EFFECTS OF STOCKING DENSITY ON THE GROWTH OF TAMBAQUI Colossoma macropomum IN NURSERY CAGES IN NORTHEAST OF BRAZIL C. A. SILVA* Embrapa Coastal Tablelands. Av. Beira Mar, 3.250, CEP: 49.025-040 – Aracaju/SE - Brazil *Email: carlos-alberto.silva@embrapa.br The aim of this study was to evaluate the growth of tambaqui in cages at different stocking densities in a lake supplied by with rainwater. The experiment was conducted at Embrapa Coastal Tablelands, Aracaju, Sergipe State, NE, Brazil in a nursery at densities of 50, 100, 200 and 300 fingerlings.m³ for 98 days (mean weight of $0.35 \pm 0.02g$), using twelve $1m^3$ cages with a 20 mm metallic mesh placed in a lake 0.5 ha with water depth ranged from 1.4 to 2.5m according to season. During nursery phase, a nylon 4 mm mesh was placed into cage to prevent escape of fingerlings. Commercial extruded feed was offered four times a day and contained 40% and 36% of crude protein. Sampling was done every 30 days to evaluate growth in weight and adjust the feeding rate. The water temperature was 29.1 ± 1.4 °C, dissolved oxygen $8.3 \pm 0.8mg.L^{-1}$, pH 6.5 ± 1.1 and conductivity $606.2 \pm 69.9\mu S.cm^{-1}$. Environmental parameters of the water fluctuated within the recommended range for the rearing of tambaqui. The highest final weight was obtained at 50 fingerlings.m⁻³, (table I). Survival over 97% was observed in the nursery. The stocking density had a significant effect on production, with the highest final biomass (14.0 kg.m^{-3}) in cages stocked at the highest density. The recommended density in nurseries for producing juveniles tambaquis reared in small cages is $300 \text{ fingerlings.m}^{-1}$. The results show that the tambaqui cage culture is viable in lakes supplied by rainwater and can be integrated with multiple-use water services. Further research is needed to improve growth to market-size and decrease feed conversion rate lowering production costs. Table I: Final weight, feed conversion rate (FCR), survival rate and final biomass of tambaqui in the nursery | Parameter | Fingerling.m ⁻³ | | | | |-------------------------------------|------------------------------|------------------------|-------------------------|-------------------------| | | 50 | 100 | 200 | 300 | | Final weight (g) | ¹ 83.5 ±
18.0° | 70.8 ± 19.1ª | 44.0 ± 4.7 ^b | 46.8 ± 9.2 ^b | | FCR ² | 1.1 ± 0.1 ^b | 0.9 ± 0.1^{a} | 1.0 ± 0.1^{b} | 0.8 ± 0.1^{a} | | Survival rate (%) | 88.2 ±
13.5 ^b | 97.4 ± 2.2° | 99.5 ± 0.6° | 99.7 ± 0.4° | | Final biomass (kg.m ⁻³) | $3.6 \pm 1.9^{\circ}$ | 6.9 ± 1.6 ^b | 8.8 ± 0.9^{b} | 14.0 ± 2.7 ^a | $^{^{1}}$ Means (\pm SD). Means followed by different letters are significantly different at P<0.05 by Tukey's test. ²FCR = Feed conversion rate