RAMIRAN 2015 – 16th International Conference Rural-Urban Symbiosis

Abstract book

8th – 10th September 2015 Hamburg University of Technology, Germany

Impressum

TuTech Verlag TuTech Innovation GmbH Harburger Schloßstr. 6-12 21079 Hamburg Phone +49 40 76629-0 E-Mail verlag@tutech.de www.tutechverlag.de

Edited by Ina Körner Institute of Wastewater Management and Water Protection Hamburg University of Technology (TUHH) Hamburg, Germany

With the assistance of Gerlinde Löbkens, TuTech Innovation GmbH, Hamburg, Germany Steffen Walk, Institute of Wastewater Management and Water Protection, TUHH

This book was carefully produced. Nevertheless we do not warrant the information contained to be free of errors. The designations employed in this book imply the opinions of the respective authors.

Photos and drawings: Christiane Lüdke (11, 41, 80, 155) BioResourceInnovation, Ina Körner (1, 5, 64, 73, 106, 124, 146, 178)

All rights reserved. © TuTech Innovation GmbH

ISBN: 978-3-941492-95-0

TB-O_06 Determining the mechanisms of nitrous oxide emission under contrasting soil disturbance levels and organic amendments

Grave, R.A.²; Mezzari, M.P.¹; da Silva, M.L.B.¹; Cassol, P.C.³; <u>Nicoloso, R.S.¹</u>

¹ Embrapa Swine and Poultry, C.Postal 21 Concórdia-SC, Brazil

- ² IFC-Concórdia
- ³ UDESC-Lages

rodrigo.nicoloso@embrapa.br

Objectives

Soil management practices can affect soil abiotic factors (e.g., pH, temperature, water saturation, nitrate and labile organic carbon contents) and the abundance of nitrifying and denitrifying bacteria communities regulating N_2O efflux from soils. The objective of this study was to investigate the impact of N sources on N_2O emissions from a Nitisol under contrasting soil disturbance levels.

Methodology

We evaluated short-term N₂O emission from a Rhodic Nitisol under contrasting soil disturbance [undisturbed (US) and disturbed soil (DS)] and N sources [140 kg N ha⁻¹ as urea, raw swine slurry (RS), anaerobically digested swine slurry (ADS), composted swine slurry (CS), and a control treatment without N]. N₂O emissions were correlated with soil temperature, water-filled pore space (WFPS), dissolved organic carbon (DOC), ammonium (NH₄⁺-N) and nitrate (NO₃⁻-N) contents, and dominant nitrifying and denitrifying catabolic genes. Real-time quantitative PCR (qPCR) was used to assess specific catabolic nitrifying-ammonium monooxygenase (amoA), and denitrifying nitrate-(narG), nitrite- (nirS), nitric oxide- (norB) and nitrous oxide reductases (nosZ) genes [1,2].

Results

N₂O emissions from US amended with ADS and CS was 47.5 and 16.6% lower than RS (5.6 kg N_2O-N ha⁻¹), respectively. However, no differences in N_2O emissions were observed among the fertilization treatments in DS. Water-filled pore space (WFPS) was consistently higher in the US increasing N₂O emission in comparison to DS. The WFPS effects on N₂O emissions was pronounced above 0.6 cm³ cm⁻³ (r=0.565, p<0.001). Increased NO₃-N contents in DS stimulated N₂O emission (r=0.667, p<0.01) but had negligible effects in US. The increasing soil NO₃-N (r=0.396) and p<0.05) and WFPS (0.391 and p<0.05) was accompanied by the increasing abundance of nitrate reductases (narG) genes. Nitric oxide reductase (gnorB) gene was mostly affected by soil WFPS (r=0.313 and p<0.05) while the proportion of narG/nosZ genes decreased with higher DOC/NO3-N ratios (r=-0.409, p<0.01). N2O emission had significant correlations with narG (r=0,620, p<0.001), narG/nosZ (r=0.722, p<0.001) and qnorB/nosZ (r=0,603, p<0.001) genes. Soil fertilization increased the abundance of narG gene (RS and CS) and the ratio of narG/nosZ (UR, RS, and CS) and qnorB/nosZ genes (CS) in the soil, enhancing N₂O emissions. Multivariate analysis revealed a higher similarity on the variance of soil N₂O emissions with the abundance and ratios of denitrifying bacteria communities in the US while soil abiotic factors were the major mechanisms that regulated soil N₂O emissions from DS.

Conclusion

Higher soil moisture regime and the application of RS and CS in US increased the *narG/nosZ* and *qnorB/nosZ* ratios and N₂O emissions in relation to DS. N₂O emissions are regulated by a complex interaction between soil abiotic factors and abundance of denitrifying bacteria communities in conservative agroecossystems (US). In oxidative environments such as DS, however, N₂O emissions seem to be mostly regulated by soil abiotic factors.

References

- Angnes, G.; Nicoloso, R.S.; Silva, M.L.B.; Oliveira, P.A.V.; Higarashi, M.M.; Mezzari, M.P.; Miller, P.R.M. (2013): Correlating denitrifying catabolic genes with N₂O and N₂ emissions from swine slurry composting. Bioresource Technology 14, 368-375.
- [2] Gomes, J.; Bayer, C.; Costa, F.S.; Piccolo, M.C.; Zanatta, J.A.; Vieira, F.C.B; Six, J. Soil nitrous oxide emissions in long-term cover crops-based rotations under subtropical climate. Soil & Tillage Research, 106, 36-44.