VIABILIDADE DA ENXERTIA EM MANDIOCA

Leonardo Silva Souza¹, Alfredo Augusto Cunha Alves² e Eder Jorge de Oliveira²

¹Estudante de Doutorado em Ciências Agrárias da Universidade Federal do Recôncavo da Bahia. 44.380-000, Cruz das Almas, BA. E-mail: leouenf@hotmail.com; Embrapa Mandioca e Fruticultura, 44380-000, Cruz das Almas, BA. E-mail: alfredo.alves@embrapa.br, eder.oliveira@embrapa.br

Temática: Fitotecnia

Resumo

No sistema de produção da mandioca (*Manihot esculenta* Crantz) a principal via de propagação é assexuada. Entretanto, a transferência de genes via melhoramento genético clássico necessita de propagação sexuada, que é limitada pelo não florescimento de muitos genótipos. Por outro lado, a enxertia pode ser utilizada para induzir florescimento em acessos elite. Nesse sentido, o objetivo deste trabalho foi verificar o pegamento da enxertia em mandioca. Utilizou-se enxertia de garfagem em fenda cheia, com diâmetro do caule entre 4 a 7 mm nos genótipos BRS Formosa e BGM0823 (*M. esculenta*) e BGM0528 (*M. flabellifolia*), considerando os seguintes tratamentos: T1: auto enxertia BGM0823; T2: auto enxertia BGM0528; T3: auto enxertia BRS Formosa; T4: BRS Formosa sobre BGM0823; T5: BRS Formosa sobre BGM0528; T6:BGM0823sobre BRS Formosa; T7: BGM0528sobre BRS Formosa; T8: BGM0823sobre BGM0528; T9:BGM0528sobreBGM0823. O pegamento médio da enxertia foi de 65 %, embora houveram algumas combinações de copa/porta-enxerto com pegamento acima de 80 %. O uso da espécie *M. flabellifolia* mostrou-se mais eficiente apenas como porta-enxerto.

Palavras Chave: Melhoramento genético, Propagação de plantas.

Introdução

Conhecida pela rusticidade e pela importante relevância social a cultura da mandioca (*Manihot esculenta* Crantz) possui grande adaptabilidade aos diferentes ecossistemas, o que possibilita seu cultivo praticamente em todo território nacional. Contudo, a baixa produtividade nacional tem sido associada ao manejo inadequado das lavouras, bem como pelo uso de variedades de baixo potencial produtivo. Um das grandes barreiras para o desenvolvimento de novas variedades de mandioca está relacionado à ausência ou reduzido florescimento de muitos genótipos, o que dificulta a transferência de genes de interesse para variedades elite via melhoramento clássico.

A indução do florescimento em mandioca poderia contribuir para a geração de populações segregantes de modo a combinar características desejáveis presentes em diferentes parentais. A enxertia tem sido apontada como uma técnica viável para indução floral, pois promove a transferência de elementos móveis por toda a planta, tais como água, nutrientes, metabólicos, proteínas (MUDGEET al., 2009). Neste caso, o uso de porta-enxertos com florescimento abundante poderia transferir substâncias relacionadas ao florescimento para os enxertos que não florescem. O objetivo deste trabalho foi verificar a viabilidade do uso da enxertia utilizando diferentes enxertos que não florescem (variedades e espécies) e porta-enxertos com elevado florescimento.

Material e Métodos

O trabalho foi desenvolvido em casa-de-vegetação na Embrapa Mandioca e Fruticultura, em Cruz das Almas (BA), coordenadas 12°40'19" de Latitude Sul e 39°06'22" de Longitude Oeste, a 220 m de altitude, no período de fevereiro a abril de 2015. A casa-de-vegetação foi coberta por telado do tipo sombrite, de cor preta, com 50% de sombreamento. No local do experimento os dados foram registrados por Termohigrômetro HOBO, onde ocorreu uma variação de Temperatura entre 20 e 35 °C e Umidade relativa entre 50% e 80%.

Os genótipos utilizados foram três acessos de mandioca oriundos do Banco Ativo de Germoplasma de Mandioca (BAG-Mandioca) da Embrapa Mandioca e Fruticultura. Inicialmente foram plantadas 400 manivasde 10 e 12 cm dos genótipos BRS Formosa eBGM0823(ambas *M. esculenta*) e 400 sementes de BGM0528 (*M. flabellifolia*) para serem usadas como enxerto e porta-enxerto, respectivamente. O substrato utilizado foi composto por uma mistura de terra de subsolo, verrmiculita e esterco de galinha curtido (2:2:1, v:v) com adubação de 300g de sulfato de amônia e 400g de superfosfato simples, sendo acondicionado nos sacos de polietileno, com dimensões de 10 x 25cm.

Os porta-enxertos e enxertos com origem de propagação vegetativa atingiram a fase de enxertia aos 20 dias aproximadamente, e para os porta-enxertos e enxertos de origem seminal esse período foi de 30 dias após a semeadura. Após esse período foram iniciados os tratamentos que consistiram de:

T1: auto enxertia BGM0823

T2: auto enxertia BGM0528

T3: auto enxertia BRS Formosa

T4: BRS Formosa (enxerto) x BGM0823 (porta-enxerto)

T5: BRS Formosa (enxerto) x BGM0528 (porta-enxerto)

T6: BGM0823(enxerto) x BRS Formosa (porta-enxerto)

T7: BGM0528(enxerto) x BRS Formosa (porta-enxerto)

T8: BGM0823(enxerto) x BGM0528 (porta-enxerto)

T9: BGM0528(enxerto) x BGM0823 (porta-enxerto)

O método de enxertia utilizado foi o de garfagem em fenda cheia. Para a realização dos procedimentos, o porta-enxerto teve seu caule decepado, abrindo-se uma fenda longitudinal (1,0 cm). Em seguida foi obtido o garfo também decepando a porção média do tronco da muda, confeccionando uma cunha em bisel duplo, expondo os tecidos do câmbio. Para estes procedimentos utilizou-se uma lâmina de aço inox. Em seguida, realizou-se a união enxerto e porta-enxerto, fixando-os com um pregador de plástico e um saco plástico transparente (5x23cm) protegendo assim a região enxertada, evitando seu ressecamento e perda excessiva da turgidez, bem como o excesso de umidade.

O sistema de irrigação por microaspersão foi utilizado diariamente sobre copa das plantas, os sacos plásticos com as mudas enxertadas ficaram suspensas sobre uma bancada de ferro aproximadamente 0,5 m do solo. Após sete dias da enxertia foi retirado o saco plástico transparente, e após cinco dias o pregador.

O delineamento utilizado foi o inteiramente casualizado em esquema fatorial simples 3 x 3 (combinação de três portas-enxertos x três copas) totalizando nove tratamentos, com três repetições e 20 indivíduos por repetição. A avaliação do pegamento ocorreu trinta dias após a realização dos enxertos, obtendo-se a percentagem de pegamento. Os dados foram submetidos à análise de variância, e as médias, ao teste de tukey, a 5% de probabilidade.

Resultados e Discussão

O pegamento médio da enxertia foi de 65%, embora houve algumas combinações de copa/porta-enxerto com melhores resultados, a exemplo das combinações BRS Formosa sobre BGM0823 (78%) eBGM0823 x BGM0528 (82%). À exceção do genótipo BGM0823 a autoenxertia resultou em maior taxa de pegamento dos enxertos (77% para BRS Formosa e 88% para BGM0528) (Tabela 1). De acordo com Paiva e Gomes (2011), o sucesso da enxertia está ligado a uma eficiente junção no ponto de enxertia, associada à similaridade de diâmetro do caule, junção dos vasos condutores e lignificação dos tecidos dos enxertos e porta-enxertos.

De modo geral não se observou diferença significativa para pegamento da enxertia quando se utilizou as variedades BRS Formosa, BGM0823 e BGM0528 como porta-enxertos. O mesmo foi verificado para as variedades BRS Formosa e BGM0823 como enxerto. Porém, o uso da espécie *M. flabellifolia* (BGM0528) como enxerto não se mostrou bastante efetiva quando enxertada em *M. esculenta* (BRS Formosa e BGM0823) (Tabela 1).

Tabela 1.Percentagem de pegamento da enxertia, para as combinações de variedades como enxerto e porta-enxerto de mandioca, 30 dias após a enxertia. Embrapa Mandioca Fruticultura (BA). 2015.

Porta-enxerto	Pegamento da enxertia (%)		
	BRS Formosa	BGM0823	BGM0528
BRS Formosa	77 Aa	78 Aa	48 Ba
BGM0823	65 Aa	65 Aa	60 ABa
BGM0528	67 Aa	82 Aa	88 Aa
Média	69	75	65
CV(%)	34,79	21,53	33,92

Medias seguidas mesma letra maiúscula na coluna e minúsculas na linha não diferem estatisticamente entre si pelo teste de Tukey a 5% de probabilidade

O pegamento da enxertia foi bastante reduzido na combinação BGM0528 x BRS Formosa (48%). Por outro lado, a combinação BGM0528x BGM0823 também não foi bastante efetiva para geração de mudas enxertadas (60% de pegamento). Portanto, observou-se que a espécie *M. flabellifolia* (BGM0528) apresenta algumas restrições para uso como enxerto utilizando *M. esculenta* como porta-enxerto. Uma explicação para este reduzido pegamento, pode ser a pequena junção dos caules durante a enxertia, de forma a prejudicar o fluxo normal de foto-assimilados e a lignificação de tecidos da variedade porta-enxerto com o enxerto. Em função desta variação no pegamento da enxertia com uso de diferentes espécies para uso como porta-enxerto deve ser melhor explorada para aumentar e eficiência do pegamento. De acordo Carmo (2008) a incompatibilidade entre enxerto e porta-enxerto em seringueira pode ser devida à variabilidade presente nas mudas oriundas de sementes. Esta hipótese pode ser adequada à mandioca considerando que da mesma foram que a seringueira trata-se de uma espécie heterozigótica, na qual cada semente é um genótipo único sujeito as interações específicas com o ambiente.

Conclusão

- 1) O pegamento da enxertia em mandioca visando a indução de florescimento pode ser maior que 65 % dependendo da combinação de enxerto x porta-enxerto;
- 2) O uso da espécie M. flabellifolia (BGM0528) mostrou-se mais eficiente com porta-enxerto.

Agradecimentos

Os autores agradecem a CAPES, CNPq e FAPESB pela concessão das bolsas de estudo e apoio financeiro para execução da pesquisa.

Bibliografia

CARMO, C.A.F.S.; GOMES, R. Formação de mudas e instalação de seringa. **InformeAgropecuário**, Belo Horizonte, v. 11, n 121, p. 18-25, 1985.

MUDGE, K.; JANICK, J.; SCOFIELD S.; GOLDSCHMIDT, E.A History of grafting. **Horticulturalreviews**. v. 35, p.437-493, 2009.

PAIVA, H.N.; GOMES, J.M. Propagação vegetativa de espécies florestais. Viçosa, MG: UFV, 52p. 2011.