90

GGP75Ki 97.47 0.96 96.04 0.93

GGP80K 97.66 0.96 96.20 0.94
aAs described in the section “Genotype imputation” of “Methods,
bCR = Concordance Rate, cR2: Allelic R square
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ranged from 60 to 98 %; and by the allelic R2 measure
ranged from 0.33 to 0.96 (Table 4; Fig. 1). Using the BEA-
GLE software, the overall average imputation accuracy
ranged from 55 to 96 % by CR and from 0.25 to 0.94 by
the allelic R2 (Table 4). We found that when the CR is
high, the allelic R2 value approaches this rate. The allelic
R2 value is smaller than the CR because this method has
no relationship to MAF [7, 29, 30].
Ventura et al. [13], who imputed genotypes from

6K to 50K in Canadian crossbreed beef cattle, found
overall average concordance rates ranging from 54 to
97 % (using FImpute) and from 54 to 96 % (using
BEAGLE). Piccoli et al. [31] found results similar to
ours when studying Brazilian Braford and Hereford
beef cattle and imputing from various low-density
panels to HD. Carvalheiro et al. [9], working with
Nelore animals, found concordance rates of 97 and
99 % when using the GGP20Ki and GGP75Ki for
genotype imputation to the HD panel. The imput-
ation accuracy is lower in beef cattle populations than
in dairy cattle populations due limited number of ani-
mals in the genotyped reference population, the larger

number of effective ancestors, and the lower related-
ness between reference and target populations [3].
The average gain in the CR from the GGP75Ki and

GGP80K SNP panels to the HD panel, when com-
pared to the 3K to HD, was 24 % for FImpute and
29 % for BEAGLE. The rate of correctly imputed geno-
types increased as the number of SNP markers present in
each of the LD panels increased (Fig. 1). The prediction of
haplotypes and the linkage disequilibrium between
markers are affected when the genotyping panel is com-
posed by few SNPs; thus, the density of the tested LD
panel is an important factor affecting imputation accuracy
[10, 32]. Studies have shown that the accuracy of the pre-
dicted genomic value decreases with increasing imput-
ation error rates [33, 34]. Furthermore imputation errors
can lead to bias in predicting breeding values [35, 36].
The most suitable LD panels were the 50K,

GGP80K, and GGP75Ki, because they had the highest
imputation accuracy for genotype imputation in Can-
chim cattle. Although the GGP75Ki and GGP80K
panels have been developed for Bos taurus indicus
and Bos taurus taurus, respectively, and they have

a

b

Fig. 1 Genotype concordance rate using FImpute (a) and BEAGLE (b) software for all scenarios tested. S1: animals born prior to 2005 in reference
population and in target population animals born in 2005; S2: Canchim animals in reference population and MA animals in target population; S3:
MA animals in reference population and Canchim animals in target population; S4: all Canchim + MA animals born prior to 2005 in reference
population and MA animals were born in 2005 in target population; S5: All MA + Canchim animals born prior to 2005 in reference population
and Canchim animals were born in 2005 in target population; S6: all males in reference population and all females in target population; S7:
All Males + Females born prior to 2005 in reference population and Females born in 2005 in target population
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different markers, no differences in the average im-
putation accuracy were observed. As the Canchim is
a composite breed, we can suggest that this result re-
flects the genetic background from both Taurine and
Indicine breeds.
Target population individuals presenting a higher

average relatedness to the reference population had
higher concordance rates. We observed a curvilinear

increase (p < 0.01) in the concordance rate when the
relatedness between reference and target individuals
increased (Fig. 2). The imputation accuracy from
lower-density panels (3K, 6K, GGP9K, GGP20Ki) to
HD was affected by the low relatedness between ref-
erence individuals and target individuals; while the
imputation accuracy from higher-density panels (50K,
GGP75Ki, GGP80K) to HD had better results. Zhang

a

c

e f

g

b

d

Fig. 2 Average relationship between reference and target population. Figure 2 shows average relationship between reference and target
population considering scenario S1 (animals grouped considering birth year) for genotype imputation from panels 3K (a), 6K (b), GGP9K (c),
GGP20Ki (d), 50K (e), GGP 75Ki (f), and GGP80K (g) to High Density (HD) panel. Regression equation was significant (p < 0.01) for all panels

Chud et al. BMC Genetics  (2015) 16:99 Page 6 of 10



and Druet [37] and Carvalheiro et al. [9] obtained re-
sults similar to ours and found better imputation ac-
curacy from lower-density panels to HD in related
individuals.
Because there is a different coverage of SNPs per

chromosome, the panels showed different imputation
errors per chromosome (Fig. 3). Chromosome 27
showed the lowest imputation accuracy from 50K to
GGP80K panels to HD, while in the GGP75Ki panel,

chromosome 13 had the lowest imputation accuracy.
In the 50K and GGP80K panels, chromosome 13 had
a greater number of SNPs (1330 SNPs and 2202
SNPs, respectively) compared to the GGP75Ki panel
(1273 SNPs), providing further information for haplo-
type inferences. In addition, chromosome 13 showed
lower average linkage disequilibrium between adjacent
markers for the HD panel (S1 Table). Imputation dif-
ferences may occur due to the difficulties in correctly

a

b

c

Fig. 3 Genotype concordance rate by chromosome using FImpute and BEAGLE software. Considering individuals grouped by birth year (S1) from
50K SNP to HD (a), GGP 75Ki SNP to HD (b), and GGP80K SNP to (c)

Chud et al. BMC Genetics  (2015) 16:99 Page 7 of 10



imputing the initial and end regions of chromosomes
[31], consequently shorter chromosomes presented
less accurately imputed alleles. Pausch et al. [17], im-
puting from 50K to 777K SNP panel in Fleckvieh cat-
tle, found higher and lower accuracies on BTA1 and
on BTA25, respectively. Moreover, low imputation ac-
curacies on chromosomes can be due to mapping er-
rors [38].

Scenarios of reference and target populations for
genotype imputation
In practical terms and for future applications, sce-
nario S1 (Table 2) was suggested as the most appro-
priate for genomic studies in Canchim cattle, because
the reference population includes older animals, while
younger animals are included in the target population.
The concordance rate from 50K, GGP75Ki and
GGP80K to HD (Table 4) was acceptable for scenario
S1 (overall average 95.2 %). Thus, young Canchim
candidates could be genotyped with low-density panels
(50K, GGP75Ki and, GGP80K), thereby reducing costs and

enabling the breeding programs to include genotype data
for genomic selection.
The imputation accuracy when using Canchim ani-

mals as the reference population and MA animals as
the target population (S2) was better than the oppos-
ite situation (S3). Using a larger number of individuals in
the reference population could aid in estimating more
reliable haplotypes [10, 13, 34] and therefore present
better imputation accuracy. Another important issue
was that scenarios S2 and S3 had the lowest average re-
latedness (0.05 and 0.04 respectively) between reference
and target populations (Table 3). Thus, in order to in-
crease imputation accuracy, it is important to maintain
the relatedness between reference and target popula-
tions [3].
Scenario S5 presented the highest CR. The possible

reasons for this result were that S5 presents a bal-
anced number of Canchim and MA animals in the
reference population, a high number of animals in the
reference population, both males and females were in-
cluded in the reference and target population, the ref-
erence population considered varied ages, and the

a

b

Fig. 4 Concordance Rate (a) and Allelic R-square (b) using FImpute and BEAGLE software. Considering the scenario S1 (individuals grouped by
birth year)
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mean genomic relatedness was the third highest. Des-
pite of a very similar construction, the S4 imputation
accuracy was lower than scenario S5. The main differ-
ence between both scenarios was the mean genomic
relatedness between reference and target population.
The gender division (scenarios S6 and S7) showed

that the imputation of female genotypes could be car-
ried out using only the males in a reference popula-
tion. Scenarios S6 and S7 had the highest mean
genomic relatedness between reference and target
populations, which may have contributed to the im-
putation accuracy. Genotype imputation using females
genotyped with low-density panels could be an appro-
priate strategy for large-scale female selection [39].

FImpute versus BEAGLE
FImpute demonstrated better imputation performance,
especially for low-density panels (3K, 6K, GGP9K,
and GGP20Ki) (Fig. 4). Moreover, low gains in imput-
ation accuracy for 50K, GGP75Ki and GGP80K were
observed. The FImpute algorithm reduces imputation
error because it uses overlapping windows to identify
long identity-by-descent segments, which facilitates
the identification of haplotypes in panels with few
markers. The BEAGLE software was developed for
human populations and requires more complex algo-
rithms due to population structure, as well as greater
computational demand for haplotype construction. In
our study, FImpute software reduced run-time from
20 to 100 times when compared to BEAGLE software.
The issue of computational demand is very important
due to the increasing number of animals being geno-
typed. Ventura et al. [13] reported run-time reduc-
tions of 13 to 52 times for genotype imputation when
FImpute was compared to BEAGLE. Although imput-
ation has great advantages, large-scale computational
resources are required and imputation accuracy must
be evaluated.

Conclusion
Low-density panels possessing at least 50 thousands
markers (50K, GGP80K, and GGP75Ki) are suitable
for genotype imputation to HD with acceptable ac-
curacy. Canchim and MA animals from both sexes
should be considered in the reference population.
The scenario with the MA and Canchim animals born
prior to 2005 in the reference population and the young
Canchim animals in the target population was the best fit-
ting to our data; however, it would be more practical to
genotype young males and females with low-density
panels (50K, GGP75Ki, and GGP80K) as the target popu-
lation, and maintain older animals in the reference popu-
lation (S1). The FImpute algorithm demonstrated
higher efficiency of imputed markers (best accuracy

and lowest run-time), especially in lower density
panels (3K, 6K, GGP9K, and GGP20Ki). These con-
siderations may assist in increasing genotypic infor-
mation, decrease the run-time of analyses, reduce
genotyping costs, and aid in genomic selection evalu-
ations in Canchim cattle.

Availability of supporting data
The genomic data used in this study is available upon
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Luiz, km 234, São Carlos, São Paulo, 13560–970, Brazil,
Tel: 55 16 3411–5600).

Additional file

Additional file 1: Average linkage disequilibrium (r2) by
chromosome between adjacent markers.
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and medium density panels; MA: Progeny of a Charolais sire mated with
crossbred Canchim X Zebu cows; r2: Linkage disequilibrium measure;
QC: Quality control; MAF: Minor allele frequency; G: Average genomic
relationship.
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