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Abstract
Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-poten-

tiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme

(ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus,

respectively. Furthermore, PROs decrease blood pressure in animals. In the present study,

the isolation and biological characterization of a novel vasoactive BPP isolated from the

skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed

BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-

BrachyNH2 inhibits efficiently ACE in rat serum. In silicomolecular modeling and docking

studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as

well as multiple van der Waals interactions with the rat ACE, which blocks the access of the

substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2

induces potent endothelium-dependent vasodilatation with similar magnitude as captopril.

In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-Bra-

chyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2

was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the

peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the

skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a

source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits
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endothelium-dependent vasodilatation mediated by NO. These findings open for the possi-

bility of potential application of these peptides in the treatment of endothelial dysfunction

and cardiovascular diseases.

Introduction
The Brachycephalidae family is composed of 54 frog species, divided into two genera (Brachy-
cephalus Fitzinger, 1826 and Ischnocnema Reinhardt and Lütken, 1862). Frogs of the Brachyce-
phalidae family have been found in Southern and Central Brazil and adjacent Northern
Argentina, and they are probably also present in the adjacent part of Paraguay (American
Museum of Natural History. http://research.amnh.org/vz/herpetology/amphibia/Amphibia/
Anura/Brachycephalidae - Retrieved on 07 Apr 2014). Among this family, Brachycephalus
ephippium Spix, 1824 (Fig 1A) is a diurnal small frog (18 mm SVL [snout-vent length]) and
presents an attractive yellow warning coloration [1]. Modeling of habitats of the ephippium
cluster had been proposed for species closely related to B. ephippium, being the high elevation
areas in the Serra do Mar, Brazil, one of the most suitable areas found [2]. Pires et al. have
reported the identification of tetrodotoxin (TTX) and several analogues in the skin secretion of
B. ephippium and of two other species from Brachycephalus genus [3,4]. Interestingly, a
TTX-analogue called 11-oxotetrodotoxin, has been reported to be four to five-fold more toxic
than TTX [5].

The bioactive peptides usually found in the skin secretion of several amphibians are often
reported as an important defense strategy against predators. Among them, the proline-rich oli-
gopeptides (PROs) are a large family, which include the bradykinin-potentiating peptides
(BPPs), known as inhibitors of angiotensin I-converting enzyme (ACE, EC 3.4.15.1). Thus, in
endothelial cells they inhibit the zinc metallopeptidase, which is able to convert inactive angio-
tensin I to the potent vasoconstrictor angiotensin II and degrades bradykinin (BK) into either
inactive BK (1–7) or BK (1–5) [6,7].

The Bj-BPP-5a was the first BPP for which the amino acid sequence was described. Bj-BPP-
5a is present in hydroalcoholic extracts of the snake venom Bothrops jararaca [8,9]. In contrast
to oral administration, parenteral administration showed benefits of Bj-BPP-9a for the treat-
ment of human hypertension [10]. Based on these observations, ACE inhibition was consid-
ered a pivotal target for treatment of hypertension, and together with a model of somatic ACE
(sACE), a metallopeptidase with a zinc-binding carboxyl group at the catalytic center, led to
design of captopril. Captopril was the first effective antihypertensive drug designed to bind and
inhibit the active sites of ACE, and represented a breakthrough in the treatment of hyperten-
sion [11,12].

Interestingly, ACE inhibition is only one possible mechanism whereby animal toxins and
BPPs may have a vasodilatory and antihypertensive effect. The synthetic peptides Bj-BPP-7a
and -10c were suggested to have an ACE-independent antihypertensive effect [13], and the
activation of the argininosuccinate syntethase enzyme (AsS) was proposed as a target for Bj-
BPP-10c followed by increased L-arginine levels and formation of NO [14]. For Bj-BPP-5a, the
increment of NO production depends on M1 muscarinic receptor and B2 bradykinin receptor
activation [15], which supports the NO-dependent anti-hypertensive effect observed for this
peptide [16]. For Bj-BPP-13a, the increase of NO production have been related to the M3 mus-
carinic receptors activation [17]. Thus, apart from ACE inhibition, animal toxins and BPPs
have been reported to activate other enzymes and receptors which could be involved in the
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vasodilatory effect of BPPs, and lead to discovery of new targets with potential for therapeutic
applications [18,19].

In the present study, we investigated the structure and vasodilatory properties of BPP-Bra-
chyNH2 (WPPPKVSP), a novel proline-rich oligopeptide (PRO) isolated from the skin secre-
tion of the pumpkin toadlet frog, Brachycephalus ephippium.

Material and Methods

Ethics Statement
The collection of frogs was authorized by the Instituto Brasileiro do Meio Ambiente e dos Recur-
sos Renováveis, IBAMA-Brazil, under license number 02010.003041/05-87. After collection of
the cutaneous secretion, the frogs were euthanized by 20% carbon dioxide, following the Reso-
lution no. 1000/2012 from the Federal Council of Veterinary Medicine, Brazil. The death was
confirmed by the absence of response to mechanical stimulus on the hind paws. The approval
by an ethics committee for this purpose is not required in Brazil, but only the permission to
collect the frogs, in concordance to the environmental legislation. Afterwards, the frogs were
incorporated in the Brazilian Zoological collection.

Fig 1. (A) Adult male of Brachycephalus ephippium (Spix, 1824) (Photo: Pombal Jr., J.P.). (B)
Fractionation of peptides from crude skin secretion ofB. ephippium. Sample containing 3.0 mg of
lyophilized skin secretion was dissolved in 150 μL of 0.1% trifluoroacetic acid and loaded onto a Vydac C18

column; chromatography was carried out with a linear gradient of acetonitrile concentration on water from 0 to
100% in 0.1% trifluoroacetic acid, at flow rate of 1.0 mL/min for 60 min. Peptides in the effluent of the column
were monitored by absorbance measurements at the indicated wavelengths.

doi:10.1371/journal.pone.0145071.g001
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Rats were handled and euthanized in accordance with Resolution no. 1000 (2012) of the
Brazilian Federal Council of Veterinary Medicine, in order to minimize suffering. All proce-
dures were approved by the local Ethics Committee for Animal Experimentation (Universidade
Federal do Piauí, Brazil; permission number: 008/2012).

Cutaneous secretion of frogs and purification of the peptides
Adult specimens of B. ephippium (n = 23) (Fig 1A) were collected in Mogi-Mirim, a region of
the Brazilian Atlantic forest in São Paulo State. Cutaneous secretions from B. ephippium were
obtained by a brief electric stimulation of the skin glands. The hydrophilic secretive fractions
were injected into an analytical Vydac reversed-phase column (150 mm × 4.6 mm, C18, 5 μm,
218TP104) in a High Performance Liquid Chromatography (HPLC) analytical system (Shi-
madzu Co., Kyoto, Japan). The purification was performed at room temperature and under 0
to 100% gradient of acetonitrile (ACN) in 0.1% trifluoroacetic acid (TFA) for 60 min with UV
detection at 216 and 280 nm [20].

Mass spectrometry analysis and De novo sequencing
The molecular masses and homogeneity of BPPs (BPP-Brachy and BPP-Brachy-NH2) were
determined by UltraFlex III MALDI-TOF/TOF (Bruker Daltonics, Billerica, MA, USA) in an
α-cyano-4-hydroxycinnamic acid matrix, similar to Machado and colleagues, but with modifi-
cations [21]. The mass spectrometer was operated in reflector positive mode for MS or LIFT™
and positive mode for MS/MS experiments by FlexControl™ software. Instrument calibration
was performed externally with [M+H]+ ions of angiotensin I, angiotensin II, substance P, bom-
besin, and adrenocorticotropic hormones (fragments 1–17 and 18–39). Accumulated data
from 200 consecutive laser shots were acquired for each spectrum. Samples were analyzed by
both MALDI-TOF and LIFT™MALDI-TOF/TOF MS/MS from the same target. The ion spec-
tra were manually interpreted by De novo sequencing. For determination of isomeric and iso-
baric residues, the high-energy fragmentation was used [22]. A Search for peptide sequence
alignments and similarities were performed by using the FASTA 3 program on the ExPASy
molecular server (http://www.expasy.ch/).

Peptide synthesis
The synthesis of the octapeptide BPP-BrachyNH2 was carried out manually, with a standard
Fmoc (N-(9-fluorenyl)methoxycarbonyl) chemistry [23] starting from a Rink-amide-MBHA
resin (0.59 mmol.g-1, Peptides International, Louisville, KY, USA). Fmoc-protected amino
acids (Peptides International, Louisville, KY, USA) were used in four-fold molar excess relative
to the nominal scale of synthesis (1.2 mmol). Couplings were performed with 1,3-diisopropyl-
carbodiimide/ethyl 2-cyano-2-(hydroxyimino) acetate (DIC/Oxyma) in N,N-dimethylforma-
mide (DMF) for 2-3h. Side chain protected groups were tert-butyl for Ser, and Boc for Lys and
Trp. Deprotected groups were conducted by 4-methylpiperidine/DMF (1:4, v:v) for 20–30 min.
Removal of side chain protection and cleavage of the peptide from the resin were performed by
the use of 10.0 mL TFA:water:tioanisol:ethanodithiol:triisopropylsilane (86:5.0:5.0:2.5:1.0, v:v:
v:v:v) with addition of 1 g phenol for 90 min at room temperature under shaking. After solvent
evaporation under nitrogen, the peptide was precipitated by addition of cold diisopropyl ether,
collected by filtration and washed four times with cold diisopropyl ether. Extraction was per-
formed with 200 mL H2O:ACN (1:1, v:v) and crude peptide was lyophilized. Purification was
performed using a Shimadzu HPLC system fitted with a Vydac C18 column (150 × 4.6 mm)
developed with a linear ACN gradient (12–35%; 25 min) in 0.05% TFA. Purity and identity
were verified by the use of MALDI-TOF MS and MS/MS. Stock peptide solutions were
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prepared in water and their concentrations were determined according to tryptophan molar
absorptivity (5550 M-1.cm-1) at 280 nm.

ACE inhibition assay
The inhibitory effects of BPP-BrachyNH2 and captopril on the ACE-catalyzed hydrolysis of
hippuryl-His-Leu-OH were estimated in presence of increasing concentrations of inhibitors
(BPP-BrachyNH2 from 0.05 to 50 μM; captopril from 3 × 10−5 to 2 μM). Fresh Wistar rat
serum was used as source of ACE in these reactions, and the product H-His-Leu-OH was mea-
sured fluorimetrically following derivatization with o-phtaldialdehyde, as described [24,25].
Reactions were carried out, in duplicate, at 37°C for 30 min in 200 μL of 20 mM Tris-HCl
buffer, pH 8.1, 0.3 M NaCl, 1.0 mMH-hippuryl-His-Leu-OH, 20 μL of enzyme-containing
serum and different inhibitor concentrations as described above. The IC50 values, correspond-
ing to the concentration of the inhibitor that results in 50% of maximal activity, were derived
from fractional activity data plotted as a function of each inhibitor.

Molecular modeling and in silico docking studies
The three-dimensional models for ACE from Rattus norvegicus (GenBank: AAG35596.1) and
BPP-Brachy were constructed based on the structures ofHomo sapiens ACE (UniProtKB ID:
P12821; PDB code: 2YDM) and CDK2 (UniProtKB ID: P24941; PDB code: 3QTS), respec-
tively. The 2YDM presents the structure of angiotensin I-converting enzyme fromHomo sapi-
ens ACE, resolved by X-ray diffraction with a resolution of 2.44 Å [26]. This structure was used
as a template for the construction of a model for Rattus norvegicus ACE. The 3QTS presents
the structure of a cyclin-dependent kinase 2 from Homo sapiens [27]. This structure was used
as a template for the construction of BPP-Brachy.

Two hundred theoretical tridimensional peptide structures were constructed using Modeller
v.9.12 for each peptide. The ACE and BPP-Brachy final models, i.e., geometry, stereochemistry,
and energy distributions in the models, were evaluated using PROSA II to analyze packing and
solvent exposure characteristics and PROCHECK for additional analysis of stereochemical
quality. In addition, RMSD was considered by overlap of Cα traces and backbones onto the
template structure by the use of the program 3DSS. The protein and peptide structures were
visualized and analyzed on Delano Scientific’s PyMol (http://pymol.sourceforge.net/).

All docking calculations were performed using AUTODOCK 4.2 program. Docking simula-
tion of BPP-Brachy was performed toward ACE C- and N-domain. All polar hydrogen atoms
were added using the AutoDockTool. Grid maps were calculated with 30 × 30 × 30 Å for both
ACE domains and 1.0 Å spacing centered in the active sites of the enzyme characterized as C-
and N-domain, allowing interaction with all side chains exposed [28]. A Lamarckian genetic
algorithm was used as the search method to find the best peptide–enzyme complex. Ten dock-
ing runs were done generating ninety models, where the maximum freedom to side chains was
unlocked to the peptide. The generated structures were ranked in two steps: firstly a cluster
with the best models with lowest energy, and secondly with a root-mean-square deviation
(RMSD), for all atoms docked with the ACE C- or N-domain, showing tolerance of 4 Å, as rec-
ommended for blind docking [29]. The program PyMol (http://pymol.sourceforge.net/) was
used to characterize peptide-enzyme interactions.

Effect on vascular reactivity of rat thoracic aorta
Male Wistar rats (250 ± 30 g) were maintained under controlled temperature (22 ± 1�C),
12/12 h light/dark cycle, and had free access to water and food (Purina-Nestlé, São Paulo, SP,
Brazil). Rat thoracic aortic rings were prepared according to Silva-Filho and colleagues [30].
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Briefly, aortic rings (3–4 mm) were maintained in Krebs solution (in mM: NaCl, 118.0; KCl,
4.6; CaCl2.2H2O, 2.5; MgSO4.7H2O, 5.7; NaHCO3, 25.0; KH2PO4.H2O, 1.1; and D-glucose,
11.0) under isometric tension of 1.0 g, 37°C and bubbled with 5% CO2 in 95% O2. The endo-
thelium was considered as functionally intact if acetylcholine (10−6 M) induced relaxations
larger than 70% in phenylephrine (PE 3 × 10−7 M)-contracted preparations. After washout, the
preparations were contracted with PE (PE 3 × 10−7 M) and concentration-response curves for
BPP-BrachyNH2 and captopril (10

−9–3 × 10−5 M) were constructed. Time control contractions
induced by PE, but without adding drug were obtained in parallel with other vascular
segments.

NOmeasurement on aortic rings by confocal microscopy
The fluorescence measurements of nitric oxide (NO) were conducted in freshly isolated aortic
rings according to the method by Capellini and colleagues [31]. After the adherence to a slide,
the aortic rings were loaded with 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate
(DAF-FM DA) and maintained under 5% CO2 (20 min, 37°C). Afterwards, the preparations
were excited at 488 nm and fluorescence emitted was measured at 515 nm. The stock solution
of the DAF-FM DA was prepared at 5 mM in dimethyl sulfoxide (DMSO), and the work solu-
tion (5 μM) was prepared by diluting the stock solution into Hanks solution (in mM: CaCl2,
1.6; MgSO4, 1.0; NaCl, 145.0; KCl, 5.0; NaH2PO4, 0.5; dextrose, 10.0; and HEPES, 10.0; pH
7.4). Fluorescence intensity was measured by use of a confocal laser microscope (Leica TSC
SP5, Leica Microsystems, Wetzlar, Germany).

The preparations were stimulated during 100 seconds with Hanks solution, and thereafter
they were stimulated with BPP-BrachyNH2 (10

−7 or 10−5 M). The regions of interest (ROI)
were selected and the intracellular fluorescence intensity was measured before and after the
addition of BPP-BrachyNH2. The average fluorescence intensity was calculated for each animal
(n). From these data, the initial fluorescence value at t = 100s was taken as the basal fluores-
cence (F0 = 100%), and the final fluorescence intensity value (F) was obtained, before and at
t = 200s after BPP-BrachyNH2 addition.

Cytotoxicity study
Cell culture. Human umbilical vascular endothelial cells (HUVECs) (ATCC, Manassas,

VA, USA) were grown in Dulbecco's Modified Eagle Medium (DMEM) containing 40% of
fetal bovine serum (FBS). Rat aortic vascular smooth muscle cells (VSMCs) were obtained
from isolated rat aorta rings, that were longitudinally opened and its intimae layer exposed, in
a six-well culture plate with culture medium under CO2 for 30 min. Then, 10 μL of culture
medium containing streptomycin 10000 UI and 0.1% fungizone were added, and the tissue was
submitted to cell migration and adhesion for two days.

MTT Assay. The cell viability after exposure to BPP-BrachyNH2 was measured, by 2-
(3,5-diphenyltetrazol-2-ium-2-yl)-4,5-dimethyl-1,3-thiazole bromide (MTT) assay on
HUVECs and VSMCs as described by Paulo and colleagues [32], with some modifications.
Cells were plated into 96-well plates at 2 × 104 cells/well, then a volume of 200 μL of culture
medium was added, and the cell culture was incubated at 37°C under 5% CO2 for 24 hours.
The culture medium was exchanged, and the cells were incubated with BPP-BrachyNH2

(10−12, 3 × 10−9, 10−7 and 10−5 M) for 24 hours. Afterwards, the medium was removed and
replaced by phosphate buffered saline (PBS), 20 μL of MTT solution (5 mg mL-1) was added to
180 μL DMEM for each well. After incubation for 4 hours, the medium was replaced with
200 μL of DMSO, in order to dissolve the formazan crystals. The optical density was measured
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at 570 nm. The absorbances obtained for untreated cells and 1.0% Triton X-100-treated cells
were taken as controls of cell viability and cytotoxicity, respectively.

Statistical analyses
The IC50 values for the ACE activity and the pD2 values for the vasodilator curves were
obtained by non-linear regression. All values were expressed as means ± SEM, and signifi-
cances for compared values were analyzed by Student’s “t” test or One-way ANOVA followed
by Bonferroni’s post-test. All procedures were performed using Graph Pad Prism 5.02™ (Graph
Pad Software, Inc., San Diego, CA, USA).

Results

Identification of BPP-Brachy and BPP-BrachyNH2

The lyophilized crude skin secretion from B. ephippium (Fig 1A) was fractionated by analytical
RP-HPLC, as shown in Fig 1B. Several peaks along the profile were detected and the arrows
indicate the novel BPP and the amidated form thereof. This was further elaborated and con-
firmed by MS and MS/MS experiments. The primary structures WPPPKVSP (BPP-Brachy)
and the amidated form thereof (BPP-BrachyNH2) were obtained after De novo sequencing by
interpreting the MS/MS spectra (Fig 2). The compound with retention time of 22.5 minutes
corresponds to the carotenoid β-carotene, which may be related to aposematic coloration of
this species. The body color of lower vertebrates is determined by the types of chromatophores
in the skin, and melanophores appear first in the dorsal integument of the larvae stage during
the initial development [33].

In vitro Evaluation of inhibitory ACE activity
In order to test if BPP-BrachyNH2 was active in a mammalian system, the effect of the peptide
was assessed on ACE activity in rat serum (Fig 3). Although BPP-BrachyNH2 (IC50 = 8.2 μM)
had lower efficacy than captopril (IC50 = 21 nM) as ACE inhibitor, the fact that it functions as
an ACE inhibitor and its distinct primary structure as compared with classical BPPs, prompted
structure/function research with synthetic analogs.

In silico Evaluation of inhibitory ACE activity
The three-dimensional models of BPP-Brachy and ACE showed 50 and 83% of identity with
3qts and 2ydm, respectively. The cyclin-dependent kinase 2 fromHomo sapiens was used as a
template for the BPP-Brachy theoretical model, due to its high sequence identity (Fig 4A). The
model for ACE was generated from the angiotensin I-converting enzyme of Homo sapiens, a
structure that was resolved by X-ray diffraction with a resolution of 2.44 Å (Fig 4B). Validation
of the 3D models by Ramachandran plot showed that the models presented a 100% of amino
acid residues in allowed regions. The root main square deviation (RMSD) values for both
BPP-Brachy and ACE models were 2.3 and 0.51 Å, respectively.

Molecular dockings were performed between BPP-Brachy and the two catalytic sites located
in a region denominated N- and C-domain (Fig 4C). The interactions observed for BPP-Brachy
and the C-domain presented energy of -9.1 kcal.mol-1. The complex BPP-Brachy/C-domain
was stabilized among carbonyls of Pro3, Pro4 and Lys5 and hydrogens of nitrogen atoms from
the imidazole rings of His355 and His359, forming a net of hydrogen bonds with distances of
3.7, 2.8, and 3.2 Å, respectively. BPP-Brachy also formed two possible hydrophobic contacts
between the carbons of Pro8 and Lys5 (CE and CD) and the carbons (CG and CG) of the resi-
dues Pro379 and Val490, with distances of 3.5 and 3.0 Å, respectively. Hydrogen bonds were also
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observed between the hydrogen of nitrogen of Ser7 from BPP-Brachy and oxygen backbone
atom of Glu383 from ACE, with a distance of 3.2 Å, as well as between the hydrogen of oxygen
of Pro8 from BPP-Brachy and the nitrogen backbone atom of Gly376 from ACE, with a distance
of 3.1 Å (Fig 4D). The histidine residues seem to be responsible for interactions between the
substrate and the catalytic triad His383, His387 and Glu411, indicating a probable inhibition of
the catalytic activity in a canonical fashion style, disallowing the generation of hypertensive
peptide angiotensin II, by inhibiting the activity of angiotensin I-converting enzyme (ACE)
(Fig 4E) [28,34]. In addition, BPP-Brachy was also docked to a second catalytic site in order to
better understand the mechanism of inhibition. Nevertheless, the energy observed for the inter-
action between BBP-Brachy and N-terminal domain was -6.1 kcal.mol-1 (data not shown),
lower than the interaction energy observed at the C-domain. Another critical point was the
absence of interaction with important amino acid residues involved in catalytic activity of N-
domain of human ACE (Tyr369 and Arg389). These in silico evidence reinforce that the ACE-
inhibiting property of BPP-Brachy can be ascribed to a C-domain interaction rather than the
N-domain, demonstrating lower affinity in the catalytic region.

Fig 2. Sequencing of the proline-rich peptides (PROs) from the skin secretion of B. ephippium. (A) Mass spectra of BPP-Brachy, [M+H]+ = 907.37 and
(B) BPP-BrachyNH2, [M+H]+ = 906.36 acquired in an UltraFlex III MALDI-TOF/TOF operating under LIFT™mode for MS/MS experiments. The observed
fragments allowed complete assignment of the major y and b ion series. The peptide sequence using one-letter code following the y and b series orientation
is shown on the top part of the spectra.

doi:10.1371/journal.pone.0145071.g002

Fig 3. The inhibitory effect of BPP-BrachyNH2 and captopril on rat serumACE activity.Residual enzymatic activities are plotted against the
corresponding inhibitor concentrations. IC50 values were calculated from nonlinear regression analysis of obtained data using GraphPad 5.0 software
(GraphPad Prism, San Diego, CA).

doi:10.1371/journal.pone.0145071.g003
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Vasodilator effect in rat aortic rings
BPP-BrachyNH2 induced pronounced concentration-dependent relaxation in preparations
with endothelium (Emax = 40.3 ± 3.5%), while the effect was minimal in preparations without

Fig 4. Molecular modeling of BPP-BrachyNH2 and human ACE and in silico docking studies. (A) Theoretical model of BPP-BrachyNH2 showing the
structure with lower energy system; (B) theoretical model of ACE showing the structure with lower energy system; (C) Docking between BPP-BrachyNH2/
ACE; (D) binary complex relationship with zoom in and detailed interactions; and (E) interactions between the substrate and the catalytic triad His383, His387

and Glu411, indicating a probable block of the catalytic activity.

doi:10.1371/journal.pone.0145071.g004
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endothelium (Emax = 14.7 ± 4.1%) (Fig 5A). The reference drug captopril induced also endo-
thelium-dependent vasodilatation with the same maximal relaxation (Emax = 32.1 ± 4.2%) as
BPP-BrachyNH2 (Fig 5B–5D). The aortic preparations were washed and stabilized during 30
min, and then a new PE-induced vasoconstriction was evoked. PE induced vasoconstriction
with the same potency, indicating that the effect of BPP-BrachyNH2 in aortic cross sections is
reversible and non-lethal to vascular cells (data not shown).

The involvement of NO in BPP-BrachyNH2-induced relaxation was evaluated by inhibition
of endothelial NO synthase with L-NAME [35]. In the presence of L-NAME, BPP-BrachyNH2

Fig 5. Vasodilator effect of BPP-BrachyNH2 and captopril (10−9–3 × 10−5 M) on rat thoracic aorta. Aortic rings were pre-contracted with phenylephrine
(3 × 10−7 M) and then cumulatively incubated with BPP-BrachyNH2 (A) or captopril (B). Effect of L-NAME (100 μM) on BPP-BrachyNH2-induced vasodilator
effect (C). Respective comparisons among Emax (D) values were plotted. The results were expressed as means ± SEM (n = 6). Non-paired Student’s t test.
**p < 0.01 and ***p < 0.001 versus endothelium-intact (E+) preparations.

doi:10.1371/journal.pone.0145071.g005
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relaxation was abolished (Fig 5C), and the Emax value was decreased 5.3-fold (Emax =
7.6 ± 2.9%) (Fig 5D), suggesting the involvement of NO in BPP-BrachyNH2-induced relaxa-
tion in rat thoracic aorta.

NOmeasurements by laser confocal microscopy
To directly measure whether BPP-BrachyNH2 increase NO release from the endothelium, aor-
tic segments were loaded with a NO-sensitive probe, DAF-FM DA. Incubation with BPP-Bra-
chyNH2 increased fluorescence with, respectively, 12.3 ± 4.8% and 13.2 ± 2.4% in response to
10−7 and 10−5 M of BPP-BrachyNH2 (Fig 6). These results support that BPP-BrachyNH2

increases NO and that NO mediates the endothelium-dependent relaxations of the peptide.

Cytotoxic evaluation in vascular cells
The MTT assay was performed in order to evaluate the cell viability of HUVECs and aortic vas-
cular smooth muscle cells in the presence of BPP-BrachyNH2. No cytotoxic effects were
observed for the concentration range assayed (Fig 7), suggesting that vascular cell damage does
not contribute to the vasodilatation and increases in NO induced by BPP-BrachyNH2.

Discussion
The major finding of this study is that the peptide BPP-BrachyNH2 has a novel sequence and is
the first PRO isolated from the skin secretion of the Brachycephalidae family, which opens for
exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cyto-
toxicity and elicits endothelium-dependent vasodilatation mediated by NO. Interestingly, this
study is the first peptidome characterized of a skin secretion in the Brachycephalidae family.

The presence of bradykinin (BK) and bradykinin-related peptides (BRPs) in the skin of
amphibians has been related to the absence of the kallikrein-kinin system in these animals
[36]. Therefore, the amphibian skin secretion of BK as well as BRPs potentiating the endoge-
nous predator BK may lead to pronounced cardiovascular and gastrointestinal changes in the
predator and function as a defense mechanism [37]. In the present study, the primary struc-
tures of WPPPKVSP (BPP-Brachy) and the amidated form thereof (BPP-BrachyNH2) were
identified. Besides, there was no evidence for the presence of BK or any BRP in the skin secre-
tion of B. ephippium (Fig 1B). However, the physiological importance of BPP-BrachyNH2 as a
defense mechanism requires further investigation.

BK-potentiating activity was first described in hydroalcoholic extracts of Bothrops jararaca
snake venom [8], and thereafter 25 BPPs have already been characterized [38]. The BPPs from
B. jararaca commonly have a typical pyroglutamyl (Pyr) residue and proline-rich structure at
the N- and C-terminus, respectively [39]. Nevertheless, the presence of the N-terminal pyro-
glutamyl residue has been demonstrated as a non-obligatory characteristic of BPP-similar pep-
tides from different biological sources, but the presence of proline-rich residues mainly in the
C-terminal region [17]. The BPP-BrachyNH2 lacks N-terminal pyroglutamic acid residues,
and possesses two proline residues at the C-terminal portion (Fig 2). Table 1 shows that
BPP-BrachyNH2 shares similarities with several other PROs from snakes, scorpions, spiders,
and the frog P. hypochondrialis. The presence of tryptophan (W) followed by proline residues
at N-terminal of the Lm-BPPs isolated from the scorpion Lachesis muta, is a common charac-
teristic between these BPPs and BPP-BrachyNH2 [7]. Interestingly, the proline-tryptophan
complexes possess very stable interactions and play important structural and interaction roles
with other protein/peptide complexes. They are responsible for a wide variety of biological
interactions and activation of cell signaling pathways [40].
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Since the discovery of BPPs obtained from B. jararaca venom, they have been considered
the first ACE inhibitors obtained from a natural source [8,9,41]. In animals other than snakes,
inhibition of ACE activity has been found in venoms of the scorpions Tityus serrulatus [42]
and Buthus occitanus [43], the spider Scaptocosa raptoria [44] and, more recently, in the skin
secretion of Phyllomedusa hypochondrialis, the Brazilian tiger-legged monkey frog [37]. In this
study, the ACE activity was determined by the fluorimetry measurement of His-Leu originated
from hydrolysis of Hippuryl-His-Leu, a well recognized substrate of the C-domain of ACE
[24]. BPP-BrachyNH2 induced a concentration-dependent decrease of ACE activity, and the
results suggest that BPP-BrachyNH2 functionally acts as a BPP, as it was able to inhibit ACE
activity (Fig 3). Therefore, the interactions between BPP-BrachyNH2 and both N- and C-
domain of ACE were investigated by molecular docking. The evaluation by docking studies of
peptide-enzyme was carried out based on in vitro results, which demonstrated a better compet-
itive inhibition profile towards C-domain rather than N-domain. The relations between pep-
tide and enzyme were extremely coordinated and guided in silico via amino acid residue side
chains (Fig 4). Thus, the evidence from the in silico studies reinforces the ACE-inhibiting prop-
erty of BPP-BrachyNH2 in vitro.

BPPs have been shown to cause vasodilatation in normotensive rats. The hypotensin
TsHpt-I from the yellow scorpion Tityus serrulatus [45] and the Bj-BPP-5a from the B. jarar-
aca venom induces both in vitro [16] and in vivo [15] vasodilatory effects. In this study,
BPP-BrachyNH2 induced concentration-dependent relaxations in rat aortic rings, with Emax

values around 2.0-fold higher than previously reported for Bj-BPP-5a and TsHpt-I. Despite
captopril was a more potent inhibitor of ACE, the vasodilatation induced by captopril and

Fig 6. NOmeasurement after BPP-BrachyNH2 addition on endothelium-intact rat aorta cross sections assessed by using a confocal scanning
laser microscope. (A) Fluorescence emission intensity for BPP-BrachyNH2 10

−7 M and (B) BPP-BrachyNH2 10
−5 M. Representative confocal

photomicrograph of aortic cross sections loaded with DAF-FM DA (5 μM) before and after addition of BPP-BrachyNH2 10
−7 M (C-D) or 10−5 M (E-F). Results

are reported as mean ± SEM (n = 4). Paired Student’s t test, *p < 0.05 and **p < 0.01 versus control.

doi:10.1371/journal.pone.0145071.g006

Fig 7. Effects of BPP-BrachyNH2 on cell viability of HUVECs and VSMCs cells. HUVECs (A) or VSMCs (B) were incubated with different concentrations
of BPP-BrachyNH2 for 24 hours and then with MTT for 4 hours. Formazan crystals were dissolved in DMSO. The control group was treated with culture
medium only. Data are mean ± SEM (n = 3). ***p < 0.001 versus control.

doi:10.1371/journal.pone.0145071.g007
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BPP-BrachyNH2 was equipotent and of the same magnitude, suggesting that mechanisms
other than ACE inhibition, appear to contribute to the relaxant effect of BPP-BrachyNH2 in rat
aorta (Fig 5). These results were alike to previous reports on several targets for other BPPs-
induced vasodilatory effects [19]. Moreover, despite a higher selectivity of captopril for ACE,
when compared with BPPs, a direct correlation between BK potentiation, cardiovascular activ-
ity, and inhibition of the ACE has not been observed. Thus, this reinforces the possible involve-
ment of distinct signaling pathways, which do not necessarily include inhibition of ACE [17].

The BPP-BrachyNH2-induced endothelium-dependent vasodilator effect suggests endothe-
lium-derived mediators are involved in the vasodilatation. NO is an important endothelium-
derived vasodilator and is pivotal in several biological processes [46–48]. The increase in NO
production plays a pivotal role in the cardiovascular effects of BPPs. Thus, several Bj-BPPs
were found to increase NO production either by activation of the AsS enzyme, resulting in con-
version of L-citrulline to L-arginine, which increases the NO production in vivo [13,14], or the
activation of G-protein coupled receptors (GPCRs) that triggers calcium-dependent mecha-
nisms, which results in the increase of endothelial NO synthase (eNOS) activity [15,17,49].
Moreover, TsHpt-I from T. serrulatus venom, and Bj-BPP-5a from B. jararaca venom induced
endothelium-dependent relaxations sensitive to eNOS inhibition in rat aorta [16,45]. In the
present study, BPP-BrachyNH2 induced endothelium-dependent relaxations, which were

Table 1. Proline-Rich Oligopeptides (PROs) from different biological sources.

Sequence Name Source References

WPPPKVSP BPP-Brachy Brachycephalus ephyppium This work

WPPRPQIPP Lm-BPP 1 Lachesis muta [7]

<EKWDPPPVSPP Potentiator E Agkistrodon halys blomhoffii [53]

<EFRPSYQIPP Phypo Xa Phyllomedusa hypochondrialis [37]

<EKWAP Bj-BPP-5a Bothrops jararaca [9]

<EWPRPQIPP Bj-BPP-9a B. jararaca [9]

<ESWPGPNIPP Bj-BPP-10a B. jararaca [9]

<ENWPRPQIPP Bj-BPP-10b B. jararaca [39,41]

<ENWPHPQIPP Bj-BPP-10c B. jararaca [9]

<EWPRPTPQIPP Bj-BPP-11a B. jararaca [41]

<EGRAPGPPIPP Bj-BPP 11b B. jararaca [39,54]

<EARPPHPPIPP Bj-BPP-11e B. jararaca [55]

<EWGRPPGPPIPP Bj-BPP-12b B. jararaca [55]

<EGGWPRPGPEIPP Bj-BPP-13a B. jararaca [39]

<EGGWPRPGPEIPP BPP-III Bothrops neuwiedi [56]

<EARPPHPPIPP BPP-XIe Bothrops jararacussu [57]

<ENWPHPQIPP BPP-Xc B. jararacussu [57]

<EGGWPRPGPEIPP BPP-XIIIa B. jararacussu [57]

<EARPPHPPIPPAP BPP-AP B. jararacussu [57]

<EKWPPGKVPP - Bothrops moojeni [38]

<ENWPRPGPEIPP - B. moojeni [38]

<EKWPRPGPEIPP BPP-BAX12 B. moojeni; Bothrops atrox [38,58]

<ERWPHLEIPP Cdt1b Crotalus d. terrificus [59]

<EAPWPDTISPP BPP-S Scaptocosa raptoria [44]

LRDYANRVINGGPVEAAGPPA K12 Buthus occitanus [42]

<E represents pyroglutamic acid; Bold represents typical C-terminal proline-rich sequences present in PROs.

doi:10.1371/journal.pone.0145071.t001
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mediated by NO as relaxation disappeared after inhibition of eNOS with L-NAME in rat aortic
preparations (Fig 5).

Additional reports have demonstrated the in vitro increase of NO release in the presence of
BPPs. Bj-BPP-5a was found by use of a chemiluminescence assay to increase NO release in
HEK293 cells [15,17]. Other compounds, as hypotensins obtained from T. serrulatus venom
increase NO release in murine cardiomyocytes, evaluated by confocal microscopy with the use
of DAF-FM DA [50], a diaminofluorescein, which contains a 3-amino,4-aminomethyl,2-ben-
zoic group linked to a fluorophore [51,52]. It is essentially non-fluorescent until it reacts with
NO to form a highly fluorescent benzotriazole. The BPP-BrachyNH2 was able to increase fluo-
rescence emission in DAF-FM DA-loaded aortic cross sections (Fig 6). These findings suggest
that NO mediates the endothelium-dependent BPP-BrachyNH2-induced vasodilatation.

In conclusion, the peptide BPP-BrachyNH2 has a novel sequence and is the first BPP iso-
lated from the skin secretion of the Brachycephalidae family. These findings open for exploring
amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity
and elicits endothelium-dependent vasodilatation mediated by NO. This study not only rein-
forces the amphibians as an interesting source of important bioactive molecules, but it also
emphasizes the worth of investigating their pharmacological, biotechnological and therapeutic
potential for the treatment of endothelial dysfunction and cardiovascular diseases.
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