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Abstract: Mapping cropland distribution over large areas has attracted great attention in recent years,
however, traditional pixel-based classification approaches produce high uncertainty in cropland area
statistics. This study proposes a new approach to map fractional cropland distribution in Mato Grosso,
Brazil using time series MODIS enhanced vegetation index (EVI) and Landsat Thematic Mapper
(TM) data. The major steps include: (1) remove noise and clouds/shadows contamination using
the Savizky–Gloay filter and temporal resampling algorithm based on the time series MODIS EVI
data; (2) identify the best periods to extract croplands through crop phenology analysis; (3) develop
a seasonal dynamic index (SDI) from the time series MODIS EVI data based on three key stages:
sowing, growing, and harvest; and (4) develop a regression model to estimate cropland fraction
based on the relationship between SDI and Landsat-derived fractional cropland data. The root mean
squared error of 0.14 was obtained based on the analysis of randomly selected 500 sample plots. This
research shows that the proposed approach is promising for rapidly mapping fractional cropland
distribution in Mato Grosso, Brazil.

Keywords: seasonal dynamic index; crop phenology analysis; fractional cropland distribution;
MODIS EVI; Landsat; Mato Grosso

1. Introduction

Global population increase in addition to frequent extreme weather events (e.g., drought, flooding)
require accurately updating cropland distribution and its dynamic change in a large area [1–4]. Remote
sensing has become a primary data source for mapping cropland distribution over large areas [5–9].
Due to its long term history of data availability at no cost, Landsat imagery has been applied extensively
for land use and land cover change detection [10–12], including cropland dynamic change [10].
However, due to relatively infrequent re-visit times (e.g., 16 days re-visit for Landsat Thematic
Mapper (TM)), obtaining cloud-free images may be difficult, especially in tropical and subtropical
regions [13]. Because of the time-consuming and extensive labor in analyzing high or medium spatial
resolution images (e.g., Landsat) of a large area and the difficulty in acquiring cloud-free optical
sensor images in the moist tropical regions, much research in the past decade has shifted to the use of
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low spatial resolution but high temporal resolution imagery such as AVHRR (Advanced Very High
Resolution Radiometer), SPOT (Satellite Pour l’Observation de la Terre) VEGETATION, and MODIS
(Moderate-resolution Imaging Spectroradiometer) for regional or global cropland mapping [6,14–23].

Time series MODIS data may be the most common imagery source for mapping cropland
distribution at regional and global scales (e.g., [5,6,14,20–25]). Cropland has unique characteristics
compared to other land covers such as forest and pasture, in particular, cropland goes through
different stages which are repeated annually from preparation of fields, planting, growing, and
harvest.. Different crops may be grown in the same location depending on season. Thus, the cropland
may be classified as pasture/grass and bare soil/sand/impervious surfaces [26], depending on the
time of year the base imagery was acquired. This presents a challenge when attempting to extract
cropland distribution using an individual image. Phenology information is critical for cropland
mapping. The MODIS vegetation indices (e.g., normalized difference vegetation index (NDVI) and
enhanced vegetation index (EVI)) with daily global coverage are often used to extract vegetation
phenology information. In the Brazilian Amazon, time series MODIS vegetation indices are also used
to map cropland distribution and its dynamic change [6,16–21]. Thresholding-based approaches are
commonly used to extract cropland from the time series MODIS NDVI (or EVI), or from the derived
images using the Fourier or wavelet analysis [20,27,28]. One key to utilizing the thresholding approach
is to identify optimal thresholds, which is often criticized due to its subjective nature.

In addition to threshold-based approaches, pixel-based classification approaches such as artificial
neural network (ANN), support vector machine (SVM), and decision tree classifier (DTC) are also
used for mapping cropland distribution in large areas [6,21,29,30]. In these classification approaches,
selection of training samples is critical, but often difficult because of the coarse spatial resolution in
the MODIS data resulting in complex composition of different land covers within one pixel, referred
to as mixed pixels. The mixed pixel problem is especially common for those sites with relatively
small patch sizes [31–35], resulting in high uncertainty in calculation of cropland. To reduce the
mixed pixel problem, subpixel based approaches such as spectral mixture analysis may be used for
cropland mapping [16,31,36,37], but have not been extensively explored. The difficulty is in identifying
proper endmembers and the complex composition of cropland in a coarse spatial resolution imagery,
complicating the extraction of cropland from the developed endmember images.

In the Brazilian Amazon, regional mapping of cropland distribution and its dynamic change
is especially difficult due to the following problems: (1) frequent cloud cover in the rainy season
make it difficult to acquire cloud-free optical sensor images (e.g., MODIS, Landsat); (2) different
cropping systems such as single or double cropping result in different crop phenology in a study area,
and complicate the extraction of cropland using traditionally thresholding approach or classification
approaches; and (3) the different crop phenology also makes it difficult to identify suitable endmembers
that can be used in spectral mixture analysis. Therefore, this research aims to propose a new approach
called seasonal dynamic index (SDI) based on three key cropping stages using the time series MODIS
EVI data and to develop a regression model for mapping fractional cropland distribution in Mato
Grosso, Brazil through establishing the relationship between SDI and Landsat-derived cropland data.

2. Study Area and Materials

The study area is located in the central and western part of Mato Grosso State, Brazil (Figure 1),
featured by a transition from savanna in the south to tropical rainforests in the north. Soy is the main
crop in this area and the sowing calendar for soybeans goes from mid-September to late December,
depending on agricultural zoning for different soils, regions, and the onset of the rainy season [6,24].
According to IBGE 2015 (The Brazilian Institute of Geography and Statistics), area planted in soybeans
increased by 5.59 million ha from 1995 (2.34 million ha) to 2013 (7.93 million ha). In Mato Grosso
State, six cropping types (soy–corn, soy–cotton, soy–millet, soy–soy, cotton and pasture) account for
91.5% of reported agricultural land area [24]. These planting structures include single and double
cropping systems.



Remote Sens. 2016, 8, 22 3 of 14

Figure 1. Study area—part of Mato Grosso State, Brazil.

In this research, two Landsat Thematic Mapper (TM) images acquired in 2011 (path/row: 228/69
and 227/68) were downloaded from United States Geological Survey (USGS) [38]. An unsupervised
classification (i.e., ISODATA) was used to classify the Landsat multispectral bands (six spectral bands)
with 30 m spatial resolution into 50 clusters. An analyst assigned each cluster into cropland or
others through visual interpretation of the TM color composites and QuickBird images. The cropland
distribution was examined visually to make sure no obvious misclassification occurred. Using the
mean algorithm the cropland imagery with 30 m spatial resolution was aggregated into a new image
with a cell size of 250 m for generating fractional cropland data in order to match the cell size of MODIS
EVI data. The data were reprojected from its original Universal Transverse Mercator (UTM) coordinate
system to Lambert Azimuthal Equal Area Projection.

Time series MODIS EVI product (MOD13Q1, h12v10) from July 2001 to July 2011 were
downloaded from the USGS GLOVIS website as well. The originally sinusoidal projection was
converted to the Lambert Azimuthal Equal Area Projection. SRTM (Shuttle Radar Topography Mission)
DEM (digital elevation model) data with 90 m spatial resolution were downloaded from USGS [39].

3. Methods

Figure 2 illustrates the framework of mapping fractional cropland distribution using the MODIS
EVI data and the two Landsat TM images. The major steps include: (1) extract cropland from Landsat
TM imagery using unsupervised classification, aggregate the cropland image from 30 m cell size
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to 250 m cell size for producing fractional cropland distribution using the mean algorithm, and
select sample plots using random sampling technique. Half of the selected samples were used for
development of regression model and the other half were used to evaluate the estimates; (2) identify
three key stages—sowing, growing, and harvest using the crop phenology analysis of time series
MODIS EVI data and then calculate SDI; (3) develop a regression model for estimating fractional
cropland by relating SDI and TM-derived fraction cropland data; and (4) evaluate the fractional
cropland estimates using the SDI-based approach. The first step—extraction of cropland reference
data from Landsat imagery was briefly described in Section 2. The following subsections describe the
remaining steps.

Figure 2. Framework of fractional cropland mapping approach using the integration of time series
MODIS (Moderate-resolution Imaging Spectroradiometer) Enhanced Vegetation Index (EVI) and
Landsat Thematic Mapper (TM) data.

3.1. EVI Profiles and Crop Phenology Analysis

The seasonal patterns of croplands provide the foundation for cropland extraction using time
series remote sensing imagery. Crop phenology is primary information for cropland mapping based on
the spectral-temporal crop growth profile analysis. Crops have their own characteristics in the stages
of planting, growing and maturing compared to other vegetation types such as forests. In Figure 3 we
illustrate the EVI time series profiles for different land cover types based on the cropping system in
Mato Grosso State. Through a year the EVI values in croplands vary drastically in different stages from
sowing and growing to harvest. In contrast, forest has constant EVI profiles throughout the year. Crop
phenology analysis is used to determine the key identification stages (KIS): sowing (Stage 1—from
dry to wet season transition), growing (Stage 2), and harvest (Stage 3) seasons. Figure 3 implies that
croplands can be identified from the three stages, instead of time series data of an entire year. This
is critical for mapping cropland distribution in tropical and subtropical regions because of the cloud
cover problem resulting in the difficulty in acquisition of cloud-free imagery.
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Figure 3. Determination of key identification stages based on crop phenology analysis.

3.2. Time Sparse Resampling (TSR)

Cloud contamination and noise are still common in the MODIS vegetation index composites. The
Savitzky–Golay (S-G) filter is often used to reduce this problem [40–43]. Based on the regional crop
phenology, a time sparse resampling (TSR) algorithm was proposed at the basis of the S-G filter (See
Figure 4). The TSR algorithm was used to produce a cloud-free composite at different crop growth
stages and to reduce the effect of the large variation of EVI profiles within each season. The time series
EVI profile contains a large variation in croplands within a single year. The TSR used several images
from the time series to produce a stable indicative factor within each season. For example, in Mato
Grosso, Brazil, the croplands in the sowing season (from September to October) have very limited
vegetation cover, a minimum EVI value is used in this period. The crops in growing season (November,
December, and January) have the highest biomass, thus a maximum EVI value is selected. In the first
harvest season (from January to March), there is a valley in annual crop growth profile, thus, the TSR
algorithm is adjusted to acquire the minimum EVI value in the harvest season. The TSR is used to
generate a new EVI composite in KIS as expressed in Equations (1)–(3).

EVId “ MIN pEVI225, EVI241, EVI257, EVI273, EVI289q (1)

EVIg “ MAX pEVI305, EVI321, EVI337, EVI353, EVI001q , (2)

EVIh “ MIN pEVI017, EVI033, EVI049, EVI065, EVI081q , (3)

where EVI017, EVI033, . . . . . . , EVI353 are the multi-temporal 16-day composite L3 MODIS EVI products
(MOD13Q1, 250 m spatial resolution) acquired in a year and the number subscript is the day of the year
(DOY). EVId, EVIg, and EVIh are cloud-free EVI composites from the dry to wet transition, growth,
and harvest seasons.



Remote Sens. 2016, 8, 22 6 of 14

Remote Sens. 2016, 8, 22 6/14 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7 8 9 10 11 12 1 2 3 4 5 6 7
Month

EV
I

Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul.
Stage 1 Stage 3 Stage 2

Stage 1:
Minimum EVI composite

at Dry season

Stage 2:
Maximum EVI  composite

at Growing season

Stage 3:
Minimum EVI  composite

at Harvest season

EVI max

EVI min
EVI min

1.0

0.0
SDI 

EVId EVIg EVIh

 
Figure 4. The Enhanced Vegetation Index (EVI) features at different crop growth stages and the 
seasonal dynamic index. 

3.3. Seasonal Dynamic Index (SDI) 

According to the EVI fluctuations at the different crop stages, the variation of EVI in a pixel can 
be assumed to have a positive correlation with the proportion of cropland area. Based on this 
hypothesis, the seasonal dynamic index (SDI) model is proposed through the EVI composites at 
different stages, as shown in Figure 4 for a typical crop phenology curve. Thus, SDI can be expressed 
as follows:  

SDI = MAX(SDI1,  SDI2) × Mask (4) 

SDI1 = abs(
EVIg − EVId
EVIg + EVId

) (5) 
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Mask = Pasmask × Slpmask (7) 

where SDI is seasonal dynamic index and SDI1  and SDI2  correspond to the seasonal dynamic 
index at different crop cycles. Considering the positive values of SDI1  and SDI2 in the double 
cropping system and negative values in the single cropping system, abs (absolute value) is used. To 
be classified as cropland, in addition to slope restrains, the pixel should meet three conditions (see 
Figure 4): EVI has (1) low value in the sowing period (Stage 1); (2) high value in the growing period 
(Stage 2); and (3) low value in the harvest period (Stage 3). In order to improve fractional cropland 
estimation accuracy, Mask is used as an indicator for calculating cropland fraction, which includes 
terrain (slope) mask and grassland (or savanna) mask. Here the slope mask and grassland mask are 
defined as follows:  

(1) Slpmask is the topographic factor mask which the slope is derived from SRTM data. A threshold 
of 12% is used for Slpmask, that is, the pixels having slopes greater than 12% are excluded from 
calculation, because a relatively flat landscape is required for allowing the use of farm 

Figure 4. The Enhanced Vegetation Index (EVI) features at different crop growth stages and the seasonal
dynamic index.

3.3. Seasonal Dynamic Index (SDI)

According to the EVI fluctuations at the different crop stages, the variation of EVI in a pixel can be
assumed to have a positive correlation with the proportion of cropland area. Based on this hypothesis,
the seasonal dynamic index (SDI) model is proposed through the EVI composites at different stages, as
shown in Figure 4 for a typical crop phenology curve. Thus, SDI can be expressed as follows:

SDI “ MAX pSDI1, SDI2q ˆMask (4)

SDI1 “ absp
EVIg ´ EVId

EVIg ` EVId
q (5)

SDI2 “ absp
EVIg ´ EVIh

EVIg ` EVIh
q (6)

Mask “ Pasmask ˆ Slpmask (7)

where SDI is seasonal dynamic index and SDI1 and SDI2 correspond to the seasonal dynamic index at
different crop cycles. Considering the positive values of SDI1 and SDI2 in the double cropping system
and negative values in the single cropping system, abs (absolute value) is used. To be classified as
cropland, in addition to slope restrains, the pixel should meet three conditions (see Figure 4): EVI
has (1) low value in the sowing period (Stage 1); (2) high value in the growing period (Stage 2); and
(3) low value in the harvest period (Stage 3). In order to improve fractional cropland estimation
accuracy, Mask is used as an indicator for calculating cropland fraction, which includes terrain
(slope) mask and grassland (or savanna) mask. Here the slope mask and grassland mask are defined
as follows:

(1) Slpmask is the topographic factor mask which the slope is derived from SRTM data. A threshold
of 12% is used for Slpmask, that is, the pixels having slopes greater than 12% are excluded
from calculation, because a relatively flat landscape is required for allowing the use of farm
machinery [21]. Therefore, Slpmask is assigned to 1 when slope is less than 12%; otherwise,
Slpmask is assigned to 0.
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(2) Pasmask is a pasture mask. For Pasmask, the ratio of SDI1 and SDI2 is used to discriminate
grassland and cropland. SDI1 and SDI2 have high value in double cropping, but SDI1 has low
value and SDI2 has high value in single cropping. In contrast, grass land has a high value in SDI1

and a low value in SDI2. Based on trial and error testing a threshold of 2.5 is used. That is, if
the ratio of SDI1 and SDI2 is greater than 2.5, the pixel is assigned to 0; otherwise, the pixel is
assigned to 1.

3.4. Analysis of the Relationship between SDI and Fraction Croplands

The Landsat-derived cropland imagery was aggregated to generate fractional cropland imagery
with the same cell size as the SDI imagery. A total of 1000 sample plots were randomly selected from
the overlapping regions between the fractional cropland imagery and the SDI imagery to extract the
fraction value and corresponding SDI value at the same locations. The box whisker plot approach
was used to examine SDI features, representing the graphical distribution of fractional cropland in
a sample plot against the pixel SDI value (Figure 5). The fractional values ranging from 0% to 100%
were separated into 10 groups with an interval of 10%. The SDI values range from 0 to 1 depending on
the proportion of cropland cover in a MODIS pixel. In general, higher proportions of cropland in a
sample plot correspond to a higher SDI values, as shown in Figure 5. This implies that the fraction of
cropland in sample plots has a linear relationship with SDI values. This provides the foundation for
developing a linear regression model for estimating fractional cropland values using the SDI variable.
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Figure 5. The relationship between seasonal dynamic index (SDI) and fractional croplands.

3.5. Mapping of Fractional Cropland Distribution and Evaluation of the Estimates

Based on the randomly selected 500 test samples, a regression model was developed to estimate
fractional cropland areas for the whole study area, in which the fractional cropland data from TM data
were used as a dependent variable, and SDI was used as an independent variable. The coefficient of
determination (R2) was used to evaluate the fitness of the regression model because it measures the
percentage of variation explained by the regression model.

Since the cropland estimation for each pixel is a fraction value, the traditional pixel-based
classification assessment approach [43,44] cannot be directly used for the evaluation of this estimates.
Therefore, root-mean squared error (RMSE) and the scatterplot between reference data and estimates
were used to evaluate the fractional cropland estimation results.
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3.6. Application of the Proposed Approach to Other Dates for Mapping Fractional Cropland Distribution

The above-mentioned approach is based on the 2011 MODIS EVI data and two Landsat TM
images in Mato Grosso. In order to explore the transferability of this proposed approach, we applied
this approach to other years of MODIS EVI data in the same study area for estimating fractional
cropland distribution. The time series EVI images from 2001 to 2011 at two-year intervals were
collected. The SDI image for each selected year was developed using the methods discussed above.
The same regression model which was developed from the relationship between the 2011 SDI and
corresponding fractional cropland data from Landsat TM imagery was then applied to each SDI image.
The spatial patterns of the fractional cropland distribution were visually compared, especially for four
typical sites within the study area.

4. Results

A regression model, that is, fcrop =1.1959 ˆ SDI ´ 0.03, was developed and it was used to map
fractional cropland distribution for entire study area (see Figure 6). In this factional map, the croplands
are concentrated in southern and eastern parts with high fraction values, but are scattered in northern
and western parts with fractional values of less than 50% in a pixel.

Figure 6. Fractional cropland distribution which is developed using the regression model based on
MODIS EVI data in Mato Grosso, Brazil.

In order to examine the impacts of different cropland patch sizes on fractional cropland mapping
performance, Figure 7 provides a comparison of cropland distributions between two sites: Site 1
(Figure 7a–c) representing large patch sizes of croplands, and site 2 (Figure 7d–f) representing the
complex land cover composition with relatively small patch sizes of croplands. The results indicate
that the cropland estimates with large patch sizes have similar spatial patterns with the cropland
distributions from Landsat data (Figure 7a–c), but the croplands with relatively small patch sizes have
different spatial patterns (Figure 7d–f) because the complex composition of different land covers in a
pixel results in relatively poor estimates. This implies that the complex landscape of the study area
may be a major factor resulting in poor performance of cropland estimation.
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Figure 7. A comparison of fractional cropland distributions between Landsat-derived reference
data and the SDI-based estimates (note: (a–c) represent Landsat TM color composite (7/4/2 bands),
fractional cropland distribution from Landsat imagery, and fractional cropland distribution from
MODIS EVI data at typical site 1, respectively; (d–f) represent Landsat TM 7/4/2 band color composite,
fractional cropland distribution from Landsat imagery, and fractional cropland distribution from
MODIS EVI data at typical site 2, respectively).

The scatterplot between the estimates and reference data based on the 2011 test samples are
illustrated in Figure 8. A RMSE of 0.14 and the correlation coefficient of 0.89 were obtained, indicating
a good overall estimation performance. The major errors are from two aspects, the pixels having
fraction values of less than 0.2 or more than 0.8. This implies that the SDI-based model cannot
accurately estimate the fraction values when the cropland proportion is greater than 80% or smaller
than 20% in a MODIS pixel.

Figure 8. The relationship between estimates from SDI and corresponding cropland fraction reference
data from Landsat TM data in 2011.
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The SDI-based approach was used to estimate fractional cropland distribution between 2001 and
2009 in two-year intervals, which the regression model was developed from the 2011 datasets. A
comparison of the fractional cropland distributions among these years (Figure 9) indicates the rapid
cropland expansion in the study area. As shown in the sites a, b, c, and d in Figure 9, major cropland
distribution and expansion is located in southern and southeastern parts of the study area. This Figure
also implies the feasibility of transferring the same model to different dates.

Figure 9. A comparison of the developed fractional cropland distributions between 2001 and 2011 at
a two-year interval, which is developed using the SDI-based approach (a–f represent the fractional
cropland distribution in 2001–2011).

5. Discussion

Continuous time series NDVI or EVI data can provide detailed vegetation phenology information,
thus they are often used for mapping cropland distribution [14,20,21,28]. However, in tropical and
subtropical regions, it is impossible to collect continuous time series optical sensor data (e.g., MODIS)
due to the cloud cover problem. Therefore, we proposed the TSR algorithm in this research to solve
the data collection problem. The TSR can enhance the differences between cropland and other land
cover types, and so aid in the separation of cropland from other land cover. Meanwhile, the use of SDI
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can help explore the impacts of single or double cropping systems on cropland mapping. The linear
relationship between SDI and fractional cropland values in a pixel further documents the potential to
estimate fractional cropland in a large area using the SDI image.

This research indicated that errors occurred more frequently when the proportion of croplands
in a pixel is very high or very low. When pixels have high proportion of croplands such as greater
than 0.8, SDI is often saturated; however, when the pixels have low proportion of croplands such as
less than 0.2, SDI is not sensitive enough, resulting in underestimation of cropland area. This situation
is similar to previous studies when the cell size of the remotely sensed data is larger than the size of
individual objects, this is especially true in urban landscapes, and referred to as mixed pixels [45]. The
results illustrated in Figure 8 also confirm that the small patch size of croplands, i.e., mixed pixels, is
an important source of cropland mapping uncertainty.

Many previous “hard” classification methods such as thresholding approaches or classification
algorithms are used to map cropland distribution [6,20,21,27], but the mixed pixel problem inherent
in the coarse spatial resolution imagery (e.g., MODIS) often results in large uncertainty in cropland
area statistics, resulting in poor area estimation and inaccurate spatial patterns. Although spectral
mixture analysis presents an effective way to decompose the spectral reflectance of a pixel into
different proportions, and has proven valuable in medium spatial resolution images such as Landsat
or hyperspectral data [12,46,47], this approach is not so promising in coarse spatial resolution images
such as MODIS due to the complex land cover composition and the difficulty in identifying suitable
endmembers in large areas. This research using Landsat-derived cropland data as reference to
establish a regression model by relating it to the SDI variable has proven feasible in estimating
fractional cropland.

In addition to the spectral mixture analysis in reducing the mixed pixel problem, another approach
is the use of data fusion of multi-resolution/sensor data [48–51]. However, in a large area, the data
fusion of Landsat TM and MODIS data may not be cost effective or may be not necessary because
Landsat TM image can reliably provide cropland classification. In addition, in tropical regions like
this study area, Landsat images are not available for many sites due to the cloud cover problem, thus
this kind data fusion is not feasible. Therefore, this research proposed the combination of MODIS
and a limited number of Landsat TM image to solve this data availability problem. A similar work
has been used for mapping fractional forest distribution [45]. A combination of multi-source data
such as MODIS, Landsat images, and ancillary data is an alternative to improve cropland mapping
performance [25]. However, attention should be paid to potential geometric errors between different
data sources. For example, the misregistration between Landsat and MODIS can reach a minimum of
50 m (nadir) [52].

The application of using this approach to other years of MODIS data in the same study area
has indicated its value in rapidly mapping fractional cropland distribution in a large area. However,
caution should be taken when attempting to transfer this approach to other study areas due to the
different land cover composition. For future study, subpixel based approaches using nonparametric
algorithms may be another direction for better extracting croplands, especially when accurate cropland
area statistics are required [6,31,35].

6. Conclusions

The proposed SDI-based approach provided a feasible way for mapping fractional cropland
distribution in Mato Grosso, Brazil. In summary, the following conclusions can be obtained:

(1) The use of the TSR algorithm based on crop phenology analysis effectively solved the difficulty
in collecting continuous time series data because of cloud contamination and noise.

(2) The proposed SDI approach effectively extracted fractional cropland distribution in a large area.
(3) The use of masks based on slope and pasture further reduced the confusion between croplands

and pastures, and thus improved cropland mapping performance.
(4) A RMSE of 0.14 was obtained for the cropland distribution in 2011.
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